
Simple Statistical Inference I

This part of the notes introduce some simple statistical procedures for the inferential
problems associated with one and two samples. The first part review Exploratory
Data Analysis (EDA) which is a collection of graphical techniques for data inspec-
tion. In the sequel we will see some commonly used tests like the t-test and the
Wilcoxon test for drawing inference about the parameters of interest.

Exploratory Data Analysis

EDA uses plots to help you understand whether or not the classical assumptions
assumptions underlying statistical models are true. Some questions of interest
include:

• Are the data follow a normal distribution?

• Are there any outliers in the data?

• If the data were collected over time, is there any evidence of serial correla-
tion?

The basic graphical displays to help you gain insight to the data are the following:

• histograms,

• boxplots,

• density plots,

• qq-plots (quantile-quantile plots).

The following is a simple S-PLUS function that generated all four suggested dis-
plays:

eda.shape <- function(x)
{
par(mfrow = c(2, 2))
hist(x) #histogram
boxplot(x) #boxplot
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iqd <- summary(x)[5] - summary(x)[2] #interquartile range (summary() returns
#the five number summary

plot(density(x,width=2*iqd), xlab = "x", #density plot
ylab = "", type = "l")
qqnorm(x) #qq-plots
qqline(x) #deviations from normal
}

To check about evidence for serial correlations, it is useful to do a time series
plots and then plot the autocorrelation function of the data. Here is another function
that can handle this situation:

eda.ts <- function(x)
{
par(mfrow=c(2,1))
ts.plot(x) #time series plot
acf(x) #autocorrelation function
invisible()
}

The output of these functions is displayed in Figures 1 and 2, respectively.

x <- rnorm(100)
eda.shape(x)
eda.ts(x)
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Figure 1: Output of eda.shape() function
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Figure 2: Output of eda.ts() function

One Sample Inference

Consider the data frame cats which consists of observations on the heart and body
weights of samples of male and female cats used for an experiment. The data
frame belongs to the library MASS (built by Venables & Ripley).

>library(mass) #attach the library MASS
>cats #list the data sets
>male <- cats[cats$Sex=="M",]$Hwt #extract the heart weight for the males
>female <- cats[cats$Sex=="F",]$Hwt #extract the heart weight for females
>eda.shape(male)
>t.test(male, mu=10)

One-sample t-Test

data: male
t = 5.1241, df = 96, p-value = 0
alternative hypothesis: true mean is not equal to 10
95 percent confidence interval:
10.81030 11.83506

sample estimates:
mean of x
11.32268

>t.test(male, mu=10, conf.level=0.99)

3



K. Fokianos LMU-Lecture 8 Fall 2002

One-sample t-Test

data: male
t = 5.1241, df = 96, p-value = 0
alternative hypothesis: true mean is not equal to 10
99 percent confidence interval:
10.64431 12.00105

sample estimates:
mean of x
11.32268
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Figure 3: Output of eda.ts() function for the male weights

The output of eda.shape() suggests that it is reasonable to assume that the
male heart weights follow the normal distribution where the mean is about 11 (see
Figure 3). The function t.test can be used to test the null hypothesis that µ = µ0

and the output shows that for µ0 = 10, the null hypothesis is rejected. Notice that
the default output gives a 95% confidence interval but the conf.level can lead
to any (1 − α)% interval. To perform a nonparametric test use the wilcox.test
function.

> wilcox.test(male, mu=10)
Wilcoxon signed-rank test

data: male
signed-rank normal statistic with correction Z = 4.4697, p-value = 0
alternative hypothesis: true mu is not equal to 10
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Inference for Two Samples

Consider now the problem for testing the difference between two means based on a
two sample problem. For instance, suppose that we are interested in the difference
between the mean male and female heart weights.

> eda.shape(female) #not far from normal.The plots are not displayed
> var.test(male, female) #Test for variance equality

F test for variance equality

data: male and female
F = 3.5064, num df = 96, denom df = 46, p-value = 0
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
2.075412 5.664645

sample estimates:
variance of x variance of y

6.46323 1.843256
> t.test(male, female) #t-test with equal variances

Standard Two-Sample t-Test

data: male and female
t = 5.3539, df = 142, p-value = 0
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
1.337588 2.903517

sample estimates:
mean of x mean of y
11.32268 9.202128

> t.test(male, female, var.equal=F) #t-test with unequal variances
Welch Modified Two-Sample t-Test

data: male and female
t = 6.5179, df = 140.608, p-value = 0
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
1.477352 2.763753

sample estimates:
mean of x mean of y
11.32268 9.202128

> wilcox.test(male,female) #Wilcoxon test
Wilcoxon rank-sum test

data: male and female
rank-sum normal statistic with correction Z = 5.0309, p-value = 0
alternative hypothesis: true mu is not equal to 0
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As we see, the variance equality test is rejected and therefore a formal appli-
cation of the t-test does not apply to these data. However, the function t.test
supports the argument var.equal which can be true or false. Therefore, an appli-
cation of the t-test is possible and we reject the hypothesis of equal means. This
conclusion is also supported by the nonparametric test of Wilcoxon.

Some Other Topics

Occasionally in applications we deal with paired data (Xi, Yi). To perform a paired
t-test, it is useful to define the observations Zi = Xi − Yi and work as above.

To study the correlation between two variables it is helpful to explore their graph-
ical relation and then use the function cor.test() to test whether the correlation
coefficient is greater, less or different than 0. Here is a toy example

> x <- runif(20)
> y <- 2+3*x+rnorm(20)
> plot(x,y) # x and y are positively related
> cor.test(x,y) # test whether the correlation coefficient is equal to 0

# against the alternative it is not.
Pearson's product-moment correlation

data: x and y
t = 4.0049, df = 18, p-value = 0.0008
alternative hypothesis: true coef is not equal to 0
sample estimates:

cor
0.6864396

> cor.test(x,y, alt="l") # test whether the correlation coefficient is equal to 0
# against the alternative it is less.

Pearson's product-moment correlation

data: x and y
t = 4.0049, df = 18, p-value = 0.9996
alternative hypothesis: true coef is less than 0
sample estimates:

cor
0.6864396

We see that the first test is accepted while the second is rejected.
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