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We study local–global principles for zero-cycles on K3 surfaces defined over number

fields. We follow an idea of Liang to use the trivial fibration over the projective line.

1 Introduction

Let X be a smooth, projective, geometrically irreducible variety over a number field k.

The theory of the Brauer–Manin obstruction to the Hasse principle, and its variants,

has developed considerably since its introduction by Manin in [10] (see, e.g., [15]

and references therein). Primarily one is interested in rational points but there is an

analogous story for zero-cycles, where rational points are replaced by zero-cycles.

This note is concerned with local–global principles for zero-cycles on K3 surfaces over

number fields.

First we establish some general context. Denote by CH0(X) the group of zero-

cycles modulo rational equivalence on X and by A0(X) the kernel of the degree map

CH0(X) → Z. We have a pairing

Br(X) ×
∏

v∈�

CH0(Xkv
) → Q/Z

and the image of CH0(X) → ∏
v∈� CH0(Xkv

) is orthogonal to Br(X).
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2 E. Ieronymou

The conjecture that the Brauer–Manin obstruction to the existence of a zero-

cycle of degree one is the only one is still open. This conjecture was put forward in

various forms and for various classes of smooth, projective, geometrically irreducible

varieties by Colliot-Thélène, Sansuc, Kato, and Saito (cf. [3], [8], and [1]). We now have

the following for arbitrary smooth, projective, geometrically connected varieties over a

number field (we refer the reader to [1] and [19, Sections 0 and 1] for more information).

CONJECTURE (E0)

The sequence

lim←−
n

A0(X)/n →
∏

v∈�

lim←−
n

A0(Xkv
)/n → Hom(Br(X),Q/Z)

is exact.

CONJECTURE (E1)

If there is a family of local zero-cycles {zv}v∈� of degree one orthogonal to Br(X)

then there exists a zero-cycle of degree one on X.

CONJECTURE (E)

The sequence

ĈH0(X) → ̂CH0,A (X) → Hom(Br(X),Q/Z)

is exact (the notation will be explained below).

This formulation is due to [18]; see also [19]. Note that CONJECTURE (E) implies

the other two [19, Remark 1.1, (ii)–(iii)].

Our results are in the spirit of [9]; we assume results about rational points for

all finite extensions and deduce results about zero-cycles. We remind the reader that

the phrase “the Brauer–Manin obstruction to the Hasse principle on X is the only one”

is the statement “X(Ak)Br(X) �= ∅ ⇒ X(k) �= ∅”. We can now recall [9, Theorem 3.2.1] that

states the following.

Theorem 1.1. Let Y be a proper smooth variety defined over a number field k such

that NS(Yk) is torsion-free and H1(Yk,OYk
) = H2(Yk,OYk

) = 0. Suppose that for all finite

extensions F/k the Brauer–Manin obstruction to the Hasse principle on YF is the only

one. Then the Brauer–Manin obstruction is the only obstruction to the Hasse principle

for 0-cycles of degree 1 on Yk.
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The Brauer-Manin Obstruction for Zero-Cycles on Surfaces 3

In [9, Theorem 3.2.1] there is also a similar statement concerning weak approx-

imation. Note that a rationally connected variety satisfies the conditions above, but for

a K3 surface the assumption that H2(Yk,OYk
) = 0 fails. In this note we show that we

can circumvent this crucial assumption by using results of Skorobogatov and Zarhin

[17] and Orr and Skorobogatov [11], and therefore extend some of the main results of [9]

to the case of K3 surfaces. More precisely we have

Theorem 1.2. Let X be a K3 surface over a number field k and d ∈ Z. Suppose that

for all finite extensions F/k the Brauer–Manin obstruction to the Hasse principle on XF

is the only one. Then the Brauer–Manin obstruction to the existence of a zero-cycle of

degree d on X is the only one; if there is a family of local zero-cycles {zv}v∈� of degree d

orthogonal to Br(X) then there exists a zero-cycle of degree d on X.

We also show something about “weak approximation”.

Theorem 1.3. Let X be a K3 surface over a number field k. Suppose that for all finite

extensions F/k we have that X(F) is dense in X(AF)Br(XF ). Let {zv}v∈� be a family of local

zero-cycles of constant degree orthogonal to Br(X). Then for any n ≥ 1 there exists a

zero-cycle b on X of the same degree such that b = zv in CH0(Xkv
)/n for all v ∈ �.

Remarks

(i) The Brauer–Manin obstruction does not explain all the failures of the Hasse

principle (see [14] or [12], where in the latter the insufficiency of an even

more refined obstruction is shown). However, this is conjectured to be the

case for various classes of varieties, for example, for the class of K3 surfaces

(cf. [17] and [16]). Note that although there is some scarce evidence for

the aforementioned conjecture for rational points on K3 surfaces, there

is no evidence whatsoever for the analogous conjecture for zero-cycles on

K3 surfaces. By relating the two conjectures our results can be seen as

providing some such evidence.

(ii) The reason that Theorem 1.2 is not a Corollary of Theorem 1.3 is that in

principle the statement “X(Ak)Br(X) �= ∅ ⇒ X(k) �= ∅” is weaker than the

statement “X(k) is dense in X(Ak)Br(X)”

(iii) In order to make a precise link between CONJECTURE (E) and the conclusion

of Theorem 1.3 we would need more information about divisibility proper-

ties of the groups A0(Xkv
). For example CONJECTURE (E) would follow from

the conclusion of Theorem 1.3 if we knew that there is a constant C such that
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4 E. Ieronymou

for all v, we have that C annihilates A0(Xkv
) modulo its maximal divisible

subgroup. Note that this is true if X is rationally connected, but it is not

known in the case of K3 surfaces (cf. Proposition 3.4 and the references in

its proof).

The plan of the proof is as follows. We employ the idea of Liang [9, proof of

Theorem 3.2.1] to use the trivial fibration over the projective line, and hence utilize

the fibration method. To that end, it will be most convenient for us to quote and use

some results of Harpaz and Wittenberg on the fibration method from [6]. As already

mentioned above the difficulty is that we have to somehow circumvent the crucial

assumption that H2(X,OX) = 0, which fails when X is a K3 surface. In order to do

so we use some boundedness results of Skorobogatov and Zarhin [17] and Orr and

Skorobogatov [11] on Brauer groups of K3 surfaces over number fields. The organization

of the note is as follows. In Section 2 we set notation and conventions; in Section 3 we

prove some auxiliary lemmata; and in Section 4 we give the proofs of the two theorems.

2 Notation and Conventions

All cohomology groups are étale (or Galois) cohomology groups. When k is a field we

denote by k a separable closure of k. Let X/k be a smooth, projective and geometrically

irreducible variety.

We set Br(X) = H2(X,Gm), and Br0(X) = Im (Br(k) → Br(X)). For L/k a

field extension we denote XL the variety X ×Spec (k) Spec (L) over L. When L = k we

simply write X. We denote by X(L) the set of L-valued points of X, that is, X(L) =
HomSpec (k)(Spec (L), X).

When k is a number field, we denote by �k the set of places of k and by Ak the

ring of adeles. We suppress the dependence on k when there is no risk of confusion. By

�f (resp. �∞) we denote the subset of � consisting of finite (resp. infinite) places. For

v ∈ �, kv is the completion of k at the place v. For a finite subset S ⊂ � we denote

by OS the ring of S-integers of k (elements of k that are integral at all the finite places

not in S).

We denote by Z0(X) the group of zero-cycles of X and by CH0(X) its quotient by

the subgroup of cycles rationally equivalent to zero. We denote by A0(X) the kernel of

the degree map CH0(X) → Z. A reduced zero-cycle is one all of whose coefficients belong

to {0, 1}.
We now follow the notations of [6]. We reproduce it here for the conve-

nience of the reader. All varieties are assumed to be proper, which allows for some
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The Brauer-Manin Obstruction for Zero-Cycles on Surfaces 5

simplifications. Hence, the results of this paper are presented in a less general form

than in [6] (see also the remark at the end of this section).

We denote by Z0,A (X) the product
∏

v∈� Z0(Xkv
). For the definition of CH0,A (X)

we modify the components at the infinite places. That is, we define CH ′
0(Xkv

) to be the

cokernel of the norm map CH0(Xkv
) → CH0(Xkv

) when u is infinite and CH0(Xkv
) when v

is finite. We denote by CH0,A (X) the product
∏

v∈� CH ′
0(Xkv

). For an abelian group M we

denote M̂ the inverse limit lim←−n≥1
M/nM.

We have a pairing

Br(X) × ̂CH0,A (X) → Q/Z.

When we have a morphism f : X → C to a smooth projective curve over k, we

denote Zeff,red
0 (X) the set of effective zero-cycles z on X such that f∗z is a reduced divisor

on C (by a slight abuse we suppress f from the notation). If k is a number field we let

Zeff,red
0,A (X) = ∏

v∈� Zeff,red
0 (Xkv

). For y ∈ CH0(C), let y′ be its image in CH0,A (C) and denote

by Zeff,red,y
0,A the inverse image of y′ by the push-forward map Zeff,red

0,A (X) → CH0,A (C).

We denote SymX/k the disjoint union of the symmetric products Symd
X/k for d ≥1.

We say that a subset H of an irreducible variety X is a Hilbert subset if there

exist a dense open subset X0 ⊂ X, an integer n ≥ 1, and irreducible finite étale X0-

schemes W1, · · · , Wn such that H is the set of points of X0 above which the fiber of Wi is

irreducible for all 1 ≤ i ≤ n. Note that by this definition H is not a subset of X(k).

Remark. In this note we will only consider the trivial fibration over P1
k. We

will thus use only a small fraction of the results from [6], which allows for some

simplifications in the notation above. For example C is always P1
k and we can take y ∈ Z

as we identify Pic(P1) with Z via the degree map. Moreover, we can always take the open

subsets involved in the results we will use from [6] to be the whole spaces (which are

proper), which enables us to avoid the slightly more convoluted definition for Z0,A (X)

that appears in op. cit.

3 Preparatory Results

We start with a trivial lemma.

Lemma 3.1. Let h : Y → V be a morphism of varieties over k, which admits a section

and let d ∈ Z. If the Brauer–Manin obstruction to the existence of a zero-cycle of degree

d on Y is the only one, then the same is true for V.
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6 E. Ieronymou

Proof. Let f : V → X be a morphism of varieties over a field K, and denote f ∗ : Br(X) →
Br(V), and f∗ : Z0(V) → Z0(X) the corresponding induced maps. From the functoriality

of the pairings we have

〈A, f∗z〉 = 〈 f ∗(A), z〉 ∈ Br(K)

for z ∈ Z0(V) and A ∈ Br(X) (cf. [4, Section 3]).

Let s : V → Y be a section of h. If we have a family of local zero-cycles of degree

d on V that is orthogonal to Br(V) we can push it forward via s and get a family of local

zero-cycles of degree d on Y that is orthogonal to Br(Y). By assumption there exists a

zero-cycle of degree d on Y. By pushing it forward via h we get a zero-cycle of degree

d on V. �

We will need the following easy lemma.

Lemma 3.2. Let F/k be a finite field extension inside k. There exists a Hilbert subset

H of P1
k with the property that for any closed point P ∈ H we have that F and k(P) are

linearly disjoint over k.

Proof. Consider the natural projection p : A1
F → A1

k. This is a finite étale morphism

and hence defines a Hilbert subset H of P1
k. If P is a closed point in H then by definition

k(P) ⊗k F is irreducible and hence a field. This implies that for any k-linear embedding

f : k(P) → k we have that f (k(P)) and F are linearly disjoint over k. �

We will also need the following lemma whose proof is an adaptation of the proof

of [9, Proposition 3.1.1] to our case.

Lemma 3.3. Let X be a K3 surface over a number field k. There exists a finite Galois

extension L/k such that �L acts trivially on Pic(X) and for any Galois extension K/k that

contains L we have an exact sequence

0 → H1(Gal(K/k), PicX) → Br(X)/Br0(X) → Br(X)�k → H2(Gal(K/k), Pic(X)).

Proof. From the Hochschild–Serre spectral sequence

Hp(k, Hq(X,Gm)) �⇒ Hp+q(X,Gm)
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The Brauer-Manin Obstruction for Zero-Cycles on Surfaces 7

and using the fact that H3(k, k) = 0 we get

0 → H1(k, PicX) → Br(X)/Br0(X) → Br(X)�k → H2(k, Pic(X)).

By [17, Theorem 1.2] we have that Br(X)�k is finite and hence so is its image in

H2(k, Pic(X)). As H2(k, Pic(X)) is the direct limit of the inflation maps from finite

quotients we can choose a finite Galois extension L1/k so that the image of Br(X)�k

is contained in the image of H2(Gal(L1/k), Pic(X)�L1 ) in H2(k, Pic(X)).

As Pic(X) is a finitely generated, free abelian group, we can choose a finite exten-

sion L2/k so that �L2
acts trivially on Pic(X). Let L be the Galois closure of the composite

of L1 and L2. The inflation-restriction sequence tells us that H1(Gal(L/k), Pic(X)) →
H1(k, PicX) is an isomorphism and H2(Gal(L/k), Pic(X)) → H2(k, Pic(X)) is an injection.

We can therefore rewrite the exact sequence above as

0 → H1(Gal(L/k), Pic(X)) → Br(X)/Br0(X) → Br(X)�k → H2(Gal(L/k), Pic(X)).

It is clear that we can replace L in the above exact sequence with K where K is any

Galois extension K/k that contains L. �

We will moreover use the following proposition in the proof of Theorem 1.3. The

proposition follows from results of Kato, Saito, and Sato.

Proposition 3.4. Let V be a K3 surface over kv, and let p be the characteristic of the

residue field. Assume that V has a smooth projective model over Ov. Then A0(V) is

�-divisible for all primes � with � �= p.

Proof. This follows immediately from [13,Thm. 0.3, Cor. 0.10] together with

[7, Theorem 1]. �

4 Proofs of the Main Results

Proof of Theorem 1.2: Let Y = X ×P1 and let p : Y → X be the projection to the 1st factor.

By Lemma 3.1 it suffices to prove that the Brauer–Manin obstruction to the existence of

a zero-cycle of degree d on Y is the only one.

We start with some standard arguments (cf. [4, Sections 3 and 5]). We can find a

finite set S ⊂ � containing the infinite places so that Y has a smooth projective model Y
over OS, and Y(kv) �= ∅ for any v /∈ S. Since |Br(X)/Br0(X)| is finite by [17, Theorem 1.2]
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8 E. Ieronymou

and p∗ : Br(X) → Br(X × P1) is an isomorphism we have that |Br(Y)/Br0(Y)| is finite. Let

αi ∈ Br(Y), 1 ≤ i ≤ n, be elements whose classes generate Br(Y)/Br0(Y). By enlarging

S if necessary, we can furthermore assume that each αi extends to an element of Br(Y).

Hence, for any 1 ≤ i ≤ n, v /∈ S, and b ∈ Z0(Ykv
) we have that invv(〈αi, b〉) = 0. Let B be

the span of the αi in Br(Y).

We now work with the trivial fibration f : Y → P1. Let zA = {zv}v∈� be a family of

local zero-cycles of degree d on Y, which is orthogonal to B. By [6, Proposition 7.5] we can

find z′
A ∈ Zeff,red,δ

0,A (Y), z ∈ Z0(Y), and ξA ∈ CH0,A (Y) such that the equality zA = z′
A +z+ξA

holds in CH0,A (Y) the v-adic component of ξA is zero for v ∈ S and has degree 0 for v /∈ S.

Moreover, property (3) of [6, Proposition 7.5] holds; the relevance of this property in this

context is the following: we can choose � as in loc. cit. so that property (3) will ensure

that z′
A satisfies the assumptions (ii) and (iii) of [6, Theorem 6.2]. From the above, we

have in particular that z′
A is a family of effective, reduced local zero-cycles of constant

degree δ on Y and that z is a zero-cycle of degree d − δ on Y. Moreover, it is clear from

our choice of S that z′
A is orthogonal to B.

We now define a Hilbert subset of P1
k as follows. According to [11, Theorem C]

there exists a constant C such that

|Br(X)Gal(k/N)| ≤ C

for any field extension N/k with [N : k] ≤ δ. Since Br(X) ∼= (Q/Z)22−ρ , where ρ is the

geometric Picard number, there are finitely many elements of Br(X) whose order is less

or equal to C. Each one of them is stabilized by a subgroup of �k of finite index, which

corresponds to a finite extension of k. Taking the Galois closure of the finitely many

such extensions we produce a finite Galois extension M/k. We choose L as in Lemma 3.3

and denote by F be the composite of M and L. For this F we now choose a Hilbert subset

H of P1
k as in Lemma 3.2.

We are now in a position to apply [6, Theorem 6.2]. Let B, z′
A , and H be as above.

For these choices the assumptions of loc. cit. are fullfiled and hence there exists a family

{z′′
v}v∈� ∈ Z0,A (Y) and a closed point P ∈ H such that {z′′

v} is effective for all v, p∗(z′′
v) =

P ∈ Z0(P1
kv

) for all v, and {z′′
v}v∈� is orthogonal to B. In particular [k(P) : k] = δ. Denote

k(P) by k′ and consider the fiber of Y at P, that is, Xk′ . The image of P in Z0(P1
kv

) is the

disjoint union �w∈RSpec (k′
w) where R is the set of the different prolongations of v to k′.

It is not difficult to see that because of the above properties of z′′
v, we must have that

z′′
v is the sum of distinct closed points, one closed point above each Spec (k′

w), and that

closed point must have residue field k′
w. This implies that {z′′

v}v∈�k
induces a family of

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article-abstract/doi/10.1093/im
rn/rnz109/5519801 by U

niversity of C
yprus user on 04 June 2020



The Brauer-Manin Obstruction for Zero-Cycles on Surfaces 9

local points of the variety Xk′ , that is, an element of
∏

w∈�k′ X(k′
w). Furthermore, this

family is orthogonal to the image of B in Br(Xk′).

Assume that the image of B under the natural map generates Br(Xk′)/Br0(Xk′).

Since the Brauer–Manin obstruction to the Hasse principle on Xk′ is the only one, we

deduce the existence of a k′-rational point of Xk′ . This gives us a zero-cycle, say a, of

degree δ on Y. Since z is a zero-cycle of degree d − δ on Y we deduce that a + z is a

zero-cycle of degree d on Y.

It remains to show that the image of B generates Br(Xk′)/Br0(Xk′) or equivalently

that the map Br(X)/Br0(X) → Br(Xk′)/Br0(Xk′) is surjective. Denote by F ′ the composite

of F and k′. Note that F ′/k′ is a Galois extension and there is a natural isomorphism

Gal(F ′/k′) → Gal(F/k) compatible with the actions on Pic(X). Moreover since [k′ : k] =
δ we have that |Br(X)�k′ | ≤ C. This implies that Br(X)�k = Br(X)�k′ ; let α ∈ Br(X)�k′ .

The stabilizer of α in �k corresponds to a sub-extension of F/k, which is contained in

k′/k. As k′ and F are linearly disjoint over k by construction, this sub-extension of F/k

must be k/k, that is, a is stabilized by �k. By our constructions we have the following

commutative diagram with exact rows

where the 1st, 3rd, and 4th vertical arrows are isomorphisms. Therefore, the 2nd vertical

arrow is an isomorphism as well.

Proof of Theorem 1.3: We will use many ideas from the proof of Theorem 1.2.

First we make the following claim: for any n ≥ 1 and any finite subset S ⊂ �, there

exists a zero-cycle b on X of the same degree such that b = zv in CH0(Xkv
)/n for all v ∈ S.

It will be more convenient to prove a reformulation of the claim. Let Y = X × P1

and let p : Y → X be the projection to the 1st factor. By Lemma 3.1 and its proof it is

clear that to establish the claim it suffices to prove the following statement: let zA =
{zv}v∈� be a family of local zero-cycles of degree d on Y, which is orthogonal to Br(Y).

Then for any finite subset S ⊂ � and any n ≥ 1 there exists a zero-cycle y on Y of the

same degree such that y = zv in CH0(Ykv
)/n for all v ∈ S.

In order to prove the statement above, we first enlarge S as in the beginning of

the proof of Theorem 1.2. We now proceed exactly like the proof of Theorem 1.2, and

we keep the notation used there. In particular, we now work with the trivial fibration

f : Y → P1. Note that when we come to the point where we apply [6, Theorem 6.2],

we can choose the z′′
v as close as we want to z′

v in SymY/k(kv) for v ∈ S (this is part of
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10 E. Ieronymou

[6, Theorem 6.2]). Applying weak approximation to the family induced by the {z′′
v}v∈�k

on Xk(P), we can therefore take the zero-cycle a coming from a k(P)-rational point of

Xk(P) to be as close as we want to z′
v in SymY/k(kv) for v ∈ S. By [19, Lemma 1.8] we can

therefore ensure that a = z′
v ∈ CH0(Ykv

)/n for all v ∈ S. We can now take y = a + z, in

order to finish the proof of the aforementioned statement. Therefore, the claim is also

established.

We are now in a position to prove Theorem 1.3. We take S large enough so that

for all v /∈ S we have that Xkv
has a smooth projective model over Ov, and moreover

the characteristic of the residue field of kv does not divide n. We apply the claim to

this choice of S. Hence, there exists a zero-cycle b on X of the same degree such that

b = zv in CH0(Xkv
)/n for all v ∈ S. If v /∈ S, then since b and zv have the same degree we

deduce from Proposition 3.4 that b − zv is divisible by n in CH0(Xkv
). Therefore, b = zv

in CH0(Xkv
)/n for all v ∈ �.
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