
An Introduction to SAS-Lecture 3

Konstantinos Fokianos
University of Cyprus

Reading and Combining Data Sets

Suppose that you have the following data set

1 68 144 M 23
2 78 202 M 34
3 62 99 F 37
4 61 101 F 45
5 73 135 M 24
6 60 104 F 34

where the variables (by column) are ID, HEIGHT, WEIGHT, GENDER and AGE. We want
to create a new data set where we keep all the observations with SEX=F.

Reading and Combining Data Sets

This is accomplished by the following program:

DATA TOY;

INFILE "TOYEXAMPLEDATA.TXT";

INPUT ID HEIGHT WEIGHT GENDER $ AGE;

DATA FEMALE;

SET TOY;

IF GENDER EQ ’F’;

PROC PRINT DATA=FEMALE;

RUN;

The process of accessing the existing data set for subsetting a part of it is run
through the statement SET. The SET statement does the same work as the
INPUT statement; the only difference is that it reads data from an existening
SAS data set.

Reading and Combining Data Sets

The IF statement is a fast way for executing the equivalent statement
IF NOT condition THEN DELETE. The resulting data set (FEMALE) contains
only those observations where GENDER=F.

An alternative method to carry out the same manipulation is the following:

DATA FEMALE2;

SET TOY;

WHERE GENDER EQ ’F’;

PROC PRINT DATA=FEMALE2;

RUN;

Reading and Combining Data Sets

There are some differences between the IF and WHERE statement.
I The WHERE statement is more efficient than the IF statement.
I The WHERE statement can be included in SAS procedures. This saves a

lot of time when we want to analyze a subset of data without creating a
new data set.

Reading and Combining Data Sets

WHERE statement operators:

I BETWEEN-AND: Selects observations which fall (inclusively) within a
specified range.

WHERE AGE BETWEEN 20 AND 40

I CONTAINS or ?: Used for character variables to select records that
include or contain the specified string

WHERE NAME CONTAINS ’Mc’;

WHERE NAME ? ’Mc’;

I Some other operators used with the WHERE statement are IS MISSING

or IS NULL (selects observations whose values are missing), LIKE and
=*.

KEEP and DROP statements

We will now several modifications of the above programs. First, suppose that
we only want to keep the variables ID and HEIGHT in our data sets. This is
accomplished by the KEEP statement as shown below:

DATA TOY;

INFILE "TOYEXAMPLEDATA.TXT";

INPUT ID HEIGHT WEIGHT GENDER $ AGE;

DATA FEMALE2;

SET TOY;

WHERE GENDER EQ ’F’;

KEEP ID HEIGHT;

PROC PRINT DATA=FEMALE2;

RUN;

KEEP and DROP statements

A KEEP statement placed anywhere in the DATA step causes the variables
which are listed to be kept in the newly created SAS dataset. You can also
use the DROP statement if you want to keep most of the variables in the data.

DROP WEIGHT GENDER AGE;

yields the same results as in the previous program.
Give priority to the KEEP statement!

KEEP and DROP statements

An alternative to KEEP or DROP statement is a KEEP= or DROP= data set
options. Below is an example:

DATA FEMALE3;

SET TOY (KEEP=ID HEIGHT GENDER);

WHERE GENDER EQ ’F’;

DROP GENDER;

PROC PRINT DATA=FEMALE3;

RUN;

KEEP and DROP statements

I The KEEP= data set option tells SAS to read the variables
ID HEIGHT GENDER. Using this option yields to more efficient
programming.

I The variable GENDER has to be included in the KEEP= statement.
Otherwise, it is impossible to execute the WHERE statement since the
variable GENDER will not exist.

SET statement

Suppose that we have another data set which is related to the previous one.

7 65 150 M 25

8 73 198 M 32

9 67 105 F 39

10 59 107 F 43

11 77 129 M 26

We want to add observations from the one dataset to the other. This is a
situation which frequently occurs in practice. For example, you have data
from different years and you want to combine them in a single data set.

SET statement

DATA TOY;

INFILE "TOYEXAMPLEDATA.TXT";

INPUT ID HEIGHT WEIGHT GENDER $ AGE;

DATA TOY2;

iNFILE "TOYEXAMPLEDATA2.TXT";

INPUT ID HEIGHT WEIGHT GENDER $ AGE;

DATA COMBINED;

SET TOY TOY2;

PROC PRINT DATA=COMBINED;

RUN;

SET statement

I The effect of including multiple data sets in the SET statement is to
combine the data sets in the order which they are listed.

I If the two data sets do not contain identical variables, then the results of
the SET statement is still to create a new data set with missing values for
the variables that exist in any of the combined data sets.

I In a dew words, the SET statement stacks one data set underneath the
other.

MERGE statement

Suppose now that we want to combine two data sets by adding the variables
of one to the variables of the other. Usually both collections will have the
same set of observations, or partially the same. This procedure is like placing
the one data set next to the other. Suppose that we have data as follows:

DATA SET LEFT DATA SET RIGHT

ID WEIGHT HEIGHT GENDER RACE
1 68 155 M B
2 62 102 F W
3 72 220 M W

MERGE statement

You can combine the variables from these two data sets into a single data set
by using the MERGE statement.

DATA TOY;
INFILE "MERGEDATA1.TXT";

INPUT ID HEIGHT WEIGHT;
DATA TOY2;

INFILE "MERGEDATA2.TXT";
INPUT GENDER $ RACE $;
DATA MERGED;

MERGE TOY TOY2;

PROC PRINT DATA=MERGED;
RUN;

The above code merges the variables from the LEFT with those data from the RIGHT,
one observation at a time, in the order that the observations are listed in the files.

MERGE statement

It is much better to use a BY statement together with the MERGE statement for
correct matching of data sets. Suppose that we have the following data:

DATA SET LEFT DATA SET RIGHT

ID GENDER STATE ID DEPT SALARY

1 M NY 1 PARTS 21000

5 M NY 2 SALES 45000

2 F NJ 3 SALES 20000

3 F NJ 5 SALES 35000

Notice that both datasets contain an ID variable which is going to be used for
matching.

MERGE statement

DATA TOY3;
INFILE "MERGEDATA3.TXT";

INPUT ID GENDER $ STATE $;

DATA TOY4;
INFILE "MERGEDATA4.TXT";

INPUT ID DEPT $ SALARY;

PROC SORT DATA=TOY3;
BY ID;

PROC SORT DATA=TOY4;
BY ID;

DATA NEWMERGE;
MERGE TOY3 TOY4;

BY ID;

PROC PRINT DATA=NEWMERGE;
TITLE ’Match-Merged Data’;

RUN;

MERGE statement

I You use the SORT procedure to sort both data sets by ID. (Second SORT

procedure previously reported is useless).
I If you use the SORT procedure to an already sorted set, then nothing

really happens (see SAS log).
I The BY statement tells SAS to match-merge records from both data sets

on the matching variable (ID).
I If there exists an ID in one data set but not in the other, then still merging

takes place but the resulting data set has a missing value.

MERGE statement

Suppose that you have instead the following LEFT data set:

1 M NY

5 M NY

2 F NJ

3 F NJ

4 M NY

As it was mentioned before, the resulting merged data set will contain the
employe with ID=4 but there will be missing values for PARTS and SALARY
variables. Situations like this is rather the rule than the exception in real
applications.

MERGE statement

DATA TOY3;
INFILE "MERGEDATA5.TXT";

INPUT ID GENDER $ STATE $;

DATA TOY4;
INFILE "MERGEDATA4.TXT";

INPUT ID DEPT $ SALARY;

PROC SORT DATA=TOY3;
BY ID;

PROC SORT DATA=TOY4;
BY ID;

DATA NEWMERGE;
MERGE TOY3 TOY4 (IN=EMP);

BY ID;
IF EMP=1;

PROC PRINT DATA=NEWMERGE;
TITLE ’Match-Merged Data’;

RUN;

MERGE statement

I When you perform a merge statement, SAS checks whether if an
observation is being contributed from each data set listed in the MERGE

statement. In this case, ID=2 exists in both data sets but ID=4 exists
only in one of them.

I The statement IN=EMP, in the previous program, creates a logical
variable with values 1 (TRUE) and 0 (FALSE). As each observation is
built and if TOY4 has data to contribute then EMP=1. These IN variables
are temporary and specify, in this example, that EMP is 1 except ID=4.
Then use the IF statement to keep the observations with EMP=1.

I If you want to select observations that are in both data sets, then you
can use

DATA NEWMERGE;

MERGE TOY3 (IN=DUMMY) TOY4 (IN=EMP);

BY ID;

IF DUMMY=1 AND EMP=1;

Some Mathematical Functions

Suppose that we have some values of variable, say X . We want to compute
the following transformations

Y1 = log X ,

Y2 =
√

X ,

Y3 = arcsin X .

You can do this by using the following simple function:

DATA TRANSFRM;

SET TEST;

Y1 = LOG (X);

Y2 = ARSIN (SQRT(X));

RUN;

Some Mathematical Functions

Choosing every mth observation from a SAS data set:

DATA THIRD;
SET OLD;
IF MOD (_N_,3) = 1;

RUN;

The function modulus is described next. A number n modulo m is the remainder when
n is divided by m. For instance 5 mod 3 =2. And 19 mod 3 =1, and so on. The above
program selects every third observation from a data set, using the function modulus.
The variable_N_ is automatically created and it simply counts the number of
observations in a data set. So the function MOD (_N_,3) = 1 tells SAS to to choose
observations number 1,4,7,10,....

Some Mathematical Functions

Rounding and truncating numbers
To round a variable you can use the function ROUND. So you can give a
statement

Y=ROUND(X,20)

and this tells SAS to round X to the nearest 20 and create a new variable,
called Y.
To truncate a variable (drop off the fractional part), you should use the
function INT. It works like

Y=INT(X)

with obvious notation.

Some Mathematical Functions

Suppose that each subject in some study answers 50 questions in a
psychological test. Each question is scored on a 1 to 5 scale. To ensure that
an accurate assessment is made, suppose that the mean score per subject is
computed only if 40 or more questions were answered. The following
program computes the mean of 50 questions (ITEM1--ITEM50) but only if
40 of them are non missing.

DATA NEWTEST;

SET OLDTEST;

IF N (OF ITEM1-ITEM50) GE 40 THEN

SCORE = MEAN (OF ITEM1-ITEM50);

RUN;

Some Mathematical Functions

I The function N calculates the number of non missing items.
I When a SAS statement tries to do simple operations on missing values,

then the results is always missing!
I Some other useful functions are

I NMISS: returns the number of variables with missing values.
I SUM: returns the sum of non missing values.

	Reading Data
	Reading and Combining Data Setes
	KEEP and DROP statements
	Combining Data Sets

	SAS Functions
	Mathematical Functions

