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ABSTRACT

SINGULAR FINITE ELEMENTS FOR NEWTONIAN FLOW PROBLEMS
WITH STRESS SINGULARITIES

by

Georgios C. Georgiou

Chairpersons: Erdogan Gulari, William W. Schultz

Stress singularities in fluid mechanics problems arise at points where there is an abrupt
change in a boundary condition or in the boundary shape. In solving singular problems
numerically, special attention is required around the singular point in order to achieve
reasonable accuracy and convergence rates. The most common approach is to refine the
grid around the singular point. However, this treatment cannot completely eliminate
the numerical inaccuracies, e.g., spurious stress oscillations, which may contaminate the
global solution. Some investigators modify the mathematical problem to alleviate the
singularity by smoothing either the boundary or the boundary conditions.

In this work, we acknowledge the singularity — incorporating the asymptotic solution
into a finite element scheme to avoid inaccuracies due to the singularity. This idea has
been successfully used in fracture mechanics with a variety of numerical methods, and it
is extended here to solve Newtonian flow problems with finite elements. Two different
approaches are followed for this purpose: (1) the singular element approach in which

special elements that embody the radial form of the singularity are constructed around




the singular point, and (2) the singular basis function approach in which the known local
solution is subtracted from the governing equations.

The stick-slip, the sudden-expansion, and the die-swell problems have been solved
with the singular element method, and improved accuracy has been achieved with coarse
meshes in the neighborhood of the singular point. In the die-swell problem, the con-
vergence of the free surface is dramatically accelerated. A novel singular basis function
method based on the subtraction of the exact asymptotic terms and on a double integra-
tion by parts is also proposed. When applied to standard Laplace-equation problems, this
method improves the solution accuracy and gives more accurate singular coefficients than
those obtained with other singular techniques. It also gives satisfactory results for the
stick-slip problem. A comparison of the two methods is also made and their advantages

and their limitations are discussed.
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CHAPTER I

INTRODUCTION

“Among the corollaries of the doctrine that there is nothing lacking compensa-
tion in something else, there is one whose theoretical importance is very small, but
which induced us, toward the end or the beginning of the tenth century, to disperse
ourselves over the face of the earth. It can be stated in these words: “There exists
a river whose waters grant immortality; in some region there must be another river
whose waters remove it.” The number of rivers is not infinite; an immortal traveler
who traverses the world will finally, some day, have drunk from all of them. We
proposed to discover that river.”

Jorge Luis Borges, The Immortal (Labyrinths).

This thesis concerns the use of finite elements for the solution of Newtonian fluid
flow problems with stress singularities. The objective is to improve the accuracy and the

convergence rate of the solution in the neighborhood of the singular point.

1.1 Singularities and numerical difficulties

A well-known feature of elliptic boundary value problems is the appearance of sin-
gularities in the solution. The solution is said to possess singularities at points, lines or
surfaces in the domain, when values of it or its partial derivatives approach infinity at

these places [25].




Consider the following model problem defined in a bounded region V:

V. (KVu) = F, in V
(1.1)
ou
A—+ Bu = G, on oV
on

where n is the outer normal to the boundary 8V. I the data\K, A, B, F, and G are
analytic and the boundary 9V itself is analytic, then the solution is analytic!. This means
that singular behavior can arise only in cases where either the boundary or part of the
data are irregular?. This very often is the case in many prototype problems in solid and
fluid mechanics.

Geometrically, we can classify singularities for two-dimensional problems into two

types [99]:

1. Line singularities. One or more of the coefficients are discontinuous across a line

within the domain. Such discontinuities typically arise at interfaces.

2. Point singularities. The coefficients or the boundary are non-analytic at a point

(or points) in the domain.

In this thesis, we are interested in point singularities in two-dimensional domains.
Asymptotic expansions of the solution of equation (1.1) at corners or boundary points
with discontinuous data were obtained by Wasow [161] and later adapted by Lehman [94].
A summary of these results is given in [141]. If plane polar coordinates, (r,8), centered
at the corner or the discontinuity point are used, then the local asymptotic solution is of

the form

(o)

u = Z a; ™ fi(8), (1.2)

i=1

1This is a consequence of Weyl’s lemma [141].
2This irregularity condition is not necessary for hyperbolic systems, in which singular behavior
(e.g., shocks) can arise even if all the parameters involved are smooth.




where A; are the exponents of the solution determined from the boundary conditions, and

a; are unknown coefficients (depending on the global solution).

In fluid mechanics, stress singularities arise at corners (abrupt change in the geometry)
or contact points (abrupt change in the boundary conditions). Some well-known examples
of singular fluid flow problems are the sudden-ezpansion, the die-swell, and the driven-
cavity problems (see, Figure 1.1). Notice that in the last two problems, neither the
boundary nor the boundary conditions are smooth at the singular point.

The structure of the singularity for two-dimensional Newtonian flows can be obtained
by a local analysis as suggested by Michael [100] and Moffatt [104]. For steady, incom-
pressible flow near a corner, inertia forces are negligible and the stream function ¥(r,#9)
satisfies the Stokes equation

vViT = 0. (1.3)

Near the singularity, the streamfunction is expressed as an eigenfunction expansion [32,
100,104}:

U = i a; T £y (6) (1.4)

=1
where A; are the eigenvalues (or exponents) determined from the boundary conditions
(see Figure 1.2). According to equation (1.4), the velocities vary as r*, and the velocity

(A-1)

derivatives and the stresses vary as r . Thus if the real part of A is less than unity,

the velocity derivatives and the stresses are singular at r = 0. In the sudden-expansion

problem, for example, two of the exponents are less than 1 (Figure 1.1). The correspond-

ing terms dominate near the singular point, and the stresses vary as ¢y 7~ %456 4 ¢, =009,

In the die-swell problem, the stresses vary approximately as 7~1/2. In the driven-cavity

1

problem, they vary as 7~! near the upper corners.

The local analyses for two-dimensional Newtonian flows are well established [100,104].
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Figure 1.1: Examples of fluid flow problems with singularities. The forms of the singularities
correspond to the Newtonian flows.
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Figure 1.2: Geometry and boundary conditions for (a) Flow near the intersection of a wall and a
free surface and (b) Flow near a sharp corner.




Two special cases, illustrated in Figure 1.2, are of interest in this work>:

1. The flow near the intersection of a wall and a free surface (e.g, as in the die-swell

problem), and
2. The flow near a sharp corner (e.g., as in the sudden-expansion problem).

In non-Newtonian flows, explicit local analyses have been presented only for a few special
cases concerning power-law [144,66] and second-order fluids* [144]. Stokesian analyses
are difficult to extend to viscoelastic flows because of the nonlinearity introduced by the
convected derivative. Nevertheless, estimates for the radial form of the local solution can
be obtained with some constitutive models [4].

In the vicinity of singular points the solution field is steep, and thus special attention
is required when the partial differential equations involved are solved numerically. The
most common treatment, in both the finite element and the finite difference methods,
is to refine the grid around the singular point. However, even with mesh refinement,
the rate of convergence and the accuracy are not always satisfactory [141,6,48]. Another
disadvantage is the generation of extremely large stiffness matrices resulting in higher
computational costs.

In fluid mechanics, the numerical inaccuracies due to the presence of a singularity are
often severe and may not be restricted to the neighborhood of the singular point, prop-
agating to the bulk solution. In general, the continuous representation for the unknown
fields used in the standard numerical methods (e.g., finite elements) fails to accurately
reproduce the singular behavior of the exact solution. The stresses cannot be infinite in
compliance with the asymptotic solution, and thus are tainted by spurious oscillations

around the singular point [95,55,57]. In most Newtonian flows, the convergence of the

3The local solutions for the two paradigms of Figure 1.2 are discussed in Appendix B.
4The second-order fluid (SOF) is the lowest-order approximation to viscoelastic flow beyond
the Newtonian fluid in Simple Fluid theory.




finite element solution with mesh refinement is observed everywhere in the flow domain
except in the region around the singular point [87,55]. But what is more frustrating is
the contamination of the global solution in some problems. In the die-swell problem, it is
well-known that the position of the free surface and the resulting die-swell ratio depend
on the mesh refinement in the region around the singularity, and that a coarser mesh
gives more swelling [144,2,57].

The contamination of the global solution is far more serious in non-Newtonian flows
than in their Newtonian counterparts. Numerical inaccuracies caused by singularities can
lead to numerically stiff iteration schemes, to the formation of fictitious limit points, or
to artificial changes of type of the governing equations [22,4,97]. The high Weissenberg
number problem® is partially due to the excessive approximation error caused by the
singularity®, or to the non-integrability of the singularities’ [22,87,97,95].

Non-integrable stresses are physically inadmissible since they lead to infinite forces.
In fact, even finite stresses greater than some value corresponding to the “strength”
of the continuum (typically of order 10°Pa) are inadmissible [95]. In most Newtonian
flows, these inadmissible stresses are encountered over length scales where the continuum
hypothesis breaks down and the singularity is not felt by the bulk flow. In contrast
to the Newtonian flows, the stresses in viscoelastic flows reach inadmissible values over

length scales where the continuum hypothesis is still valid. This ultimately results in the

5The high Weissenberg number problem is the failure of the numerical schemes to provide
solutions beyond some critical value of the Weissenberg number, a dimensionless group which
determines the elastic character of the flow [87].

80ther possible mechanisms for the numerical failure at high Weissenberg numbers are:
(a) Multiplicity or loss of two-dimensional steady solutions or bifurcation to three-dimensional
flows, and (b) Change of mathematical type in the coupled momentum/continuity/constitutive
equation set (see [22]).

"The integrability criterion is satisfied when

[‘/V(T:T)dV]l/2<oo,

where T is the stress tensor. The singularity of the driven-cavity problem, for example, is not
integrable.




contamination of the bulk solution and, often, in the failure of the numerical scheme [95].
Some investigators have modified the physical problem to alleviate or to completely

remove the singularity by

1. modifying the boundary conditions (e.g., relaxing the no-slip condition for a smooth

transition from a velocity to a stress boundary condition [135]), or

2. smoothing the boundary (e.g., replacing a re-entrant corner by a circular arc of

small radius [22,125]).

As indicated in the literature [90,118], the relaxation of the no-slip condition is very
likely consistent with the real physical behavior near regions of high stresses®. Lau and
Schowalter [90] provide a table with examples of materials reported to exhibit wall slip®.
The use of a slip boundary condition is imperative for satisfactory continuum models of
flows with dynamic contact lines [79,80,37,38]. Silliman and Scriven [135])-[137] studied
the effect of a slip coefficient on the solution of the die-swell problem (which involves
a static contact line). Hocking [72,73] showed that taking the irregularities of the solid
surface into account is equivalent to introducing an effective slip coefficient (which is
proportional to the depth and/or the spacing of the irregularities). However, the slip
condition is difficult to apply near corners without avoiding flow through the boundary
walls. Brown et al. [22] and Rosenberg and Keunings [125] replaced the corners by a
circular arc in their calculations for abrupt-contraction flow of a viscoelastic fluid. This
changed the character of the spurious stress oscillations but it did not remove them nor

resolve the numerical difficulties.

8Effects of density and viscosity gradients and non-Newtonian behavior may be possible in
high stress regions, but they could not alleviate the singularity.
9The slip condition is also known as the Navier condition as opposed to the Stokes condition
for no slip. For slip at a plane solid wall, the Navier condition is given by
u
Toy = --ﬁ,

where Ty is the shear stress, u is the velocity in the z direction, and 3 is the slip coefficient.




An alternate approach, based on the acknowledgement of the singularity rather than
on its removal, is the incorporation of the local solution into the numerical scheme. This
idea has been extensively used in solving solid mechanics problems with finite elements
and gives accurate results for relatively coarse meshes (see reviews in [6,7,42,48,134,141)).
More recently, singular methods were used to solve fluid mechanics problems with finite
elements [163,55,56], finite differences [74], boundary elements [82,93], and global elements
[98,99].

The need for special finite elements in Newtonian and non-Newtonian flow problems
with singularities has been indicated by various researchers in recent years (Keunings
[87]); André and Clermont [2]; Lipscomb et al. [95]; Davies [31]). The use of such special
elements in viscoelastic flows is presently inhibited by the lack of local analyses, despite
a recent attempt by Davies [31] to develop a method for analyzing the local solutions
for some viscoelastic fluids. (As we mentioned before, non-Newtonian local analyses are
available only for the power-law and the second-order fluids.)

In this thesis, we devise special finite elements for Newtonian flow problems with
stress singularities which take into account the structure of the singularity. The objective
is to obtain more accurate solutions and faster convergence rates than those achieved
with standard finite element methods. One could choose another numerical technique
like finite differences, spectral methods and boundary elements. However, the last two
methods are limited to specific types of problems (see, e.g., Brebbia [19], Voigt et al.
[154] and Crochet [29]). In fact, some of their limitations are related to or caused by
singularities [19,154,92,132,117]. Compared to the finite difference method, the finite

element method can be more easily implemented in complex geometries [29].
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1.2 Singular finite element approaches

In the standard finite element method, the domain V is subdivided into small ele-
ments, and the solution u is approximated by a piecewise analytic function (typically a
low-order polynomial) over each element. For the two-dimensional case of equation (1.1)
one may use 9-node rectangular elements with bi-quadratic basis functions, ®*:

N
= u ¥, (1.5)
i=1
where u; are the nodal values, and N is the total number of nodes.
In the Galerkin method, which is used throughout this thesis, the governing equation

is weighted by the same functions used to expand the unknown variable:
/v%qﬂ'dv =0, i=1,2,---,N, (1.6)
|4

or after using Green’s theorem

/ ?-’icp"dv- /Vu.v¢>"dv =0, i=1,2,---,N. (1.7
av On v

Equations (1.7) form a linear system of equations with the nodal values u; as unknowns.
Let us assume that the meshsize is h and the basis functions are complete polynomials
of order k, and that the solution is in the Sobolev space!® H™(V) and the finite element

approximation is denoted by uj,. Then the error satisfies an estimate of the type!! [25,

19A function u is in the class H™(V), if u and all of its derivatives of order less than or equal
to m (m being a nonnegative number) are square-integrable over V [25].
A function f is square-integrable over V if

/ fldz < oo.
v

1 The energy error is considered here, i.e., the H'-norm. For V = (0,1)

[l — unlly = {/: [(%—%)2 + (u—uh)zl dz}

1/2
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141,9]:

llw = unlls < Ch* [lul|m (1.8)

with

g = min{k, m —1}. (1.9)

where C is a generic constant (independent of h). If the solution u is regular (smooth),
then m is very large and g = k. The error is of order k¥ in this case. We can increase
the rate of convergence by increasing the order of the basis functions, k. However, if the
solution is irregular, then m is small and m — 1 < k. Therefore, no matter how large k
is, the error will be of order A™~! and the rate of convergence will be very small 12.
The different approaches used to incorporate the structure of the singularity into a

finite element scheme can be classified into two categories [25]:
1. Singular basis function approach, and
2. Singular element approach.

The two approaches are explained and discussed below.

Singular basis function approach

Quoting Carey and Oden [25], this approach is very likely “the most logical approach
for removing the singularity”. A set of supplementary basis functions, W*, chosen to
reproduce the leading terms!3 of the local solution is added to the standard finite element
solution expansion [141,106]:

Nspr

N
U = Z u; & + Z a; W (1.10)
i=1 =1

12Notice that m is not necessarily an integer. Generalized Sobolev spaces (or fractional Sobolev
spaces) are considered [138]. In this case, 1/m provides a quantitative measure of the strength of
the singularity.

13The leading terms of the local solution dominate as we approach the singular point.
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Here Nspr is the number of the singular functions and a; the unknown singular coeffi-
cients. The singular functions are usually defined over several elements and can span the

entire domain. They approximate the exact asymptotic terms close to the singular point:
. 1 R T Ai .
lim W' = lim {r /;(6)} (1.11)

Therefore, knowledge of both the radial and the angular forms of the local solution is
required. The singularity expansion coefficients, «;, are directly calculated using the
singular basis function approach.

It can be shown {25,141,8] that the full rate of convergence (the same as that for the

regular problem) is theoretically obtained with this treatment. In other words, if

N
up = > u @ (1.12)
=1

is the regular element contribution to the solution and »* is the ‘exact’ contribution, then

the error satisfies an estimate of the form
llu = uall < € B ule (1.13)

However, we should notice that practical difficulties may inhibit such fast convergence.
These difficulties include integration inaccuracies when calculating the stiffness matrix

and possible ill-conditioning of the stiffness matrix [25,141].

Singular element approach

In the singular element approach, special elements are used in a small region around
the singularity, while conventional elements are used in the rest of the domain. These
elements take into account the structure of the singularity, and they must be relatively
large in size to be effective. This is their major limitation because they do not allow
extensive refinement of the domain near the singularity. Nevertheless, if the convergence

is rapid, further refinement may not be necessary.
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The various elements used by other researchers can be classified in three categories:

(1) Embodied singularity elements.'

Special elements are employed around the singular point where the basis functions are
constructed to describe the radial form of the singularity [149,150,5]. These elements are
conforming (compatible with the adjacent ordinary elements). They can also describe
singular primary variables, they conform to curved boundaries without significant loss
of accuracy, and they can describe different singular behaviors by changing the shape
functions. Obviously, they do not require knowledge of the angular form of the solution.

(2) Embedded singularity elements.

The leading terms of the singular expansion are used to describe the full local solution in a
small core around the singular point, and conventional elements are used elsewhere [134],
with the requirement that the conventional polynomial functions match the local solution
at the boundary of the core. This is equivalent to using a multi-node element in the core.
The main drawback of the embedded singularity elements is their incompatibility with
the ordinary elements, i.e., it is difficult to enforce the boundary matching. In addition,
the optimum size of the core is unknown. Knowledge of both the radial and the angular
forms of the local solution is required with these elements.

(3) Singular isoparametric elements.!®

The desired singular behavior is obtained by changing the position and/or the number
of ‘mid-nodes’ in the elements sharing the singular point and by using an isoparametric

transformation to map the actual elements onto standard elements with equally spaced

4 Pmbodied singularity elements is the expression suggested by Georgiou et al. [55]. Carey and
Oden [25] recognize two kinds of elements which, according to our definition, fall in the same
category:

1. Akin’s family of singular elements.
2. Stern’s family of singular elements.

What is different in these families is the way the basis functions are constructed [3,140].
15Carey and Oden [25] use the expression degenerate isoparametric elements instead.
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mid-nodes'®. Celebrated examples of elements in this category are the gquarter-point
elements [70,157,12]. The singular isoparametric elements require a variable number
of mid-nodes to describe general power-type singularities. Unlike the embodied and
the embedded singularity elements, they become inaccurate with curved boundaries and

cannot handle singular primary variables.

Both the singular basis function and the singular element approaches have been suc-
cessful in solving solid mechanics problems [6,7,42,141,134], and therefore both the ap-
proaches are examined in this dissertation. It should be emphasized that fluid flow
problems are more complicated than solid mechanics problems because, in addition to
the velocity derivatives, the pressure —a primary unknown- is also singular. Another
complication arises in free-surface problems in which we have curved boundaries and the
form of the singularity is not exactly known.

Among the various kinds of singular elements, the embodied singularity elements are
the most suitable for our purposes. Unlike the embedded singularity elements, they are
compatible with the ordinary elements and they do not require knowledge of the angular
form of the local solution. The embodied singularity elements are superior to the singular

isoparametric elements for the following reasons:

1. They can handle singular primary variables (such as pressure) when constructed

such that there is no node at the singular point for the corresponding variables.

2. They easily conform to curved boundaries (such as free surfaces) without significant

loss of accuracy.

3. They can describe general power-type singularities by using different field shape

functions. (With the singular isoparametric elements one has either to vary the

16The Jacobian of the isoparametric transformation is singular and so are the gradients of the
primitive variables.
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number of nodes per element or to construct special field shape functions which,
in combination with the distortion of the physical element, will yield the desired

behavior.)

1.3 Dissertation format and chapter content description

I should warn the reader that there is some material overlap between chapters and /or
appendices since most of them were originally independent papers. This, I hope, is
mitigated by the fact that one can follow any chapter or appendix without having to refer
to the previous material. On the other hand, the reader may notice that the bibliography
is common for all chapters and appendices and that introductory remarks are provided
in all chapters in order to ensure the continuity of the dissertation. Care was also taken
to use consistent nomenclature in all chapters and appendices. I hope that all these have
resulted in a unified product.

The only obvious exception is Appendix A which concerns the modeling of a vertical
CVD reactor with finite elements. The CVD project was completely parallel and inde-
pendent, and it does not involve nor require the use of singular finite elements. The fact
that this material is relegated to an appendix is by no means indicative of its importance.

Chapter one has been written for a general audience, and it is intended as a basic
introduction to singularities, the associated numerical difficulties in fluid flow problems
and the singular finite element approaches.

Chapter two concerns the solution of both the planar and the round die-swell problems
with standard finite elements and full-Newton iteration. The Galerkin method is outlined
in detail and special emphasis is placed on the numerical calculations in order to show
the robustness of the method. The calculations are compared with available experimental

and theoretical results.
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Chapters three and four implement and discuss the singular element approach. Chap-
ter three describes the construction of singular elements for the stick-slip problem!?. The
method is extended to the sudden-expansion and to the die-swell problems in chapter
four. It is shown that the singular finite elements give more accurate results than the
standard finite elements, and that they accelerate the convergence rate of the free surface
in the die-swell problem.

Chapters five and six concern the singular basis function approach. In chapter five,
a novel method is developed and applied to two benchmark Laplace-equation problems:
the Motz problem and the cracked-beam problem. Very accurate estimates of the lead-
ing singular coefficients are directly calculated. The method is extended to fluid flow
problems, namely the stick-slip problem, in chapter six.

Finally, chapter seven summarizes this work and suggests future directions.

All the programs developed in this work were written in FORTRAN 77 and run on

an IBM 3090-600E/VM?'3.

17The stick-slip and the sudden-contraction problems have been benchmark problems for vis-
coelastic simulations in the last ten years. In fact, these two problems along with the steady
motion of a sphere along the axis of a cylinder filled with fluid, the flow in a tube of sinuscidally
varying cross section and the eccentric cylinder flow were defined as the benchmark problems for
the 6th International Workshop on Numerical Methods in Non-Newtonian Flow, Lyngby (Den-
mark), June 1989 [67].

18For additional information about the programs developed in this thesis contact Dr. Georgios
Georgiou, c¢/o Prof. Erdogan Gulari, Department of Chemical Engineering, The University of
Michigan, Ann Arbor, MI 48109.




CHAPTER II

THE ANALYSIS OF PLANAR AND ROUND
NEWTONIAN JETS

“One no longer loves one’s knowledge enough when one has communicated it.”

Friedrich Nietzsche, Beyond Good and Fuil.

In this chapter, we demonstrate the implementation of the full-Newton iteration
method for the solution of both the planar and round Newtonian die-swell' problems.
Special emphasis is given to the finite element formulation and to the treatment of the
free surface which are critical in understanding the remaining chapters of the dissertation.
In addition, results are presented in-order to illustrate the power of the method and its

applicability in wide ranges of the dimensionless parameters involved?.

2.1 Introduction

The extrusion of a viscous jet from a die into an inviscid medium is of considerable
importance in many polymer-processing operations. The behavior and shape of the free
surface are of particular interest. A quantitative measure of this behavior is the die-

swell ratio, defined as the ratio of the final jet dimension to that of the die. It is an

!The die-swell phenomenon is also known as the eztrudate-swell phenomenon.
2Some of the results presented in this chapter appear also in the author’s Preliminary Research
Proposal and in [51,41].

17
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important design parameter in polymer processing operations (e.g., extrusion), and it is
strongly dependent on the rheological properties of the fluid, the die geometry, and the
flow conditions. But before attempting to solve the more complex non-Newtonian die-
swell problem it is reasonable to develop first a reliable, fast and relatively inexpensive
algorithm for the Newtonian case.

By neglecting gravity and axial tension, the shapes of Newtonian jets emerging from
a long die depend only on two dimensionless parameters: the Reynolds and capillary
numbers (Re and Ca)3. It is known from experimental data that the die-swell ratio for
Newtonian creeping flow without surface tension is approximately 1.19 for a plane and
1.13 for an axisymmetric jet [102,58,13,119]. In general, the die-swell ratio decreases as
the Reynolds number increases. The jet expands monotonically at low Re and contracts
monotonically at high Re. However, at some intermediate critical range of Reynolds
numbers, the jet first contracts and then expands to its final dimension [58,119].

The surface-tension effect is also important. In general, surface tension tends to
reduce either expansion or contraction of the jet. For infinite surface tension (Ca =0),
neither expansion nor contraction is expected over the entire Reynolds number range.
However, at high Reynolds numbers the effect of surface tension on the jet profile is
weaker than it is at low Reynolds numbers. This indicates that inertia is the major
controlling factor at high Reynolds numbers [119]. The stick-slip problem* defined by
Richardson [121,122] is equivalent to the plane Newtonian creeping flow with infinite
surface tension in which the boundary conditions suddenly change from no slip at the
wall to perfect slip along a planar free surface. The exact solution to this problem
obtained by Richardson is often used as a check on the various proposed methods for

die-swell computations [108,127]. In fact, Richardson’s solution for the very special case

3The Reynolds and the capillary numbers are defined in the next section.
4More details about the stick-slip problem are given in Chapter IIL
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Ca=0, Re=0 is the only known analytical solution for the die-swell problem. Otherwise,
the problem is analytically intractable due mainly to the presence of the free surface, the
location of which is unknown, causing difficulties in specifying the boundary conditions.
Furthermore, the normal-stress condition depends on the unknown shape of the free
surface. A further complication is the presence of the stress singularity® at the line of
separation [100,104,79]. Because of these difficulties, numerical methods provide the only

means for solving the die-swell problem.

Finite element methods for the die-swell problem

Due to its superiority in dealing with free surface problems, the finite-element method
has been widely used by several investigators to solve the Newtonian-jet problem, with
the velocity and the pressure as the primitive unknowns. In most cases, the free-surface
boundary shape is computed by means of a Picard iteration which follows the general

three-step scheme:
1. Assume a free surface profile.

2. Calculate the flow field for the current domain, relaxing one of the three boundary

conditions at the free surface (kinematic, normal stress, or shear stress conditions)

3. Compute the new free surface shape for the calculated flow field to satisfy the

neglected boundary condition.

This cycle is repeated until the desired degree of convergence is achieved. Depending on
which of the three boundary conditions is used as the criterion for relocating the free
surface, the Picard iterative schemes can be classified as either: (1) kinematic iteration,
(2) normal-stress iteration, or (3) shear-stress iteration schemes [136]. The last scheme

has never been reported in the literature.

5The stress singularity is addressed in detail in Appendix B, and in Chapters III and IV.
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Nickell et al. used the kinematic iteration scheme to solve the round-jet problem with
no surface tension [108]. The normal-stress iteration scheme was used by Orr and Scriven
to solve a different free-surface flow problem with surface tension (rimming flow) [115].
The kinematic iteration scheme was used by Reddy and Tanner in an attempt to extend
the round-jet computations to higher Reynolds numbers (up to 50) and to include the
effect of surface-tension forces (capillary numbers as low as 1) [119]. The convergence
for high Re was slow and for Ca <1 convergence could not be achieved. The kinematic
iteration scheme was also used by Omodei to solve both the planar and the round jets in
two consecutive papers [113,114]. He obtained results for Re up to 500 and Ca down to
0.2; the convergence for high Re was again slow and for Ca < 1the computed free-surface
profiles were characterized by severe oscillations. Silliman and Scriven solved the planar
jet problem and showed that at low surface tension, C'a > 1, the kinematic iteration scheme
converged very rapidly compared to the normal-stress iteration scheme [135]. However,
for high surface tension, Ca <1, the opposite was true.

Picard iteration schemes are based on successive approximations to the free-surface
profile and at best exhibit linear convergence [135]. As a result the computational cost is
excessively high. Special strategies must be employed to determine the mean curvature at
each node, and, in addition, extrapolation techniques must be used when the free bound-
aries fall outside the domain in which the approximate velocity field is known. These
limitations become even more severe at high surface tension and ultimately result in os-
cillations of the free-surface profile. For very high surface tensions, Ca < 0.2, convergence
has never been achieved with Picard iteration schemes.

The alternative to utilizing the Picard iteration schemes is to solve the complete set
of equations with the velocities, the pressure, and the free-surface profile as primitive

unknowns. In this approach, the free-surface profile is computed simultaneously with the
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other unknowns, and the grid that covers the flow region under the free surface is updated
at every iteration step. This scheme which was initiated by Ruschak [127], is called the
full-Newton iteration scheme and it was further developed by Scriven and his co-workers
[128,89] for non-axisymmetric two-dimensional flows. Ruschak applied this method to
analyze the planar Newtonian jet at low Reynolds numbers [127]. But the fact that he
used linear basis functions for the velocities and for the elevation of the free surface, and
piecewise constant basis functions for the pressure, prevented an accurate and detailed
study of the effect of the various parameters involved. Georgiou et al. extended the
method to round jets [51]. By using biquadratic basis functions for the velocities and
bilinear basis functions for the pressure, they obtained results in wide ranges of Re and
Ca.

The advantages of the full-Newton iteration method compared to the Picard iteration

schemes are:
1. Simultaneous evaluation of all the unknowns and quadratic convergence.
2. Larger convergence radius of Reynolds and capillary numbers, and
3. Direct evaluation of the Jacobian which is required for linear stability analysis [21].

In the remaining sections of this chapter, the full Newton iteration is applied to both
the planar and the round die-swell problems with emphasis on the finite element formu-
lation. Gravity in the direction of flow is also included into the analysis. The governing
equations and the boundary conditions are discussed in section 2.2. The step-by-step
finite-element formulation is given in section 2.3. The numerical results are presented

and discussed in section 2.4.




22

2.2 Governing equations and boundary conditions

The flow configuration and coordinates for the round jet are shown in Figure 2.1
(Figure 2.2 is an analogous illustration for the planar jet). Taking advantage of the
axisymmetry makes it possible to solve the problem on only half of the flow field. The
flow is governed by the momentum and continuity equations. For steady, incompressible

flow, the dimensionless forms of these equations are
Reu-Vu=V.-T + Stg, (2.1)

and

V-u=0. (2.2)

In these equations, lengths are measured in units of the radius ho (or the channel half-
width for the planar case), u is the velocity measured in units of the mean velocity U in
the die, and T is the total stress tensor measured in units of pU/ho. For a Newtonian

liquid the stress tensor is given by
T = —pI + [Vu+(Vu)7], (2.3)

where p is the pressure relative to that in the adjacent gas phase and I is the unit tensor.
Also, g is the unit vector in the direction of the gravitational acceleration (which coincides

with the direction of flow),

pUh,

Re = m (2.4)
is the Reynolds number, and
h2
St = % (2.5)

is an inverse Stokes number; g is the gravitational acceleration, p is the density and pu is

viscosity of the Newtonian liquid.
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Figure 2.1: Geometry and governing equations for the round jet.
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Figure 2.2: Geometry and governing equations for the planar jet.
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Apart from the axial and radial velocity components (v and v) and the pressure
(p), the location of the free surface (h) is an additional unknown field. The kinematic
condition that the free surface remains a material surface provides the additional equation
needed,

n-u=20, (2.6)
where n is the unit normal vector to the free surface given by

_ ~h,ez; + er

JitR2

Here h is the distance from the centerline, the subscript z denotes differentiation with

(2.7)

respect to z, and ey, er are the unit vectors in the cylindrical coordinates of Figure 2.1.

The momentum-equation components require two boundary conditions. Five different
boundaries must be examined in this problem: the free-surface, the outflow plane, the
midplane, the inlet plane, and the solid-wall boundaries. The appropriate boundary
conditions are depicted in Figure 2.1 and are explained below.

A momentum balance on the free surface leads to the equation

2H
n-T = ————Can, (2.8)
where Ca is the capillary number, defined as
_prU
Ca = —> (2.9)

and o is the surface tension. Also, 2H is the mean curvature of the free surface, given by

hz. 1

2H = -
[1+A2P/2 h1+A2

(2.10)

for the round jet®, and by

h’ZZ

oH = —=2%2___
[T+ KPP

(2.11)

6Again, the subscripts in (2.10) and (2.11) denote differentiation.
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for the planar case. The normal and tangential components of (2.8) are given by

2H
TN =nn:T = EE, (2.12)
and
Ts =tn:T = 0. (2.13)

In other words, the momentum principle requires the normal stress in the liquid (Tn) to
balance any capillary pressure, and the shear stress (Ts) to vanish. Here, t is the unit
tangent vector to the free surface given by

_ €z + h;er

J1rR2

At a distance L, sufficiently far downstream, the flow is assumed to be fully developed

(2.14)

(practically zero radial velocity and uniform axial velocity). At the outflow plane h, =
h., =0, and, according to equation (2.11), the total normal stress is zero for the planar
jet; However, for the round jet we have

1

In = _Cahf’

(2.15)

where hy is the final jet dimension. As discussed later, the outlet boundary conditions are
satisfactory even when gravity is taken into account (St# 0), provided that the outflow
plane is taken to be sufficiently far downstream.

At the symmetry plane there is neither normal velocity nor shear stress. The in-
flow boundary is taken at distance L, sufficiently far upstream so that the flow can be
considered as fully-developed Poiseuille flow. At the solid wall there is neither slip nor

penetration (both the velocity components are zero).

2.3 Galerkin finite-element formulation

In this section we develop the finite element formulation for the round jet. The

formulation for the planar jet is similar and simpler; only the final residual equations are
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given for this case’.

The first step in the finite-element formulation is the discretization of the flow domain
into finite elements. The axisymmetric nature of the flow allows for any f-section of the
flow domain to be used. A convenient #-section is the half of the flow field illustrated in
Figure 2.3a. The origin of the cylindrical coordinate system is chosen at the exit of the
die; @ goes from 0 to 7, z is extended at distances L upstream and L, downstream, and

r goes from 0 to h; h=R in the die and h=~hy at the outflow plane.

The actual elements are axisymmetric semi-rings of curvilinear-rectangle cross section.
Because of the axisymmetry, these three-dimensional elements can be projected to their
cross section after integrating over 6 as illustrated in Figure 2.3b. Thus the elements
become two-dimensional and the flow domain is reduced to a tessellation of an (r-z)-
plane. The shape of the finite-element mesh is shown in Figure 2.3b. Two opposite sides
of the elements are segments of convenient spines at constant z, so that the mesh is finer
around the exit where the velocity and pressure gradients are steep. The other two sides
are made to intersect those spines at fixed ratios to the position of the free surface or
the wall. Thus the elements under the solid wall are of straight sides and fixed, whereas
the elements under the free surface have two curved sides the r-coordinates of which are
repeatedly updated. In order to accommodate the irregular boundaries, the elements in

the (r-z)-plane are considered as mappings of the standard 2x2 square in the (£, 7) plane:

9

z = Zz,-‘b"(f,n), (2.16)
i=1
9

ro= Y (), (2.17)
i=1

where —1 < £ < 1, =1 < 5 < 1, (2,r;) are the coordinates of ith node, and ®' are

biquadratic basis functions. These transformations define a global map of the complicated

"For more details about the finite element formulation for the planar case see [136].
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curvilinear free-surface flow into a rectilinear domain as shown in Figure 2.3c. This
domain is called the computational domain. The governing equations are in effect solved
on the computational domain, the mapping onto the projected physical domain being
part of the problem. The local mappings make the free surface a straight line (7= 1)
on the computational domain and the formulae of the unit tangent and normal vectors

become [89]:

n = —h, eg +2e,- _ —heeg + z¢ er (2.18)
\/1 + hz \/2? + hg
t = e;+h;ep _ %€y + hg €eyp . (2.19)

VI+h \/zg+h§
The derivatives with respect to £ are evaluated directly from equations (2.16) and (2.17).

A typical element with its nodal unknowns is shown in Figure 2.3b. Nine-node bi-
quadratic basis functions are used for the velocity components and four-node bilinear
functions are used for the pressure. When an element is under the free surface, three
extra notes (denoted by asterisks) are employed to account for the free-surface location
unknowns. Thus there are 25 or 22 unknowns (or degrees of freedom) in one element
depending on whether or not the element is under the free surface. If N, is the number
of the velocity nodes, IV, is the number of the pressure nodes and N}, is the number of
the free-surface nodes, then the total number of unknowns is 2N, 4+ N,+ N} and the total
number of nodes is N, + Ny,

The unknowns u, v, p, h are expanded in terms of biquadratic ,®, bilinear, ¥, and
quadratic, M*, basis functions:

Ny )
U o= Z u; ®'(&,m), (2.20)

=1

Nu .
v = Zv,-q)‘(f,n), (2.21)

=1
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Np .

p = Zp;‘l"(é,n), (2.22)
"

ho= 3 hi MY(E). (2.23)
=1

The Galerkin residuals are obtained weighting the continuity equation with ¥*, the

momentum equation with &, and the kinematic equation with M*:

R, = /v.uw‘dvzo, i=1,2,---,N, (2.24)
Vv

Ry, = /V[V-T—Reu.vu+Stez]@‘dvzo,iz‘l,-z,---,zvu (2.25)

Ry = / n-uMdS =0, i=1,2,---,Ny (2.26)
S3

where R, R%\/I and R}( are the continuity, momentum, and kinematic residuals respec-
tively, S3 stands for the free surface, dV =r dfdrdz, and dS =+/1+ hZ h dfdz.

In cylindrical coordinates and after integrating over 8, equation (2.24) becomes

. Lo h{z) du v v )

c = a5 A - ! dz = . .
Fo /;Ll/o <3z+8r+r) Virdriz =0, 1,2, Ny (2:27)

since the integrand is independent of 6.
The momentum residuals are broken into two integrals by applying the divergence

theorem:
Ri, = —/V[T-w‘+Reu.vu<I>f-St@*’ez]dv+/sn-T@*‘ds, i=1,2,-, N (2.28)

Here, S is the boundary of the domain V and n is the outward pointing normal unit

vector. The boundary S consists of the five following parts:
1. The inflow plane S; with n=—e; and dS =7 dédr,

2. The solid wall S; with n=e; and dS=h, dfdz,
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3. The free surface S3 with n= %ﬁ and dS= /1 + hZ hdbdz,
4. The outflow plane S4 with n=e; and dS=r dfdr, and

5. The midplane S5 with n=4ey and dS =drdz.

Thus upon substitution, the following equation is derived

Ri, = -/[T-V@*’+Reu.vm"—St@*ez]dv—/ ey - T & r dodr
14 Sy
+/ er=T@fRd9dz+/ (—h,ep + er) T & hdfdz
Sa SS

+ ez-T@‘rder+/ (—ep - Tloo + €9 - Tlor) & drdz,
Sy Sy

i=1,2,---, Ny (2.29)

The surface integrals on the inflow plane S7 and on the solid wall S, are set to zero because
the corresponding equations are to be replaced by the essential® boundary conditions. The
two terms in the last integral of equation (2.29) are combined because eglg=¢ = —eg|o=r.

Axisymmetry implies for the stress tensor that
T = erer TTT + eI-EZ TT‘Z + ezer TZT + ezez Tzz + egeg ng. (2.30)

All the other components of the stress tensor are zero®. On the free surface, S3, the

tangential stress component is zero, so that

n.T—nE——l}_ hZZ — l
T Ca  Ca |[1+h2P2 pn/1+R2|

(2.31)

8‘Essential condition’ is an alternative term for the Dirichlet condition.
9The superscripts in equation (2.30) denote the directions of the stress tensor components.
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Substituting (2.30) and (2.31) into (2.29) gives

: oo du Ou ,
1 —_ ZZ zr l — 1
Ry = / / / ey [T —_— 4T B + Re ® (u—az + v-———ar) St® ] r dfdrdz

/ //er T"’"QEL+T”"-@+R6‘I>' u@+v@- r dfdrdz
or Oz r

L2 1 .
— 3
/ / (hiez +er) ([1+h2]3,2 h\/th) &' hdfdz

hy
/ / (T* ex + T**ez) &' r dodr — / / eg T |g=o ®* drdz,
i=1,2,--, N (2.32)

In the outflow-plane surface integral, the radial component is set to zero because of the
essential condition for v. The normal stress T*% needed for the axial residual component
is given by equation (2.15). The momentum residuals are expressed in a fixed cartesian

coordinate system (i, j, k), shown in Figure 2.3c, by invoking the identities:

er = Jsinf +icosé,

and
eelo:o = "e()|0=7r = -‘j-
After an integration over 8, the i-component is identically zero. After combining the mid-

plane boundary term with the volume integral in the j-direction, the k- and j- components

become:

L0 0% L 0u . Ou
/ /[T LT o+ Re® ( St ar> St@}rdrdz

CaJo \[T+h2P2™ /It h2

1 hy r
PO — f— @1 3 — sen .
Ca b 7 dr, 1=1,2,--+, Ny, (2.33)
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and,
i . 06
/ / T" 4 T o2 + Re ®! (u@ + v@> + T— ®'| rdrdz
or 0z or T
1 [l hh,. 1 ; .
— — o' dz, =1,2,-++,N,. 2.34
*2a ([1+h3]3/2 \/1+h3> oo (239

The kinematic residuals are obtained from (2.26) by substituting for n and d$, and

integrating over 6:
. ) .
R}{:/ (—hzu-{-v)hM'dz:O, 7::1’27""Nh' (235)
0

Equations (2.27), (2.33), (2.34), and (2.35) are the projections of the initial equations
on the two-dimensional domain of Figure 2.3b. All the quantities in the above equations
must be further expressed in the (£,7) domain. The unknowns w,v,p,h have already
been expanded in terms of £ and 7. The velocity derivatives and the stresses are easily

calculated using the chain rule. The following identity is also used
drdz = |J|dédn, (2.36)

where

0z Or dr 0z

| = %oy~ 9o’ (2.37)

is the Jacobian of the mapping [141,170]. After integrating the free surface integrals by

parts, the final forms of the residuals are obtained on the computational domain:

i ou Ov N ; .
R, = / / (32 +5;> T +av] ¥ |J| dédn , i=1,2,--+,Np, (2.38)
i — z:.ra(b 3,6@ i Q_ QE ; N

R, = / / .T 5, +T ar + Re ® ( 6Z+v6r)—5t<1>] r* |J| dédn

La °‘ 1 he ze
/ (2 4 p2 65 /2 z‘"=1’z=L°
zg +h +h£
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a M r or

e —— B :IQNU, .
Ca A hf anq’ dT], g y &y ’ (239)
) i i TOO
R, = / / 7o &2 10 oot (1240 +a— @ r7|J| dedn
Or Y5z " 'or
- / +h2 he h€ aq) i=1>2y"'1Nﬂi (240)
/2+h2 af

. L’ n

Ry = (—uhe + v z) M* h* de i=1,2,-+, Ny (241)
0

Here, « is a constant utilized to include the planar case in the final equations. It is equal
to 1 for the round jet. For the planar case, a is zero and r is replaced by y. The limits of
integration are kept to denote that the integration is carried out over the elements in the
specified range!?. Because of the essential conditions u=v=0 at the first, and v=0 at the
last, free-surface node only one of the boundary terms, that result from the integration by
parts of the capillary stress along the free surface, survives in the k-momentum residual.
This term is not zero only at the last free-surface node (n=1,z= Lj).

The nonlinear system of equations (2.38), (2.39), (2.40) and (2.41) can be written as
R(x) =0, (2.42)

where x is the is the column vector of the nodal unknowns, and R is the column vector
of the Galerkin weighted residuals. This system is solved by using the Newton iteration
method:

I(xF) [ - x*] = —R(xF), (2.43)

where J is the Jacobian matrix,

_8R
T= %0

0The integration is actually carried out from -1 to 1 for both £ and 7 over each element.

(2.44)
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and k is the iteration counter. The set of linear equations in (2.43) is repeatedly solved
by a frontal technique!! developed by Hood [75]. The tessellation is updated at every
iteration with the newly found free-surface.

The above formulation is not restricted to a Newtonian fluid. Stresses are readily
expressed in terms of the unknown velocities u, v, and pressure p by means of any

constitutive equation for a non-Newtonian liquid.

2.4 Results and discussion

In this section we present results for both the planar and the round jets at Reynolds
numbers ranging from 0 to 2,000, and capillary numbers varying from 10° to 1075, The
results reported by Omodei are restricted to Re <500 and Ca>0.2 [113,114].

The upstream and downstream lengths of the domain, Ly and Lg, were chosen to be
sufficiently large to ensure the validity of the imposed boundary conditions. L; =4 was
found adequate for all Re and St, whereas L, had to be increased as Re and 5t increased.
For zero St, Ly = 25 was adequate for Re <20, L, =100 for Re <200, and L, =300 for
Re <2,000; for nonzero St, Ly had to be increased further. It must be noted here that
the value L, =2 used by Dutta and Ryan in solving the creeping flow problem with finite
differences was too small to give the correct free-surface profiles [39]. The finite element
mesh was more refined in the neighborhood of the exit in order to capture the sudden
changes in the flow field. The number of elements ranged from 150 to 222 and the number
of unknowns varied from 1,541 to 2,273.

The solution at one set of Re, St, and Ca provided the initial estimate for the Newton
iteration at higher Re or St, and lower Ca (zero-order continuation). The step in Ca was
in general of the same order of magnitude as the new Ca. Convergence was achieved

once the largest relative change in the unknowns was less than 10™4, i.e., the criterion for

1 For more information about frontal solvers, see also {83,160,18].
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Figure 2.4: Solution of the planar die-swell problem: (a) z-velocity, (b) y-velocity, (¢) pressure
and (d) streamlines.
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Figure 2.5: Centerline and free-surface velocities for the stick-slip problem.
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convergence was
o

max |~ L] < 1074, (2.45)
1

;
The Newton iteration converged quadratically in 3 to 5 iterations. Only at very low Ca
(less than 0.01) were more iterations (up to 8) necessary.

The solution of the planar die-swell problem is illustrated in Figure 2.4, where we plot
the velocity and pressure contours and the streamlines. |

To check the accuracy of the finite-element predictions, the centerline and free-surface
velocities of the planar jet at Re=0 and Ca=10"> are compared with Richardson’s ana-
lytic solution for the stick-slip problem [121,122]. As shown in Figure 2.5 the predictions
agree with the analytic solution to within 0.1%. The finite element solution here was
obtained as the limiting case of the general problem at Re =0 and Ca = 1075, i.e., the
location of the free surface was not fixed a priori. The expected planar interface in this
limiting case was predicted to within 0.01%.

The computed surface profiles of a planar jet, without gravity and surface tension at
several Re are shown in Figure 2.6. The surface-tension effects at Reynolds numbers 0,
9, 12.5, and 100 are shown in Figure 2.7. Unlike earlier analyses [113], no oscillations are
observed as Ca decreases. The surface tension reduces either expansion or contraction of
the jet; at very high surface tension (Ca — 0), there is no swelling at all, as expected.
At moderate Reynolds numbers, from 4 to 15, the surface profile is characterized by a
necking. In this critical range, as surface tension increases, the die-swell first increases
but then starts to decrease, as shown in Figure 2.7b. The results show that the inertia is
the major controlling factor for the die-swell ratio at high Re where the surface-tension
effect becomes insignificant. The free-surface profiles of the round jet without gravity
and surface tension are shown in Figure 2.8 for various Re. The surface tension effects

at Reynolds numbers 0, 8, 10, and 100 are shown in Figure 2.9. The critical Reynolds-
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Figure 2.10: Predicted die-swell ratio vs the Reynolds number at zero surface tension, for the
planar and the round jets.
- - - —: asymptotic values at infinite Reynolds number.

number range for necking is from 5 to 15. The results for St = 0 and Ca > 0.2 are
identical to those of Omodei [113,114]. But unlike his results, no oscillations are observed
at lower capillary numbers. We have obtained results at very low values of Ca close to

zero (Ca < 107°).

As illustrated in Figure 2.10, the axisymmetric jet swells less than its planar counter-
part at low Reynolds numbers. At high Reynolds numbers the opposite is observed. For
the planar jet, the die-swell ratio is 1.186 for Re=0, 1 for Re~9, and 0.835 for Re=2,000

approaching the theoretical limit 0.8333 at infinite Re'? [147]; for the axisymmetric jet

12The limits of the die-swell ratio at infinite Re for Newtonian fluids are obtained in section 2.6
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Figure 2.12: Predicted free-surface profiles of the round jet with gravity. Comparison with data
from Trang and Yeow (1986; top curve) and Adachi and Yoshioka (1984).

it is 1.130 for Re=0, 1 for Rea7, and 0.867 for Re =2,000 approaching the theoretical

limit 0.8660 for infinite Re [65].

2.4.1 Comparisons with experimental data

The finite element calculations were tested against the data of Gear et al. [49] at
several Reynolds and capillary numbers. The computed and the experimental final di-
ameters agree to within 1% (Figure 2.11). As noted by Gear et al., the discrepancies in
shapes are probably due to factors not taken into account (variation of the surface tension

along the jet, rounding of the exit nozzle) and/or experimental errors (49].

An additional feature of this work is the inclusion of the gravity effect. No difficulties

as special cases of the Herschel-Bulkley fluid.
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were encountered in solving the gravity-drawn jet on a finite two-dimensional domain.
The boundary condition v=0 at the outflow plane was adequate for nonzero 5t, inasmuch
as the outflow plane was taken far from the domain of interest. In Fi%ure 2.12 we compare
our predictions with data taken from Trang and Yeow [151] and Adachi and Yoshioka [1].

Predictions and data agree to within less than 3%.

2.5 Concluding remarks

The full-Newton iteration method was used to solve the planar and the round Newto-
nian jets. The method is based on Galerkin finite elements, free-surface parameterization,
and global Newton iteration. The Newton iteration converges rapidly in practically any
range of dimensionless numbers examined: Reynolds numbers from zero to 2,000, cap-
illary numbers from zero to infinity and Stokes numbers from zero to 10. These ranges
of parameters are wider than those previously reported with Picard iteration schemes.
The calculations agree with the analytic solution of the stick-slip problem at the limiting
case of zero Reynolds and infinite surface tension, yield the asymptotic values at infinite
Reynolds numbers, and compare well with experimental data at several Reynolds, cap-
illary and Stokes numbers. The finite element formulation has been developed in terms
of the stress and therefore any differential constitutive model can be accommodated. In
fact, this work has been already extended to power-law and Bingham-plastic fluids (see

Georgiou et al. [52,53] and [41]).
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2.6 Asymptotic die-swell ratios for the Herschel-Bulkley
fluid
We consider the Herschel-Bulkley model which describes a power-law fluid with yield
stress [20]:

1
D=0, for §IIT <7’

(2.46)

Ty

V25

where 7 is the viscous stress tensor, D and Il are the rate of strain tensor and its second

r = 2[K||20p|" V7 4+

1
]D, for §IIT2Ty2

invariant, K is a ‘viscosity’ constant, n is the shear-thinning parameter, and 7, is the
yield stress.

The dimensionless velocity for 1-D or round fully developed flow is given by the general

form
" (0 _ 1\ <r<
u (n+1)C’(C T,) for 0<r<W,
(2.47)
= " - (n+1)/n __ _ (n4+1)/n <7<
u (n + 1) C [(C Ty) (CT Ty) ] fOl‘ W NTS 1,
where
= i U7 (2.48)
hy
is a dimensionless yield stress number,
T,
== 2.
w c (2.49)

is the distance of the yield surface from the centerline, and C = %}I% is the constant
pressure gradient calculated by demanding that the mean dimensionless velocity in the

die is equal to 1.
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For the round tube, it turns out that C is the bigger root of

n(C=TH"[(n+1)(2n +1)C? -~ (n+ 1) T, C* —2n T2 C — 202 T -

(n+1)(2n+1)Br+1)C* = 0.

For Bingham-plastic flow (n=1) equation (2.50) becomes:
3C* - 4(3+T,)C* + T, = 0;
for power-law flow (7,=0) the solution is
c = (3n + 1)” .
n

For the planar case C is in general the bigger root!3 of

n(C—T) " [(n+1)*C*~T,C-nT? - (n+1)(2n+1)C*=0.

For Bingham-plastic flow the solution of equation (2.53) is

oo [+ e (-2

for power-law flow the solution is

c = <2n+1)".
n

(2.50)

(2.51)

(2.52)

(2.53)

(2.54)

(2.55)

Notice that at the limits of Ty — oo or n — 0 the inlet velocity profile is plug and

the flow reduces to pure solid translation.

Asymptotic values of the die-swell ratio

The theoretical limits of the die-swell ratio at infinite Reynolds number, A, are

obtained by taking mass and momentum balances between the exit of the die, where the

flow is assumed to be fully developed, and at a plane very far downstream where the flow

13In solving equations (2.50) and (2.53) with Newton-Raphson iteration, it is preferable to start

with a very large estimate for C.
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is taken as plug. The Newtonian limits are 4/3/2 for the round jet [Harmon, 1955] and
5/6 for the planar jet [Tillet, 1968].

By using the equation of continuity* for the round case, one obtains
2 —
Ufoo (Th foo) =7

or

Ufoo Pieo = 1, (2.56)

where the subscript f., denotes the outflow quantities at the asymptotic limit.
Now, from the conservation of momentum we may write
1
ufeoo (Wh}oo) = ./o w?2mrdr
or
1
u oo hhoo = 2 /0 u? rdr. (2.57)
By combining equations (2.56) and (2.57) we have for the asymptotic die-swell ratio

1
| G — (2.58)

V2 f urdr '

The analogous expression for the planar case is

1

_—. 2.59

hjeo =

By substituting equation (2.47) into (2.58) and by integrating one obtains for the

round Herschel-Bulkley jet

heo = (2 + 1)(3n + D(3n +2) ]‘“ (n+DC__ 6
Jo = | @Bn+2)(n+ 1)2C? + 6n(n+ 1)?T,C + (9n+ Nn?TZ| n(C —T,)+D/m " %
For the round Bingham-plastic jet, equation (2.60) becomes
60 VR
hjeo = 3 > =3 (2.61)
5C% 4 61,C + 41y (C—1y)

14Notice that we use the dimensionless forms of the equations.
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for the power-law fluid we obtain

2n + 1\ /2
hieo = (3n+1) . (2.62)

For the planar Herschel-Bulkley jet we substitute equation (2.47) into (2.59) and

integrate. The asymptotic die-swell ratio is given by

(2n +1)(3n + 2)(n + 1)2 C3

htoo = 2.63
/ n? (C = T,)2(+1)/n (2(n + 1)2C + n(4n + 3)T,] (2:63)
which reduces to
60 C3
Rt = (2.64)
o = BC+T7,) (C— )t N
for a Bingham-plastic planar jet and to
3n+2
hjoo = m (265)

for a power-law jet. C is the constant pressure gradient obtained from equations (2.50)
and (2.53). The above expressions yield the Newtonian limits for zero yield stress T, and
n = 1. As expected hso goes to 1 as T}, goes to infinity or as n goes to zero. The limits
for n — oo are \/2/3 for the round jet and 3/4 for the planar jet.

The asymptotic values of the die-swell ratio at infinite Reynolds number provide
a useful theoretical check to the finite element calculations at high Reynolds numbers

(52,53,41).




CHAPTER III

SINGULAR FINITE ELEMENTS FOR
STOKES FLOW: THE STICK-SLIP
PROBLEM

“Science may set limits to knowledge, but should not set limits to imagination.”

Bertrand Russell, A History of Western Philosophy.

In this chapter we develop singular finite elements for the solution of the stick-slip
problem!. The solution of more complicated fluid mechanics problems, such as the die-

swell and the sudden-expansion problems, is the subject of Chapter IV.

3.1 Introduction

The extrusion of a viscous jet from a die into an inviscid medium has been the focus
of a plethora of theoretical, experimental and computational works due to its importance
in polymer-processing operations and other industrial applications. Two characteristics
of the die-swell problem are the expansion of the jet at low Reynolds numbers and the
presence of a stress singularity at the die’s exit. The problem is analytically intractable

because of the nonlinear boundary conditions on the free surface. Numerical methods,

1The material of this chapter will appear in the Int. j. numer. methods fluids [55].
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especially finite elements, have been used extensively to overcome this difficulty [108,127,
113,51].

The stress singularity, which is the focus of this work, arises from the abrupt change
in the boundary condition at the exit of the die; its analysis is very important for a
good comprehension of the die-swell phenomenon [2]. Generally speaking, singularities
require special treatment in the numerical solution of singular problems. In finite element
analysis, local refinement around the singular point is often employed in order to improve
the accuracy. However, the accuracy and the rate of convergence are not in general
satisfactory. Standard finite elements predict inaccurate stresses around the lip of the
die; the stresses cannot be infinite at the singular point as the local asymptotic solution
demands. Furthermore, the stiffness matrix becomes large as the mesh is refined and
therefore the computational cost increases. Silliman and Scriven [135] applied a slip
boundary condition in the upstream vicinity of the contact line to alleviate the stress
singularity, since the no-slip boundary condition may be not valid in this region. They
do not adequately resolve the singularity as the slip coeflicient goes to zero, but they
determine that a wide range of slip coefficients gives the same global behavior.

Incorporating the nature of the singularity, obtained by an asymptotic analysis, in
the numerical solution proves to be a very effective way to improve the accuracy in the
neighborhood of the singularity and speed up the rate of convergence. This idea has
been successfully adopted in solving mainly fracture mechanics problems by a variety of
methods: finite differences [163], finite elements [141,149}, boundary and global elements
[82,86], and spectral methods [91]. Two singular finite element approaches appear in the

literature [86]:

1. Singular basis function approach. A set of supplementary basis functions chosen

to reproduce the leading terms of the singularity solution is added to the standard
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finite element solution expansion [141,106]. The singular functions are usually

defined over several elements and can span the entire domain.

2. Singular element approach. Special elements are used in a small region around the
singularity, while conventional elements are used in the rest of the domain. The

various proposed elements can be classified in three categories:

(a) Embodied singularity elements — Special elements are employed around the
singular point, and the corresponding field shape functions embody the form

of the singularity {149,150,5].

(b) Embedded singularity elements — The leading terms of the singularity expan-
sion are used to describe the full solution over a multi-node element surround-

ing the singular point and conventional elements are used elsewhere [134].

(¢c) Singular isoparametric elements— Singular geometric transformations, defined
on the elements surrounding the singular point, can provide finite element ap-
proximations with the desired singular behavior. The transformation becomes
singular by properly changing the position of the midnodes, e.g., quarter-point

elements {70,157,12].

There is a wealth of published work on singular finite element approaches due to their
success in fracture mechanics. A review is given by Gallagher [48] in which the various
approaches are critically examined and their relative advantages and disadvantages are
discussed?.

The main objective of the present work was to use the ideas developed in solid mechan-
ics to solve singular problems in fluid mechanics, which are more complicated because, in

addition to the velocity derivatives, the pressure —a primary unknown- is also singular.

2For other reviews of singular finite elements, see [6,7,42,141,153].
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Another complication arises in free-surface problems in which we have curved boundaries
and the form of the singularity is not exactly known.

We have chosen to solve the stick-slip problem in this chapter, using embodied sin-
gularity elements. The stick-slip problem is a limiting case of the die-swell problem,
equivalent to the creeping Newtonian planar jet at infinite surface tension; no expan-
sion occurs in this case and the free surface is flat. The boundary conditions suddenly
change from no-slip along the wall to perfect-slip along the planar ‘free’ surface. For this
particular case, the nonlinearity due to the free surface is eliminated, and the stick-slip
problem is amenable to analytical solution. The planar problem was solved analytically
by Richardson [121] using the Wiener-Hopf method, and by Sturges [142] using the eigen-
function method®. Trogdon and Joseph [152] solved the round stick-slip problem using
both methods. Nevertheless, the local solution near the lip is just a special case of the
general flow of a viscous fluid near a corner formed by a solid wall and a flat free surface;
the local analysis is described by Michael [100] and Moffatt [104]. The velocity compo-
nents vary as the square root of the radial distance from the singular point resulting in
an inverse square root singularity for the stresses.

The singular elements developed here are similar to those introduced by Tracey [149]
for the crack-tip problem, which also exhibits an inverse square root singularity for the
stresses. Compared to the singular basis function approach or to the embedded singular-
ity elements, the embodied singularity elements can be more easily included in a general
finite element code and do not require knowledge of the angular dependence of the solu-
tion. Furthermore, they are compatible with the adjoining ordinary elements and can be
extended to free surface flow problems, e.g., the die-swell problem.

Even though the singular isoparametric elements have been successful in dealing with

3 Another solution of the plane stick-slip problem with the eigenfunction method was reported
by Dutta [40].
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crack problems in fracture mechanics [70,12] and are equivalent to the embodied singu-
larity elements in some cases, the latter are more appropriate for fluid flow problems for
the following reasons:

(a) Singular isoparametric elements can not handle singular primary variables. The pro-
posed elements can be constructed with no node at the singular point for the singular
primary variables.

(b) Singular isoparametric elements with curved sides are difficult to use without loss of
accuracy. Consequently, they are not as effective as the embodied singularity elements
for free-surface problems.

(c) In order to describe general power-type singularities with isoparametric elements, one
has either to increase the number of nodes per element or to construct special field shape
functions which in combination with the distortion of the physical element will yield the
desired behavior. With the embodied singularity elements one has to modify only the
field shape functions.

Singular elements can be applied to a general class of singular fluid mechanics prob-
lems, provided that the radial form of the local solution is known or can be obtained
by an asymptotic analysis. Thus, singular finite elements can be used to solve nonzero
Reynolds number or non-Newtonian flows. For a nonzero Reynolds number, the analysis
is valid near the singularity, where the viscous effect is dominant, and the form of the
local solution remains the same. Schultz and Gervasio [131] showed that the resulting
local eigenproblem can be solved if the slip surface is flat or the curvature of the free
surface is integrable. An asymptotic analysis to obtain the radial form of the singularity
is also possible for various viscoelastic flows such as the stick-slip flow of an Oldroyd-B
or a second-order fluid [81,4]. Apelian et al [4], in solving the stick-slip problem with

a modified upper-convected Maxwell model, showed that the elastic contribution to the
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stress varies as r—1/5

. The developed elements can easily embody both the Newtonian
and the elastic contributions by appropriately modifying the field shape functions [78].
Therefore, the method can be used in viscoelastic flows, provided that the encountered
stresses are integrable.

As we will see in the following sections, the embodied singularity elements give results
that are more accurate than those from conventional finite elements even if coarser meshes
are used. The governing equations and the asymptotic solution are given in section 3.2.
The finite element formulation, the construction of the field shape functions, and the

numerical integration over the singular elements are discussed in section 3.3. Finally, the

results are presented and discussed in section 3.4.

3.2 Governing Equations and Local Solution

The geometry, governing equations, and boundary conditions for the stick-slip prob-

lem are depicted in Figure 3.1. The flow is governed by Stokes’ equation and continuity:
vV-T =0, (3.1)

and

Vou=0. (3.2)

Here T is the stress tensor for a Newtonian liquid, measured in units of pU/H, p is the
viscosity, U is the mean velocity in the channel, and H is the channel half-width. The
velocity u is scaled by U.

The form of the singularity is known as a special case of the steady plane flow near
a corner of angle a formed by a rigid boundary and a flat free surface, as shown in
Figure 3.1b. This general flow was analysed in plane polar coordinates (7,6) by Michael

[100] and Moffatt [104]. For the stick-slip case, a =7 and there are two possible sets of
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Figure 3.1: (a) The stick-slip problem.(b) Local analysis of the singularity.
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solutions for the streamfunction :

P = oy [cos(A+1)8 = cos(A~1)8], for A

[\CF
N
[ B Wy

T (33)

and
Y= P B [(A=1)sin(A+ 1) — (A + Dsin(A—1)8], for A=2,3,4,---, (3.4)

where a), and () are arbitrary constants. The velocity components are proportional to
7. For 6 = r the contributions of equation (3.4) become zero and the y component of

velocity is given by
v = 20y y'/? — 203/2 v+ 2a5/9 y5/2 + 0%, (3.5)

From the analytical solution the first constant is a;/, = V/3/2m=0.690988. As indicated
by Ingham and Kelmanson [82], the value a;/, = 0.581 given by Richardson [121] is wrong.
Pressure and stresses are proportional to 7*~1 and the inverse square root singularity is
due to the first term of equation (3.3). The normal stress, Ty, on the slip surface is
nonsingular and represents a very severe test for the numerical calculations. It turns out
that only the pressure contributions from the integer-power solutions are nonzero and the

normal stress on the slip surface is of the form

Ty = ¢ — 24B2y + 4863 v® + 80Bay° + O(y*), (3.6)
where ¢ is a constant.

3.3 Finite Element Formulation

The finite element method is well established ([14], [11]) and therefore we empha-
size only the aspects related to singular finite elements: the construction of field shape

functions and the numerical integration over the singular elements.
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The physical domain of the stick-slip problem, shown in Figure 3.1, extends three
channel half-widths upstream and downstream, a distance sufficiently large to ensure the
validity of the imposed boundary conditions. Taking the outflow and inflow planes farther

from the lip causes negligible changes in the calculated flow field.
3.3.1 Construction of the singular elements

In the finite element discretization, we use singular triangular-shaped elements in
a small core around the singularity and ordinary rectangular elements in the rest of the
domain, as illustrated in Figures 3.2 and 3.4. In the ordinary elements, the basis functions
are biquadratic for the velocities and bilinear for the pressure. These elements are mapped
on a 2x2 master element in (£,7) coordinates with biquadratic shape functions.

The construction of field shape functions, describing derivative singularities of the
general form 77! (0 < = < 1), has been the central subject of various works [78,110].
Hughes and Akin [78] presented an algorithm for generating shape functions from an
arbitrary starting set of independent functions. The generated functions are capable of
representing different singular behaviors within the element. For the present problem,
a simple Lagrange interpolation in terms of /r is adequate for deriving the field shape
functions?. Figure 3.2 shows the rectangular master element with the (£,n) coordinates
mapped approximately to the physical radial and circumferential coordinates respectively
[149]. The mapping of the singular elements is discussed more in section 3.6. The field
shape functions must embody the singularity and be compatible with the adjacent or-
dinary elements. Hence the shape functions for the velocities, ®*, are of the general
form:

& = N(¢) P'(n), (3.7)

4For a detailed discussion about the construction of basis functions and the various families of
isoparametric elements, see [88].
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Figure 3.2: Ordinary and singular elements.
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with P varying quadratically with 7 to maintain compatibility with the adjoining ele-
ments. Three velocity nodes are thus needed in the 7 direction. At {= -1, P=1 and
the three velocity nodes collapse to one node with only two degrees of freedom for the
two velocity components. To include the first two contributions from both the equations

(3.3) and (3.4), five velocity nodes are needed in the ¢ direction and N ' takes the form:
N (&) = a+b(1+OF +e(1+O+d(1+OF +e(1+6)’. (3.9)

Requiring that N*(¢;) = §;; and using Lagrange interpolation with respect to the square

root of the radial coordinate give:

W= (1 =VE) (1 -y fEe) (1 = vER) (1 - vER)

2 4v/6 z — Ve - é:v - z

N = AT U -V 30 V2z)

3 _ 2v3 A1 - Vaz

N —(ﬁ_ﬁ)(g_Qﬁ)ﬁ(l—ﬁ)(l 52) (1 Vig)

Nt = 1v2 Va1 —vE)(1 =VE7) (1 - Viz)
V3(2-v3)(V3 - v2) (V3 -1)

5 _ V3 4 _

N -(2_\/5)(\/5_1)\/5(1- 3:7:)(1—-\/2_:8)(1 Vi)

where z=(1+¢)/2 and the nodes are numbered sequentially in the £ direction.

For the pressure shape functions, ¥*, we use a lower order representation:
bl 3

o= M(6)Q'(n), (3.9)

with Q varying linearly with n (two pressure nodes in 7 direction) and M ' having the

same form as dN'/d¢:

MiE) = d (146 3 +0+d A+ +d (1+6). (3.10)
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Four pressure nodes are needed in the ¢ direction and because pressure is singular no

node is placed at £ =—1 (Figure 3.2). Using Lagrange interpolation gives:

M - (\/5-3_-—-1)(\/-2_—1) \/_33(1 \/—)(1 3 )(1 2 )

2 \/g 1 4  runn

M B (3—2\/5)(\/——\/5) m(l ‘/—)(1 3 )(1 4 )

3 = \/6 —"1 — AT —-Viz — Va4l
M B (2—\,/5)(\/_—\/5)(\/5—1) 1(1 \/_)(1 ? )(1 * )

1 = - V3 R -2z —Viz
MY = (2_\/5)(\/5_1)\/5(1 \/;_)(1 V2z)(1 —V4z)

with the nodes numbered sequentially in the £ direction. Note that the constructed
shape functions satisfy the conditions &' =1, 3 ¥ =1 and are linearly independent.
The master element is mapped to the triangular physical element by means of ordinary
polynomial shape functions of the fourth order in the £ direction and second order in the

7 direction.

3.3.2 Galerkin method

Applying the Galerkin principle, we weight the momentum and continuity equations

by the velocity and pressure basis functions. After applying Green’s theorem we have
/Sn-Té"dS—fvT-w‘dV:o, i=1,2,-, N, (3.11)
and
/Vv-u\p*'dV=o, i=1,2,--,N,, (3.12)

where V and S are the domain and its boundary, n is the unit normal vector pointing

outward to the boundary, and N, and N, are the numbers of velocity and pressure nodes,
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respectively. The total number of unknowns is 2N, + Np. Equations (3.11) and (3.12)
constitute a system of linear equations efficiently solved by standard subroutines, e.g.,

frontal methods [75,160).

3.3.3 Numerical integration

Standard 3x3 Gaussian quadrature is used for the integration over the ordinary ele-
ments [24]. As noted by various investigators [150,139,140], a standard quadrature rule
of low order is inappropriate for the integration over the singular elements. Special
quadrature rules for singular elements with an 7™ behavior, with the quadrature points
and weights varying with the exponent n, are described by Solecki and Swedlow [139].

However, for the square root behavior examined here, the substitution

VITE = S\}L;‘ (3.13)

transforms the encountered integrands into simple polynomials in the s domain, and
therefore standard Gauss-Legendre quadrature suffices for an exact integration. This

treatment is equivalent to modifying the standard Gauss weights w{ and points 78 as

follows:
i = -Q'G-'_—ly -1, (3.14)
2
and
wi = wf(F +1), (3.15)

for the integration along the radial direction. We use a 5x3 modified Gaussian quadrature

for integration over the singular elements.

3.4 Results and Discussion

The stick-slip problem was solved using both ordinary and singular finite elements.

Five ordinary meshes and three singular meshes, shown in Figures 3.3 and 3.4, were
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Mesh I, 24 elements

Mesh II, 96 elements

Mesh 111, 384 elements

Mesh IV, 450 elements

Mesh V, 520 elements

Figure 3.3: Ordinary element meshes.
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Mesh I, 32 elements

Mesh II, 104 elements

Mesh III, 392 elements

Figure 3.4: Singular element meshes.
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(a) y-velocity

(¢) Pressure

(d) Streamfunction

Figure 3.5: Solution of the stick-slip problem: (a) y-velocity, (b) z-velocity, (c) pressure and (d)
streamlines.
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Figure 3.6: Predicted centerline pressure with singular and ordinary elements.
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Figure 3.7: Predicted normal stresses at z = 1 with ordinary elements for the planar stick-slip
problem (— -~ —: mesh I, - - - -: mesh II], : mesh V).

constructed for this purpose. The first three ordinary meshes (I,/1 and I11) were uniform
and consisted of 24, 96, and 384 square elements. The last two meshes (/V and V') were
obtained by refining only the row and columns around the tip; they consisted of 450 and
520 elements. To generate the singular meshes, we modified the uniform ordinary meshes:
eight ordinary square elements were replaced by eight singular triangular-shaped elements
and eight ordinary transition elements in the circular pattern shown in Figure 3.4. Of
course, uniform meshes are by no means optimum for the stick-slip problem, but in this
work they appear to be more appropriate for comparisons between singular and ordinary
finite elements.

The solution of the stick-slip problem obtained with the finest singular mesh is illus-

trated in Figure 3.5, where we plot the velocity and pressure contours and the stream-




63

Qo
----- Analytical Solution

W Singular Mesh I
w
v
b—
w
—
-
=gy
-
=

Tr. : : ;

-2. -1, 0. 1. 2.
AXIAL DISTANCE, vy/H
Figure 3.8: Normal stresses at 2 = 1 (—: singular elements, mesh I, - - -: theory).

lines. The results clearly depict the rearrangement of the flow from a Poiseuille-flow to a
uniform-flow regime.

The singular and ordinary finite element results far from the singular point are in good
agreement. Both methods predict essentially the same centerline pressure (Figure 3.6);
it varies linearly with the axial distance inside the die and goes smoothly to zero in
the jet. However, the results around the singularity differ dramatically. We focus on
two important quantities, the normal stress along the wall and the slip surface and the
velocity along the slip surface.

The normal stresses predicted with the ordinary finite elements meshes I, IT1] and
V are plotted in Figure 3.7. We observe that the normal stress oscillates spuriously

around the singularity; the oscillations on the wall are of smaller frequency and greater




69

amplitude than those on slip surface. As we refine the mesh, the oscillations move towards
the singular point and their amplitude increases.

By using singular finite elements, we practically eliminate these oscillations. The
normal stress obtained with the coarsest singular mesh is smooth and agrees well with
the analytical solution (Figure 3.8). Note that the coarsest mesh gives virtually the same
normal stress results as the finest mesh, indicating that relatively coarse meshes may be
used with singular finite elements. However, some oscillations of very small amplitude
still occur very close to the singularity with the finer meshes. These oscillations are not
restricted to the singular elements but also appear in the surrounding ordinary elements;
this may be due to the fact that the pressure and viscous stress grow large with opposite
signs which gives rise to a numerical error.

No matter what the cause of the oscillations is, the main disadvantage of the em-
bodied singularity elements is apparent: by refining the mesh, we reduce the size of the
singular elements over which the singularity is given special attention. Nevertheless, this
problem may be partially resolved by restructuring the mesh so that the size of the sin-
gular elements is fixed and independent of mesh refinement (e.g., by using more ordinary
transition elements or by using triangular instead of rectangular ordinary elements).

The normal stress results were used to choose the order and the number of the sin-
gular elements and to check whether ordinary transition elements are necessary around
the singular elements. In addition to the aforementioned pattern with eight 13-node sin-
gular elements and eight transition elements, three alternative mesh patterns were also
examined: (i) eight 7-node singular elements with eight ordinary transition elements,
(ii) four 13-node singular elements with four ordinary transition elements, and (iii) eight
13-node singular elements with no ordinary transition elements. All the examined mesh

patterns are shown in Figure 3.9. The predicted normal stresses were better than those
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(a)

(b)
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(c)

(d)

Figure 3.9: Examined mesh patterns around the singular point.

obtained with ordinary elements in all cases. However, the results with the alternative
mesh patterns examined were characterized by some oscillations, which disappear with
mesh refinement. The most severe oscillations occur with the 7-node singular elements
(Figure 3.10). This is due not only to the lower order of the element but also to the fact
that some terms of the basis functions become zero in accordance with the analytical
solution. Consequently, only one term survives to express the radial dependence of the
normal stress. The 13-node elements overcome this difficulty. The mesh pattern with
eight 13-node singular elements and eight ordinary transition elements appeared to give
satisfactory results and adequately captured the # dependence of the local solution. After
some preliminary tests, the radius of the singular elements was taken to be 1.2 times the
size of the original ordinary square.

To assure that the improved solution is due to the singular basis functions and not

to the different shapes and mesh patterns used with the singular elements, we solved
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Figure 3.10: Computed normal stresses with 7-node (- - -) and 13-node (—) singular elements
(mesh I).
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Figure 3.11: Computed normal stresses with 13-node ordinary (- - -) and singular (—) elements
(mesh I).




73

Table 3.1: Inverse condition number of the stiffness matrix for various elements and meshes.

Mesh Elements 1/cond(A)
I Ordinary 9-node | 3.234 10~*
11 Ordinary 9-node | 1.01510~*
IIT | Ordinary 9-node | 4.009 10~°

I Singular 7-node | 2.394 10~°
II Singular 7-node | 7.236 10~°
I Singular 13-node | 2.456 10~7

II Singular 13-node | 7.505 1078

the problem by replacing the 13-node singular elements with 13-node ordinary elements.
Comparison of the computed normal stresses, in Figure 3.11, indicates that the singular
basis functions are important for an improved solution.

As with the use of singular basis functions [141], the condition number of the stiffness
matrix becomes larger if singular elements are used. Table 3.1 summarizes how the
condition number changes with the mesh and type of element. The condition number,
computed using the LINPACK subroutine DGBCO, was sufficiently small for all our
double precision computations.

The second quantity we examined was the velocity on the slip surface. The computed
nodal slip surface velocities from ordinary mesh IV and singular mesh II are shown
in Figure 3.12, along with the asymptotic solution. The singular finite element values
agree well with the analytical solution; the ordinary element results differ slightly and
converge to the analytical solution with mesh refinement. Again, the coarse singular
element meshes give more accurate results than refined ordinary meshes.

For another comparison with the analytical solution, we estimated the first expan-
sion coefficients using a least-squares fit of equation (3.5) to the eight nodal slip-surface
velocities closest to the singularity. Estimates of the first three expansion coefficients are

given by Ingham and Kelmanson [82] who used a singular boundary integral method to
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Figure 3.12: Comparison of predicted slip surface velocities near the singularity (—: asymptotic
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Table 3.2: Computed singularity expansion coefficients.

Method ay/9 03/9 Qs/y
Ordinary elements 0.67170 0.19812 -0.02297
Singular elements 0.69173 0.27168 0.05013

Ingham & Kelmanson | 0.69108 0.26435 0.04962
Analytical solution 069009 | — — — — — | — — — — —

solve the planar stick-slip problem. The estimated parameters for meshes IIT are listed
in Table 3.2 along with the extrapolated values given in [82]. The agreement with the an-
alytical solution is satisfactory despite the fact that the least-squares fit was not rigorous

with regard to the number and the weight of the nodal points.

3.5 Concluding remarks

Singular finite elements have been developed for the stick-slip problem in order to
improve the solution in the neighborhood of the singularity. These elements are similar
in principle to the crack-tip elements used in fracture mechanics; however, in fluid flow
problems the pressure, a primary unknown, is singular. Compared to ordinary finite
elements, the singular elements give more accurate results for relatively coarse meshes.
Good approximations to the leading singular coefficients have also been obtained. The
method can be readily applied to other problems in fluid mechanics for which the radial
form of the singularity can be obtained by a local analysis. As mentioned in the introduc-
tion, the method is not restricted to creeping and Newtonian flows, but is also applicable
to nonzero Reynolds number and non-Newtonian flows, provided that the encountered
stresses are integrable.

From some preliminary results [54], it appears that the removal of the pressure node
from the singular point plays a crucial role to the improvement of the solution. Singular

finite elements, with an approximate singularity exponent independent of the free-surface
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shape and location, can be used to study singular free-surface problems. They can also
be used for problems with non-integrable singularities by approximating the singular
quantities by 7~1+¢ where 0 < € < 1. In the next chapter, we present the solution of the

sudden expansion and the die-swell problems.

3.6 Appendix: Mapping for singular elements

As in Tracey [149], we demonstrate that the { coordinate for the element shown
in Figure 3.2 is approximately mapped to the radial direction, and the 7 coordinate is
mapped to the circumferential angle. Suppose that the global radius of the element is
given by R and the total global angle subtended by the element is 3. By directly applying

the standard polynomial shape functions for an element, we find that
R R
v=2040 [Zatn+osba-n) - wspla-n|~ 040 @10
2 2 2 2 2
and
R . . R
= 2arg [l - renpla-n] ~ LA+ O0-1),  (317)

where the simplifications use small angle approximations. Then the determinant of the

Jacobian matrix is
R2
3= 601+,

i.e., the differential area of the singular element is 7 drdf = |J| dédn.




CHAPTER IV

SINGULAR FINITE ELEMENTS FOR THE
SUDDEN-EXPANSION AND THE
DIE-SWELL PROBLEMS

“In the critics’ vocabulary, the word “precursor” is indispensable, but it should
be cleansed of all connotation of polemics or rivalry. The fact is that every writer
creates his own precursors. His work modifies our conception of the past, as it will
modify the future. In this correlation the identity or plurality of the men involved
is unimportant.”

Jorge Luis Borges, Kafka and His Precursors (Labyrinths).

The singular elements constructed in Chapter III for the stick-slip problem are further

developed in this chapter to solve two standard fluid mechanics problems:

1. The sudden-expansion problem with a singularity of different nature from that

present in the stick-slip geometry, and

2. The die-swell problem, extensively discussed in Chapter II, which requires the sin-

gular elements to have curved sides due to the presence of the free surface!.

1The material of this chapter will appear in the Ini. j. numer. methods fluids [57).

7
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4.1 Introduction

Stress singularities in fluid mechanics arise whenever there is an abrupt change in
a boundary condition or in the boundary itself. Some well-known examples of singular
problems are the sudden-expansion, the die-swell, the stick-slip, and the driven-cavity
problems, which are often used as model problems for the various numerical methods
proposed for Newtonian or non-Newtonian flows.

Singularities require special attention, no matter what numerical method is used.
The most common treatment is to refine the grid around the singular point in order to
capture the abrupt changes in the flow field. However, the rate of convergence and the
accuracy are generally unsatisfactory. The stresses cannot be infinite (in compliance with
the asymptotic solution), and they are tainted by spurious oscillations. This contami-
nation is far more serious in non-Newtonian flows than in the corresponding Newtonian
flows. Numerical inaccuracies caused by singularities can lead to numerically stiff itera-
tion schemes, to the formation of fictitious limit points, or to artificial changes of type of
the governing equations [22,97]. Another inherent disadvantage in local refinement is the
generation of extremely large matrices, resulting in higher computational costs.

Some investigators have modified the mathematical problem to alleviate the singu-
larity (a) by modifying the boundary conditions (e.g., relaxing the no-slip condition for a
smooth transition from a velocity to a stress boundary condition [135]) or (b) by smooth-
ing the boundary (e.g., replacing a re-entrant corner by a circular arc of small radius
[22,125]).

An alternate approach, based on the acknowledgement of the singularity rather than
on its alleviation, is the incorporation of the local asymptotic solution (if known) into the
numerical scheme (finite differences, finite elements, boundary elements, etc). This idea

has been extensively used in fracture mechanics and gives accurate results for relatively
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coarse meshes [48,42]. More recently, singular methods were used to solve singular fluid
mechanics problems with finite differences [74], boundary elements [82], and finite ele-
ments [55,56]. In the singular finite element method (SFEM), special elements that take
into account the nature of the singularity are used in a small core around the singular re-
gion and ordinary elements are used in the rest of the domain. The basis functions for the
primitive variables over the singular elements embody the radial form of the singularity,
which can be obtained by an asymptotic analysis.

A feature of the singular fluid flow problems that does not appear in fracture mechan-
ics is that, in addition to the velocity derivatives, the pressure, a primitive variable, is
singular [55]. An additional complication arises in free-surface problems since the angle
of separation is unknown and the boundaries are curved; hence, the exact form of the
singularity is unknown.

The SFEM has been used in Chapter III to solve the Newtonian stick-slip problem
(see also [55]). The results indicate that the SFEM improves the stress representation
and gives more accurate results than those from more refined ordinary finite element
meshes. It was also noted that the method can be applied to other singular fluid flow
problems for which the radial form of the singularity can be obtained by a local analysis.
Such analyses are possible with various geometries for both Newtonian ([100,104,143])
and non-Newtonian ([4,95,69,31]) flows; in some non-Newtonian flows the local solution
is identical to that of the Newtonian case. Thus, the SFEM is applicable to some non-
Newtonian flows provided the encountered stresses are integrable. The SFEM is also
suited to nonzero Reynolds number flows, because the local solution remains unchanged
near the singularity where the viscous effect dominates. This implies that the singular
elements constructed for creeping flows can be used to solve the nonzero Reynolds number

problems as well.
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With this background in mind, the main objective of this chapter is to generalize
the SFEM for flows with different singularity powers, nonzero Reynolds number flows
and flows with free surfaces. We chose to solve two singular problems: (a) the planar
2:1 sudden-expansion problem and (b) the planar die-swell problem. These problems are
important in polymer processing and in other industrial applications and have been the
subject of a considerable amount of experimental and numerical work (e.g., [162,113]).
Even though our work aims towards solving viscoelastic flows, which are more challeng-
ing than their Newtonian counterparts, here we restrict ourselves to the Newtonian cases.
Despite the simplification introduced by the Newtonian assumption, the two problems
are analytically intractable due to the singularities and the nonlinearity of the convec-
tive terms. In the case of the die-swell problem, the boundary conditions on the free
surface (the location of which is unknown) are also nonlinear. Numerical methods, espe-
cially finite elements, have been used extensively to overcome all these difficulties. The
free surface location is computed by either Picard iteration [135,108,113] or full-Newton
iteration schemes [127,51)%.

The sudden expansion problem was solved for different Reynolds numbers, up to 100,
using the singular elements constructed for creeping flow. The SFEM performs well for
nonzero Reynolds numbers and yields more accurate predictions for the stresses than the
ordinary finite element method. The solution also appears to be rather insensitive to
substantial variations of the powers used in the construction of the basis functions. It
seems that the elimination of the pressure node from the singular point plays a crucial
role in the improvement of the solution.

The planar die-swell problem was solved by singular finite elements, free-surface pa-

rameterization, and full-Newton iteration. The singular elements developed for the stick-

2The Picard and full-Newton iteration schemes have been extensively discussed in Chapter II.
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slip problem were used for the die-swell problem over the full range of Reynolds and
capillary numbers examined. As we will see in the following sections, the SFEM speeds
up the convergence of the free surface dramatically.

The governing equations and the local solutions around the singularities are presented
in section 4.2, the construction of the singular basis functions and the finite element

formulation are presented in section 4.3, and the results are discussed in section 4.4.

4.2 Governing Equations

The flow geometry, the governing equations and the boundary conditions for the
sudden-expansion and the die-swell problems are depicted in Figures 4.1a and 4.2a, re-
spectively. The flows are governed by the two-dimensional momentum equation and

continuity; for incompressible flow and neglecting gravity,
Reu-Vu = V-T, (4.1)

and

V-u

0, (4.2)

where length is measured in units of the entrance half-width H, the velocity u is scaled

by the mean velocity in the entrance channel U, the Newtonian stress tensor,
T = —pI + [Vu+(Vu)],

is scaled by pU/H, and p is the viscosity. The Reynolds number is defined as

Re = %ﬁ- : (4.3)

where p is the density.
In addition to the two velocity components, u and v, and the pressure, p, the free

surface location, k, is an additional unknown in the die-swell problem. The kinematic
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Figure 4.1: (a) Sudden-expansion problem. (b) Local analysis of the singularity.
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Figure 4.2: (a) Die-swell problem. (b) Local analysis of the singularity.
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condition that the free surface remain a material surface provides the additional equation
needed:

n-u:O, (4.4)

where n is the unit normal vector pointing outwards from the free surface.
The remaining two conditions on the free surface serve as the boundary conditions
in our formulation. A momentum balance on the free surface requires the shear stress to

vanish and the normal stress in the liquid to balance any capillary pressure, or

2H
: = — 4.
nn:T Ca’ (4.5)

where Ca is the capillary number,

nU

—_— 4.
Ca=t2, (4.6)

o is the surface tension, and 2H is the mean curvature of the free surface, given by

ha::z:

2 =

(4.7)

Local Analysis of the Singularity

For the local analysis of the singularity we follow Michael [100] and Moffatt [104] and
switch to planar polar coordinates (r,8) (see Figures 4.1b and 4.2b). Using a streamfunc-

tion representation, the Stokes equation admits separated solutions of the form

Y = rfr(9), (4.8)

where 1 is the streamfunction, A are the eigenvalues of the resulting eigenproblem, and

f1(8) is given by the general expression

fA(8) = Acos A0+ Bsin A + C cos (A —2)8 + Dsin (A — 2)6 . (4.9)
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A, B, C and D are arbitrary constants determined from the boundary conditions. We
require that Re()\) > 1 to ensure that the velocity goes to zero at the singular point. For
flow between two rigid walls meeting at a sharp corner, as in Figure 4.1b, we have two
sets of solutions that correspond to the antisymmetrical and the symmetrical flows. For

the antisymmetrical flow,
¥ = ay 1 [cos (A —2)a cos A — cos Aacos (A —2)8], (4.10)
where o is the angle defined in Figure 4.1b, ay is a constant and A satisfies the equation
sin2ua = —psin2a  with p=A-1. (4.11)
For the symmetric case,
¥ = by [sin(A = 2)a sin\d — sin Aasin (A - 2)6], (4.12)
where by is a constant and A satisfies
sin2ue = psin2a  with p=A-1. (4.13)

For the sudden expansion problem, a is 37/4; the first eigenvalues from equations
(4.11) and (4.13), ordered in increasing real part, are listed in Table 4.1. It is worthwhile
to note the following: (a) Although g = 1 is a solution to (4.11), it is not an eigenvalue
for this problem [143]. (b) There is an infinite number of eigenvalues for both sets of
solutions. (c) There is only one real eigenvalue for each set of solutions and it is less
than 1. (d) The real part of the complex eigenvalues is always greater than 1. Holstein
and Paddon [74] pointed out that the above solution is the zero-order approximation to
inertial corner flow and that the Stokesian and inertial corner flows share the first three
expansion terms.

An interesting characteristic of the local asymptotic solution of the sudden-expansion

problem is that both the antisymmetrical and the symmetrical solutions contribute one




Table 4.1: Leading eigenvalues u = A —1 of the two asymptotic solution tests (sudden expansion).
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No | Antisymmetrical Symmetrical

1 0.54448 0.90853

2 1.62926 + 0.23125: | 2.30133 £ 0.31584¢
3 2.97184 4 0.373937 | 3.64142 + 0.41879¢
4 | 4.31038 + 0.455497 | 4.97890 + 0.486632
5 5.64711 £ 0.51368: | 6.31508 + 0.53763¢
6 | 6.98287 4 0.559117 | 7.65051 £ 0.57859:
7 | 8.31803 & 0.59642: | 8.98546 + 0.61285¢

singular term and the stresses vary as
Ty ~ cyr=0456 4 cpp=0091 (4.14)

Unlike the stick-slip problem [121], the normal stresses along the walls are singular. Along
the bisector (§ = 0), the leading order symmetrical contributions to the radial velocity
component and the pressure vanish; the antisymmetrical contributions to the circumfer-
ential velocity component also vanish. Therefore, at # =0 and close to the singular point,

the radial velocity component is proportional to 0544

, and the circumferential velocity
to 79999 The antisymmetrical contribution to the stress also vanishes at =0, and the
stress is determined by the less singular symmetrical contribution.

For the die-swell problem, we consider the flow between a rigid boundary and a free
surface as in Figure 4.2b. Michael [100] showed that for zero surface tension on a planar
free surface, the angle o must be equal to w. Sturges [143] noted that this result does
not apply to the die-swell problem because the free surface is not planar. Schultz and
Gervasio [131] suggested that either the slope is zero or the mean curvature is infinite.
The resulting eigenvalue problem for the geometry in Figure 4.2b is identical to equation
(4.13); the first two roots for various angles up to 37 /2 are listed in [143]. However, in the

present work we assume that the radial form of the local solution is not very different from

the solution for a = m; therefore, the local solution is the same as that of the stick-slip
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problem:
A1 135
¥ = r*1ay[cos (A + 1) — cos (A - 1)8], for A= 3035 (4.15)
and
=M [(A=1)sin(A+ 1) — (A + D)sin(A—1)8], for A=2,3,4,---. (4.16)

Using the same local solution, we avoid using different singular functions at different
(apparent) angles of separation and finding the angle of separation itself. Note that the
singular elements require only the knowledge of the radial form of the local solution. The
validity of the above assumption is tested by studying the sensitivity of the results to -

variations of the singularity powers used in the construction of the basis functions.

4.3 Finite Element Formulation

The domain is discretized using triangular singular elements around the singular point
and rectangular ordinary elements elsewhere, as illustrated in Figures 4.3 and 4.4. For
the ordinary elements we use biquadratic basis functions for the velocities and bilinear for
the pressure. These elements are mapped onto a 2x2 master element in (£,7) coordinates
by means of biquadratic shape functions. As in Chapter III, the singular elements are
collapsed quadrilaterals with 13 velocity and 8 pressure nodes mapped onto a 2x2 15-node
element in the computational domain (£,n7) by means of ordinary fourth-order polynomial
shape functions in the £ and second-order in the 7 direction. It is important to stress the
following :

(a) the singular elements are compatible with the adjacent ordinary elements at { = 1,
(b) there is no pressure node at the singular point, and
(c) the three velocity nodes of the singular master element collapse to a single node with

two degrees of freedom at the singular point in the physical domain.
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Figure 4.4: (a) Parts of the coarsest ordinary and singular meshes for the sudden-expansion prob-
lem.
(b) Structure of singular meshes near the corner.
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The trial functions for the velocities are of the general form
&' = N'(¢) Pi(n), (4.17)

with P varying quadratically with 7 to maintain compatibility with the adjoining ele-

ments. With five nodes in the radial direction &, N is given by
N = Ag + A1 €™ + A8™ + AzE™ + A &™. (4.18)

The constants A; are determined by requiring that N*(¢ ;) = 6;;, where §; are the equally
spaced positions of the velocity nodes. An alternate way to generate the functions N* is
given by Hughes and Akin [78], but it is too tedious for the 13-node elements used here.

The pressure basis functions are given by a lower-order interpolation:

o= MU(E)Q (), (4.19)

with @ varying linearly with 7 (two pressure nodes in 7 direction) and M having the

same form as dN/d¢:
M = By &7l 4 By&m7h + Byg™T + Byg™ol. (4.20)

Again, the constants B; are determined by requiring that ¥#(¢;)= 6;;, where now &; are
the positions of the pressure nodes.

For the sudden expansion problem, we require that two terms of the velocity trial func-
tions match the two leading expansion terms, and the other two are linear and quadratic.
In other words, we choose ny; = 0.544, n, =0.909 , n3 =1 and n4 = 2. Similarly, for the
die-swell problem we take ny =0.5, no=1, n3=1.5 and ny=2. Note that for this special
case the basis functions are easily obtained using Lagrange interpolation [55].

Applying Galerkin’s principle, we weight the momentum equation by the velocity

basis functions ®* and apply the divergence theorem,

/?-{I—n@ds-/ {VT-V® 4+ Reu-Vud'}dV =0, i=1,2,---,N,, (4.21)
s Ca v
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and we weight continuity by the pressure basis functions AN
/ V-ul'dV =0, i=1,2,---,N,. (4.22)
v

Here V is the domain, S is the free surface boundary (for the die-swell problem), and N,
and N, are the numbers of velocity and pressure nodes, respectively. In the case of the
die-swell problem, we also weight the kinematic equation by the free surface quadratic

basis functions W*:

/n-uwidszo, i=1,2,--,Ny,
S

(4.23)

where N}, is the number of free surface nodes. Equations (4.21), (4.22) and (4.23) con-
stitute a nonlinear system of equations efficiently solved by the Newton method and
standard subroutines, e.g., frontal methods [75].

The mesh is updated at each iteration by the newly found free-surface location values
hi, which are determined simultaneously with the primary unknowns u;, v; and p;. Note
that the nodes of the singular elements are at a constant distance from the singular point,
rotating dround the singular point according to the shape and the position of the free
surface. The nodes of the ordinary elements are fixed at the z coordinate and move
with the free surface in the y direction, so that the relative elevation is constant. The
mid-nodes of the transition elements move in both z and y directions so that they are
always at the middle of the elements’ sides.

Standard 3x3 Gaussian quadrature is sufficient for the integration over the ordinary
elements. However, the integration over the singular elements requires special or higher-
order quadrature rules [139,55]. The simple quadrature used in Chapter III for the stick-
slip problem is employed for the die-swell problem since the same singular elements are
used. Nevertheless, it is tedious to develop a special quadrature for the sudden-expansion

problem due to the many incommensurable powers of the radial coordinate that appear
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Table 4.2: Data for sudden-expansion meshes (L, =10).

Mesh | Number | Number | Degrees Size of
of elements | of nodes | of freedom | corner elements
OoM1 294 1261 2859 0.100
OM2 364 1549 3509 0.050
OoMs3 440 1861 4213 0.020
OM4 522 2197 4971 0.010
SM1 306 1347 3075 0.130
SM2 376 1635 3725 0.065
SM3 452 1947 4429 0.026
SM4 534 2283 5187 0.013

in the residual integrands. A higher-order (10x10) Gauss-Legendre integration was used

instead.

4.4 Results and discussion

4.4.1 The sudden-expansion problem

The 2:1 sudden expansion problem was solved with both ordinary and singular finite
elements for comparison. Results were obtained for various Reynolds numbers, ranging
from 0 to 100. For our computations we constructed four ordinary (OM1, OM2, OM3,
and OM4) and four singular meshes (SM1, SM2, SM3 and SM4). OM2 was obtained
from OM1 by refining the columns and rows of elements near the corner. OM3 and OM4
were obtained in a similar manner. Information about the meshes is listed in Table 4.2.
The singular meshes were generated from the corresponding ordinary meshes by replac-
ing the 12 rectangular ordinary elements around the singular point with 12 triangular
singular elements and 12 quadrilateral transition elements in the circular pattern shown
in Figure 4.4. The radius of the singular elements was taken to be 1.2 times the size of
the original ordinary square element (as in Chapter III).

The meshes were extended to a distance L; =3 upstream, a length found adequate to
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approximate the inlet boundary conditions. As noted in [133], the outlet length L, should
be greater than the maximum expected reattachment length plus a section sufficiently
long to achieve fully developed flow beyond the point of reattachment. We took L, =10
for Re up to 30, Ly =15 for Re =50, and Ly =25 for Re = 100, in accordance with the
reattachment length estimates in [45] and the outlet lengths used in [133]. No upwinding
schemes were used [59]. We should note here that some of the meshes are very fine for
Newtonian flow for two reasons: (a) to compare results from relatively coarse singular
meshes with those from fine ordinary element meshes and (b) to check whether or not
very small singular elements are required, provided that the form of the singularity is
only valid very close to the wall at nonzero Re.

In general, the results from both the ordinary and the singular finite elements are in
good agreement except in the vicinity of the singular point. In Figure 4.5, we plot the
velocity, pressure and streamline contours at zero Reynolds number predicted with the
singular finite elements (mesh SM1).

As expected, the results close to the singular point differ greatly from the ordinary
finite element predictions. To illustrate this, we computed the normal stresses along the
two walls forming the corner. In Figure 4.6 we compare the normal stresses along the
horizontal wall (y=1) and in Figure 4.7 the normal stresses along the vertical wall (z=0)
from meshes OM2, OM4 and SM1. The ordinary element results are characterized by
spurious oscillations. The SFEM stresses are smooth and become infinite at the singular
point, as they should. Figures 4.6 and 4.7 suggest that the singular elements give more

accurate results, with no oscillations for relatively coarse meshes.
One of the goals in this investigation was to study the sensitivity of the results to

the powers n; of the basis functions. In Figure 4.8, we plot the normal stresses along

the horizontal wall predicted with n; = 0.544, 0.2 and 0.8. We kept the values of the
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Figure 4.5: Results at Re = 0: (a) x-velocity u, (b) y-velocity v, (c) pressure p, (d) streamlines.
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Figure 4.6: Normal stresses along the horizontal wall (y = 1) at Re = 0.
Results with OM2 (- - -), OM4 (- - - - ) and SM1 (
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Figure 4.7: Normal stresses along the vertical wall (z = 0) at Re = 0.

Results with OM2 (- - -), OM4 (- - - - ) and SM1 (—).
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Figure 4.8: Normal stresses along the horizontal wall (y = 1) at Re = 0.
Results with SM1 and ny =0.2(- - -),08 (----) and 0.544 ( —).
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(e) Re=100

Figure 4.9: Streamlines at different Re (with mesh SM1): (a) Re = 0, (b) Re = 1, (c) Re =10,
(d) Re = 50, (¢) Re = 100.
The maximum values of the streamfunction in the vortex are 1.0006, 1.0010, 1.0124,
1.0412, and 1.0476, respectively.
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Figure 4.10: Normal stresses along the horizontal wall (y = 1) at Re = 10.
Results with OM2 (- - -), OM4 (- - - - ) and SM1 ( ).
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Figure 4.11: Normal stresses along the horizontal wall (y = 1) at Re = 50.
Results with OM2 (- - -), OM4 (- - - - ) and SM1 ( ).
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other powers constant. The results agree well, indicating that the normal stresses are
rather insensitive to the powers n;. Changing the value of the second exponent nz from
0.909 to 0.5 and 1.5 reaffirmed this conclusion. It seems that the removal of the pressure
node from the singular point plays a more crucial role in improving the solution than the
accuracy of n;.

Next, we applied singular finite elements at nonzero Reynolds numbers, Re=0, 1, 10,
50, and 100. Again the singular finite elements give the same solution far from the corner
as the ordinary finite elements. The streamlines predicted with mesh SM1 are shown in
Figure 4.9; the reattachment lengths are in good agreement with the results in [133]. The
line of separation on the vertical wall moves towards the corner as Re is increased.

Once again, a more severe test is to compare the normal stress results. In Figures 4.10
and 4.11 the predicted normal stresses along the horizontal wall from meshes OM2, OM4
and SM1 have been plotted for Re =10 and 50. The singular finite elements give more
accurate results for relatively coarse meshes. Similar results were obtained for the normal
stresses along the vertical wall =0. All singular meshes give essentially the same results
indicating that smaller singular elements are not necessary for the nonzero Reynolds
number flow. This, in conjunction with the previous observation that the normal stresses
are rather insensitive to the powers n;, gave us confidence to proceed to the solution of

the die-swell problem using the SFEM.

4.4.2 The die-swell problem

For the die-swell computations we constructed three ordinary (OM1, OM2, OM3) and
three singular meshes (SM1, SM2, SM3). The singular meshes, shown in Figure 4.12, were
again obtained by modifying the corresponding ordinary meshes. Data about all meshes
are given in Table 4.3. The meshes extend up to four channel half-widths upstream and

downstream. Again, as Reynolds number increases we must increase the downstream
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Figure 4.12: Singular meshes for the die-swell problem.

length Ly. As we previously mentioned, full-Newton iteration is used to solve this free-
surface problem. The free-surface profile is computed simultaneously with the velocity
and pressure fields, and the mesh is updated according to the position and the shape of
the free surface. A zero-order continuation is used for both parameters involved, Re and
Ca, to proceed to higher Re and lower Ca.

The obvious choice for comparisons between ordinary and singular finite elements is
the free surface profile. In Figure 4.13, we plot the predicted free-surface profiles for all
the ordinary meshes and SM1. All the singular meshes gave practically the same results
and predicted the same die-swell ratio (1.186). As we see in Figure 4.13, the ordinary
elements converge slowly to the solution obtained by a relatively coarse singular mesh.

The singular elements speed up the convergence of the free surface considerably.
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Figure 4.13: Computed free surface profiles at zero Re and zero surface tension.
Results with OM1 (- - -),OM2(- - -), OM3(----)and SM1 (—).
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Figure 4.14: Free surface profiles at various Ca and zero Re.
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Table 4.3: Data for die-swell meshes (L, =4).

Mesh | Number Number | Degrees Size of
of elements | of nodes | of freedom | corner elements
OM1 120 539 1253 0.20
OoM2 196 855 1971 0.10
OoM3 288 1235 2833 0.05
SM1 128 597 1401 0.24
SM2 204 913 2119 0.12
SM3 296 1293 2081 0.06

Results have been obtained for various Re and C'a. The SFEM solution in the neigh-
borhood of the singularity proved to be insensitive to variations of the powers n; sup-
porting the use of the same singular elements at any apparent angle of separation or at
different capillary numbers. The free surface profiles for various capillary numbers at
Re=0, obtained with mesh SM1, are plotted in Figure 4.14.

In closing, we should note that the SFEM is not free of shortcomings or limitations.
The radial form of the singularity must be known (to a certain accuracy) and addi-
tional programming is required. The method also leads to stiffness matrices with bigger
semibandwidths or frontwidths than those from the generating ordinary element meshes.
Nevertheless, this is the price one must pay for the improved accuracy and the faster rate

of convergence.

4.5 Concluding remarks

Singular finite elements have been used to solve the 2:1 sudden-expansion and the
die-swell problems at various Reynolds numbers, ranging from 0 to 100. The singular
elements surround the singular point and have no pressure node there. The corresponding
basis functions embody the form of the singularity for each case. The elements used for

creeping flow were used to solve the problem for nonzero Reynolds numbers, because
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the form of the local solution remains unchanged very close to the singular point. The
method gives more accurate results than those from more refined ordinary finite element
meshes; in addition, no oscillations are observed. The normal stress results were found
to be rather insensitive to the singularity powers used in the construction of the singular
basis functions.

For the die-swell problem, the singular elements developed for the stick-slip problem
have been used. The singular elements speed up the convergence of the free surface

considerably.




CHAPTER V

THE SINGULAR BASIS FUNCTION
APPROACH

“But there is one realization all men of good will share: in the end our works
make us feel ashamed, we have to start out again, and each time the sacrifice has to
be made anew.”

Hermann Hesse, Narcissus and Goldmund.

In Chapters III and IV we developed singular finite elements to solve the stick-slip, the
sudden-expansion and the die-swell problems. These elements proved to be very successful
in improving the accuracy in the vicinity of the singular point, in eliminating the normal
stress oscillations and in improving the rate of convergence, especially that of the free
surface in the die-swell problem. Nevertheless, as pointed out in the aforementioned
chapters, the singular elements have a fundamental limitation: the region around the
singular point cannot be refined extensively. By refining the mesh, the size of singular
elements over which the singularity is given special attention is reduced.

The objective of this chapter is to employ the alternative singular basis function
approach in order to avoid this difficulty. Two different methods are examined:

(1) The blended singular basis function method (BSBFM), and

(2) The integrated singular basis function method (ISBFM).
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Before proceeding to fluid mechanics problems in Chapter VI, we will solve Laplace’s

equation here in order to test and evaluate the two methods!.

5.1 Introduction

Singularities often occur in models of engineering problems due to discontinuities
in the boundary conditions or abrupt changes in the boundary shape (e.g., corners).
Two well-known examples are the crack-tip problem in fracture mechanics [141] and the
sudden-expansion problem in fluid mechanics [57].

When using numerical methods to solve problems with singularities, one must pay
special attention to the singular regions. In both the finite difference and the finite
element methods, local refinement is often employed near the singularity in order to
achieve reasonable accuracy. However, the accuracy achieved and the rate of convergence
are generally not uniform nor satisfactory [141].

Incorporating the form of the singularity in the numerical solution improves the ac-
curacy in the neighborhood of the singularity and increases the convergence rate. A local

analysis produces the general form of the singularity:

u(r,0) = i a; ™ fi(6), (5.1)

where (r,6) are the cylindrical coordinates centered at the singular point, u is the depen-
dent variable, o; are the singular coefficients, ); are the singularity exponents, and f;(8)
represent the 6 dependence of the solution. The local (or asymptotic) solution satisfies
the governing equation in the domain and the boundary conditions along the boundary
segments adjacent to the singular point (it does not identically satisfy the boundary con-
ditions along the rest of the boundary). The idea of building the leading terms of the

local expansion into the numerical solution has been successfully adopted in a variety

1The material of this chapter is to appear in [112}.
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of methods such as relaxation techniques [107], finite differences [164], finite elements
[141,106,158,159,149,55,43,42], global elements [86,68], and boundary elements [82].

In this work, we focus on the finite element method, which has been very effective in
solving complex problems in many different engineering fields. (For an in-depth review
of singular finite element techniques, see Fix [42] and Gallagher [48].) The local solution

can be incorporated in two basic ways:

1. Singular Finite Element Approach. Special elements are used in a small region

around the singularity, while standard elements are used in the rest of the do-
main. The shape functions defined on the special elements take into account the
known form of the singularity. This approach has one fundamental drawback: the
polynomial (regular) portion of the mesh cannot be refined independently of the

singular elements.

2. Singular Basis Function Approach. A set of supplementary functions chosen to re-

produce the leading terms of the singularity solution is added to the standard finite
element solution expansion. In this approach the singular terms may be chosen

independently of the mesh.

In this chapter, we follow the singular basis function approach, in which the supple-

mentary basis functions W; take the general form

Wi = Q rhifi(9), (5.2)

where Q is an optional blending function. At least three kinds of singular basis functions

appear in the literature:




110

1. Functions with two-zone blending [141,158). In this case,

(
1, 0<r<mg
Q= Pi(r), mo<r<n (5.3)
O’ TZTI

where 79 and r; may be chosen independently of the mesh size, and the polynomial
P; smoothly forces the singular functions to zero at r=7;. The functional form near
the singular point is not affected by the blending, and no extra boundary terms

appear in the finite element formulation.

2. Functions with one-zone blending [106,44]. Here, Q modifies the singular terms
even near the singular point. One choice is simply to let 7o go to 0 in equation

(5.3). Another choice is to conform the blending to the underlying mesh, e.g.,

1-2?)(1-9%), «2<1, 92 <1
0 - 1-25(1-9%), = y (5.4)

0, otherwise

for a rectangular grid with the singularity at x=0, y=0. Again, no extra boundary
terms appear in the formulation, since the singular contributions are zero along the

boundaries.

3. Exact functions (no blending) [106]. In this case, @ =1. Additional boundary terms
appear in the finite element formulation, since the singular functions are not zero
along parts of the boundary. Also, the essential (Dirichlet) boundary conditions

must be enforced separately.

Many researchers have successfully used the singular basis function approach to solve
a variety of problems such as the Motz problem and the cracked-beam problem (described
below), the L-shaped membrane vibration problem, problems with reentrant corners, and,
of course, problems in fracture mechanics. The two-zone and one-zone blending meth-

ods have two main advantages over other singular treatments: they are easy to program
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and easily extended to nonlinear problems. However, the blending function introduces
additional arbitrary parameters, contaminates the singular functions, and reduces the ac-
curacy; in addition, a high-accuracy quadrature rule must be used to integrate the blended
singular functions in the neighborhood of the singular point [141]. The unblended method
avoids the singular function contamination problem, but it requires separate enforcement
of the essential boundary conditions and accurate quadrature rules to evaluate the inte-
grals.

In this chapter we present a new method with no blending functions, the integrated
singular basis function method (ISBFM). In the ISBFM, the exact asymptotic terms are
used as the singular functions, and the volume integrals with singular contributions are
reduced to boundary integrals by means of the divergence theorem. This method avoids
the reduced accuracy associated with the blending function and eliminates the need to
evaluate singular integrands. The method is described in detail in section 5.2.

We demonstrate the ISBFM on two problems that have been extensively studied by
other researchers: the Motz problem [107] and the cracked-beam problem [44]. To make
comparisons, we also use one-zone blending functions, i.e., equation (5.4). We will refer

to this method as the blended singular basis function method (BSBFM)2.

The Motz problem

Figure 5.1 illustrates the Motz problem?®, which has been a benchmark problem in test-
ing the various singular approaches proposed in the literature. Whiteman [164] employed
special finite difference methods to solve the problem, while Hendry and Delves [68] and

Kermode et al. [86] used the global element method to determine the singular coefficients®.

2In Appendix C, we show that the one-zone blending functions give better results than the
two-zone singular functions.

3The Motz problem is a transformation of the original problem defined by Motz in [107].

“The reader can find a comprehensive review for the Motz problem in [86].
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Figure 5.2: The cracked-beam problem.

du __
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Figure 5.1: The Motz problem.
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Wait and Mitchell [159] used a two-zone blended singular basis function approach with
disappointing results. The zones they employed were very small, and some of the singular
functions were inappropriate for the Motz problem. Morley [106] applied both one-zone
blending and no blending functions. While the solution was improved by the singular
treatments, the actual values of the singular coefficients were not satisfactorily accurate.
Wigley [165] obtained very accurate estimates for the leading singular coeflicients with an
inherently iterative approach. He first generated an approximate numerical solution using
standard finite element or finite difference methods and then estimated the first singular
coefficient from this solution. Next, he modified the original problem by subtracting out
the first singular term and again generated an approximate numerical solution to this
modified problem, which he used to estimate the second singular coefficient, and so on.
Because it is iterative, his technique is applicable to finite element as well as finite differ-
ence methods. He obtained excellent results for the first several singular coefficients in

the Motz problem as well as the cracked-beam problem.

The cracked-beam problem

The second problem we solved is the cracked-beam problem [42,165], illustrated in
Figure 5.2. Fix, Gulati, and Wakoff [44] used blended singular basis function approaches
for this problem. They found that their method was efficient and moderately accurate.
In [44], Fix reviewed singular basis function approaches and discussed the cracked-beam
problem. As mentioned above, Wigley [165] obtained very accurate coefficients for the
cracked-beam using his iterative method [165].

In section 5.2, we present the finite element formulations with the standard finite
element method, the BSBFM and the ISBFM. The results for the Motz problem, in
section 5.3, indicate that the ISBFM yields an algebraic rate of convergence with respect

to mesh refinement, and a rapid rate of convergence with the number of singular functions,
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which appears to be exponential®. The accuracy of both the ISBFM and the BSBFM is
substantially better than that of the ordinary finite element method. Furthermore, the
estimates of the leading coefficients with the ISBFM are more accurate than those with
the BSBFM. In section 5.4 we solve the cracked-beam problem and confirm the accuracy

and rate of convergence of the ISBFM. In section 5.5 we summarize our conclusions.

5.2 Finite Element Methods

Mathematically, we state the general problem as

Viu=0 in Q (5.5)

u=g on I (5.6)
Ou

=1 on I'y (5.7

where u is the unknown variable, Q is the physical domain, I' is the boundary of the
domain (I'=T1+T3), and ¢ and g are externally imposed values.

The weak form for Laplace’s equation is given by
/Vu-VﬂdQ:/qﬁdI‘. (5.8)

Here 7 is the virtual variable (or weight function), which is zero on boundary I';. We
use standard nine-node isoparametric finite elements to create a banded linear system of
equations, which is solved using standard subroutines.

In our convergence studies, we will calculate the variational indicator®, II. For

Laplace’s equation, II may be written as

H:%/Vu-VudQ——/qudI‘. (5.9)

5 As discussed later in this chapter, the treatment of the singular terms is closely related to the
spectral tau method [23].
6For more information about the variational indicator see [14,27,50].
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Because there is no analytical expression for II available (for the problems we chose), we

use the estimate from a very fine mesh as the ‘exact’ value of II (Ilezqct).

5.2.1 The Blended Singular Basis Function Method (BSBFM)

In the BSBFM, we substitute the sum of regular (¢") and singular (u*) basis functions

into the weak form (5.8), which becomes

/V(u' +u)- VT dQ = /qu dr (5.10)
for the regular functions and

/V(u’ b ). VT AR = /q'ﬁ’ dr, (5.11)

for the singular functions. We use ordinary nine-node isoparametric basis functions for u”
and @". However, as discussed in the introduction, rather than using the exact singular
basis functions for u® and T* we multiply them by a polynomial blending function that

decays to zero away from the singular point. Here, we use one-zone blending:

Q=(1-22)(1-y%. (5.12)
Therefore, we write
u' = ei(l—a?)(1-y?) TN fi(6) , (5.13)
and
7 =Y @(l-2?)(1-y?) rhfi(6) (5.14)

for the singular terms. The unknowns are the singular coefficients «;, which are not
associated with any specific physical location; A; and f;(6) are known for each specific
singularity from the local analysis. We include only the first few terms of the local solution

in (5.13) and (5.14). Inserting the expressions for ™ and »° into (5.10) and (5.11) yields
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a matrix equation of the form:

K., K, u’ F
= (5.15)
KZ; K., o 0

where K, represents the ordinary element stiffness, K,, represents the stiffness due to
the singular functions, and K, couples the ordinary and singular terms’. We must use a
high-order numerical quadrature to evaluate K,, and K,, near the singularity®. However,
no special boundary condition treatments are required since the singular functions are

zerc on the domain boundary T,
5.2.2 The Integrated Singular Basis Function Method (ISBFM)

In the ISBFM, we again use standard nine-node isoparametric basis functions for u"

and u", but for the singular functions we use the exact asymptotic terms:

u =) ot fi(6), (5.16)
and
= Z-a'; T'\‘f,’(e) . (5.17)

Because u® and u° satisfy the Laplace equation, it is possible to reduce equations (5.10)

and (5.11) to

ou’
n

/Vu’-Vﬂ’dQ+/'ﬂ’ aT:/qTI’dI‘, (5.18)

"Notice that the use of the singular functions destroys the banded structure of the stiffness
matrix. The additional equations attach additional full rows and columns to the matrix that is
otherwise banded about the main diagonal, resulting in an “arrow-shaped” matrix structure. Ma-
trices of this structure are very often encountered in engineering problems when a basic boundary
value problem is augmented with scalar constraints or is solved simultaneously with densely cou-
pled algebraic equations. Extensions of the standard algorithms are used in inverting the stiffness
matrix to avoid extra operations in elimination as well extra storage requirements. Strang and Fix
(141] proposed a modified Choleski’s factorization algorithm; Thomas and Brown [146] developed
an LU-decomposition subroutine for arrow-shaped matrices.

We should notice that modifications are not required if a skyline solver is used [14].

SFor the effect of the order of integration on the calculated values of the singular coefficients,

see Appendix C.
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and

, 0w’ 1/ _,0u  ,O0u _ —s
/u Bndr+/§(u 3n+u an>dI‘—/qu dr . (5.19)

Notice that the divergence theorem has been applied to equation (5.11) in order to reduce
the volume integral to a boundary integral in equation 5.19.
The essential boundary conditions are weakly enforced on I'y with Lagrange multipliers®,

Au. Equations (5.18) and (5.19) become

/ VT VTdQ + / izf‘?;; dT's + / A\ TdTy = / g7 dTs, (5.20)

, 0u’® 1/_,0u° S0u’
/u on dr2+/§<u on T 6n>dr2—

1 _saus s(’ﬁs s . au’ T
/-§<u e +u aﬂ)dI‘l-{—/Auu dFl——/g o dF1+/qu dr', (5.21)

/(uf + )X dly = /g,\_udfl . (5.22)

The Lagrange multipliers appear only on the boundary I';. To interpolate Ay, we use

standard quadratic isoparametric shape functions M :
3 . 3
Ay = Z ALMY (5.23)
=1

Inserting these interpolations into (5.20), (5.21), and (5.22), and assembling contributions

from all elements yield a matrix equation of the form

_ 1r 1 T -
Krr Krs KrA u’ Fr
Kf, Ky K || 2 || Fs |- (5.24)
K], K, 0 L I I W

9For the use of Lagrange multipliers with constrained optimization problems, see [15]. For the
use of Lagrange multipliers with finite elements, see [10,25,77,88,109].
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Table 5.1: Computed values of «; for the Motz problem with various uniform meshes (2NxN
elements; 1 singular function; the exact value of ¢ s 401.1625).

N | ISBFM | BSBFM

1 | 399.0450 | 349.9189
2 | 400.9539 | 396.5159
4 |401.1377 | 401.9309
8 | 401.1594 | 402.2152
10 | 401.1609 | 402.1885
20 | 401.1623 | 402.1159

Table 5.2: Effect of increasing the number of singular basis functions for the Motz problem with
the ISBFM (2x1 uniform mesh).

Nspr | o a3 a3 0y as
1 399.0450
2 399.1915 | 74.1222
3 309.2029 | 82.7775 | 13.5579
4 400.5984 | 82.8772 § 13.5196 | -7.6573
5 400.7623 | 82.7665 | 13.5727 | -7.3083 | 1.0838
Exact | 401.1625 | 87.6559 | 17.2379 | -8.0712

This matrix system is again solved using standard subroutines.

Two important points should be noted. First, since the terms involving «® and 7°
satisfy the boundary conditions near the singular point, all of the surface integrands are
non-singular and are evaluated with an ordinary Gauss quadrature. Second, this approach
is completely equivalent to subtracting the singular terms from the original problem (see

Appendix C).

5.3 Results for the Motz Problem

Figure 5.1 shows the geometry, governing equations, and boundary conditions for

the Motz problem. A non-removable singularity arises at x=y=0, where the boundary
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N

Figure 5.3: Contours for the Motz problem (contour lines at u=25, 50,..., 500).

Table 5.3: Effect of increasing the number of singular basis functions for the Motz problem with
the BSBFM (2x1 uniform mesh).

Nspr | o1 Qg o3 a4 as
1 349.9189
2 349.9123 | 0.7500
3 349.9102 | -7.7960 | 8.0203
4 342.0774 | -7.9401 8.0938 | -20.0383
5 344.3108 | -7.9247 | 8.0947 | -19.5238 | 2.0777
Exact | 401.1625 | 87.6559 | 17.2379 | -8.0712
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condition suddenly changes from u=0 to du/dy=0. The local solution [165] is given by

el ; 21 -1
-  p(2-1)/2 .
u(r, 9) ;zl o cos [( 5 ) 0] (5.25)

where 7, 8 are shown in Figure 5.1. Figure 5.3 shows the contours of u for a typical
solution.

First, we examine the effect of mesh refinement. Each mesh consists of 2N XN square
nine-node elements. Table 5.1 displays the convergence of the first singular coefficient o
as the underlying mesh is refined, when only one singular function is used. Clearly, the
ISBFM gives superior results compared to the BSBFM, converging rapidly to the exact
value. Figure 5.4 shows the algebraic rate of convergence of I as the mesh is refined.
When no singular functions are used, the rate is only linear. Adding one singular func-
tion improves the convergence to slightly better than cubic (3.1), and a second singular
function increases the rate to nearly quartic (3.9). Perhaps most significant, however, is
the substantial increase in accuracy for II when the first singular basis function is added.
Figure 5.5 shows the rate of convergence of the singular coefficients a; as the mesh is
refined. With one singular basis function, a; converges essentially cubically. When two
singular basis functions are used, the rate of convergence of ay is approximately linear,
while the rate of convergence of o is essentially unchanged.

Next, we study the effect of increasing the number of singular functions with a coarse
2% 1 element mesh. As shown in Tables 5.2 and 5.3, increasing the number of functions
for the ISBFM substantially improves the accuracy of the leading coefficients!®. With
the BSBFM, the leading coefficients are only slightly improved by the addition of more
singular terms (due to the contamination of the singular functions by the blending);
Whiteman [163], Morley [106], and Wait and Mitchell [159] also noted this effect. Fig-

ure 5.6 shows the rapid (roughly exponential) convergence of Il versus the number of

10 No g is the number of supplementary basis functions.
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singular terms for the ISBFM. Note that we have only treated the strongest singularity
in this problem, ignoring the corner singularities that would eventually be expected to
reduce the convergence rate to algebraic.

Exponential convergence is typical of spectral techniques, and in fact, the ISBFM is
closely telated to the spectral tau methods!? (see, e.g., Canuto [23]). The ISBFM differs

from the spectral tau methods in three ways:

1. Some of the ISBFM basis functions are ordinary polynomials (u").

2. The ISBFM basis functions 7 f;(8) are solutions to a regular Sturm-Liouville prob-

lem.

3. The volume integrals involving u* and %° are reduced to boundary integrals, since

u® and @°® satisfy the governing equation.

In spectral tau methods, the functions are Chebyshev polynomials and solutions to a sin-
gular Sturm-Liouville problem; the integration is carried out over the domain. However,
the ISBFM and the spectral tau methods are closely related and the rapid convergence

of the ISBFM with the number of singular basis functions is not surprising.

In Table 5.4 we compare the singular coefficients from the ISBFM with the values
given in [165]. Here we use 20 singular functions with a very coarse 2X1 element mesh
and a finer 16x8 mesh. The coarse mesh gives good results, and the finer mesh yields
results in close agreement with the analytical values available and with Wigley’s results
for the higher coefficients.

At some point, we expect that the condition number of the matrices will become too

large to permit an accurate solution of the equations. Table 5.5 shows the condition

1Gpectral tau methods are members of the family of weighted residual methods in which the
basis functions (u) and the weight functions (%) are of the same form, but neither « nor u satisfies
the boundary conditions. The boundary conditions are imposed separately through additional
equations. Exponential convergence is ensured by taking the functions u to be tensor products of
eigenfunctions associated with singular Sturm-Liouville problems.
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Table 5.4: Leading coefficients for the Motz problem with the ISBFM compared with Wigley’s
results (Nspr =20).

Coeflicient | 2 x 1 16 x 8

i mesh mesh Wigley [165] | Exact [126]
1 401.1624 | 401.1625 401.163 401.1625
2 87.6562 87.6559 87.655 87.65592
3 17.2380 17.2379 17.238 17.23792
4 -8.0712 -8.0712 -8.071 -8.0712
5 1.4403 1.4403 1.440

6 0.3310 0.3310 0.331

7 0.2754 0.2754 0.275

8 -0.0869 -0.0869 -0.087

9 0.0336 0.0336 0.0336

10 0.0154 0.0154 0.0154

11 0.0073 0.0073 0.0073

12 -0.0032 -0.0032 -0.0032

13 0.0012 0.0012 0.0012

14 0.0005 0.0005 0.0005

Table 5.5: Condition numbers for the Motz problem (ISBFM, 2x1 mesh).

NgsBr 1/k
5 0.40 x107°
10 0.60 x10~7
15 0.11 x10~8
20 | 0.47 x1071°
25 |0.21 x10~11
30 | 0.44 x10713
35 |0.12 x10~14
40 | 0.48 x10716
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Table 5.6: Solution of the Motz problem at various points compared with the analytical solution
and the values of Wigley (1988). 16x8 mesh; Nspr=1.

(T, %) OFE | BSBFM | ISBFM | Exact | Wigley

(—6/7,6/7) | 90.964 | 901.342 | 91.341 | 91.34| 91.343
(—2/7,2/7) | 78.053 | 78.560 | 78.559 | 78.56 | 78.559
(0,2/7) 140.477 | 141.562 | 141.560 | 141.6 | 141.560
(2/7,2/7) | 242.783 | 243.814 | 243.812 | 243.8 | 243.812
(0,1/7) 102.056 | 103.772 | 103.768 | 103.77 | 103.768
(=1/28,1/28) | 31.770 | 33.594 | 33.590 | 33.59 | 33.592
(0,1/28) 50.261 | 53.197 | 53.190 | 53.19 | 53.186
(1/28,1/28) | 79.286 | 83.682 | 83.672 | 83.67| 83.671
(1/28,0) 72.264 | 76.412 | 76.403| 76.41| 76.408
(3/28,0) | 131.740 | 134.452 | 134.447 134.447

(1/7,0) 154.096 | 156.487 | 156.483 | 156.48 | 156.483

number estimates, «, for a 2x1 mesh with various numbers of singular functions!?. With
35 coefficients, the condition number is quite poor and the numerical results begin to
diverge. It is interesting to note that, when we use 30 singular functions, the regular
solution is zero to four decimal places.

In all the above tests, we used Lagrange multipliers to weakly enforce the essential
boundary conditions. For this problem, the condition numbers of the matrices produced
from strong enforcement are the same order of magnitude as those produced using the
Lagrange multiplier approach. However, the solutions for large numbers of singular terms
are not as accurate with strong enforcement, since aliasing occurs when the mesh is coarse
and the singular functions vary rapidly.

Finally, the values of u obtained with (a) the ordinary finite element method (OFE),
(b) the BSBFM, and (c) the ISBFM are compared with results from the literature in
Table 5.6. We observe that both the BSBFM and the ISBFM yield improved (and

essentially the same) results.

12(0isndition numbers were estimated with the LINPACK subroutine DGBCO.
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Figure 5.7: Contours for the cracked-beam problem (contours at u=0.01, 0.02,..., 0.09).

Table 5.7: Computed values of a; for the cracked-beam problem with various uniform meshes
(2N x N elements; Nggp=1).

N | ISBFM | BSBFM

1| 0.19116 0.16486
2 | 0.19114 0.18843
4 { 0.19112 0.19123
8 | 0.19112 0.19140
10| 0.19112 0.19139
20 | 0.19112 0.19135

5.4 Results for the cracked-beam problem

Figure 5.2 shows the geometry, governing equations, and boundary conditions for the
torsion of a cracked beam!3 [42,165]. Once again, a non-removable singularity arises at
x=y=0, where the boundary condition suddenly changes from u=0 to du/dy=0. Clearly,
the local solution is the same as that of the Motz problem, equation (5.25). Figure 5.7
shows the contours of u for a refined solution.

As for the Motz problem, the regular finite element mesh consists of 2N XN square

nine-node elements. Table 5.7 compares the calculated values of a; from the ISBFM and

13[n the original cracked-beam problem VZv = —1 and v = 0 along the y = 1/2 boundary.
Using the transformation u = v + y2/2 leads to the problem we consider here.
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Figure 5.8: Convergence of II with mesh refinement for the cracked-beam problem (o: no singular
functions, O: 1 singular function, ©: 2 singular functions; ezact from 32x16 mesh

Table 5.8: Leading coefficients for the cracked-beam problem with the ISBFM compared with

with 20 singular functions).

Wigley’s results (Ngpr =20).

Coefficient 2x1 16 x 8

¢ mesh mesh | Wigley {165]
1 0.191119 { 0.191119 0.19112
2 -0.118116 | -0.118116 -0.11811
3 -0.000000 | -0.000000 0.00000
4 -0.000000 | -0.000000 0.00000
5 -0.012547 | -0.012547 -0.01256
6 -0.019033 | -0.019033 -0.01905
7 -0.000000 | 0.000000
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Figure 5.9: Convergence of II with the number of singular functions for the cracked-beam problem
(2x1 mesh; I,,q¢ from 32x 16 mesh with 20 singular functions).

Table 5.9: Condition numbers for the cracked-beam problem (ISBFM, 2x1 mesh).

Nspr 1/k
5 0.43 x10~°
10 0.22 x10~%
15 0.61 x10~7
20 0.38 x10-8
25 |0.10 x10~11
30 | 0.12 x10712
35 |0.27 x1071°
40 | 0.32 x10-18
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the literature (16x8 mesh; Nsgp=1).

Table 5.10: Solution of the cracked-beam problem at various points compared with results from

(i, i) OFE | BSBFM | ISBFM | Fix et al. | Wigley
(0,1/24) 0.026192 | 0.027431 | 0.027429 | 0.027425 | 0.027428
(—11/24,1/4) | 0.032847 | 0.032878 | 0.032879 [ 0.032877 | 0.032878
(11/24,1/4) | 0.070657 | 0.070844 [ 0.070844 | 0.070844 | 0.070844

the BSBFM as the underlying mesh is refined. The ISBFM again converges significantly
faster than the BSBFM. Figure 5.8 shows the improvement in convergence rate with the
addition of one or two singular functions. Again we see a substantial increase in accuracy
from the addition of one singular term. Figure 5.9 demonstrates the roughly exponential
convergence of the method as the number of singular functions increases. Notice that
some of the singular functions produce almost no change in II. Table 5.8 shows the first
seven singular coefficients which agree well with Wigley’s iterative results. In Table 5.9
we see that the condition number of these new matrices becomes poor somewhat more
rapidly than in the Motz problem, and we observe that the results diverge when the
condition number becomes poor. Finally, the values of u obtained with (a) the ordinary
finite element method (OFE), (b) the BSBFM, and (c) the ISBFM are compared with
results from the literature in Table 5.10. As in the Motz problem, both the BSBFM and

the ISBFM yield improved (and essentially the same) results.

5.5 Concluding remarks

The Integrated Singular Basis Function Method (ISBFM) demonstrates significantly
better convergence and accuracy than the more conventional Blended Singular Basis
Function Method (BSBFM). The addition of one singular function increases the rate
of convergence with mesh refinement from linear to cubic and dramatically improves the

overall solution accuracy. For a fixed mesh, convergence with the number of singular func-
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tions is very rapid (roughly exponential). Although we have demonstrated the method
only on examples involving singularities in the 2-D Laplace’s equation, the approach is
quite general and can be applied to a wide range of problems. The solution of the stick-slip

problem with the ISBFM is the subject of Chapter VI.




CHAPTER VI

SINGULAR BASIS FUNCTION APPROACH:
THE STICK-SLIP PROBLEM

6.1 Introduction

In this chapter we use the integrated singular basis function method (ISBFM) to solve
the stick-slip problem?!. The integrated singular basis function method was adequately
discussed in Chapter V. It was shown that the ISBFM is superior to the blended singular

basis function method (BSBFM) for two reasons:

1. Tt does not require the use of higher order integration since the volume integrals
with singular contributions are reduced to boundary integrals far from the singular

point.

2. It gives better estimates for the leading coefficients whereas the BSBFM gives good

results only for the first coefficient.

1Preliminary results of the material presented in this chapter appear in [56] (see also Ap-
pendix D).
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However, we should also notice that the BSBFM is easier to formulate and to program
than the ISBFM. Apart from the singular coefficients, the global solution is essentially the
same in both methods. The stick-slip problem has been also introduced and discussed in
Chapters IT and ITI. We will therefore focus on the finite element formulation in section 6.2,

and on the results in section 6.3.

6.2 Finite element formulation

Before proceeding to the finite element formulation, we shall subtract the first few
asymptotic terms from the solution. In other words, we shall transform the mathematical
problem. The governing equations and the boundary conditions of the stick-slip problem
are shown in Figure 6.1. Now if (u,v,p) is the solution and (u®,v°,p°) the singular

contributions, we can write

u* = u—u°
v = v — v (6.1)
p* = p-p°

where (u*,v*,p*) are the new unknowns. For the singular contributions we have

Nsgr

v’ = Z o; Wi (6.2)

Jj=1
NspFr

v’ = Z o; Wi (6.3)
J=1
Nspr )

o= Y, oW (6.4)

i=1

In the above equations, Nsgr is the number of singular terms subtracted from the solu-
tion, a; are the unknown singular coefficients, and wi, w3, Wg are the singular basis

functions taken to be equal to the exact terms of the even solution set?.

2The even solution set is responsible for the strongest singularity. The two solution sets for
the stick-slip problem are given in Appendix B. Notice that we work in the cartesian coordinate
system and the local solution must be expressed in this system.
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u=0, wv=0
s =% P =0
u= f(y) V-T =0 Tew =0
=4
Toy=13y Veu=0 Tzy=0
Y
y=0 ? .
z=-3 T z=3
Tpy=0, ©v=0
Figure 6.1: The stick-slip problem.
u* =0 v =0
’ T =0, =0
e LA
51 S2
w*+u’ :f(y) VT =0 T;:v = “Tg:z:
« 4 s *
sz"-d{}_Txy Vut =90 sz:_T;y
55 SS
Y
y=0 54 T -
z=-3 Fer z=3
T;y = -—T::y, v+ =0

Figure 6.2: The modified stick-slip problem. The stars denote the new unknown variables and s

denotes the singular contributions.
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By substituting equations (6.1) into the governing equations, the mathematical prob-
lem is transformed to that shown in Figure 6.2. We should stress here that (u®,v°,p*)
satisfy the original governing equations and the boundary conditions along the wall and
the slip surface. We should also point out that instead of using essential boundary condi-
tions for v at the inlet and at the outlet, we use natural boundary conditions. The natural
boundary conditijns are weaker and do not require the use of Lagrange multipliers.

Now the unknown ‘velocities’ u* = (u*,v*) are expanded in terms of biquadratic basis

functions (®7), and the unknown ‘pressure’ p* is expanded in terms of bilinear basis

functions (¥7):

Nu _
o= ) ui e (6.5)
—
Np )
o= ) v (6.6)
—~

where N, and N, are the numbers of the velocity and pressure nodes respectively.
By applying Galerkin’s principle, we weight the continuity equation by ¥¢, and the

momentum equation by ®*:

/ V.uwwidv =0, i=1,2,--,N,, (6.7)
14

/ V.-T*®dV = 0, i=1,2,---,N,, (6.8)
|4

where V is the physical domain.

To account for the additional unknown coefficients «;, Nspr residual equations are
still required. For this purpose we add the x-momentum equation weighted by W: and
the y-momentum equation weighted by Wi to the continuity equation weighted by W;.
If we let

Wi = (Wi,wi), (6.9)
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then we can write
/V (VT W + v Wil av =0, i=1,2,---,Nspr. (6.10)
After applying the divergence theorem, the residual equations (6.8) and (6.10) become:
/Sn-T*@*dS-/VT*-V<I>‘dV=o, i=1,2,--,Nu. (6.11)
and
/S(n.T*)-WLdS—/V [T : YW - Vowr W] av = 0, i=1,2,Nopr, (612)

where $ is the boundary of V. Equation (6.12) can be simplified further if we apply the

divergence theorem once again:
/(n-T*)-WfldS - /(n-TSi)-u*dS + / [u*.(v-TSi) + p*v-WL] v =0,
S S v

i=1,2,---,NsBFr. (6.13)

T5! is the contribution of the ith singular functions to the stress tensor (e.g., TS =
-W; + 2%—?‘ etc.). The volume integral of equation (6.13) is zero because the singular
functions satisfy the original governing equations. Therefore, the residual equation is

reduced from a volume to a surface integral:
/S [m-T%)- Wi, — (0TS -w] a5 = 0, i=1,2,---,Nspp. (6.14)

As discussed in Chapter V, the reduction of the volume integrals involving singular
terms to boundary integrals eliminates the need to use high order integration in the
vicinity of the singular point. Notice that there is no boundary contribution on either
the wall or the slip surface since the singular functions satisfy the conditions along these
boundaries.

Let us now examine the boundary terms in more detail. As illustrated in Figure 6.2

the boundary S consists of five parts: (a) the wall Sy, (b) the slip surface S3, (c) the outlet
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¥ % %
C @ ®
t @ ® e velocity nodes (9)
(O pressure nodes (4)
L e o ! 4+ Ay nodes (3)
X Ay nodes (3)
* singular coefficient nodes (Nsgr)
+ @& s ®
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Figure 6.3: Nodes and pseudonodes in the first element. The number of degrees of freedom is
284-NsprF.

plane S, (d) the midplane S4, and (e) the inlet plane S5. The boundary terms along
the wall (S1) are ignored because essential boundary conditions for u* and v* are to be
used. Along the slip surface (S;) the i-components of the boundary terms are neglected
since Ty, =T$5; =0. The j-components are also ignored because of the essential boundary
condition for v*.

To impose the conditions v* + v* = 0 along S4 and v* + u* = f(y) along S5, we use
the Lagrange multiplier functions ), and A, respectively®. The Lagrange multipliers are

expanded in terms of quadratic basis functions M7:

Ny . .

A = DM M (6.15)
—
NI . .

A = MM (6.16)
—~

where N, and N, are the numbers of nodes along S4 and S5 respectively.

3For the use of Lagrange multipliers with finite elements, see [10,25,77,88,109].
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Using Lagrange multipliers introduces Ny+ N, new unknowns (M, and M) into the
system. These unknowns along with the singular coefficients are introduced by means of
N;+Ny+Nspr pseudonodes with one degree of freedom?. The nodes and pseudonodes
for the first element (lower left of the domain) are shown in Figure 6.3.

The boundary term of equation (6.11) becomes:
[on-Taias = i[—/ TS ety + [ 75 @' de - | Au@idy} +
S S3 Sy Ss

: : : FTAY
_ [ 15 %id —/ A, & d / (TS——-—) @’d]. 6.17
J[ /53 By = | z + s, T = gy y (6.17)

Similarly for the two terms of equation (6.14) we have
/S(n-T*)-W{IdS - —[anfzwidy +/;4Tnyl‘;dw —/Ssx\uWidy

. . df :
— [ TS wid —/ N Wid / (TS ——-> Widy, 6.18
~/Sg Y y Sy vt S Y dy v ( )

Si * * 1 * H * i * :
/S(n'T . u*dS = /Ss[u fo + v Tfy] dy—/& [u Tfy + v Tsi/} dz —

/ [ TS + v TS dy. (6.19)
Ss
The final forms of the residual equations are listed below:

1. Continuily equalions

3u* 51)* i .
/V<(9m +3—y> Videdy = 0, i=1,2,--+, N, (6.20)

2. Momentum equations

. 0% . 0%
_‘/V<Tzz O + T:L'y ay) dzdy —

/ TS & dy +/ TS & dz -/ A Bidy =0, i=12---,N, (621
Ss S4 SS

4For the singular coefficients one could alternatively use only one pseudonode with Nspr
degrees of freedom.
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* B@t * f
/(Tmy - e o )da:dy—/ TS & dy -

A & do +/ TS @' d / Y 5ig i=1,2,---,Na  (6.22)
Sy d

3. Singular-coefficient equations

-/ szw,jdy+/ TS Wide — [ X Widy-
S3 Sy Ss

[ mwiay- [ Awidet [ TS wiay- / TS 4ot TS dy+
Sa Sy Ss

-/.;‘4 [u* Tfy' - T;y’] dz + ;5

[~w TS + o 18] dy = "] ( FTS - fW‘) dy
1=1,2,---,NsBr (6.23)

4. Lagrange-multiplier equations

-/ (v + »5) Mide = 0, i=1,2,---,Ns (6.24)
S

-/ (v + o) Midy = - [ fMiay, i=1,2,---,N, (6.25)
Ss Ss

Notice that use of the essential boundary conditions along Ss and S5 was made in the
substitution in order to preserve the symmetry of the stiffness matrix. Equations (6.20)-
(6.25) constitute a symmetric system of linear equations which may be solved by a frontal

solver [75,160]. The total number of unknowns N is
N = N, + 2N, + Nspr + N + Ny. (6.26)

6.3 Results and discussion

In order to make comparisons with the ordinary and singular element results of Chap-
ter III, the same uniform meshes were again used: mesh I with 12x2 elements, mesh II
with 24x4 elements, and mesh III with 48x8 elements. The meshes are extended upstream

and downstream to a distance equal to three channel halfwidths to ensure the validity
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Figure 6.4: 3-D view of the solution of the stick-slip problem: p (top), u (middle), v (bottom).
Note that the pressure is, in fact, infinite at the singular point.
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Table 6.1: Computed leading coefficients for the stick-slip problem with the ISBFM. The analyt-
ical value for «q is 0.69099.

Mesh | Nggr oy Qs a3 ay as
12X2 1] 0.72445

2| 0.68718 | 0.29322

3 1 0.68504 | 0.30989 | -0.00534

41 0.70774 | 0.12913 | -0.01916 | 0.00264

51 0.69303 | 0.24604 | -0.00992 | 0.00057 | 0.00004

10 | 0.69329 | 0.24373 | -0.00953 | 0.00047 | -0.00002

20 | 0.69303 | 0.24389 | -0.00909 | -0.00007 | -0.00014
24X4 11 0.70762

2 | 0.68979 | 0.28263

31 0.68944 | 0.28790 | -0.00452

4 1 0.68820 | 0.30816 | 0.00171 | -0.00090

51 0.69151 | 0.25432 | -0.01388 | 0.00061 | 0.00008

10 | 0.69143 | 0.25562 | -0.01248 | 0.00045 | 0.00002

20 | 0.69138 | 0.25604 | -0.01173 | 0.00001 | -0.00009
48X 8 11 0.69929

2 | 0.69064 | 0.27457

31 0.69058 | 0.27659 | -0.00400

4 1 0.69048 | 0.27984 | -0.00140 | -0.00035

51 0.69112 | 0.25884 | -0.01662 | 0.00064 | 0.00012

10 | 0.69105 | 0.26096 | -0.01365 | 0.00041 | 0.00003

20 | 0.69104 | 0.26139 | -0.01263 | 0.00001 | -0.00008

of the imposed boundary conditions. Three dimensional plots of the solution (u,v,p)
are shown in Figure 6.4. The ISBFM gives essentially the same results as the ordinary

elements (and the singular elements as well) far from the singular point.

Results have been obtained for various values of Nggr with the three meshes. The
estimates for the first five coefficients are listed in Table 6.1. The results obtained with
the BSBFM are shown in Table 6.2. Table 6.3 compares the first three coefficients from
ISBFM-and BSBFM with the values obtained in Chapter III using the singular finite

elements®, and the values given by Ingham and Kelmanson® [82]. We observe that the

5The singular coefficients are not directly calculated with the singular finite element method
(nor with the ordinary elements). A least-squares fit of the slip surface velocity was used for this
purpose (see Chapter III).

Ingham and Kelmanson used a singular boundary element method [82].
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Table 6.2: Computed leading coefficients for the stick-slip problem with the BSBFM
ical value for a is 0.69099.

. The analyt-

Mesh | NgBr a a9 a3 oy asg
12X2 11 0.67399

21 0.67494 | 0.02117

310.67677 | 0.02386 | 0.01254

41 0.67727 | 0.03052 | 0.01317 | 0.00275

51 0.67750 | 0.03101 { 0.01505 | 0.00265 | 0.00109

10 | 0.67783 | 0.02990 | 0.01702 | 0.00213 | 0.00231

20 | 0.67858 | 0.03218 | 0.01870 | 0.00324 | 0.00393
24X4 1| 0.68684

2 1 0.68737 | 0.03655

31 0.68770 | 0.03879 | 0.01209

4 | 0.68786 ] 0.04760 | 0.01287 | 0.00341

51 0.68789 | 0.04787 | 0.01407 | 0.00335 | 0.00057

10 | 0.68791 | 0.04752 | 0.01497 | 0.00317 | 0.00124

20 | 0.68792 | 0.04767 | 0.01559 | 0.00322 | 0.00176
48X8 1| 0.69004

2 1 0.69043 | 0.06239

31 0.69051 | 0.06439 | 0.01297

41 0.69060 | 0.07696 { 0.01408 | 0.00527

51 0.69060 | 0.07712 | 0.01498 | 0.00522 | 0.00041

10 | 0.69061 | 0.07790 | 0.01535 | 0.00602 | 0.00081

20 | 0.69061 | 0.07828 | 0.01587 | 0.00633 | 0.00121

Table 6.3: Estimates of the first 3 coefficients with mesh III and Nsgr=5 (only for ISBFM and
BSBFM) compared with the values of Ingham and Kelmanson (1984) and the analytical
value for ay.

Method a3
Analytical solution [121] | 0.69099 S
ISBFM 0.69112 | 0.25884 | -0.01662
BSBFM 0.69060 | 0.07712 | 0.01498
Singular elements [55] 0.69173 | 0.27168 | 0.05013
Ordinary elements [55] | 0.67170 | 0.19812 | -0.02297
Boundary elements [82] | 0.69108 | 0.26435 | 0.04962




NORMAL STRESS

143

6.0

(-
o

5 0.0 | 15
AXIAL DISTANCE, y/H

Figure 6.5: Normal stresses with mesh I ( ---: Nsgr =1, —: Nspr = 5).
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Figure 6.6: Normal stresses with Nspr = 1 (- - -: mesh I, —: mesh I1D).
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first coefficient a; appears to converge to the analytical value 0.69099 as the mesh is
refined or as Nggp increases. A similar trend is also observed for the other leading
coefficients. The second coefficient from the ISBFM compares well with the value found
by Ingham and Kelmanson [82]. Notice that with the BSBFM a satisfactory estimate is
obtained only for the first coefficient (see Chapter V and [163,158]).

As in Chapters III and IV, the normal stress along the wall and the slip surface
was used as a test for the numerical calculations. The normal stresses with mesh I
and Nsgr = 1 and 5 are plotted in Figure 6.5. Unlike the ordinary element solution,
the oscillations have been essentially eliminated. As Ngpr increases the normal stress
becomes smoother.

The normal stresses with meshes I and III, and Nspr =1 are plotted in Figure 6.6. In
contrast to the singular elements no spurious small amplitude oscillations appear in the
normal stress as the mesh is refined. However, the singular elements give more accurate

results with coarse meshes (see Chapter III and [56]).

6.4 Concluding remarks

The integrated singular basis function approach was used to solve the stick-slip prob-
lem. Compared to the ordinary finite elements, the method eliminates the oscillations
that characterize the normal stress along the wall and the slip surface.

Compared to the singular elements, the method gives smoother results as the mesh
is refined. The singular elements give slightly better results for coarse meshes but small
amplitude oscillations appear with mesh refinement. Another advantage of the singular
basis function approach is the direct calculation of the singular coefficients.

Compared to the blended singular basis function approach, the ISBFM gives more
accurate estimates for the singular coefficients and does not require high order numerical

integration.




CHAPTER VII

THESIS SUMMARY AND
RECOMMENDATIONS

“When the sea increases
the ink ceases.”

George Seferis.

The primary goal of this work was to develop singular finite elements for Newtonian
flow problems with stress singularities in order to improve the accuracy and the conver-
gence rate of the solution especially near the singular point. This goal was accomplished

using two different approaches:
1. Singular element approach
2. Singular basis function approach

In the singular finite element approach, special elements, with the basis functions
constructed to describe the radial form of the local similarity solution, are used around

the singular point. Three Newtonian problems have been solved with this approach:
1. The stick-slip problem
2. The 2:1 sudden-expansion problem

146
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3. The planar die-swell problem

The method gives accurate results with coarse meshes and eliminates the spurious stress
oscillations which contaminate the standard finite element solution. In the case of the die-
swell problem, the convergence rate of the free surface has been considerably accelerated.

In the singular basis function approach, the first few terms of the local similarity
solution are directly subtracted from the governing equations. A novel method has been
developed; it uses double integration by parts which reduces the volume integrals with
singular contributions to boundary integrals and thus eliminates numerical integration
inaccuracies and the need to use high-order integration. The method has been applied to

two standard Laplace-equation problems:

1. The Motz problem

2. The cracked-beam problem

and has improved the solution accuracy compared to that achieved using the standard
finite element method. It also directly gives more accurate estimates for the singular
coefficients than those obtained with other singular techniques.

The singular basis function approach was also extended to solve the stick-slip prob-
lem, and more accurate results have been obtained than those from the standard finite
element method. Compared to the singular element approach, the method gives more
accurate tesults as the underlying mesh is refined. Also, the singular coefficients are
directly calculated. The singular finite element method gives better results with coarse
meshes. With this method, however, the mesh around the singularity cannot be refined
extensively because the size of the singular elements over which the singularity is given
special attention is reduced.

Before extending the singular methods developed in this thesis to non-Newtonian
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problems, some additional tests with Newtonian problems are recommended. The solu-
tion of the backward facing step problem! with singular elements can be easily obtained
with minor modifications to the existing sudden-expansion code (the form of the singu-
larity and the geometry are the same in both problems). A more severe test would be the
solution of the driven-cavity problem in which the singularity is non-integrable (T ~ 1),

As for the singular basis function approach, the solution of the the Newtonian die-
swell problem is recommended. Improving the accuracy in the neighborhood of the exit
will allow precise calculation of the angle of separation and of the mean curvature at the
exit.

A natural extension of this thesis would be the development of singular finite elements
for viscoelastic flows. As indicated in [87,2,95,31], this will greatly facilitate further un-
derstanding of the high Weissenberg number problem. However, complete non-Newtonian
local analyses are available only for power-law and second-order fluids. Local analyses for
other viscoelastic models would be desirable. Some recent works appear to be promis-
ing. Davies (1988) used biorthogonal series expansions to obtain the local solution near a
sharp corner for a corotational Maxwell model. Apelian et al. (1988), in solving the stick-
slip problem for a modified upper convected Maxwell model, assumed that the leading
order behavior is Newtonian and properly scaled the contribution of the upper-convected
derivative to obtain an estimate for the elastic contribution to the radial form of the sin-
gularity. Such treatment is possible for other viscoelastic models as well [4]. Notice that
knowledge of the exact radial form of the singularity is more than adequate for the devel-
opment of singular finite elements?. With the present singular basis function approach,

however, the complete form (both the radial and angular dependence) is required.

LThis problem was suggested by Gresho [60].
2The results in Chapters III and IV indicate that the numerical solution is not very sensitive
to the values of the singularity exponents.
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APPENDIX A

MODELLING OF A LOW PRESSURE CVD
REACTOR. FLOW AND ENERGY ANALYSIS

A.1 Introduction

Chemical vapor deposition (CVD) is a very important process in the semiconductor
industry for growing the thin solid films required for device fabrication. The deposition
occurs on a hot substrate via chemical reactions involving vapor-phase species. CVD must
produce thin, non-defective, uniform films with reproducible and controllable properties
such as composition, adhesion, crystal structure, and surface morphology. More detailed
discussions about the various categories of CVD processes can be found in [71,85,155].

CVD is a very complex process involving fluid flow, energy and mass transfer and
chemical reactions. The success and control of the process depends critically on the
reactor configuration and the operating conditions. The two most common reactor con-
figurations are the horizontal and the vertical reactors. In the past few years, numerical
methods (both finite differences and finite elements) have been used in order to solve
the governing differential equations in two and three dimensions [46,85,156]. Fotiadis et
al. [46,47] investigated two- and three-dimensional flows in both vertical and horizontal
reactors using the finite element method. They also illustrated the importance of the

thermal boundary conditions and of the shape of the reactor.
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Assuming negligible volume changes due to the reaction and negligible heat of reac-
tion, one can decouple the flow and energy solution from the mass transfer and reaction
analysis. These assumptions are not always justified, but when possible (e.g., when the
concentration of the reactants in the carrier gas is low) they simplify the modelling of the
CVD reactors considerably, reduce memory and computational requirements and allow
the study of different reactions for the same flow and thermal conditions.

The long term objective of this study is to model the low-temperature CVD of AIN,
Al,03, and Al,O, N, thin films as dielectrics for devices fabricated on III-V compound
semiconductors such as GaAs and InP. This process is being investigated experimentally
with a vertical reactor [36].

This appendix concerns the solution of the fluid mechanics and heat transfer problem
with this particular reactor and the conditions used in the experiments. The effects of
Reynolds number, gravity, and thermal conditions are considered in detail, in order to
obtain more insight into the transport phenomena and to better organize the experiments.
Interesting flow patterns are obtained when gravity is taken into account. The character
of the flow changes drastically when the feed is introduced at the bottom of the reactor
(opposite to the direction of gravity).

The geometry of the reactor and the operating conditions presently used in the ex-
periments are presented in section A.2. The governing equations and the finite element
formulation are presented in sections A.3 and A.4 respectively. Finally, the results are

discussed in section A.5.

A.2 Reactor geometry

The calculations were performed with a geometry close to that of the reactor used

in the experiments!. A schematic of the reactor illustrating all the characteristic lengths

1The real reactor is not perfectly axisymmetric.
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Table A.1: Dimensions of the CVD reactor.

Symbol Description Length

(inches)
H; length of inlet nozzle 10.0
H height of the reactor 13.1
H, length of outlet nozzle 13.0
R radius of reactor 2.917
R, radius of inlet/outlet nozzles 0.75
R, radius of susceptor 1.25
H, height of susceptor 0.75
Z axial plate separation 6.175
w wall thickness 0.0415

Table A.2: Composition of the feed to the CVD reactor.

Gas Fraction
NH; 0.2-0.7
HMDA | 0.001 - 0.04
Ar or H, 0.3-0.8

is shown in Figure A.1. The lengths are tabulated in Table A.1. The reaction gases are
fed vertically from the bottom through a nozzle onto the wafer of 2.4 inches diameter.
The feed consists of NHs and H, (or Ar) as the carrier gases and hexamethyldialuminum
(HMDA). The composition of the feed is shown in Table A.2. The wafer is clamped to the
susceptor which is heated by two resistance heaters?. The temperature of the susceptor,
Tsusc, varies from 700-1000 K. The pressure in the reactor varies from 0.1 up to 10 Torr.

The volumetric flow rate at the inlet varies from 50-250 sccm.

A.3 Governing Equations

The basic assumptions for the flow in the reactor are: (a) the Mach number

is small and compressibility effects are neglected (notice that density variations with

2For more information about the reactor and the operating conditions, see [36].
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Figure A.1: Schematic of the CVD reactor.
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Table A.3: Mean inlet velocity, Reynolds and Stokes numbers over the range of pressures and flow
rates used in the experiments. It is assumed that the feed is 100% NH3. Temperature
at inlet, 300 K (Pr=0.9).

p Q U, | Re St
Torr | sccm | m/s
0.10 50 | 5.55 | 0.94 | 0.0056
130 | 14.40 | 2.44 | 0.0022
250 | 27.80 | 4.70 | 0.0011
5. 50 | 0.111 | 0.94 | 14.20
130 | 0.289 | 2.44 5.47
250 | 0.555 | 4.70 2.84
10. 50 | 0.056 | 0.94 56.9
130 | 0.144 | 2.44 21.9
250 | 0.278 | 4.70 11.4

temperature are important), (b) The flow is laminar and in quasi-steady state relative to
the film growth dynamics (speed of film growth negligible), (c) The flow is axisymmetric
(&5 = 0), (d) The susceptor is not rotated (ug = 0), and (e) Gravity is in the z direction.

The momentum equation for the carrier gas takes the form
pu-Vu =V -T 4+ pgeg, (A1)

where u is the velocity vector (only the axial and radial components are considered here),

p is the density, g is the gravitational acceleration, and T is the stress tensor given by
2
T = —(p+§,uV'u)I+u[Vu+(Vu)T]. (A.2)

Here u is the viscosity and I is the unit tensor.

The continuity equation with variable density is given by
V-(pu) = 0. (A.3)

The density is calculated using the ideal gas law as the equation of state:

_ P°M
P="TT>

(A.4)
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where P° is the operating pressure of the reactor, M is the molecular weight, R is the
ideal gas constant, and T is the temperature. Notice that variations of the pressure due
to fluid mechanical forces are negligible (due to the low Mach numbers).

The basic assumptions for the energy equation are: (a) viscous dissipation is neglected,
(b) pressure changes and Duffour effects are neglected (this assumption is justified only
if the gases involved in the process have similar molecular weights), (c) heats of reaction
are also neglected (limit of dilute reactants), and (d) steady state is assumed. The energy
equation becomes:

pCpu-VT = V-rVT, (A.5)

where C,, is the heat capacity, and x is the thermal conductivity of the gas.

It is more convenient to nondimensionalize equations (A.1), (A.3), (A.4) and (A.5).
Quantities and properties at the inlet of the reactor are used as scales; the mean velocity
U, is used as the velocity scale, the radius R, as the length scale, and the inlet temperature
T, as the temperature scale; the density, the viscosity, the thermal conductivity x, and
the heat capacity Cp are scaled with the corresponding properties at the inlet po, po Ko,
and Cpo; the pressure and the stresses are measured in p,U,/R,. Three dimensionless

numbers are introduced: the Reynolds number,

Re = p—o%—o’—& , (A.6)
the Stokes number,

St = P;_;‘JU%%_ , (A.7)
and the Prandtl number,

Pr = -q-’:i (A.8)

The ideal gas law is now

1
p = '1: ’ (AQ)
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and the dimensionless forms of the momentum, the continuity, and the energy equations

become:
R St
—T—e-u-Vuzv-T—}——I—;ez, (A.10)
u
(=) = A1
V-(z) =0, (A1)
and
Cyp
Re Pr—fu-VT = V- -gVT. (A.12)

Notice that x, s, and C, are temperature dependent. A power law dependence is assumed
for the thermal conductivity and the viscosity. The powers involved are calculated from
experimental data (see section A.6). The heat capacity is assumed constant in this work.

Boundary conditions for the momentum and energy equations must also be specified.
A parabolic flow profile is assumed at the inlet, symmetry boundary conditions are taken
at the axis of symmetry, zero velocity is assumed at the solid surfaces and zero stresses
are assumed at the exit. The temperature is specified at the inlet, and is assumed to be
uniform at the susceptor. A symmetry boundary condition is used for the temperature
along the axis of symmetry, and a natural boundary condition is applied at the exit.
It is also assumed that both the wall and the susceptor support are cooled to the inlet
temperature. However, the effects of insulating either the wall or the support are also
examined.

In addition to the primitive variables u, v, p, and T, the streamfunction ¥ is of interest

since it facilitates visualization of the results. For a compressible fluid in cylindrical

coordinates, ¥ is defined by

10V
puU — ;"E', (A13)
and
oy = 2% (A.14)
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where u and v are the axial and the radial velocity components respectively. The stream-

function is computed solving the Poisson equation:
2 dp
ViU = 2pu + 7 ugs = v +pr|lo——-%1. (A.15)
A.4 Finite element formulation

The Galerkin finite element method is used to discretize the governing equations.
Biquadratic basis functions, N i are used to expand the velocity components (u and v) and
the temperature (T, and to weight the momentum and the energy equations. Bilinear
basis functions, M*, are used to expand the pressure (p), and to weight the continuity

equation. The resulting residual equations are:

; ov  Ou r oT oT ;

R, = /V [v-{- T (5;-!-5) - T (0797_‘-”?3;)} M'drdz, (A.16)
i 22 AT rz aTe Re .; ( Ou du ﬁ i
Ru__/v [T NP+ TN} 4+ =N (var-{—uaz) + TN]rdrdz, (A.17)

) . . T% . Re _ . ov v St .
T TZ AT1 rr ATt 1 1 i
Rv—/v[T NP4 TTNi 4+ —N' + TN (v—ar+u—az>+——TN rdrdz

(A.18)

|

RY = /V [ReTPT c, N' (v%—eru%) + & (‘Z—f N+ %Ni)] rdrdz, (A.19)
Here R, R, R}, and R}é are the continuity, z-momentum, r-momentum, and energy
residual equations respectively; V is the computational domain3. The two-letter super-
scripts denote the stress tensor components and the subscripts denote differentiation.

Equations (A.16), (A.17), (A.18), and (A.19) constitute a system of nonlinear equations

which is solved by Newton iteration and frontal solvers [75].

3Notice that the standard finite element method is used here without any special elements.
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Mesh I — 15240 unknowns

|

Figure A.2: Mesh used for all the computations (scaled 1:2 in the r direction).

A.5 Results and discussion

Calculations were carried out for various Re (ranging from 0 to 100), St ( from —30
to 30), Tyyse (from 300 to 1,050K) and different thermal boundary conditions. The inlet
temperature was 300 K and the Prandtl number equal to unity in all cases. It was also
assumed that the feed was 100% NHs. The finite element mesh used for all the results
is shown in Figure A.2. It consisted of 1116 elements (15240 unknowns). The inlet and
outlet nozzles are cut at distances equal to 3 times the radius, a length adequate to
approximate the inlet and outlet boundary conditions (the actual lengths are given in
Table A.1).

The effect of’the Re for zero gravity and isothermal conditions was studied first. The
results are illustrated in Figure A.3. Note that all graphs are scaled 1:2 in the r direction
to more clearly show the results. An interesting characteristic of the flow for this geometry
is the appearance of a vortex around the periphery of the susceptor, in addition to the
one formed behind it. These two vortices increase in size and strength, as Re increases,
and finally merge to form a large vortex. As Re increases, the flow close to the susceptor
approaches a uniform thickness boundary layer flow which in general favors film thickness

uniformity. The recirculation cell at the inlet is caused by the sudden expansion in flow
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(a) Re=0

(b) Re=1

@

—— —~// B S

r
(e) Re=40
r
(f) Re=50
— )
(g) Re=100

Figure A.3: Streamlines at different Re, zero gravity, and isothermal conditions.
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cross-sectional area at the inlet and increases in size as Re increases. It can be eliminated

by reshaping the reactor inlet [46).

It is well known that the thermal boundary conditions play an important role in the
solution of CVD flow. As pointed out by Fotiadis et al. [47], inclusion of radiation effects
is important. To illustrate the effect of the thermal boundary conditions, we obtained

results for three different cases:
1. Cooled reactor walls and insulated susceptor support.
2. Insulated reactor walls and cooled susceptor support.
3. Cooled reactor walls and susceptor support.

The computed streamlines and isotherms for Re=1, 5t=0, and Ty, = 750K are shown
in Figure A.4. More drastic changes in the flow field and the temperature solution may
occur at different conditions, especially when gravity is taken into account. The changes
in the flow field and the temperature distribution as Reynolds number increases are shown
in Figures A.5, A.6, and A.7 for the three cases examined. In all the subsequent results

we assume that both the reactor wall and the susceptor support are cooled.

The gravity effect (i.e., the influence of the Stokes number) is very important if there
are density variations in the gas (nonisothermal case). In our experiments [36], we ob-
served that in some instances when the feed is introduced from the top of the reactor
(flow in the same direction with gravity) the film quality is unsatisfactory; furthermore,
particle formation from the susceptor is observed. When the feed is introduced from the
bottom this undesired phenomenon disappears, and the film quality and thickness unifor-
mity are improved. The computational results show significant changes in the flow field
as the Stokes number increases (equivalent to increasing the operating pressure of the

reactor). The results for Re=2, T,ys.=750 K and flow opposite to the direction of gravity
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l

(b)

(¢)

Figure A 4: Streamlines (top) and isotherms (bottom) at Re= 1, T,use= 750 K, and zero gravity.
(a) Cooled reactor walls and insulated susceptor support.
(b) Insulated reactor walls and cooled susceptor support.
(c) Cooled reactor walls and susceptor support.
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(a) Re=0

@ — (b) Re=1

(¢) Re=10

Figure A.5: Streamlines (top) and isotherms (bottom) at Tyusc= 750 K, zero gravity and different

Reynolds numbers.
Reactor walls are cooled and susceptor support is insulated.




163

/Jﬂ\ (a) Re=0

I F (b) Re=1

__J/ (c) Re=10

Figure A.6: Streamlines (top) and isotherms (bottom) at Tyysc= 750 K, zero gravity and different
Reynolds numbers.
Reactor walls are insulated and susceptor support is cooled.




164

kfl
®
&~
D
I
o

(b) Re=1

(¢) Re=10
O

(d) Re=30

Figure A.7: Streamlines (top) and isotherms (bottom) at Tyyse= 750 K, zero gravity and different

Reynolds numbers.
Reactor walls and susceptor support are cooled.
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(a) St=0
—Y

(b) St=-2

(¢) St=-5

(d) St=-10

Figure A.8: Streamlines (top) and isotherms (bottom) at Re = 2, Tyuse= 750 K, and different
Stokes numbers. The flow is opposite to the direction of gravity.
Reactor walls and susceptor support are cooled.
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¥
(a) St=0
== /1—]
(b) St=2
-
©
(c) St=5

AN

Figure A.9: Streamlines (top) and isotherms (bottom) at Re = 2, Tyusc= 750 K, and different
Stokes numbers. The flow is in the same direction as gravity.
Reactor walls and susceptor support are cooled.
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(a)  Tsusc = 600K

(b) Tsusc = 750K

(¢)  Tsuse = 900K

_/\\

(d) Tsuse = 1050K

Figure A.10: Streamlines (top) and isotherms (bottom) at Re = 2, St = —2, and different sus-
ceptor temperatures Tyys.. The flow is opposite to the direction of gravity. Reactor
walls and susceptor support are cooled.
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are shown in Figure A.8. As St increases, new vortices are formed near the wall and
finally merge to a large recirculation region. However, the flow pattern around the sus-
ceptor remains basically the same in agreement with Wahl’s results [156]. Quite different
patterns are obtained, however, when the flow is in the direction of gravity (Figure AL9).
Large buoyancy driven recirculation cells, due to the density gradient close to the sus-
ceptor, are formed above and below the susceptor, whereas the recirculation caused by
the expansion of the flow cross-section at the inlet decreases in size. This flow behavior
is in agreement with the results in [46,47]. Recirculation cells around the susceptor are
undesirable. As indicated by Fotiadis et al. [46], these cells can be removed by increasing
the inlet flow (which also improves film thickness uniformity). From the results in Fig-
ure A.8, we conclude that having the flow from the bottom to the top is an alternative
way to eliminate these cells.

The effect of the temperature of the susceptor on the flow is shown in Figure A.10,

where we plotted the results for Re=2, St=2 and Tsy,.=600, 750, 900 and 1,050K.

A.6 Concluding remarks

The fluid mechanics and heat transfer in a vertical CVD reactor have been studied
using finite elements. We illustrated the importance of the thermal boundary conditions.
Gravity and its direction are also important and cause the formation of interesting flow
patterns. Undesirable recirculation cells around the susceptor can be removed by having

the flow opposite to the gravity direction.

A.7 Temperature dependence of the physical properties

In this section, we calculate the powers describing the temperature dependence of the

thermal conductivity and the viscosity of the four gases of interest: NHs, Ar, Hz, and
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Thermal Conductivities
1 -
1 Power n:
1 NH3-1.3825
k 1 Ar -0.78155
1 H2 -0.70128 H2
(W/m/K) 1 N2 -0.78168
14
] NH3
] N2
Ar
.01 —
100 1000
T
Viscosities
1 =
Ho ]
(10000 Pa s)
1
Power n:
NH3 - 1.0434
Ar - 0.79219
H2 - 0.66222
N2 - 0.72816
.01 : —r
100 1000

Figure A.11: Temperature dependence of x and u for NH3, Ar, H2, and Ns.
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N,. It is assumed that

and

WI2) (E) -
w(T1) T
To calculate n, and n, we use the data given in [116]. The data along with the computed

values of the powers are shown in Figure A.11.
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APPENDIX B

LOCAL SIMILARITY SOLUTIONS

Two-dimensional corner flows have been extensively investigated by different re-
searchers [32,63,84,100,101,104,105]. In this appendix we summarize the two cases that

are of primary interest in this thesis:
1. Flow near a sharp corner
2. Flow between a wall and a free surface (at a 180° angle)

These two flows were first examined by Moffatt! [104].
For steady, incompressible flow with negligible inertia forces?, the stream function

U(r,0) satisfies the Stokes equation
ViY = 0; (B.1)

here (r,6) are the plane polar coordinates centered at the singular point.
As has been demonstrated by Lugt and Schwiderski [96], equation (B.1) admits sep-
arated solutions of the form

v = 04D 1,0, (B.2)

1For local analyses concerning non-Newtonian flows see [4,31,66,81,142].
2The inertia forces are negligible close to the wall.
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where X is the exponent (or the eigenvalue) of the corresponding solution which may be

real or complex. The function f)(f) is of the general form

i(0) = Acos(A+1)8 + Bsin(A+1)0 + C cos(A—1)8 + D sin(A-1)§ (B.3)

where A, B, C, D are arbitrary constants. In the particular cases when A = -1, 0 or 1

the function f)(6) degenerates to the forms®:
f-1(8) = Acos20 + Bsin20 + C6 + D

fo(6) = Acosl + Bsind + C8cos + D8 sinb

fi(d) = Acos20 + Bsin20 + C8 + D

(B.4)
(B.5)

(B.6)

The radial and transverse velocity components u,, ug respectively are given by

_ 13y \
uT——_Tae =7r f,\ (9)’
and
0
ug = —--—a% = —-()\—{-1) 7‘)‘ f)\(e),

where fﬁl)(e) is the first derivative of f(6)*:

W) = [FA+1)Asin(A+1)8 + (A\+1)B cos(A+1)8 -

(A=1)Csin(A—-1)8 + (A—1) D cos(A—1)d].

From the above two equations one finds for the stress components:

Ou,
o= 2 or

= 2p A0 f,(\l)(O)

3Notice that the equation given by Moffatt [104] for the case A = —1 is wrong.
There is also a particular solution independent of § [84]:

U = Ar?logr + Blogr + Cr2 4+ D.
In this case, the pressure is given by:

P = —4[1A0

4Similar notation is followed for all the higher derivatives of f(6).

(B.7)

(B.8)

(B.9)

(B.10)
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00 9y [-— 9ug __] = —2ua 0D f0(p) (B.11)

7= g (5) + 155 = w00 5@ + A00)

ar \ or r 06

(B.12)

Here, p is the viscosity.

Finally the pressure is found by solving the r-momentum equation®
p = w017 100 + 100 (B.13)
()\ _ 1) A A
or

p = —4pAr®D[C sin(A—1)§ — D cos(A—1)f]. (B.14)

B.1 Flow near a sharp corner

Consider the flow between two rigid boundaries fixed at an angle 2a (Figure B.1).
The solution of this problem was determined in [32] and [104]. It is assumed that the

stream function can be expanded in a series of the form

v =3 4, rOntl) £, (9),

n=1

where the exponents A, are suitably ordered so that
0< Re()\l) < RC(AQ) LN

The first of the inequalities ensures that the velocity vanishes at the corner. As indicated
by Moffatt [104], a disturbance far from the corner can generate either an antisymmetrical
or a symmetrical flow pattern near the corner, and the corresponding stream function
¥(r,0) is an even or odd function of @ respectively. By taking advantage of the linearity

of the Stokes equation, we may consider the two types of flow separately.

5The pressures for the special cases of A = —1,0 and 1 are given in [84].
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Figure B.1: Geometry of flow at a corner.

Table B.1: Real and imaginary parts of the leading exponent Ay = p; + ig; in the axisymmetric
flow at a corner.

2a° P1 q
30.0 | 8.0630 | 4.2029
60.0 | 4.0593 | 1.9520
90.0 | 2.7396 | 1.1190
120.0 | 2.0941 | 0.6046
146.4 | 1.7892 | 0.0000
150.0 | 1.9130
180.0 | 1.0000
210.0 | 0.7520
240.0 | 0.6157
270.0 | 0.5445
300.0 | 0.5122
330.0 | 0.5015
360.0 | 0.5000
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Table B.2: Real and imaginary parts of the leading exponent A\; = p; + 7¢; in the symmetric flow
at a corner.

2a° j 2! qQ
30.0 | 14.3303 | 5.1964
60.0 | 7.1820 | 2.4557
90.0 | 4.8083 | 1.4639
120.0 | 3.6307 | 0.8812
150.0 | 2.9367 | 0.3637
159.2 | 2.8144 | 0.0000

180.0 | 2.0000
210.0 | 1.4858
240.0 | 1.0000
270.0 | 0.9085
300.0 | 0.7309
330.0 [ 0.5982
360.0 | 0.5000

Antisymmetric flow between rigid boundaries
For this type of flow f)(#) is even (B=D=0) and
fr(8) = Acos(A+1)8 + C cos(A—-1)8. (B.15)
For a nontrivial solution A satisfies the equation
sin2\a = —Asin2o. (B.16)

The leading exponents (A1) of equation (B.16) for various angles 2a are listed in
Table B.16. For 2 > 146.4° equation (B.16) has one real solution which decreases as the

angle 20 increases. For 2a < 146.4° equation (B.16) admits no real solutions’.

Symmetric flow between rigid boundaries
For this type of flow f\() is odd (A=C=0) and

£A(6) = Bsin(A+1)0 + D sin(A—1)8. (B.17)

6The values given in [104] are slightly different.
7As indicated by Moffatt [104], complex exponents imply the existence of an infinite sequence
of eddies near the corner.
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For a nontrivial solution A satisfies the equation
sin2Aa = Asin2a. (B.18)

The solutions of equation (B.18) with the smallest real part are listed in Table B.2.
For 2 > 159.2° equation (B.18) has one real solution which decreases as the angle 2«
increases. For 2o < 159.2° equation (B.18) admits no real solutions.

We should notice that equations (B.17) and (B.18) hold also for the flow between
a rigid boundary and a free surface positioned at § = 0. Based on physical arguments,
Michael [100] showed that the angle of separation, e, can not take arbitrary values®. He
showed that for zero surface tension it must be o = m, which is exactly the case of the

stick-slip problem.

B.2 Local solution for the stick-slip problem

The two solution sets for the flow between a wall and a free surface at an anglea =7
are given below.

0dd set of solutions

p = 1 [cos(A+1)8 — cos (A —1)8]
uy = M[-(A4+1)sin(A+ 1)+ (X =1)sin(A—1)6]
ug = —(A+1)7* [cos(A+1)8 — cos(A = 1)8]

p = 4prr*lsin(A-1)8

>

i
o
bo | oo
l\;Ic.n

The graphs of the first three solutions are plotted in Figures B.2-B.4.

FEven set of solutions

P = PM(A=1)sin(A+ 1) — (A + 1)sin (A — 1)6]

8For a thorough discussion on the separation of Stokes flow see [101].
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uy = (A2=1)r*[cos (A + 1)8 — cos (A — 1)d]

ug —A+ 1) [(A = D)sin(A+ 1)8 — (A + 1)sin (X — 1)8]

p = —4pd(A+1)rt cos(A—1)8

A=2,3,4,-

The x- and y- velocity components are obtained by invoking the identities:

u = -—u,cosf + ugsinf

v = —u,sinf — ugcosf

with
= 4 /11:2 + ’!/2

and

; tan~! (—%), z<0

7 + tan~! (=€), >0

The first few terms for u, v, and p are given below:

A=1/2
u = 2712 sing <1+coszg)
v = rif? sin—2- siné
0
- 912 o2
P 2r sm2
A=3/2

8 0
— 3/2 ¢in 2 22
v = 2r sm2 (7cos 3 1)

v = 3732 singsinﬂ

0
= 67rY2 gin—
P r/* sin 5

(B.19)

(B.20)

(B.21)

(B.22)
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Figure B.2: 3-D view of the local solution for A = 1/2: p (top), u (middle), v (bottom).

pressure is, in fact, infinite at the singular point.

The
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Figure B.3: 3-D view of the local solution for A = 3/2: p (top), u (middle), v (bottom).
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APPENDIX C

THE MOTZ PROBLEM — ADDITIONAL
RESULTS

In this appendix we present more details about the finite element formulations for the
Motz problem introduced and discussed in Chapter V. The three methods considered in

Chapter V are:
1. The standard finite element method,
2. The blended singular basis function method (BSBFM), and
3. The integrated singular basis function method (ISBFM).

Three different blendings are examined with the BSBFM in an attempt to improve the
estimates for the singular coefficients and to understand the limitations of the method.
In addition to the formulation, some results for the Motz problem are given at the

end of the appendix.

C.1 Finite Element Formulation

The governing equations and the geometry of the Motz problem are depicted in Fig-

ure 5.1. The local solution is of the form:

9, (C.1)
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Table C.1: Values of the singular coefficients a; for the Motz problem.

Method Reference ay ay as ay
Singular functions [106] 401.41 88.61 -20.07 -26.78
Singular elements [157] 393.6 -18.3

398.0 -80.8
Global elements (68] 401.162 | 87.6558 | 17.2381 | -8.0705

Conformal trans-
formation (exact) [126] 401.1625 | 87.65592 | 17.23792 | -8.0712
Global elements [86] 401.1625 | 87.6553 | 17.2435 | -8.0981
Iterative method [165] 401.163 | 87.655 17.238 -8.071

where (r, ) are the radial coordinates centered on the singular point, and «; are the
unknown singular coefficients. The first term of equation (C.1) is the most singular term
causing an inverse square root singularity for the derivatives.

A summary of the various estimates of the first singular coefficients a; is given in

Table C.1.

C.1.1 Ordinary Finite Elements

The unknown u is expanded in terms of biquadratic basis functions ®*:
Nu .
U= Zu,- LA (C.2)
=1
where N, is the number of unknowns, and u; are the nodal values.
We apply Galerkin’s principle by weighting the governing equation with the basis

functions @', and then we use the divergence theorem:

@@"ds—/ Vu-Ve& dV = 0, i=1,2,...,Ny. (C.3)
s On 1%

Here, V is the physical domain, S denotes its boundary, n is the normal direction to
S, and N, the number of unknowns. The boundary terms can be omitted because we

have only essential and homogeneous natural boundary conditions, and equation (C.3) is
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simplified to
-/ Vu -V dV = 0, i=1,2,...,Ny. (C.4)
14

Equations (C.4) constitute a symmetric and banded linear system of equations.

C.1.2 The Blended Singular Basis Function Method

To the ordinary finite element expansion we add the singular basis functions W':

N, . Nspr i
u:Zu; ®* + Z o W, (C.5)
=1 i=1

where Nsgr is the number of singular functions, and ¢; are the unknown coefficients.

For comparisons, we constructed 3 different sets of singular functions:

P& cos 219 0<r<R/2
BSBFl: W' = a2(r = R)? (ar — b) cosg%o, R/2<7<R
0, r> R
‘ ﬁlﬂ‘—”"{‘ (r—R?(2r+R) cos 216, 0<r<R
BSBF2: W' =
0, r> R
2i-1) 2 2 ;
' rr (1-%&)1-45) cos 2710, 0<|al,lyl<H
BSBF3: Wi = (1= 3m)(1 =) oo

0, elsewhere
BSBF1 are functions with two-zone blending as suggested by Strang and Fix [141].
They are identical to the asymptotic expansion terms in a semicircular area of radius
R/2. For greater values of r they are given by a polynomial in 7 which merges smoothly
to zero at R. The coefficients a and b are determined by demanding continuity of W* and
its first derivative at r=R/2.
BSBF2 and BSBF3 are functions with one-zone blending. BSBF2 are defined again

over a semicircular area of radius R and obtained as the product of the asymptotic
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expansion terms times a polynomial in r which is equal to 1 at 7 = 0, and merges
smoothly to zero at R. As r goes to zero, W* converges to the exact solution. Finally,
BSBF3 are defined over a rectangular area and merge smoothly to zero at its boundaries.
Again as 7 goes to zero, W' converges to the asymptotic solution.

Applying Galerkin’s principle, we weight the governing equation by &' and W', After

using the divergence theorem we get:

Qf‘-qf'ds—/ Vu V& dV = 0, i=1,2,...,N.,  (C.6)
s On 1%
and
ou __ . : .
/—W'dS—/ Vu-VWdV = 0, i=1,2,...,Negr, (C.T)
s On 1%

Note that the total number of unknowns is now Ny + Ngpr. The boundary terms in
equations (C.6) and (C.7) can be omitted on those parts of the boundary where a ho-
mogeneous natural boundary condition is applied. The boundary terms on S; are also
ignored; in equation (C.6) because we have essential conditions for u;, and in equation

(C.7) because W' are zero. Therefore,
-/ Vu. V& dV = 0, i=1,2,...,Na, (C.8)
|4

and
——/ Vu-VWidV = 0, t=1,2,...,Nspr. (C.9)
v
Equations (C.8), (C.9) constitute a symmetric linear system of equations whose

banded structure has been destroyed due to equation (C.9).

C.1.3 The Integrated Singular Basis Function Method

In the ISBFM we subtract the asymptotic terms directly from the governing equation.

The singular functions are now identical to the corresponding asymptotic expansion terms:

Wi = 55 cos [(22; 19)] . (C.10)
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u* _ __ Ou®
dy dy
y=1
Sy
ut _ _Ju’
dr — T oz Vig* = 0 u* + u® = 500
T
55 SB
Y 6
Vo 51 g 5;
r= -1 0 T =1
u* =10 du* _ _ ou*
dy T Oy

Figure C.1: The modified Motz problem.
Let u® be the singular part of u,
(S Z o W, (C.11)
and u* be the part of the solution approximated by the standard finite element expansion,
= u— ut. (C.12)

Notice that u® satisfies the governing equation and the boundary conditions along y=0,
and the original problem is transformed to the one shown in Figure C.1.

Again we use the Galerkin method (and the divergence theorem) to obtain:

0 i 4g —/ Ve V& dV = 0, i=1,2,...,N.,  (C.13)
s dn v
and
ou* . , .
Wids — / Vu* VWi dV = 0, i=1,2,...,Nsgr. (C.14)
s On v

To reduce the singular volume integrals of equation (C.14) to boundary integrals, we

apply the divergence theorem once more:

| i .
/Vu"‘-VW‘dV - / w IV 4s / wt VW AV (C.15)
1% s on 1%
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But the volume integral in equation (C.15) is zero, since W satisfy Laplace’s equation.

Therefore equation (C.14) becomes:

ou* . owW? .
/s(an Wi W) s = 0, i=1,2,...,Nsgp. (C.16)
Notice that the boundary terms are not ignored now since % = —-aa%:. Furthermore,

to impose the essential condition on S3 we employ Lagrange multipliers A}, expanded in

terms of quadratic basis functions M':

Ny - .
=Y M. (C.17)

N, is the number of nodes on S3. The final equations are:

/Aquder/ 0 wiger [ O gy /Vu VAV =0, i=1,2,...,Na,
53 54 ay

55 0T
(C.18)
t Ou® . 1
/(A Wi au a;v) u tu 8W)dy_0
(]
i=1,2,...,Nsgr. (C.19)
and
(v +u*YMidy = 500 | M'dy, i=1,2,...,N,. (C.20)
53 53

The total number of unknowns is now N, + Nspr+ N,. Notice that the linear system
of equations defined by equations (C.17)-(C.19) becomes symmetric after substituting

u*=500—u* to the first integral of equation (C.19).

C.2 Results and Discussion

To make comparisons, we first used a uniform mesh with 16x8 elements (element size
= 1/8). Both R and H were taken equal to the meshsize. We first studied the effect of

the order of the Gauss-Legendre quadrature with Nsprp=1.
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Figure C.2: The coefficient a; as a function of the order of integration m (16x8 uniform mesh; R
and H equal to meshsize; - - - -: analytical value).
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Figure C.3: Effect of mesh refinement on o (N is the number of elements in the y-direction; R
or H are equal to the meshsize; - - - -: analytical value).
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Figure C.4: Effect of R (or H) on the first coefficient a; (16x8 uniform mesh).
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The computed values of a; are plotted in Figure C.2. We observe that the BSBFM
requires a high order integration if converged results are to be obtained. BSBF1 and
BSBF2 give poor estimates for a;, whereas BSBF3 appears to converge to the exact
value as the order of integration increases. For all the BSBFM results hereafter, a high
order integration is employed only for the two elements sharing the singular point; each
element is divided into 64 rectangles over which a 15x15 Gauss quadrature is used.

To study the effect of the mesh refinement on the first coefficient, we obtained results
with different uniform meshes keeping R (or H) equal to the meshsize. In Figure C.3,
the calculated coefficients «; are plotted versus the number of elements in the y-direction.
The results appear to approach the analytical value with mesh refinement in all cases.
However, again the ISBFM gives much more accurate values than the BSBFM. Among
the singular functions used with the BSBFM, BSBF3 appears to give the best results.

Let us point out that the singular domain! in the BSBFM included only the two
elements sharing the singular point or parts of them. Therefore, only a few nodal values
could change, conforming to the addition of the singular function. Apparently, bigger
values of R (or H) are required to allow the ordinary finite element expansion coefficients
to adjust themselves to the presence of one or more singular terms. To verify the above
argument we ran the programs with the 16x8 element mesh and varying R from 1/8
up to 1. The computed coefficients are plotied in Figure C.4. We observe that the
results with BSBF2 and BSBF3 converge very close to the exact value. The results with
BSBF1 exhibit analogous behavior but higher values of R (in other words, more elements
within the singular domain) are required to reach a plateau. It appears that BSBF3
constitutes a much better choice than BSBF2 or BSBF1 and this is due to the fact that

the singular domain boundary does not pass through the interior of any elements. In

! Singular domain is the region over which the singular functions are defined. In the ISBFM,
the singular domain coincides with the physical domain.




Table C.2: Values of the leading coefficients with BSBF3 (16x8 uniform mesh).
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Nspr oy Qg a3 0y as

1 402.21518

2 402.21517 | 10.867980

3 402.21516 | 15.206817 | -3.563013

4 402.21590 | 15.206704 | -3.562949 | -5.609400

5 402.21758 | 15.206599 | -3.562890 | -6.309102 | -2.677194
Exact 401.1625 87.65592 | 17.23792 -8.0712

Table C.3: Values of the leading coefficients with the ISBFM (16x8 uniform mesh).

Nspr o3} Qg a3 oy as

1 401.15943

2 401.15932 | 86.663115

3 401.15932 | 87.620929 | 14.601808

4 401.16197 | 87.621421 | 14.599367 | -7.474597

5 401.16224 | 87.620709 | 14.602983 | -7.469682 | 1.225553
Exact 401.1625 87.65592 17.23792 -8.0712

BSBF1 and BSBF2, the ordinary finite element expansion coefficients are not flexible
enough to adjust themselves to the subtraction of the singular basis functions, resulting
in a lower estimate of the first expansion coefficient. This argument explains the poor
results obtained in [158] where R was taken equal to the meshsize.

We concluded that BSBF3 is the best of the blended singular basis functions examined,
and that care must be taken so that an adequate number of elements is included in the
singular domain. The latter can be achieved either by increasing H or by refining the
mesh within the singular domain. Because a fine mesh will be costly we take H equal to
to the size of the domain. All the results with the BSBFM hereafter were obtained with
BSBF3.

The coefficients with

The next step was to calculate more singular coefficients.

Nspr=1up to 5 are listed in Tables C.2 (BSBFM) and C.3 (ISBFM). With the BSBFM
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the first coefficient remains essentially the same as we increase the number of singular
functions. The estimates of the higher coefficients are poor. On the other hand, in the
ISBFM the coefficients appear to converge to the analytical values as we increase NspF.

The disappointing results with the BSBFM for the higher coefficients may be due to
contamination from the blending; extra higher order terms not satisfying the asymptotic

solution are introduced with every W*. For example with the BSBF3,

0
Wl o= ri(1-2})(1-97) cos —
6
wl = 7‘]2“ cosg — 7'§ cosg + r% cos—2— sin’ @ cos?6 .

Therefore, one can expect a good estimate only for the first expansion coefficient.
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APPENDIX D

TWO FINITE ELEMENT METHODS FOR
SINGULARITIES IN STOKES FLOW: THE
STICK-SLIP PROBLEM

Abrupt changes in boundary conditions give rise to singularities in Stokes flow!. We
compare two methods for improving the finite element solution in the neighborhood of the
singularity — singular finite elements and supplementary singular trial functions. In our
primitive variable formulation of the problem, the pressure (a nodal quantity) is singular
which guides our approach. Both methods give significantly better results than ordinary
uniform finite element meshes. Singular elements improve the solution significantly, with
little computational effort. However, as the mesh is refined and the singular element
radius decreases the solution develops mild oscillations. Supplementary singular trial

functions also improve the solution, which converges smoothly with mesh refinement.

D.1 Introduction

As in fracture mechanics problems, abrupt changes in boundary conditions for Stokes
flow give rise to singularities in the solution. One particularly important application with
a singularity is in man-made textile manufacturing processes where an extremely viscous

fluid is drawn through a die and then cooled to form a solid fiber. An unrestrained fiber

!The material of this appendix appears in [56].
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Figure D.1: The stick-slip problem.
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Figure D.2: Mapping of the singular elements.
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expands as it exits the die and the problem of determining the amount of expansion is
known as the “die-swell problem”. In this study, we consider a special case which involves
a fluid with infinite surface tension so that the surface does not expand (the stick-slip
problem, see Figure D.1).

Methods for improving the finite element representation of the singularity generally
require a knowledge of the nature of the singularity. Michael [100] and Moffatt [104]
showed that the form of the stream function near the singularity in the stick-slip problem

is:

¥ = "y [cos(A + 1)8 — cos(A — 1)6]) for A

1]
[ SRR
|3 g
[ Ny

Y =8y [(A = 1)sin(A +1)8 — (A+ 1)sin(A —1)0]) for A =2,3,4,...

where @) and ) are constants determined by the global solution and r and 6 are polar
coordinates originating at the singular point. The velocities therefore have an r3 leading
term, and the stresses (including pressure) have an r~% behavior.

As other researchers have done in solving solid mechanics problems involving singu-
larities, we have used two basic finite element approaches to solve this singular fluid flow
problem. In the first approach (similar to the fracture mechanics work of Tracey [149]),
we develop special elements for use near the singularity. The interpolation functions for
these elements have the form of the singular functions. In the second approach (used
by Fix [43] and Morley [106] in solving Laplace’s equation) we add an extra set of trial
functions. The trial functions are taken to be “blended” singular functions which decay
to zero far from the singular point. Because pressure (a singular quantity) is a nodal
variable in our primitive variable formulation, implementing these two basic approaches

poses new problems.
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Figure D.3: A typical singular element mesh.

D.2 Finite Element Techniques

We employ standard finite element methods to produce the stress-divergence weak
form of the Stokes flow equations in primitive variables [14,11]. For our regular finite
elements, we use nine node elements which are biquadratic in velocity and bilinear in
pressure. We use three uniform meshes for comparison purposes in our study: 2 x 12

square elements, 4 X 24 square elements, and 8 X 48 square elements.

D.2.1 Singular Element Approach

Figure D.2 shows the master element and its intended wedge-shaped physical geome-
try. In the t direction we use standard polynomial interpolations — quadratic in velocity
and linear in pressure. As a result the element is compatible with ordinary finite elements.

In the s direction we use interpolations which mimic the radial form of the singularity:

v,w~a+b\/1+s+c(1+s)+d\/(1+s)3+e(1+s)2,

1
~ hy1 (1 .
P fm+g+ V1i4+s+i(1+s)

Notice that there is no pressure node at the singular point. To integrate the stiffness
matrix numerically, we modify the standard Gauss weights and locations to exactly eval-
uate polynomials in /(1 + s) over a wedge with a small subtended angle. Details of the
formulation are given in [55].

For this study we replace the eight finite elements nearest to the singular point with

eight singular elements and eight regular elements. Figure D.3 shows a typical mesh.
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D.2.2 Supplementary Singular Trial Function Approach

Here we use an ordinary finite element mesh, but add an extra set of trial functions to
the finite element expansion of the form (1 — y2)(1 — 22) multiplied by the exact singular
functions. The blending function (1—y?)(1—22) causes these extra trial functions to vanish
far from the singularity. However, we must now evaluate the singular terms using a very
high numerical integration order near the singularity. We divided each of the two elements
closest to the singularity into 64 subdomains and used 15-point Gauss quadrature in each

subdomain. In the remaining elements we used ordinary 4-point quadrature.

D.3 Results and Discussion

Each approach produces good results far from the singularity (e.g., for the centerline
pressure).

A more meaningful performance measure is the normal stress at z=1 (the stick and
slip surfaces). Figure D.4 shows the normal stress for the ordinary meshes, the ordinary
meshes modified to include singular elements, and the ordinary meshes supplemented by
singular trial functions. Both singular techniques generate significantly smoother results
than the ordinary mesh. The singular element method appears to give slightly more
accurate results for the coarsest mesh. However, the singular trial function approach in
general gives superior results which become smoother as the regular mesh is refined while
the singular element results exhibit some small-amplitude oscillations. (This appears to
be due to the fact that the singular elements become smaller as the regular mesh becomes
finer [55].)

Often, we wish to know the coefficients o, for the singular functions (analogous to
the stress intensity factor in fracture mechanics). Richardson [121] analytically derived

the first coefficient for the stick-slip problem which should be (as noted by Ingham and
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Figure D.4: Normal stresses along z = 1 with (a) ordinary elements, (b) singular elements and
(c) singular functions ( - - - -: mesh I, 12x2 elements, -: mesh I1I, 48x8 elements).
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Table D.1: Singular coefficient estimates from finest ordinary and singular element meshes.

Method ay/y Qs3/y
Ordinary Finite Elements | 0.67170 | 0.19812
Singular Finite Elements | 0.69173 | 0.27168

Ingham & Kelmanson 0.69108 | 0.26435
Analytical Solution 0.69099 —

Table D.2: Singular coefficients from singular trial function approach.

Nspr Mesh 1 Mesh 11 Mesh 11T

Q1/2 Qgz/2 Q1/2 asz/o ay/2 asz/2

1 0.673988 - 0.686836 - 0.690038 -

2 0.674944 0.021165 | 0.687367 0.036553 | 0.690429 0.062385
3 0.676769 0.023857 | 0.687695 0.038791 | 0.690507 0.064387
4 0.677274 0.030522 | 0.687862 0.047595 | 0.690595 0.076963

Kelmanson [82]) \/3/27 = 0.69099. Ingham and Kelmanson found the first several coef-
ficients by a boundary integral technique. For the refined regular and singular element
meshes we can estimate the coefficients by using a least squares fit on the nodal velocities.
Table D.1 compares the values obtained from the eight slip-surface nodal velocities closest
to the singularity.

For the singular trial function approach we directly identify the singular coefficients
as solution variables. Table D.2 shows the various values. The singular trial function ap-
proach converges smoothly as the underlying mesh is refined. The first singular coefficient
is quite accurate even for coarse meshes, while the higher coefficients are unacceptable.
However, adding additional singular trial functions does not significantly improve the
results. (Whiteman [163] and Wait and Mitchel [158] also noted that additional trial

functions produced little improvement.)
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D.4 Conclusions

Both the singular element and singular trial function approaches significantly im-
proved the ability to model the stick-slip problem accurately with coarse finite element
meshes. The singular element approach gave slightly better results than the singular trial
function method for coarse meshes, but produced some small amplitude spurious oscil-
lations for fine meshes with small singular elements. The singular trial function method
converged smoothly as the underlying mesh was refined. Adding more than one singular

trial function did not improve the solution significantly.
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“The most beautiful sea
is the one we have not sailed yet.”
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