
Graphics

Graphics are very helpful on visualizing data and can guide the statistician through
the process of model building and evaluation. This section describes some use-
ful plotting functions in S-Plus and introduces several graphical tasks like adding
information in the plot or visualizing correlation.

In addition to the few plotting features described below, S-Plus includes, Ed-
itable Graphics Commands, and the Trellis Graphics library. Trellis Graphics fea-
tures additional functionality such as multipanel layouts and improved 3-D render-
ing.

Simple Plots

The simplest plots are graphs of one dimensional random variable, plots of func-
tions or plots of time series. Here is how you can use the plot for some straight-
forward tasks.

> x <- rnorm(50, mean=1, sd=2)
> plot(x)
> y <- seq(0,20, .1)
> z <- exp(-y/10)*cos(2*y)
> plot(y,z, type="l")

The results are displayed in Figure 1.

Index

x

0 10 20 30 40 50

-4
-2

0
2

4
6

y

z

0 5 10 15 20

-0
.5

0.
0

0.
5

1.
0

Figure 1: Some simple plots

1

K. Fokianos LMU-Lecture 5 Fall 2002

As the last example indicates, scatter plots in S-Plus are created with the plot
function applied to a pair of equal-length vectors, a matrix with two columns, or a
list with components x and y.

> x1 <- rnorm(50)
> plot(x1,x)
> plot(cbind(x1,x))

When data are observed over time, it is natural to plot the observations against
the time axis. This can accomplished in S-Plus by using the ts.plot function. For
instance, consider the halibut data set is a list with two components, each of which
is a time series of length 55.

> ts.plot(halibut$biomass)
> ts.plot(halibut$biomass, halibut$cpue)

The results are displayed in Figure 2 and notice that for the two time series plot
the solid line always represents the first argument to ts.plot and the dashed line
represents the second argument.

Time

1940 1950 1960 1970 1980 1990

15
0

20
0

25
0

30
0

Time

1940 1950 1960 1970 1980 1990

10
0

15
0

20
0

25
0

30
0

Figure 2: Time series plots

Plotting Options

There are several plotting options but the presentation is confined to a few options
that turn out to be more useful than others. The layout of the graph can be arranged
so that more than a single plot per page is displayed (see Figure 3).

> par(mfrow=c(2,2)) #a 2x2 plot
> plot(1:20,1:20,main="Straight Line")
> hist(rnorm(50),main="Histogram of Normal")
> qqnorm(rt(100,10),main="Samples from t(10)")
> plot(density(rnorm(50)),main="Normal Density")
> par(mfrow=c(1,1))

2

K. Fokianos LMU-Lecture 5 Fall 2002

Straight Line

1:20

1:
20

5 10 15 20

5
10

15
20

-2 -1 0 1 2

0
5

10
15

Histogram of Normal

rnorm(50)

Samples from t(10)

Quantiles of Standard Normal

rt
(1

00
, 1

0)

-2 -1 0 1 2

-3
-2

-1
0

1
2

3

Normal Density

density(rnorm(50))$x

de
ns

ity
(r

no
rm

(5
0)

)$
y

-4 -2 0 2 4

0.
0

0.
1

0.
2

0.
3

Figure 3: A 2 by 2 layout plot

Similar results are achieved with the use of split.screen function. Based on the
above discussion, it is easy to see how we can include a main title (or a subtitle) to
the plot.

> plot(x,main="Sample From Normal")
> plot(x,sub="Mean 1 and variance 4")
> plot(x, main="Sample from Normal", sub="Mean 1 and Variance 4")
> plot(x)
> title(main="Sample from Normal", sub="Mean 1 and Variance 4")

The axis labels are modified by using

> plot(x, xlab="Index", ylab="Sample from Normal")
> plot(x, xlab="", ylab="") #no axis labels
> title(xlab="Index", ylab="Sample from Normal")

while the functions xlim and ylim are useful on setting up your own axis limits.

Plotting Types and Lines

Data in S-Plus is plotted in any of the following ways:

• As points

• As lines

• As both points and lines

• As overstruck points and lines

• As a vertical line for each data point

• As a stairstep plot

3

K. Fokianos LMU-Lecture 5 Fall 2002

• As an empty plot, with axes and labels but no data plotted

Here is an example (see Figure (refplot4):

> par(mfrow=c(2,4))
> plot(x, type="p") #default
> title(main="Points")
> plot(x, type="l")
> title(main="Lines")
> plot(x, type="b")
> title(main="Both Points and Lines")
> plot(x, type="o")
> title(main="Lines with points overstruck")
> plot(x, type="h")
> title(main="High Density")
> plot(x, type="s")
> title(main="Stairstep")
> plot(x, type="n")
> title(main="None")
> par(mfrow=c(1,1))

Index

x

0 10 20 30 40 50

-4
-2

0
2

4
6

Points

Index

x

0 10 20 30 40 50

-4
-2

0
2

4
6

Lines

Index

x

0 10 20 30 40 50

-4
-2

0
2

4
6

Both Points and Lines

Index

x

0 10 20 30 40 50

-4
-2

0
2

4
6

Lines with points overstruck

Index

x

0 10 20 30 40 50

-4
-2

0
2

4
6

High Density

Index

x

0 10 20 30 40 50

-4
-2

0
2

4
6

Stairstep

Index

x

0 10 20 30 40 50

-4
-2

0
2

4
6

None

Figure 4: Different plotting types

When your plot type involves lines, you can choose the line type for the lines.
By default, the line type for the first line on a graph is a solid line. If you prefer
a different line type, you can use the argument lty=n, where n is an integer, to
specify a different one (see below). On most devices, there are eight distinct line
types.

Adding Information to Plots

There are several occasions in which we want to build on an existing plot in an
interactive way for pointing out outliers or add text and so on. There are various

4

K. Fokianos LMU-Lecture 5 Fall 2002

way that S-Plus can produce further information to the plot by interacting with the
user.

Here is an example of how you can identify an outlier:

> x <- runif(20)
> y <- 6*x+rnorm(20)
> x <- c(x,3)
> y <- c(y,4)
> plot(x,y)
> identify(x,y, n=1) #S-Plus waits until you click the mouse on the selected point
[1] 21

In principle you can identify as many points as you wish by using the function
identify(x,y, n=k) where k is the number of desired points.

The following helps you understand how we can add a least squares lines in a
plot and how you can add other points in the graph.

> plot(x,y)
> abline(lm(y~x), lty=2)
> plot(y^2, type="l", xlab="", ylab="Square of Y")
> lines(y, lty=2)
> lines(x, lty=4)

Here is some other useful information:

> plot(x, y, main="Adding Text")
> text(locator(1), "An outlier") #S-Plus waits until you

#click the mouse to place the text
> tsplot(x, y, type="pl", pch="+") # time series plot of both X and Y
> leg.names <- c("Variable X","Variable Y")
> legend(locator(1), leg.names, pch="+ ", lty=c(0,1)) #S-Plus waits until you click

#the mouse to place the legend

Plotting in Higher Dimensions

There are several problems where the data is high dimensional. To get plots of
multidimensional random variables one possible way is to graph each scatter plot
separately. For instance, suppose that we define the variable Z from the existing
variables X and Y and form a matrix with 3 columns. Then to explore the relationship
between all three variables we can use the function pairs() as follows (see Figure
5).

> z <- x+2*y+rnorm(21)
> pairs(cbind(x,y,z))

For visualizing several vector data objects at once or for visualizing some kinds
of multivariate data, you can use the function matplot to plot columns of one matrix
against the columns of another.

5

K. Fokianos LMU-Lecture 5 Fall 2002

x

0 2 4 6

0.
0

1.
0

2.
0

3.
0

0
2

4
6

y

0.0 0.5 1.0 1.5 2.0 2.5 3.0 0 5 10

0
5

10

z

Figure 5: A scatter plot matrix

> pet.length <- iris[,3,]
> pet.width <- iris[,4,]

The matrix pet.length contains 50 observations (the rows) of petal lengths for each
of three species of iris (the columns): Setosa, Versicolor and Virginica. The ma-
trix pet.width contains 50 observations of petal widths for each of the same three
species. To graphically explore the relationship between petal lengths and petal
widths, use matplot to display widths versus lengths simultaneously on a single
plot:

> matplot(pet.length,pet.width)

Many types of data are viewed as surfaces generated by functions of two vari-
ables. S-PLUS provides three functions for viewing such data. The simplest, contour,
represents the surface as a set of contour plots lines on a grid representing the
other two variables. The perspective plot, persp, creates a perspective plot with
hidden line removal. The image function plots the surface as a color or grayscale
variation on the base grid. All three functions require similar input: vector of x
coordinates, a vector of y coordinates, and a length x by length y matrix of z values.

6

