
Introducing S-Plus

The purpose of these lectures is to introduce the student to some basic concepts
regarding S-Plus. As we shall see, S-Plus is a language which has specially
designed for explaratory data analysis and Statistics. It can be used either interac-
tively or by programming. In these notes we will see how to program in S-Plus and
by doing so, we will be able to build our own functions-a concept that will be de-
scribed later in the lectures. The purpose of these notes is to introduce the student
into

• General concepts of S-Plus.

• Using S-Plus in doing some elementary data analysis.

• Some programming concepts in S-Plus.

It would be most helpful initially to present a series of functions as an introductory
session to the language.

An Introductory Session in S-Plus

The following session aims on introducing you to some features of S-Plus and
show you how to use them. Most of the following commands might be confusing.
However this will soon be eliminated as we are becoming more familiar with the
language.

First Example

x <- rnorm(50) Generate two standard normal vectors of x
y <- rnorm(x) and y coordinates.
hull <- chull(x,y) Find their convex hull in the plane
plot(x,y) Plot the points in the plane,
polygon(x[hull], y[hull],dens=15) and mark in their convex hull.
objects() See which S-Plus objects are now in

_Data directory.
rm(x,y) Remove objects.

1



K. Fokianos LMU-Lecture 1 Fall 2002

Second Example

x <- 1:20 Create x = (1, 2, ..., 20).
w <- 1+sqrt(x)/2 Create a weight vector of standard deviations.
dummy <- data.frame(x=x, Make a data frame of two columns
y=x+rnorm(x)*w) x and y and examine it.
dummy
objects() See which S-Plus objects are now in

_Data directory.
fm <- lm(y~x, data=dummy) Fit a simple linear regression of y on x
summary(fm) and look at the results.
fm1 <- lm(y~x, data=dummy, Do a weighted regression.
weight=1/w^2)
lrf <- loess(y~x, data=dummy) Run a nonparametric local regression function.
attach(dummy) The columns of the data frame are visible.
plot(x,y) Plot of x versus y.
lines(x, fitted(lrf)) Add to the plot the fitted model.
abline(0,1,lty=3) Add to the plot the true regression line.
abline(coef(fm)) The simple regression line.
abline(coef(fm1), lty=4) The weighted regression line.

At any time you you can produce a copy of the graphics
by clicking on the Graph section
and selecting the Print option.

detach() Remove data frame from the list.
plot(fitted(fm), resid(fm), Standard regression plot to check
xlab=Fitted Values"," for heteroscedasticity.
ylab=Residuals", main="
Residuals vs Fitted")"
qqnorm(resid(fm), main= A normal QQ plot.
Residuals QQ Plot")"
rm(fm,fm1,lrf,x,dummy)

2



K. Fokianos LMU-Lecture 1 Fall 2002

Third Example

Graphical capabilities of S-Plus:
contour and 3–dimensional plots.

x <- seq(-pi,pi,length=50) x is a vector of 50 equally spaced values in (−π, π).
y <- x The same as x.
f <- outer(x,y, Define a matrix f whose rows and columns
function(x,y) are indexed by x, y respectively and correspond
cos(y)/(1+x^´2)) to the values of cos(y)/(1 + x2).
oldpar <- par() Save the plotting parameters.
par(pty=s")" Set the plotting region to square.
contour(x,y,f) Make a contour map of f .
contour(x,y,f, Add to the plot more lines for detail.
nint=15, add=T)
fa <- (f-t(f))/2 fa is the asymmetric part of f .
contour(x,y, fa, nint=15) Create a contour plot of fa.
par(oldpar) Restore the old graphics parameters.
persp(x,y,f) Create perspective and high
persp(x,y,fa) images plots.
image(x,y, f)
image(x,y,fa)
objects(); rm(x,y,f,fa) Clean up everything.
q() Quit S-Plus.

Basic Concepts

S-Plus is an interpreted language in which individual language expressions are
read and then immediately executed. By contrast, C and Fortran are compiled
languages. This means that complete programs in the language are translated
by a compiler into the appropriate machine language. The great advantage of
interpreted languages is that they allow incremental development. In other words,
you can write a function, run it, then write another function that call the previous
one and so on and henceforth. However notice that compiled code runs faster and
requires less memory than interpreted code.

Syntax

You interact with S-Plus by typing expressions, which the interpreter evaluates and
executes. For instance

> sqrt
function(x)
x^0.5

or

3



K. Fokianos LMU-Lecture 1 Fall 2002

log
function(x, base = 2.71828182845905)
{

y <- .Internal(log(x), "do_math", T, 106)
if(missing(base))

y
else y/.Internal(log(base), "do_math", T, 106)

}

Notice that S-Plus is case sensitive. This means that x and X are different
objects. A function call is usually typed as a function name followed by an argument
list. For example

> plot(corn.rain)
> mean(corn.rain)
[1] 10.78421

Infix operations are functions with two arguments that have special calling. For
instance

> 2+5
[1] 7
> 3*6.8
[1] 20.4
> 12.6/6
[1] 2.1

One of the most frequently used infix operators is the assignment operator <- So

test <- 4
> test
[1] 4

Another common operator is the subscripting operator [, used to extract subsets of
an S-Plus object. For example

letters
[1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n"
"o" "p" "q" "r" "s" "t" "u" "v" "w" "x" "y" "z"

> letters[3]
[1] "c"
> letters[-3]
[1] "a" "b" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n"
"o" "p" "q" "r" "s" "t" "u" "v" "w" "x" "y" "z"

Logical values:

4



K. Fokianos LMU-Lecture 1 Fall 2002

j <- 1:26
> j < 5
[1] T T T T F F F F F F F F F F F F F F F F F F F F F F

> letters[j < 5]
[1] "a" "b" "c" "d"

Subscripting is very important in making efficient use of S-Plus because it em-
phasizes treating data object as whole entities, rather than a collection of individual
observations.

As a last note, we need to point out that every S-Plus expression is interpreted
by the evaluator and returns a data object. Data objects have modes

• logical

• numeric

• complex

• character

The modes are listed from least informative to most informative. When you want
to combine different modes together, S-Plus uses the most informative mode. The
following example illustrates the concept:

> -3.6
[1] -3.6
> "Munich"
[1] "Munich"
> c(T, F, T)
[1] T F T
> c(-2, pi, 2)
[1] -2.000000 3.141593 2.000000
> c(T, pi, F)
[1] 1.000000 3.141593 0.000000
> c(T, pi, "Munich")
[1] "TRUE" "3.14159265358979" "Munich"
> mode(c(T, pi, "Munich"))
[1] "character"

5


