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Preface 
 
 

The 5th International Congress of the Greek Association of Computational 
Mechanics (GRACM) will be held in Limassol, Cyprus during 29 June - 1 July 2005. 
The previous conferences in the series were held in Athens, 1992; Chania, 1996; 
Volos, 1999; and Patras, 2002. 

Since their inception, the conferences have grown in size and scope covering more 
and wider areas of Computational Mechanics. In addition to the 8 invited plenary 
papers, 107 contributed papers from 12 countries have been accepted for presentation 
in GRACM05. These papers covered a wide range of topics: Solid and Structural 
Mechanics, Mechanics of Materials, Structural Dynamics and Earthquake 
Engineering, Stability and Chaos, Fracture Mechanics, Fluid Mechanics and 
Hydraulics, Aerodynamics, Transport phenomena, Electromagnetism, Biomechanics, 
Inverse Problems in Mechanics, Structural Control and Optimization, Artificial 
Intelligence and Expert Systems, System Identification, Numerical Methods and 
Algorithms, Finite Elements, Boundary Elements and Finite Differences. 

The fifth Congress heralds new and innovative activities in a number of areas of 
Computational Mechanics and addresses the important issue of where the 
developments stand today and what the future will be in the applications of research 
developments for the solution of complex problems of modern technology. 

The aims of the Congress are to encourage graduate student participation as well as 
to become a forum for critical discussion so as to lead to an assessment of past 
developments and future application and research needs. The outcome is expected to 
help researchers and engineers to shoulder important responsibilities toward the use of 
computational methods and mathematical models for the solution of a wide range of 
Engineering problems, and to pursue advanced research for the understanding and 
definition of the issues that remain to be addressed. 

We thank the authors of the plenary and contributed papers for timely submission 
and participation in the Congress, the reviewers of the papers, the members of the 
Scientific Committee and the members of the Organizing Committee for their support 
and guidance. We also express our appreciation to the technical and financial 
cosponsors, including the Department of Civil & Environmental Engineering and the 
Department of Mathematics & Statistics of the University of Cyprus, the Hyperion 
Systems Engineering, the Cyprus Tourism Organization and the Department of 
Antiquities, Cyprus. Thanks are also due to the vice-president of GRACM, professor 
A. Boudouvis, and to all members of the Executive Board of GRACM for their 
continuous support and close cooperation.  

An electronic color version of these Proceedings can be found at  
http://www.ucy.ac.cy/~gracm05/e-Proceedings.htm 

 
 
Georgios Georgiou 
Panos Papanastasiou 
Manolis Papadrakakis        June 2005 
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DYNAMICS OF LARGE SCALE VEHICLE MODELS COUPLED WITH DRIVER 
BIODYNAMIC MODELS 

C. Papalukopulos, D. Giagopulos and S. Natsiavas 

Department of Mechanical Engineering 
Aristotle University 

54 124 Thessaloniki, Greece 
(Phone: +30 2310 99 6088,   Fax: +30 2310 99 6029,   e-mail: natsiava@auth.gr) 

 

Keywords: Large scale models, biodynamic models, transmissibility, random road excitation. 

Abstract. Biodynamic response of driver/seat subsystem models coupled with mechanical models of ground 
vehicles is investigated. When the resulting dynamical systems are complex, an appropriate component mode 
synthesis methodology is applied first, leading to a drastic reduction in the dimensions of the original system, 
without affecting significantly the accuracy of the predictions within a prespecified frequency range. The 
effectiveness of the methodology developed is illustrated by numerical results. In particular, frequency spectra 
of several response quantities related to performance of the human and vehicle models were constructed for 
motions resulting from periodic and random road excitation. Among other things, the results indicate that it is 
necessary to include the flexibility effects of the vehicle structure for improving the model accuracy throughout 
the frequency range of interest. 
 

1 INTRODUCTION 

The ride comfort and safety of vehicle drivers and passengers is a diverse, challenging and multi-disciplinary 
subject, which has recently become an issue with large commercial and legal importance. First, human response 
to dynamic excitation depends on many mechanical, physiological and psychological parameters [1]. As a 
consequence, in addition to performing analytical studies, a good understanding of the relation between human 
vibration and comfort requires extensive laboratory and real environments experimental studies of response of 
human body to single or multi-frequency deterministic excitation or random forcing [2-4]. 

Most of the previous studies of ride comfort in road vehicles employed simplified models of the driver- or 
the passenger-seat susbsystem, without considering the effects from the coupling with the dynamics of the 
vehicle [3, 4]. However, preliminary results obtained with simplified quarter car models have indicated that this 
coupling is important, especially around the critical frequency range 3-5 Hz. In a typical situation, this 
simplification is mostly adopted due to the fact that the number of degrees of freedom of a vehicle structure is 
relatively large. The main objective of the present work is to develop and apply a systematic methodology 
leading to sufficiently accurate determination of dynamic response of humans riding on simplified or complex 
mechanical models of road vehicles. In particular, involved systems arise frequently as a result of requirements 
posed on the accuracy of the vehicle response. In such cases, the structural components of a vehicle are 
geometrically discretized by finite elements, leading to models with a quite large number of degrees of freedom, 
which may reach and overcome the order of a million. The basic idea is to first reduce the dimension of the 
systems examined by applying appropriate component mode synthesis methodologies [5, 6]. This helps the 
efforts towards a systematic and comprehensive study of the dynamics exhibited by large order mechanical 
models. Apart from increasing the computational efficiency and speed, the reduction of the system dimensions 
makes amenable the application of several numerical techniques for determining the dynamic response of the 
complex systems, which are applicable and efficient for low order dynamical systems [7]. Here, this is exploited 
in accelerating the determination of critical motions of the driver and the vehicle models examined resulting in 
response to periodic or stationary random road excitation. 

The basic theoretical ingredients, leading to a reduction in the order of the vehicle mechanical models, are 
briefly presented in the following section. Then, typical numerical results are presented on the human and 
vehicle steady state dynamics due to periodic road excitation. In the fourth section, similar results are presented 
for the same models but when subjected to random road excitation. Finally, the most important conclusions are 
summarized in the last section. 
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2 MECHANICAL MODELS - METHOD OF ANALYSIS 

In many areas of interest to the automotive industry, including the prediction of dynamic response, 
optimisation and control of ground vehicles (e.g., [8-12]), the most commonly employed mechanical models are 
two degree of freedom quarter-car models, like the one shown in Fig. 1a. This is mostly due to their simplicity 
and the qualitatively correct information they provide in the low frequency range, especially for ride and 
handling studies. On the other hand, when the accuracy of the results is of vital importance, the mechanical 
models employed for the vehicle structure are more complex. For instance, in Fig. 1b is shown the body of a 
vehicle, which has been geometrically descretized by a relatively large number of (triangular and quadrilateral) 
shell finite elements and a much smaller number of solid (hexahedral) finite elements, leading to a model with 
1,372,989 degrees of freedom. Such a detailed discretization is necessary when the frequency range of interest is 
large, which is the case when investigating hand vibration or performing vibro-acoustics studies [13]. On the 
other hand, the corresponding wheel and suspension substructures are represented by appropriate discrete mass, 
stiffness and damping elements. Finally, the driver-seat subsystem is represented by either the two degree of 
freedom discrete mass, stiffness and damping element model shown in Fig. 2a or by the more involved five 
degree of freedom model presented in Fig. 2b [3, 4]. Moreover, in all cases examined, the effects of the system 
nonlinearities are ignored. 

 

 

Figure 1. Vehicle models: (a) Quarter car model; (b) Finite element model. 

 

 

Figure 2. Human/seat subsystem models: (a) Two degree of freedom model; (b) Five degree of freedom model. 
 
Typically, the equations of motion of a complex mechanical system include contributions from several 

subsystems. For instance, if for simplicity it is assumed that the system examined is composed of components I 
(say the vehicle body) and II (say the suspension subsystem), the equations of motion for component I alone are 
first derived by the finite element method in the following form 

 

                                   I I I II I I
ˆˆˆ ˆM x + C x + K x = f (t)�� � .                                                                   (1) 

 
For a typical mechanical model, the order of these equations is quite large. However, for a given level of 

forcing frequencies it is possible to reduce significantly the number of degrees of freedom, without sacrificing 
the accuracy in the numerical results, by applying standard component mode synthesis methods [5]. Namely, 
through a coordinate transformation with form 
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I I I
x = Ψ q ,      (2) 

the original set of equations (1) is replaced by a considerably smaller set of equations, expressed in terms of the 
new generalized coordinates 

I
q . More specifically, application of the Ritz transformation (2) into the original 

set of equations (1) yields the smaller set 

II I II I I
M q + C q + K q = f (t)�� � ,                          (3) 

where 
T

I I I I
ˆM = MΨ Ψ ,   T

I I I I
ˆC = CΨ Ψ ,   T

I I I I
ˆK = KΨ Ψ    and   T

I II
ˆf = fΨ . 

The most severe numerical difficulties encountered in setting up equation (3) are associated with the selection of 
the columns of matrix IΨ . In particular, this matrix includes the linear modes of the system up to a prespecified 
frequency plus a number of static correction modes [5], which leads to very demanding computations when 
large order systems are examined. 

By applying an analogous treatment, a similar set of equations of motion is also obtained eventually for 
component II 

    IIII II IIII II II
M q + C q + K q = f (t)�� � .    (4) 

Then, combining equations (3) and (4) leads to the equations of motion of the composite system in the classical 
form 

Mx + Cx + Kx = f (t)�� � .                    (5) 
The contribution of more components is treated in a similar manner, so that all the unknown coordinates are 
included in the vector 

T
1 2 nx(t) = (x x x )… , 

while M , C  and K  are the mass, damping and stiffness matrix of the system, respectively. These quantities 
include contribution from all components of the composite system examined. Finally, the elements of the vector 
f (t)  represent the terms of external forcing, which arise from road profile geometric irregularities. In general, a 
typical road is characterized by the presence of large isolated irregularities, like potholes or bumps, which are 
superposed to smaller but continuously distributed profile irregularities. In all cases examined here, only the 
latter type of road irregularities are considered. Moreover, the vehicle is assumed to move on a straight path with 
a constant horizontal velocity component 0v and each of the rear wheels passes over exactly the same road point 

as the corresponding front wheel after a constant time delay 0τ = α v , where α  is the vehicle wheelbase. 
In a typical situation, the number of degrees of freedom of the reduced system is relatively small. Apart from 

increasing the computational efficiency and speed, the reduction of the system dimensions makes amenable the 
application of several numerical techniques, which are applicable and efficient for low order dynamical systems 
[6]. Here, this is exploited in accelerating the determination of steady state motions of the models examined, 
resulting from periodic or stationary random excitation, as explained in the following two sections. 
 

3 NUMERICAL RESULTS FOR PERIODIC ROAD EXCITATION 

This section presents a sequence of characteristic numerical results obtained by assuming deterministic road 
excitation. In particular, the vehicle travels over a road with harmonic profile, having amplitude 0s  and 

wavelength λ . Consequently, the forcing vector is proportional to 0s  and involves harmonic terms with 

frequency 0ω = 2π v λ . 
First, Fig. 3 presents typical frequency-response diagrams obtained at two special points of five different 

vehicle models, by assuming a vertical harmonic road excitation at the four wheels, with amplitude 0s = 1cm . 
Specifically, the amplitude of the vertical acceleration obtained at the front left wheel and the driver seat is 
depicted as a function of the forcing frequency. In four of the models examined, the vehicle is represented by a 
two degree of freedom quarter car model with zero, one, two and five degrees of freedom for the driver/seat 
subsystem. The fifth model includes the finite element model of the vehicle body, while the driver/seat 
subsystem is represented by the five degree of freedom biodynamic model shown in Fig. 2b. As a general 
observation, the acceleration levels developed at the wheel are much higher than those developed at the seat 
position within the higher frequency range examined. Moreover, the presence of the human/seat subsystem 
makes a substantial difference in the overall dynamics, especially in the low frequency range. Finally, the results 

523



C. Papalukopulos, D. Giagopulos and S. Natsiavas 

demonstrate that the car body flexibility effects, which are taken into account more accurately by the finite 
element model, become important throughout the frequency range examined. 

 

 

Figure 3. Frequency-response diagrams for periodic road excitation. Amplitude of vertical acceleration: (a) at 
the front left wheel and (b) at the driver seat. 

Next, Fig. 4 shows results indicating the importance of the coupling between the dynamics of the vehicle and 
the biodynamic model of the human/seat subsystem. The results depicted in Fig. 4a were determined by 
representing the vehicle dynamics by the quarter car model of Fig. 1a, while the results shown in Fig. 4b were 
obtained by employing the finite element model for the vehicle structure. In both cases, the human/seat 
subsystem was represented by the five degree of freedom biodynamic model of Fig. 2b. In addition, the 
continuous lines indicate results obtained by applying the road excitation at the base of the quarter car model, 
while the broken lines indicate results obtained by applying the same excitation directly to the base of the 
biodynamic model. Specifically, Fig. 4a shows the magnitude of the transmissibility ratio of the acceleration at 
the pelvis to the acceleration at the ground (continuous line) or at the base of the seat (broken line), as a function 
of the forcing frequency. On the other hand, Fig. 4b shows the magnitude of the same transmissibility ratios for 
the acceleration at the driver head, as a function of the forcing frequency. The differences between the 
continuous and the broken lines observed in both cases illustrate the fact that ignoring the vehicle dynamics 
leads to significant inaccuracies when predicting human response. Similar differences were also observed for all 
the other degrees of freedom of the human model. 

 

 

Figure 4. Magnitude of the transmissibility functions for the vertical acceleration: (a) at the driver pelvis (quarter 
car model) and (b) at the driver head (finite element vehicle model). 

The following set of diagrams completes the picture on the response of the large scale vehicle model to 
periodic road excitation. In particular, Fig. 5a presents the magnitude of the transmissibility ratio for the 
acceleration obtained at the five degrees of freedom of the biodynamic model shown in Fig. 2a, calculated with 
the nominal mass of the driver ( dm = 70kg ). Likewise, Fig. 5b depicts similar results, determined after 

increasing the driver mass to dm = 100kg . 
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Figure 5. Magnitude of the transmissibility functions for the acceleration of the biodynamic model degrees of 
freedom, for a driver with mass: (a) dm = 70kg  and (b) dm = 100kg . 

 

4 NUMERICAL RESULTS FOR RANDOM ROAD EXCITATION 

In the sequel, more realistic road profiles were selected. Namely, the vehicle models were assumed to travel over 
road profiles characterized by real-valued, zero mean, stationary and Gaussian random fields. For their complete 
statistical description, it is sufficient to specify the power spectral density of the road irregularities, say gS (Ω) , 

where Ω = 2π λ  is a spatial frequency, corresponding to a harmonic irregularity with wavelength λ . 
According to previous investigations on the subject (e.g., [14]), the geometrical profile of typical roads fits 
sufficiently accurately the following simple analytical form 

1

2

-n
g 0 0 0

g -n
g 0 0 0

S (Ω )(Ω Ω ) , if Ω Ω
S (Ω) =

S (Ω )(Ω Ω ) , if Ω Ω
⎧ ≤⎪
⎨ ≥⎪⎩

    (6) 

where = 1 2π0Ω  is a reference spatial frequency. Then, since the mechanical models examined possess linear 
properties, knowledge of the road profile spectral density and the vehicle horizontal velocity permits evaluation 
of the spectral density of the stationary vehicle response through the well-known formula 

T*
xx ggS (ω) = H(ω)S (ω)H (ω) . 

In the last formula, 0ω = vΩ  is the temporal frequency, xxS (ω)  and ggS (ω)  represent the spectral 

density matrices of the response and the forcing, respectively, while H(ω)  is the matrix including the frequency 
response functions of the system [15]. 

First, Fig. 6 presents typical response diagrams obtained for the driver seat by employing the same 
mechanical models as those used to determine the results presented in Fig. 3. Namely, Fig. 6a shows the power 
spectral density of the acceleration obtained at the driver seat as a function of the forcing frequency, in response 
to random excitation caused at the four wheels of the vehicle. The amplitude of the road irregularities is selected 
to be about the same as that of the harmonic profile employed in the previous section, resulting in a good quality 
road, while the vehicle travels with a constant horizontal speed 0v = 120km h . Likewise, Fig. 6b shows 

similar results, obtained by assuming that the vehicle moves with a horizontal speed 0v = 70km h  over a bad 
quality road. The results depicted in Fig. 6 present a lot of similarities with the corresponding results shown in 
Fig. 3b. Again, the presence of the human/seat subsystem makes a substantial difference in the low frequency 
range examined. Moreover, the car body flexibility effects are important throughout the frequency range 
examined. 

Next, Fig. 7 shows results indicating the importance of the coupling between the dynamics of the vehicle and 
the biodynamic model. Specifically, Fig. 7a depicts the power spectral density of the driver pelvis acceleration 
determined by using a good quality road and representing the vehicle dynamics by the quarter car model of Fig. 
1a. Likewise, Fig. 7b shows similar results for the driver head, obtained for the finite element vehicle body 
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model of Fig. 1b. In both cases, the human/seat subsystem was represented by the five degree of freedom model, 
while the broken lines indicate results obtained by applying the road excitation directly to the base of the 
biodynamic model. Again, the differences observed illustrate the fact that ignoring the vehicle dynamics leads to 
significant inaccuracies in predicting the vehicle driver response. 

 

Figure 6. Power spectral density of the driver seat acceleration caused by: (a) a good quality road and 
v = 120 km h0  and (b) a bad quality road and v = 70 km h0 . 

 

 

Figure 7. Power spectral density of the vertical acceleration: (a) at the driver pelvis (quarter car model) and (b) at 
the driver head (finite element vehicle model). 

 
The final set of diagrams completes the picture on the response of the large scale vehicle model to random 

road excitation. In particular, Fig. 8a presents the power spectral density of the acceleration obtained at the front 
left wheel and the five degrees of freedom of the biodynamic model shown in Fig. 2a for a good quality road 
and 0v = 120km h . Obviously, most of the energy in the signals referring to the degrees of freedom of the 
biodynamic model is distributed in a frequency range around 1 Hz, while the energy in the wheel acceleration 
signal is concentrated around 10 Hz. Likewise, Fig. 8b depicts similar results, determined for the off-diagonal 
elements of the spectral density matrix, corresponding to excitation applied to the front left wheel and 
measurements taken at the degrees of freedom of the biodynamic model. Most of the energy in all the signals 
shown is distributed and extends over the frequency range up to about 50 Hz. This is illustrated in a better way 
by the results of Fig. 9a, showing the cumulative rms value corresponding to the acceleration values shown in 
Fig. 8a. For comparison, Fig. 9b presents the same quantities but obtained by employing a quarter car model, 
instead. 

In closing, it is important to note that the calculation of other response quantities, like apparent mass, 
correlation functions and vibration dose values, which are useful in assessing the ride confort of a vehicle [1-4], 
can also be performed in a similar fashion. For instance, the number of zero-crossings for the signals considered 
can be obtained as a by-product of the calculations performed. More specifically, for the forcing conditions that 
led to the results presented in Fig. 8, the number of zero-crossings in the vertical acceleration obtained at the left 
front wheel are 18, while for the driver seat are 11. Finally, Fig. 10a presents the corresponding auto- correlation 
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function obtained for the acceleration at the driver seat position, while Fig. 10b shows the cross-correlation 
function obtained for the same mechanical model between the front left wheel and the driver seat. 

 

 
Figure 8. (a) Power spectral density of the acceleration at the front left wheel and the degrees of freedom of 

the biodynamic model. (b) Cross spectral density corresponding to excitation applied to the front left wheel and 
acceleration measured at the degrees of freedom of the biodynamic model. 

 

 
 

Figure 9. Cumulative rms value corresponding to the acceleration values shown in Fig. 8a. Results obtained 
for: (a) the finite element model and (b) the quarter car model. 

 

Figure 10. (a) Auto-correlation function for the acceleration at the driver seat. (b) Cross-correlation function 
between the front left wheel and the driver seat position. 

 

5 CONCLUSIONS 

Α methodology was developed for determining response of biodynamic driver/seat models coupled with vehicle 
models. For large scale models, the basic idea was to first apply an appropriate reduction methodology in order 
to eliminate a substantial number of the original degrees of freedom, so that the reduced model is sufficiently 
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accurate up to a prespecified level of forcing frequencies. Then, frequency response spectra of several response 
quantities related to the dynamic performance of the vehicle and the driver under periodic or random road 
excitation were constructed. Among other things, it was shown that the car model flexibility effects are 
necessary for improving the model accuracy throughout the frequency range of interest. Moreover, the results 
demonstrated that the dynamic quantities determined form a basis for computing other response quantities, like 
transmissibility functions, vdv and rms values, which are valuable for assessing ride comfort in a vehicle. The 
methodology presented can be easily extended to include the effect of other types of excitation as well as the 
effect of strong nonlinearities. It will also help the efforts to select optimum values for the seat technical 
characteristics. 
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Abstract. In vitro, quasi static tension experiments have been performed on porcine femoral muscle. The nonlinear
stress - strain curves obtained from these experiments, have been introduced in a finite element analysis of an ideal,
axisymmetric and passive (i.e with no contractile behavior) model of skeletal muscle, under both longitudinal
tension and transverse (perpendicular to the fibers) compression. The finite element computation yielded that the
lowest minimum principal stresses, i.e the most compressive normal stresses in the model, develop in the vicinity of
the core of the muscle belly. Thus the damage inflicted on the muscle tissue, due to a transverse compressive static
load, may be more severe in the interior of the muscle than on the contact area between the external load and the
muscle boundary. Analogous observations have been reported in the literature, regarding different muscle models.

1. INTRODUCTION

The mechanical behavior of skeletal muscle under transverse compressive loads, static or dynamic, is related
either to pressure sores caused to paralyzed or geriatric patients that lie in bed for long periods of time or to trauma
suffered by car passengers, after a car crash. In the literature however, only quasi - static transverse compressive
loads acting on skeletal muscle have been considered. Experimental data for the passive behavior of musculoskele-
tal tissues under compression, have been presented by Grieve and Armstrong[1]. Bosboom et al[2] have investigated
experimentally the transverse force - length response of skeletal muscle under in - vivo compression and have used
the Ogden[3] non - linear and viscoelastic material model, for the simulation of their experimental results. Maggana
et al[4] have obtained stress - strain experimental results for transverse and longitudinal muscle compression and
have used the Langevin model for their constitutive interpretation.

Linder - Ganz and Gefen[5] have done finite element analyses of human muscle in the shoulders, pelvis, head
and heels, subjected to compressive loads and concerned with patients lying in bed for long periods. Oomens et al[6]

and Todd and Thacker[7] have performed finite element analyses of the human buttocks under compression, related
to wheelchair users. These three references[5],[6],[7] report that compressive stresses in the muscle interior are more
severe than the contact compressive stresses applied on the muscle boundary. Breuls et al[8] have performed a
theoretical analysis of damage evolution in skeletal muscle tissue with reference to pressure ulcer development.
Spears et al[9] used finite elements to investigate the effect of different saddle shapes, on the stresses induced in the
cyclist perineum during cycling.

As long as the tensile response of muscle and tendon is concerned, Hawkins and Bey[10] and Myers et al[11]

performed in - vivo tensile experiments on animal muscle and tendon tissue and have obtained force - length and
stress - strain results respectively. Maganaris and Paul[12] have achieved stress - strain curves for tendons under
tension.

In this study we have performed in - vitro tension experiments, on porcine femoral muscle. The nominal stress
- engineering strain curve for the muscle turns out to be nonlinear. This curve has been used in a finite element
analysis of an ideal, simplified and axisymmetric muscle - tendon compound, subjected to combined longitudinal
tension and transverse compression. The tendon stress - strain curve used in the finite element analysis was taken
from Maganaris and Paul[12]. The finite element computation yielded that the minimum principal stress, i.e the
most compressive normal stress, develops in the vicinity of the core of the muscle belly and not on the boundary
where the external transverse compression is applied. Thus the damage inflicted on the muscle tissue due to a
transverse compressive static load, may be more severe in the interior of the muscle belly than on its boundary.

2. PREPARATION FOR THE EXPERIMENTS

Tension experiments were performed on specimens taken from the femoral muscle of a Landrace male piglet.
The age of the animal was 8 months and its weight was 60 kg. Immediately after the animal sacrifice, both femurs
together with the surrounding tissues were removed from the animal body and kept in sodium chloride solution
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0.9% w/v at normal refrigeration temperature 6oC - 8oC.
The experiments were performed within 1 - 4 days after the animal was sacrificed. Before the experiments, the

femurs were left to thaw for 15hrs, at room temperature. Then, the muscle tissue bundle surrounding the femur
was removed. Afterwards, several major femoral muscles, from tendon to tendon, together with their surrounding
membrane, were removed from the bundle of muscles around the femur. Obviously, a major femoral muscle
together with the tendons at its ends, has a varying cross sectional area along its length. The cross sectional area
of the muscle is greater in the belly of the muscle and smaller in the neck of the muscle, where the tendon is. The
specimens that were picked for the experiments were those with the most uniform cross sectional area along the
belly. All specimens were tested at room temperature.

In order to measure the strain in the vicinity of the belly of the muscle, where the cross sectional area is almost
uniform and is far from the tendons where the grips were applied, white strips perpendicular to the longitudinal
axis of the specimens, were painted on the surface of the muscle tissue. Six strips were marked on the tissue,
at approximately equal distance from each other, using a correcting fluid marker. The width of the strips was
not uniform across the muscle tissue and varied from 0.5 mm to 1.5 mm. The cross sectional areas of the two
specimens, namely PMT1-2 and PMT4-1, that were used in the experiments, are given in Table 1. These cross

Muscle specimen Cross sectional area (mm2)
PMT1-2 80.75
PMT4-1 84

Table 1: The cross sectional areas of the specimens used in the experiments

sectional areas were found by considering the muscle belly cross section as almost circular and measuring the
length of its diameter using a dial extensometer. This measurement was done when the specimens were attached
to the machine grips.

Prior to testing the test machine load cell was checked to have an error of less than 3%.

3. EXPERIMENTS

Tension experiments were performed on the two specimens, namely PMT1-2 and PMT4-1, of porcine muscle
(see Table 1). The end tendons, together with the muscle tissue between them, were attached to the INSTRON 1121
machine grips. An instant drying glue was used on the interface between the tendons and the grips. The velocity
of the grip displacement was 10mm/min. A video camera recorded the evolution of the tension experiments. The
resolution of the video frames that were analyzed was 300 (height)× 500 (width) pixels and their speed was 36
frames/s. The colour contrast between the white stripes and the reddish muscle was analyzed via image processing,
with the help of a code written in Mathcad. A rectangular area that contained the striped region of the muscle,
was analyzed. This region was interpreted as a matrix of rows and columns of pixels. Within this area, 256
different colours were considered. Each pixel was assigned a colour, among the 256 mentioned and each colour
was assigned a number between 0 and 255. The number 0 was assigned to the black colour and the number 255
was assigned to white colour, with all other colours taking the values in between. At each time and consequently
at each load step that was considered, the numbers corresponding to the colours of the pixels on each row of the
rectangular region, were added and the sums were plotted against the column number corresponding to each row.
The peaks obviously corresponded to the white strips at the point of maximum contrast (see Figure 1). In this
way, variations of white strip width due to marking irregularities, was diminished. The displacements of the peaks,
measured in number of pixels, were divided by the original length between them, measured in number of pixels as
well. Thus we could get a measure of the local engineering strain within the muscle. A mean value of the strains
corresponding to neighboring pairs of peaks, could give an estimate of the strain in the specimen. The strains were
also measured by using the INSTRON machine extensometer. The discrepancy between the measurements of the
video resolution system and the extensometer was found to be10% at strain 0.05 and7% at strain 0.08.

4. EXPERIMENTAL RESULTS

In Figure 2 the quasi - static tension experimental results of the three muscle specimens tested (see Table 1), are
presented. Fitting with polynomial curves has been performed through the experimental result points. The curve
PMT4-1 was used in the finite element simulation that is presented in the following sections. It is evident that the
muscle exhibits nonlinear stress - strain behavior. Such a behavior is typical for soft biological tissues and consists
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Figure 1: The white peaks on a muscle experimental specimen at timet = 0s (red line) and att = 30s (blue line)

of a low stiffness region at low strains and an increased stiffness region at higher strains. The high stiffness region
is due to the combined load carrying capacity of the individual muscle fibers, which when are stretched, form an
overall stiff bundle. The mechanical behavior that is portrayed in the curves in Figure 2 may be more stiff than its
in - vivo counterpart and the reason may be the refrigeration of the muscle prior to the experiments. Refrigeration
changes the mechanical properties of the muscle[13].

Figure 2: Experimental results from uniaxial tension tests on muscle specimens

5. FINITE ELEMENT ANALYSIS

A simplified axisymmetric model for fibrous skeletal muscle was analyzed via the finite element method. This
ideal geometry, consists of a typical belly part and a neck part. A half of the generator plane surface, which
produces the three dimensional muscle shape after a 3600 revolution, appears in Figure 3. The axis of axial
symmetry, lies along the left most vertical side of the model shown in Figure 3. The origin is located at the lower
left most corner of the model. We consider only half of the generator plane surface, due to the mirror symmetry
with respect to the horizontal plane that passes from the origin. Thex axis lies along the horizontal plane of mirror
symmetry and they axis coincides with the axis of axial symmetry. Note that the lower (belly) area contains the
muscle material and the upper (neck) area contains the tendon material. At the upper end of the neck the half -
diameter is 1.5 cm and at the belly lower end the half - diameter is 4cm. The half length of the muscle - tendon
construction, i.e the distance between the belly lower end and the neck upper end, is 12cm. Plane, two dimensional,
axisymmetric triangular elements, with six nodes, have been used for the discretization of the model.

An axial tensile traction of 1MPa was applied on the end cross section of the neck (see Figure 3). A lateral,
normal pressure of 1MPa was also applied on the generator curve of the muscle boundary (see Figure 3). According
to the stress - strain curve used for the muscle material in this article (see Figure 2), in a simple tension experiment
on a muscle bar of uniform thickness, a nominal tensile stress of 1MPa, corresponds to an engineering tensile strain
of about 10%. Here the lateral load of 1MPa is compressive, but the constitutive model that we used implies an
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Figure 3: A coarse discretization of the muscle - tendon geometry

identical behavior under compression. We employed a static transverse compressive load in our model, while in
car crashes the loads exerted on the human body are dynamic. The muscle is considered in the passive state, i.e
with the contractile behavior inactive.

The displacement constraints,uy = 0 on the lower horizontal boundary andux = 0 on the left vertical
boundary, appear in Figure 3 too. A finer mesh in the muscle region, that was also used as a check for our results,
appears in Figure 4. Note that in Figure 4 the muscle region is the lower one with the fine mesh, while the tendon
region is the upper one with the coarse mesh.

Figure 4: A fine discretization of the muscle region within the muscle - tendon geometry

A nonlinear elastic incompressible and isotropic model, for both the muscle and the tendon was used. In reality,
the muscle and the tendon materials are transversely isotropic, due to their composition of fiber bundles along the
axial direction. Also in reality the muscle and tendon materials may not be incompressible. Large displacements
were also incorporated in the muscle and tendon deformation models.

The finite element package ANSYS 8.0 was used for the numerical simulation of the mechanical behavior of the
muscle - tendon compound. The Multilinear ELAStic (MELAS) model of ANSYS was used for the introduction
of the constitutive stress - strain relation of the materials (muscle and tendon). The nonlinear stress - strain curves
used within the finite element simulation were taken from Figure 2 (curve PMT4-1) as long as the muscle is
concerned and from Maganaris and Paul[12] (figure 4B in that paper) as long as the tendon is concerned. Via
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the MELAS material model of ANSYS, these curves were converted to multilinear ones i.e to lines that consist
of linear segments of varying slope. Since in the uniaxial tension experiments, the nominal stress (first Piola -
Kirchhoff) and the engineering strain, both of which refer to the undeformed configuration, were recorded, we had
to convert these to the Cauchy stress and to the logarithmic strain respectively, because in ANSYS an analysis with
respect to the current configuration is performed. The relevant conversion relations are

e = ln λ (1)

wheree is the logarithmic strain along the axial direction in a simple tension experiment andλ is the stretch ratio
along that direction, given in turn via the relation

λ = 1 + ε (2)

whereε is the tensile engineering strain. The corresponding conversion relationship for the stress is

σ = λΠ (3)

whereσ is the Cauchy (true) stress andΠ is the first Piola - Kirchhoff (nominal) stress. Since both the muscle and
tendon materials were considered as almost incompressible, a Poisson’s ratio equal to 0.45 was assigned to them.

6. FINITE ELEMENT RESULTS

Results in this paragraph are obtained by using the coarse mesh shown in Figure 3. The variation of the
horizontal displacementux is shown in Figure 5. As expected the most negative value ofux is at the boundary
where the lateral pressure is applied. Along the axis of axial symmetry, we haveux = 0. In Figure 6 the variation

Figure 5: The variation of the horizontal displacementux

of the vertical displacementuy is shown. The biggest value is on the neck upper boundary where the tensile
load is applied and a zero value appears along thex axis which is an axis of symmetry. The variation of the
maximum principal stressσ1 appears in Figure 7. The greatest value develops at the neck of the compound where
the tensile traction is applied. On the neck upper boundary the maximum principal stress is equal to the applied
traction. The fluctuation of the minimum principal stressσ3 is shown in Figure 8. The biggest absolute value ofσ3

develops at the central area of the belly of the muscle and not close to the line of application of the lateral pressure.
Linder - Ganz and Gefen[5] have also reported that maximal principal compression and von Mises stresses, in the
interior of several animal and human muscle models, exceeded the applied boundary compressive stresses. Similar
conclusions are conveyed by Oomens et al[6] and Todd and Thacker[7].

In order to to check the validity of the latter observation, we reran the finite element code with the finer mesh
of Figure 4 . The outcome is shown in Figure 9 and is very close to the one obtained in Figure 8.
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Figure 6: The variation of the vertical displacementuy

Figure 7: The variation of the maximum principal stressσ1

7. CONCLUSIONS

Experimental and finite element analyses of skeletal muscle have been pursued in this paper. In vitro, quasi
static tension experiments, on piglet femoral muscle tissue, were performed. Finite element analysis on a simplified
axisymmetric muscle model, consisting of a muscle and a tendon part and subjected to an axial tensile and a
transverse compressive load, has also been conducted. The main conclusions are:

• The stress - strain relation of the muscle tissue, under quasi static tension, is nonlinear. The larger the strain
the stiffer the muscle becomes, since the muscle fibers work together to form a stiff bundle. Such a behavior
is typical for most soft fibrous biological tissues.

• The finite element analysis of the muscle - tendon simplified axisymmetric compound, subjected to an axial
tensile and a transverse compressive load, indicated that the most severe minimum principal stress, i.e the
most compressive normal stress in our model, develops in the vicinity of the core of the muscle belly (see
Figure 9) and not close to the boundary where the external transverse compression is applied. Analogous
conclusions have been reported in the literature[5],[6],[7] for different muscle models, where maximal internal
compressive stresses are greater than the applied boundary compressive stresses. Thus the damage inflicted
on the muscle tissue due to a transverse compressive static load may be more serious in the muscle interior,
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Figure 8: The variation of the minimum principal stressσ3

Figure 9: The variation of the minimum principal stressσ3 under the finer mesh of Figure 4

than on the muscle boundary.

8. DISCUSSION - LIMITATIONS

The simple tension experiments, conducted on muscle tissue, were performed 1 - 4 days after the animal
sacrifice. It is however known[13] that refregiration causes changes to the tissue mechanical properties. It is
therefore possible, that the mechanical response concluded from these experiments, is stiffer than the one that
would have occurred, if the experiments had been done immediately after the animal sacrifice.

The finite element model that we have constructed for the simulation of the muscle - tendon compound under
combined longitudinal tension and transverse compression, is a simple, ideal, axisymmetric one. No interaction
between the muscle and the surrounding tissues (e. g. bones) has been considered. However, axisymmetry may
interprete in a crude way the action of a distributed load, along part of the muscle belly and the reaction of the
underlying bone. A more realistic picture of the real geometry of such a model would have been obtained via
computer tomography (CT).

The lateral compressive load that we have applied on the muscle is a static one, while in real situations of
muscle injuries caused by car crashes, such loads are dynamic impact loads. Hence an impact analysis on a
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nonlinear elastic material, would be more appropriate in that case.
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Abstract. Abdominal aortic aneurysm (AAA) is a localized dilatation of the aortic wall. The lack of an accurate 
AAA rupture risk index remains an important problem in the clinical management of the disease. To accurately 
estimate AAA rupture risk, detailed information on patient specific wall stress distribution and aortic wall tissue 
yield stress is required. A complete fluid structure interaction (FSI) study of the wall forces is impractical and 
thus of limited clinical value. On the other hand, isolated static structural stress analysis based on a uniform 
wall loading is a widely used approach for AAA rupture risk estimation that however neglects flow induced wall 
stress variation. Aim of this study was to assess the merit of a decoupled fluid structure analysis of AAA wall 
stress. Anatomically correct patient specific AAA wall models were created by 3D reconstruction of computed 
tomography (CT) images. Flow simulations were carried out with inflow and outflow boundary conditions 
obtained from patient extracted data. Static structural stress analysis was performed applying a uniform 
pressure wall loading and a flow induced non-uniform pressure loading. In the structural analysis a 
hyperelastic arterial wall model and an elastic intraluminal thrombus (ILT) model were applied. Our results 
show that the decoupled fluid structural analysis approach yields a more realistic AAA wall stress distribution 
than the isolated structural stress analysis approach thus providing a practical alternative to the more complete 
but computationally intensive FSI study. 
 
 
1 INTRODUCTION 
Abdominal aortic aneurysm is a localized dilatation of the aortic wall. The physiological processes associated 
with AAA development and progression are not as yet fully understood. This pathologic condition has been 
found to affect 8.8 % of the population over the age of 65  [1] and if left untreated it may lead to rupture. The size 
of the aneurysm and its rate of expansion are parameters associated with the risk of rupture. For aneurysms with 
a maximum transverse diameter below 4 cm the risk of rupture is very small (but not absent). However, when 
the aneurysm transverse diameter is between 4 and 5 cm the risk of rupture is 0.5 % and between 5 and 6 cm it 
becomes 5 % rising exponentially with diameter increase [2-4]. The decision for surgical intervention for patients 
with AAA’s is complicated by the lack of a sufficiently accurate rupture risk index. A widely used such index, 
based on the results from a number of clinical studies [5-7], is the maximum transverse diameter. In cases where 
this diameter exceeds 5-6 cm, surgical or endovascular treatment is advised. However ‘small’ (<5 cm) diameter 
aneurysms, where ‘watchful waiting’ requiring frequent observation is preferred to surgery, are known to 
rupture [8-10]. Therefore, the decision for surgical intervention, associated with a mortality rate of 4-5 % [11], 
should not be based exclusively on the maximum transverse diameter and a new more reliable rupture risk index 
should be introduced.  

Recent attempts to establish a reliable AAA rupture risk index were based on the evaluation of the arterial 
wall stress distribution. Finite element analysis (FEA) has been used to compute the stress distribution in both 
simplified [12,13] and anatomically correct [14,15] AAA models. The hemodynamics of the AAA have been 
extensively investigated experimentally [16,17] and computationally in both idealized and anatomically correct 
models in steady and time varying flow [18,19]. The coupling of fluid and structure has also been studied in AAA 
models [20]. The role of intraluminal thrombus (ILT) on AAA wall stress still remains uncertain. Some studies 
support the hypothesis that the ILT introduces a cushioning effect in the transmission of the flow induced 
stresses to the wall that reduces the peak wall stress [21-23], while others suggest that thrombus has no effect on 
the progression of an AAA [24,25]. Various simplifications have been introduced to the models used in these 
studies with respect to the shape of the aneurysm, the inclusion and elastic properties of ILT, the thickness and 
elastic properties of the wall, the role of surrounding structures and, the presence of residual stresses on the 
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AAA wall.  
The stress distribution on the aneurysmal wall is determined by the complex intra-aneurysmal hemodynamics 

resulting from the geometric configuration of the ILT modulated flow conduit and the effects of surrounding 
tissue. To date the maximum transverse dimension of the AAA is being used routinely in clinical practice as an 
estimate of rupture risk. However, the use of this parameter alone has lead in many cases to the underestimation 
of rupture risk in ‘small’ (<5 cm) diameter aneurysms and overestimation of the risk of rupture in ‘large’ (>6 
cm) diameter aneurysms thus compromising the quality of patient management. 

The lack of an accurate AAA rupture risk index remains an important problem in the clinical management of 
the disease. Accurate estimation of the patient specific AAA rupture risk requires detailed information on both 
the wall stress distribution and the aortic wall tissue yield stress. However, the AAA wall properties and the 
stress distribution cannot be measured or even derived with sufficient accuracy from non-invasive measurements 
in vivo. As an alternative, numerical approximations of the flow and wall motion equations are sought using wall 
constitutive models based on mean elastic properties obtained by in vitro mechanical testing of excised 
specimens of the aneurismal wall. Rhagavan et al. [26] proposed a two parameter, hyperelastic, isotropic, 
incompressible material model for the AAA wall utilizing uniaxial loading stress strain measurements on 
excised AAA specimens. The ILT solid structure has been modeled as either an elastic [27] or hyperelastic [28], 
isotropic, incompressible material.  

The wall stress computation should ideally result from a complete FSI simulation of the wall forces. 
However, this approach still suffers form modeling assumptions, is very intensive computationally and thus 
currently impractical. Furthermore, it has been shown in idealized AAA models that the FSI approach yields 
peak wall stress estimates similar to those obtained by an isolated structural stress analysis [29]. The 
computational approach most widely used to estimate peak AAA wall stress is the isolated static structural 
analysis with a uniform peak systolic pressure wall loading. However, this approach neglects the flow induced 
pressure distribution on the AAA wall. Aim of this study was to assess the merit of a decoupled fluid structure 
approach for AAA wall stress estimation as compared to the isolated static structural stress analysis approach. 
Towards this end, the stress distribution computed for a uniform wall loading in an anatomically correct AAA 
model is compared to the stress computed for the same model but for the flow induced pressure wall loading.   

2 METHODS 

A 86 year old male with an intact 10 cm peak transverse diameter AAA was the subject selected for this study. 
The selected aneurysm geomerty exhibits significant tortouosity of the inflow conduit and the proximal 
segments of the iliac arteries that is expected to strongly affect the intraaneurysmal flow field. This geometric 
configuration is typical of large AAA’s and can be attributed to the asymmetric expansion of the aneurysm sac 
caused primarily by the expansion constraints introduced by the proximity of the spinal column. Information on 
the 3D AAA geometric configuration was extracted in vivo by contrast enhanced high resolution spiral CT 
angiography. The following CT acquisition parameters were prescribed: 120 kVp, 160 mAs effective current 
level, 10.4 s scan time, 22.1 mm feed/rotation ratio, 380 mm in plane FOV, 2 mm slice thickness, 1.5 mm 
reconstruction spacing/increment, 0.5 mm slice overlap and a 512 x 512 image matrix size resulting in a 0.742 
mm in plane resolution. Angiography was triggered at 120 Houndsfield units. 

 

 
Figure 1. Internal (red) and external (grey-translucent) 3D reconstructed 
smoothed surfaces of the CT image extracted AAA geometry. 

 
Segmentation and 3D surface reconstruction of the CT images was implemented using in house developed 
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software [30]. From the segmented CT images two 3D surfaces were reconstructed: the true vessel lumen surface 
and the external aortic wall surface (Figure 1). A third surface, the internal aortic wall was generated as an iso-
surface 2 mm inwards from the external aortic wall. The third surface, the interface between the AAA wall 
endothelium and the ILT, could not be extracted from the CT images as the imaging method still lacks the level 
of spatial resolution and contrast required. The location of this third surface relative to the external aortic wall 
surface effectively determines the thickness of the AAA wall. Abnormal, small scale surface irregularities 
introduced during the imaging and reconstruction processes were excluded from the computational model by 
applying pixel width constrained smoothing of the reconstructed surfaces prior to mesh generation. 
 
2.1  Flow Computation 

The computational grid generated using Gambit had 333150 tetrahedral elements and non-uniform grid node 
spacing to produce higher grid density at the proximal and distal aneurysm neck regions as compared to the 
bulge surface. A short, native vessel blended straight tube like extension of the proximal inflow was added to the 
model to create a circular cross section inlet required for the application of the exact Womersley solution as the 
time dependent inflow boundary condition. The Navier-Stokes and continuity equations for incompressible flow 
neglecting body forces are expressed in vector form as: 
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where, D Dt t=∂ ∂ + ⋅∇u  is the substantial derivative, ρ is the fluid  density, and ν is the fluid kinematic 
viscosity. 

Fluent 6.1.22 was used to solve the flow equations. For the flow field computations, the arterial wall was 
assumed rigid and blood was modeled as an incompressible, Newtonian fluid with a density of 1.05 gr/cm3 and a 
viscosity of 4.5 cP. Blood is a suspension of red and white cells, platelets, proteins and other elements in plasma 
and exhibits an anomalous non Newtonian viscous behavior when exposed to low shear rates or flows in tubes 
of less than 1mm in diameter. However, the Newtonian fluid assumption does not affect the major flow features 
and is considered an acceptable approximation for modeling blood flow in the macrocirculation [31]. The AAA 
inflow waveform and the aortic flow split ratio in the iliac arteries were measured in vivo by Doppler US two 
hours after CT scanning of the patient. On average, the left iliac artery received 40 % of the aortic flow and the 
right iliac artery received 60 %. The discrete Fourier series of the measured AAA inflow waveform can be 
expressed as:   
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where Q0 is the steady flow component, N=16 represents the number of Fourier modes used and ω is the 
fundamental frequency of the measured flow waveform. From the discrete Fourier series of the volume flow rate 
in Eq. (2) the fully developed time varying velocity profile was computed using an expression obtained 
following Womersley’s derivation [32]: 
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where J0 and J1 are the Bessel functions of the first kind of order zero and one respectively, A is the cross 
sectional area and R the inlet radius of the straight tube extension inlet and, n R nα ω ν=  is the Womersley 
parameter. The time averaged mean Reynolds number of the prescribed waveform was Rem=355 and the 
Womersley parameter for the fundamental frequency of the measured flow waveform was α1=16.7. The velocity 
profile given by Eq. (3) was applied as the time dependent inflow boundary condition. A time step size of 6×10-4 
s was used and 104 time steps were required to complete one flow cycle. A time periodic solution was achieved 
after 7 flow cycles. A second order upwind discretization scheme was applied for the momentum equation and 
the SIMPLE scheme was used for pressure velocity coupling.   
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2.2  Finite element stress analysis 
ABAQUS 6.4.1 was used to solve the momentum equations, the wall constitutive equations and the 

conditions of equilibrium for the static structural stress analysis. The aortic wall was modeled as an 
incompressible, homogenous, isotropic, hyperelastic, material with a uniform thickness of 2 mm. The finite 
strain constitutive model proposed by Rhagavan et al. [26] was adopted for the arterial wall with a strain energy 
density function given by 

2( 3) ( 3)B BW I Iα β= − + −                   (4) 

where, IB is the first invariant of the left Cauchy-Green tensor B (IB=tr B). The model parameters were set to α= 
17.4 N cm-2 and β =188.1 N cm-2 that correspond to population mean values obtained from uniaxial loading tests 
on excised AAA wall specimens.  

The ILT was modeled as an incompressible, isotropic, homogenous, linear elastic material with a Young 
modulus E = 0.11 MPa and a Poisson ratio ν = 0.45. These values of E and ν represent population mean values 
obtained from uniaxial loading tests performed on ILT specimens harvested during AAA surgery by Di Martino 
et al. [27]. The AAA model assembly included the ILT solid part with 41291 tetrahedral elements and the arterial 
wall shell part with 9690 triangular elements. Stress analysis results were obtained both for a uniform wall 
loading using the peak systolic arterial pressure (16 kPa or 120 mmHg) and for the non-uniform flow induced 
wall pressure loading computed during early systolic deceleration. Mapping of the pressure field from the finer 
numerical grid used for the flow computations to the coarser grid used in the stress analysis was achieved by 
inverse-distance interpolation. A non-slip condition was applied at the AAA wall - ILT interface. The proximal 
and distal ends of the model were constrained longitudinally. 
 
3    RESULTS  

 
The results of the time dependent flow field computation showed that most of the AAA lumen wall surface 

was exposed to very low wall shear stress (WSS) throughout the cardiac cycle. Regions of locally elevated WSS 
were located near the proximal and distal neck of the AAA bulge (Figure 2a). WSS magnitude was normalized 
by the straight pipe inlet Poiseuille WSS. The computed wall pressure distribution during early systolic 
deceleration (Figure 2b) showed a significant deviation from the peak arterial systolic pressure which has been 
widely used as a uniform wall loading condition in static structural stress analyses. During early systolic 
acceleration regions in the vicinity of the distal neck of the aneurysmal wall were exposed to a pressure loading 
18 % higher than the peak systolic pressure. Furthermore, most of the aneurysm bulge wall was exposed to 
pressures 10 % higher than the peak systolic pressure.  

 

Figure 2. Computed WSS magnitude (a) and static pressure on the wall of the true lumen (b) during early 
systolic deceleration. WSS is normalized by the inlet equidiameter straight pipe WSS and static pressure is 
normalized by the systolic arterial pressure. The aortic flow waveform applied is also shown (c). 
 
The highly complex flow field that develops in the aneurysmal sac is depicted in Figure 3 by means of 

stream ribbons color mapped with static pressure (a) and vorticity magnitude (b). The out of plane curvature 
(tortuosity) of the aortic flow conduit injecting blood into the aneurysmal expansion strongly influences the 
velocity distribution at the aneurismal bulge inlet. The vorticity colour mapped stream ribbon graph (Figure 3b) 
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clearly depicts the increase in vorticity occurring within the tortuous aortic segment leading to the aneurysmal 
bulge inlet. 

Arterial wall stress distributions for uniform wall loading and flow induced non-uniform pressure are 
presented using the Von-Mises stress, a scalar measure of the stress tensor that is proportional to the strain 
energy density at each point expressed as 

2 2 2
1 2 1 3 2 3

1 ( ) ( ) ( )2VMσ σ σ σ σ σ σ = − + − + −             (5) 

where σ1, σ2, σ3 are the principal stresses. Application of the non-uniform flow induced wall loading to the AAA 
model produced a 12 % increase in the computed peak wall stress as compared to the uniform wall loading 
result (Figures 4 and 5). Two regions of high stress were found, one located anteriorly in the distal half of the 
AAA bulge with a local peak of 52 N/cm2 (Figure 4 arrow) and the other located at the proximal neck anteriorly 
and to the left with a local peak of 54 N/cm2 (Figure 5 arrow).  It should be noted that only the magnitude and 
not the locations of the peak stress regions was altered by the introduction of the non-uniform flow induced 
pressure wall loading.  

 

                  
Figure 3. Stream ribbons of computed flow field during end systolic deceleration. Static pressure (a) and 
vorticity magnitude (b) color mapping is applied. The aortic flow waveform applied is also shown (c). 
 

 
 
Figure 4.  Computed Von Mises stress distribution on the AAA wall for uniform peak 
systolic pressure loading (left) and flow induced non-uniform wall loading (right). Arrow 
shows local maximum of wall stress. 
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Figure 5. Computed Von Mises stress distribution on the AAA wall for uniform peak 
systolic pressure loading (left) and flow-induced non-uniform wall loading (right). Arrow 
shows local maximum of wall stress. 

 
4   DISCUSSION 

 
The AAA selected for this study had a peak transverse dimension of approximately 10 cm and did not rupture 
prior to surgery although being almost twice the size above which surgical intervention is commonly advised. 
This further supports the argument that the peak transverse dimension is not an absolutely reliable AAA rupture 
risk indicator. Model studies have shown that the law of Laplace that relates internal diameter and wall stress is 
not appropriate for estimating the stress field even in simplified AAA geometries. Elger et al. [12] found in 
models that the wall stress distribution is most strongly influenced by the shape of the aneurysm with peak stress 
correlated to wall curvature. This finding is in agreement with our results (see Figs. 4 and 5). 

The AAA model used in the present study includes a number of simplifications and underlying assumptions. 
A uniform wall thickness was specified due to the inherent limitations in the imaging technique. This affects the 
computed stress distribution thus increasing the uncertainty of the results as compared to the exact in vivo 
conditions. However, it does not reduce the value of the comparative results presented since it will have a 
similar effect in the stress distribution on both computational approaches considered. The hemodynamic 
pressure field was computed assuming a rigid wall model. However, it has been shown both experimentally [33] 
and computationally [34] that the introduction of wall compliance to arterial models only has a quantitative effect 
on the computed wall stresses whereas the main flow features are preserved.  

The computational mesh used for the structural stress analysis was based on the geometry reconstructed from 
the CT images obtained throughout the cardiac cycle and over multiple cycles as the acquisition was not gated to 
the cardiac rhythm of the subject. As a result, the mean geometric representation of the pressure pulse modulated 
AAA structure is reconstructed although a zero-stress state is assumed in the computation. As the zero-stress 
state of the AAA cannot be measured in-vivo one could assume that as the diastolic phase occupies most of the 
abdominal aorta flow cycle the reconstructed AAA geometry is an approximate representation of the diastolic 
pressure modulated AAA stress state. This residual stress has been neglected in this investigation although its 
effects are not expected to invalidate the results of this comparative study. The effects of neglecting the residual 
stress, which is assessed that may be important, on the computed stress distribution will be addressed in a future 
study.  

The material properties used in this study where based on mean values and therefore the computed stress 
distribution is not expected to represent the exact in vivo wall loading conditions. It should be noted however 
that the aforementioned difficulties in constructing a mathematical model to simulate in vivo AAA wall loading 
conditions also apply to a further extent to the FSI approach, which is further complicated by the dynamic 
effects of wall motion. It is therefore very important to reduce the solution uncertainties identified in the 
proposed decoupled fluid structure model before introducing wall motion dynamics in a coupled fluid structure 
model.  

Our results show that although the isolated static structural stress analysis approach captures the gross 
features of the stress distribution it underestimates the magnitude of the peak wall stress by as much as 12 % 
compared to the proposed decoupled fluid structure approach. This value may be different when other AAA 
cases are considered depending on the aneurysm shape and inflow conditions. However, the intra-aneurysmal 
flow-induced wall pressure distribution is primarily influenced by the temporal acceleration and deceleration of 
the flow and to a lesser extent by the size of the aneurysmal sac. Consequently, as our stress computations were 
based on a typical physiological AAA inflow waveform, the 12 % difference in the computed peak wall stress 
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should be considered as a representative result. Furthermore, the decoupled fluid structure approach yields the 
local AAA hemodynamic conditions thus allowing for the identification of wall regions exposed to low and 
oscillatory wall shear stress and high shear gradients, conditions that have been linked to the development of 
wall lesions. This information may then be used to further support prognosis of AAA rupture risk.  

In order to establish a more reliable patient specific index of AAA rupture risk it is necessary to further 
improve the accuracy of the computational models used. This requires imposing realistic boundary conditions 
extracted from the patient in vivo to a computational model that couples fluid and solid dynamics. This study 
shows that a decoupled fluid structure approach is a practical alternative to the more complete but 
computationally intensive FSI study. 
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Abstract. Biomechanics of the periodontal ligament (PDL) around human teeth is still an open problem. The 
assumption of nearly incompressible PDL leads to Reynolds’ equations in curvilinear coordinates over the 
boundary of the tooth. This paper deals with the numerical solution of these equations around an axisymmetric 
rigid tooth that moves on its axial plane due to in-plane loading. A boundary-type symmetric stiffness matrix of 
order 3×3 is introduced, in order to correlate the applied force-system on the tooth with its three displacements: 
two translations and one rotation. The elements of this matrix are calculated using mid-point integration along 
the half axial boundary of the tooth being in contact with the periodontal ligament. The efficiency of the method 
is tested in two cases: an idealized conical and a nearly anatomical paraboloidal root. For both cases, the 
location of the centre of resistance, the centre of rotation and the distribution of the pressure are calculated.  
 
 
1 INTRODUCTION 

The biomechanics of tooth movement is an important task that mainly concerns dentists and orthodontists 
but also computational mechanics and CAD/CAE scientists. Each tooth is surrounded by a periodontal ligament 
(shortly PDL), which protects the biological tissues by absorbing the applied mechanical loads during chewing 
or orthodontic treatment. Particularly in orthodontics, the loading is called “force-system” and it refers to both 
force and torque applied to the tooth bracket that is usually fixed in the middle of the crown. In this case, the aim 
of a computer simulation is to determine the centre of resistance as well as the centre of rotation for a certain 
force-system, or inversely, to determine the proper force-system that will produce the desirable centre of rotation 
so that the aesthetic malfunction is corrected through medical treatment. The centre of resistance refers to a point 
where the applied force F produces pure translation, while the centre of rotation corresponds to the 
instantaneous pole of pure rotation, well known from elementary kinematics. More details can be found in 
classical works[1-3].   

In order to analyze tooth movements, two-dimensional elastic models using Airy’s stress functions have been 
proposed[4-5]. Also, computational methods such as the finite element method have been proposed by many 
investigators[6-7]. The interested reader may also consult a state-of-the-art report[8]. The relevant analyses include 
linear elastic[6], viscoelastic[9] as well as isotropic and anisotropic models[10-14]. Besides the prediction of the 
above-mentioned centres of rotation and resistance, many investigators such as Middleton et al.[15] report that the 
calculation of the distribution of the pressure inside the periodontal ligament offers important information for the 
understanding of the induced biological effects such as bone remodelling during orthodontic treatment[16-17].  

Since it is widely accepted that the PDL is a fluid or semi-fluid matrix material, for the purposes of this study 
we consider a simple mechanical representation of the PDL as an incompressible mediator between the tooth 
and the alveolar bone, i.e. acting force system and resulting pressure distribution. Thus, it is here assumed that 
the thin elastic PDL is governed by Reynolds equations. This hypothesis makes again timely the excellent work 
of Synge[18], 70 years ago, who proposed that tooth movement may be determined on the following assumptions:  
• Tooth may be regarded as a rigid body, held in a rigid socket by a thin membrane that fills the space 

between; 
• The periodontal ligament has a constant thickness; 
• Periodontal ligament is elastic, homogeneous, isotropic and incompressible. 

Using extensive tensor analysis, Synge[18] obtained two-dimensional and also axisymmetric Reynolds’ 
equations in curvilinear coordinates along the interface between the tooth and the PDL. These formulas were 
solved analytically for a two-dimensional wedge and an axisymmetric cone. However, real teeth of complex 
geometry and variable thickness of the periodontal ligament cannot be solved in a closed form and a relevant 2-
D computational method was recently proposed[19].  
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This paper revisits and extends the excellent theoretical work of Synge[16] so that it becomes now applicable 

to any arbitrary shaped axisymmetric tooth that is surrounded by an incompressible PDL of variable thickness. 
This is achieved by introducing a symmetric 3×3 stiffness matrix, K, with respect to three degrees of freedom: 
two translational (u,v) and one rotational (ω). The four independent elements ijk  of the stiffness matrix K are 

calculated using one-dimensional (such as mid-point) integration along the half of the open interface between 
the tooth boundary and the periodontal ligament in order to determine five regular line integrals (Is). Also, the 
pressure inside the PDL is calculated on the basis of the same line integrals, Is, plus one more.  

The efficiency of the proposed method is presented for two test cases that approximate an upper central 
incisor: a typical conical-shaped model (where an analytical solution exists) and a parabolic-shaped model, 
respectively. For both cases, the centres of resistance, the centres of rotation and the distribution of pressure are 
calculated.  

2 MECHANICAL THEORY 

2.1 Description of the problem 
From the engineering point of view, the problem is posed as follows. Let us assume a rigid axisymmetric body 
(T: tooth) inside another axisymmetric rigid body (S: socket). The space between these two bodies is occupied 
by an incompressible membrane of a prescribed variable thickness h=h(s), which is a function of the arc length s 
along the tooth boundary, as shown in Figure 1.  

All three bodies (tooth, socket and membrane) are assumed to be three-dimensional but only an axial 
section (shown in Figure 2) is required for the following analysis. A force-system F={Fx, Fy, Mz}T , is applied on 
the bracket of tooth and it undertakes a displacement u={u,v,w}T. Obviously, (Fx, Fy) denote forces while Mz a 
moment as shown in Figure 3. In general, we ask for:  
(a) The displacements of the body (T)  
(b) The related centres of resistance and rotation and  
(c) The pressure distribution inside the incompressible membrane between the tooth apex O and the margin 

AB.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: A three-dimensional view of an axisymmetric tooth surrounded by its periodontal ligament  
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Figure 2: Geometry of the structure composed by the tooth (T), the periodontal ligament (PDL) and the socket 

(S). Definition of Cartesian axes and rigid-body displacements (u,v,ω). 
 

 
Figure 3: Definition of tooth geometry (L: root length, D: root diameter), applied force-system F={Fx, Fy, Mz}T, 

centre of resistance (Cre) and centre of rotation (Cro). 
 

2.2 Basic equations 
The hydrodynamic field around a moving axisymmetric rigid tooth (T) within a rigid socket (S) is governed 
by[18] 
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with p=p(s) denoting the pressure within the PDL, R the radius of the tooth, φ  the azimuthal angle, µ the shear 
modulus and bn the normal displacement component on tooth boundary. With respect to a two-dimensional 
coordinate system Oxy shown in Figure 2, the tooth movement is analyzed in two translations ( )u v,  towards x- 
and y-axes, as well as one rotation (ω) about the origin O that is chosen at the apex of the tooth. The 
displacement components of a point M are then ωyu −  and ωxv + , and the normal component bn , in the 
sense from the socket S to the tooth T, is given by 
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The nature of the problem dictates to seek for a solution including the first harmonic in φ , in the form 
( ) ( ) ( ) φφ cos, sgsfspp +==      (3) 

By substituting Eqs (2, 3) into Eq.(1) one receives 
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The boundary conditions for the functions f and g are 
( ) ( ) ( ) 0,00,0 === lggPf atm      (6) 

the last due to the fact that p must be single valued at the apex (s=l).  
By integrating Eq.(4) one receives 
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and after a second integration, the function f is given by 
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where the C  and C ′  are integration constants and are calculated as follows.  
For R=0 at the apex, Eq.(7) results in C=0. Then, for s=0 Eq.(8) implies ( ) atmPfC ==′ 0 . So, f is given as 
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and due to Eq.(3), the pressure at any point becomes 

( ) ( ) φµ cos6
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At this point, it is assumed that the thickness (h) of the membrane is constant. Also, a new independent variable 
is introduced as follows 

∫=
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so that ζ=0 when s=0 and ζ=∞ when s=l. Now, the second differential equation of our problem [Eq.(5)] becomes 
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The analytical solution of Eq.(12) is given as 
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For s=0 (ζ=0), the boundary condition 
0=s

g =0 implies that the integration constants are interrelated as 

011 =′+CC       (15) 
As a result, Eq.(14) is further written as 
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It can be easily seen that the function g [Eq.(16)] depends on both the geometrical factor ζ as well as the two 
kinematic degrees of freedom, i.e. v and ω (involved in F, cf. eq.(13)).  

 
2.3 Pressure Distribution  
2.3.1 Pressure at the apex 

Since for s=l it holds that g(l)=0 [eq.(6)], Eq.(3) results in 
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s
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3
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2.3.2 Pressure at any point of the membrane 
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2.4 Force – Displacement Relationship 
The equilibrium of the tooth under the force-system system F={Fx, Fy, Fz}T leads to the following 

relationship between this and the induced displacement u={u,v,ω}T:  
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By substituting the pressure p from Eq.(18) in Eq.(19), we obtain 
3 3
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3 A MODERN CONSIDERATION 

3.1 Kinematic quantities 
In order to generalize the above procedure to any arbitrary shaped axisymmetric tooth root, in this paper a 
numerical solution is proposed. For simplicity, a PDL of constant thickness is considered.  In this case, in virtue 
of Eq.(16), Eq.(20) obtains its final matrix form 
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or, in compact form: 
F = K u      (22) 

where the above 3×3 “stiffness” matrix K relates the applied force-system F on the tooth with the induced rigid-
body movements u. The elements of K are given as follows: 
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where the arc-length dependent functions are: 
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and the constants are: 3
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Using the above definitions, it is trivial to prove that k32=k23. In other words, the stiffness matrix K is symmetric.  
 
3.2 Determination of centers 
 
3.2.1 Centre of Resistance (Cre) 
By virtue of Eq(21) in case of pure translation (ω=0) due to a force Fy, one can easily derive: 
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3.2.2 Centre of rotation (Cro) 
This centre corresponds to the well-known pole of motion and its location may be inside or outside the tooth, 
depending on the applied loads (Fx,Fy,Mz). It should become clear that the moment Mz includes not only the 
external applied torque Mb at the bracket B, but also the moment of the forces (Fx,Fy) with respect to the origin 
O. Since the motion of each point P on the tooth may be considered as a result of pure rotation around the centre 
of rotation Cro, it is given on the basis of the displacements of the tooth apex O (O≡ P) as follows 

ωω
uyvx CroCro =−= ,       (31) 

For the particular case of a force Fy applied at a point on the long tooth axis Ox and being perpendicular to 
that (plus an external torque Mb at the bracket B), it is easily proven that u=0 and consequently ycro=0. In other 
words, the centre of rotation lies on the axis of symmetry. Furthermore, if only a single tipping force Fy is 
applied at a distance d from the apex O, the solution of the equations system leads to 
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From the above analysis it is concluded that, generally, the centre of rotation (Cro) depends on all three induced 
displacements (u,v,ω) or, in other words, on the applied force-system.  
 
3.3 Pressure distribution 
After the determination of the tooth displacement { }Tvu ω,,=u , equation (18) may be applied for each point 
along the tooth/PDL interface. A careful inspection shows that besides the integrals 321 ,, III  and 

4I  [Eqs.(26-
27)], the application of eq.(18) at a certain point M of the PDL requires of one more integral 

6I  that depends on 
this point, and it is given by 

( ) ( ) ( ) ( )[ ] ( ) ( )[ ]sIvsIesIvsIhsIuhPsp atm 4231
3

6
3 12sinh6 +−+−−= −−− ζωµζµ    (34) 

where       ( ) ∫==
l

sRsII
0

66 d             (35) 

4 NUMERICAL IMPLEMENTATION 

4.1 General procedure 
Numerical implementation consists of the accurate and efficient calculation of the five integrals, Is, explicitly 
given in Eqs.(26-28); theses are functions of both the tooth shape and the thickness of the PDL. Additionally, if 
the distribution of the pressure pM=p(sM) along the PDL is desired, it is necessary to additionally calculate one 
more integral involved in eq.(40), as it was mentioned above.  

In general, the open boundary S=AOB of the tooth being in contact with the PDL, is divided into N 
boundary segments. These may be either straight segments (two-point definition) or curvilinear arcs such as 
parabolic (three-point definition). However, only straight elements were implemented in this paper. In particular, 
the tooth root was subdivided by N equidistant parallel planes normal to its axis of revolution. At the so 
produced N+1  nodal points with curvilinear coordinates s0=0,s1,s2,…,sN=AO, the coordinates (xi, yi), 
(i=1,2,…,N) are prescribed. Integrals Is and stiffness kij (i,j=1,2,3) in Eq.(21) are calculated by using one-
dimensional numerical integration (such as mid-point for simplicity), the latter being equivalent to one-point 
Gaussian quadrature.   

After the Is have been calculated, the linear system of the three equations [eq.(21)] is easily solved in (u,v,ω) 
and then both the centre of resistance and the centre of rotation are calculated. In the sequence, by sweeping the 
boundary AOB from A (s=0) to B, the pressure is successively calculated at the 2N+1 nodal points. In detail, the 
proposed algorithm consists of the following steps: 
Step 1: Divide half of the tooth surface (boundary) into segments made by N cuts perpendicular to the axis of 
symmetry at equal distances along this axis.  
Step 2: For each boundary segment, calculate and store the variations of the five integrals given by Eqs.(26-28), 
i.e. ∆Ii, i=1,…,5.  
Step 3: Calculate the integral ( )5

1

N

i
i

I l I
=

= ∆∑ .  

Step 4: Sweep all segments along the tooth boundary and calculate the corresponding nodal values of the 
integrals ( ) ( ) ( )iii sIsIsI 321 ,,  and ( ) NisI i ,...2,1,4 = .  
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Step 5: Calculate the line integrals in eqs.(23-25), on the basis of the nodal values that were found in Step 4.  
Step 6: Apply the force-system and calculate (u,v,ω) by solving a linear system of two equations. 
Step 7: Calculate the pressure distribution using Eq.(34) and the nodal values of the integrals found in Step 4.  
 
4.2 Application 
We analyze a typical upper central incisor of either conical (where an analytical solution exists) or paraboloid 
shape with the following geometrical data (Figure 3):  
Root length     : L = 13⋅0 mm; Root diameter : D = 7⋅8 mm; Elastic modulus (Tanne et al.[6]): E=0.68MPa ; 
Poisson’s ratio: ν=0.50 ;   Shear modulus: µ=Ε/[2(1+ν)]=0.227MPa;        PDL thickness h=0⋅229 mm.  

The atmospheric pressure was taken as Patm=0⋅101 MPa. The centre of rotation is calculated for the case of a 
tipping force Fy=1N that is applied at the bracket of the tooth at a distance H=5.8mm from the line AB (tooth 
margin) of the PDL (Figure 3); so, the distance between the bracket and the apex becomes d = L+H = 18⋅8 mm.  

Obviously, the pressure P is a function of the arch length s. Nevertheless, for presentation purposes results 
are presented in Figure 4 in terms of the normalized x-coordinate, i.e. the ratio x/L. For a given large or small 
value of x/L, there are two corresponding points along the tooth surface, i.e. (left: M1 and right: M4) or (left: M2 
and right: M3), respectively, as shown in Figure 3. It is also noted that for the conical case illustrated in Figure 4, 
both the analytical and the numerical technique are identical (as anticipated).  
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Figure 4: Pressure distribution for several orthodontic force systems: (a) Upper left: Pure translation under a unit 
force (Fy=1N) applied at the centre of resistance, (b)Upper right:  Pure rotation under a moment (Mz=5Nmm), (c) 
Lower left: Extrusion under a unit force (Fx=1N) and (d) Single tipping force under a unit force (Fy=1N) applied at 
the tooth bracket at a distance H=5.8mm above the margin AB 

 
Table 1 presents the results of the calculated positions of the centre of resistance (Cre) and the centre of 

rotation (Cro) using a variable number of boundary segments N, based on equidistant cuts by lines perpendicular 
to the long tooth axis. It can noticed, for example, that in case of a paraboloidal root the calculated position of 
the Cre converges near the value 8⋅253mm from the apex, that corresponds to 63.5% of the root length measured 
from the tooth apex (O) or 36.5% from the margin AB. Also, Table 2 presents the calculated stiffness of the 
PDL in pure translation, extrusion and pure moment rotation, as well as the location of the centre of resistance 
(Cre) as a percentage of the root length.  
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Table 1. Calculation of the centre of resistance (Xcre) and the centre of rotation (Xcro) for an upper central incisor (root length 
L=13mm, root diameter D=7.8mm) using N boundary segments along (AO). Distances are measured from the apex. 

Conical root Paraboloidal root Number 
of boundary segments (N) Xcre [mm] Xcro [mm] Xcre [mm] Xcro [mm] 

8 9⋅689 9⋅103 8⋅410 7⋅857 
16 9⋅622 9⋅118 8⋅305 7⋅805 
32 9⋅600 9⋅140 8⋅271 7⋅803 
64 9⋅592 9⋅154 8⋅260 7⋅808 

128 9⋅589 9⋅162 8⋅256 7⋅813 
256 9⋅588 9⋅167 8⋅255 7⋅815 
512 9⋅587 9⋅169 8⋅254 7⋅817 
1024 9⋅587 9⋅170 8⋅254 7⋅818 
2048 9⋅587 9⋅170 8⋅253 7⋅818 
4096 9⋅587 9⋅171 8⋅253 7⋅818 

Analytical 9⋅587 9⋅171 - - 
 

Table 2. A comparison between the stiffness and the location of the centre of resistance (Cre) of the conical and paraboloidal 
roots corresponding to an upper central incisor using N=4096 boundary segments. 

STIFFNESS  
Shape of root Translation [mm/N] Extrusion 

[mm/N] 
Rotation 

[rad/N.mm] 

Location of Cre 
in (%) 

Conical 1.887×10-5 1.396×10-5 2.446×10-5 26.3 
Paraboloidal 9.380×10-6 8.947×10-6 2.050×10-6 36.5 

 
5 CONCLUSIONS 

A boundary-type computational technique was presented for the calculation of the centres of resistance and 
rotation, as well as the induced pressure distribution inside the periodontal ligament of a loaded tooth. The 
formulation consists of a symmetric “stiffness” matrix based on Reynolds equations, which represents the 
resistance of the tooth-support to several force-systems. Due to the poor numerical integration scheme applied, 
in order to achieve convergence a significant large number of boundary segments was required.   

REFERENCES 
[1] Nikolai, R.J. (1985), Bioengineering Analysis of Orthodontic Mechanics, Lea & Febiger, Philadelphia.  
[2] Burstone, C.J. (1962), Biomechanics of tooth movement. In: Vistas in orthodontics, Eds. B.S. Kraus and R.A. Riedel, Lea and Febiger, 

Philadelphia, pp. 197-213.  
[3] Christiansen, R.L. and Burstone, C.J. (1969), “Centers of rotation within the periodontal ligament,” Am J Orthod 55(4), pp. 353-369.  
[4] Nikolai, R.J. (1974),  “Periodontal ligament reaction and displacement of maxillary central incisor subjected to transverse crown tipping,” 

Journal of Biomechanics 7, pp. 93-99. 
[5] Nikolai, R.J. and Schweiker, J.W. (1972), “Investigation of Root-Periodontium Interface Stresses and Displacements for Orthodontic 

application,” Experimental Mechanics 12, pp. 406-413.  
[6] Tanne K., Nagataki T., Inoue Y., Sakuda M. and Burstone C.J. (1991), “Patterns of initial tooth displacements associated with various 

root lengths and alveolar bone heights,” American Journal of Orthodontics and Dentofacial Orthopedics 100, pp. 66-71. 
[7] McGuiness N.J.P, Wilson A.N., Jones M.L. and Middleton J. (1992), “A stress analysis of the periodontal ligament under various 

orthodontic loadings,” European Journal of Orthodontics 13, pp. 115-120. 
[8] Provatidis, Ch. and Toutountzakis, N. (1998), “A critical review of older and contemporary applications of biomechanical methods in 

orthodontics,” Hellenic Orthodontic Review 1, pp.27-49. 
[9] Jones M.L., Middleton J., Hickman J., Volp C., Knox J. (1998), “The development of a validated model of orthodontic tooth movement 

of the maxillary central incisor in the human subject,” Russian Journal of Biomechanics 2, pp. 36-44.  
[10] Provatidis, Ch. (1998), Bone remodelling in orthodontics, In: Computer Methods in Biomechanics and Biomedical Engineering - 2, Eds. 

J. Middleton, M.L. Jones and G.N. Pande, Gordon and Breach Science Publishers, The Netherlands, pp. 655-661.  
[11] Provatidis C.G. (1999), “Numerical Estimation of the Centres of Rotation and Resistance in Orthodontic Tooth Movements,” Computer 

Methods in Biomechanics and Biomedical Engineering 2, pp. 149-156.  
[12] Provatidis, C.G. (2000), “A comparative FEM-study of tooth mobility using isotropic and anisotropic models of the periodontal 

ligament,” Medical Engineering & Physics 22, pp. 359-370.  
[13] Provatidis, C.G. (2001), “An analytical model for stress analysis of a tooth in translation,” International Journal of Engineering Science 

39, pp. 1361-1381.  
[14] Provatidis, C.G. (2002), “Parametric finite element analysis and closed-form solutions in orthodontics,” Computer Methods in 

Biomechanics and Biomedical Engineering 5(2), pp. 101-112.  
[15] Middleton J., Jones M. and Wilson A. (1996), “The role of the periodontal ligament in bone modeling: The initial development of a 

time-dependent finite element model,” American Journal of Orthodontics and Dentofacial Orthopedics 109, pp. 155-162. 
[16] Provatidis, C.G. (2002), “The role of the principal strains within the periodontal ligament of a tooth during long-term intrusion,” Russian 

Journal of Biomechanics 6 (3), pp. 38-49.  
[17] Provatidis, C.G. (2003), “A bone-remodelling scheme based on principal strains applied to a tooth during translation,” Computer 

Methods in Biomechanics & Biomedical Engineering 6 (5-6), pp. 347-352.  
[18] Synge, J.L. (1933), “The tightness of the teeth, considered as a problem concerning the equilibrium of a thin elastic membrane,” 

Philosophical Transactions of Royal Society of London, Series 231A, pp. 435-477.  
[19] Provatidis, Ch. and Kanarachos, A. (2000), “Boundary-type hydrodynamic analysis of tooth movement,” Engineering Analysis with 

Boundary Elements 24, pp. 661-669.  



5th GRACM International Congress on Computational Mechanics 
Limassol, 29 June – 1 July, 2005 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fluid  Mechanics  and  Aerodynamics 
 
 

553



 

 
 



5th GRACM International Congress on Computational Mechanics 
Limassol, 29 June – 1 July, 2005 

 

A MESHLESS METHOD FOR LIFTING-BODY FLOW SIMULATIONS 

Jiahn-Horng Chen and Hong-Mau Chen 

 Department of Systems Engineering and Naval Architecture 
National Taiwan Ocean University 
2 Pei-Ning Road, Keelung, Taiwan 
e-mail: B0105@mail.ntou.edu.tw 

 

Keywords: Radial Basis Function, Lifting Body, 2-D Potential Flow 

Abstract. A meshless method with the logarithmic radial basis function is introduced to solve two-dimensional 
potential flow past a lifting body. The collocation approach is employed to find the numerical solution. It is 
found that the new radial basis function demonstrates a better convergence than the reciprocal multiquadric 
function that is widely employed in the literature. Furthermore, the present study successfully applies the 
meshless method to problems in a multi-connected domain. 
 
 
1 INTRODUCTION 

The meshless method has been widely investigated in the past decade and emerged as a new category of 
computational methods. One of its advantages lies in that no mesh generation is required to solve differential 
equations numerically. It is well known that in traditional numerical methods, such as finite element methods, 
finite difference methods, and boundary element methods, it is usually difficult and takes much time to generate 
proper meshes for computational purposes. This is especially true for three-dimensional problems with 
complicated geometry in engineering applications. 

The meshless method is currently at the stage of rampant development. Various approaches and 
computational procedures have been proposed and advocated in the literature. However, not every method that 
is claimed to be meshless is really meshless. Basically speaking, a true meshless method must possess the spirit 
of “meshlessness.” That is, it provides a computational procedure without relating to any mesh point 
connectivity. 

Based on this spirit, three different approaches to develop meshless methods have been successfully 
proposed. The first one is based on the spirit of finite element method and employs the Petrov-Galerkin weak 
formulation[1-2]. Detailed theories and formulations can be found in the book by Atluri and Shen[2]. In fact, this 
approach is the earliest one that attempted to replace the finite element method that generally needs complicated 
meshes in computations. However, its major disadvantage lies in that the Galerkin-type approach cannot be used 
for interpolation purposes. Therefore, its applications in problems with essential boundary conditions are usually 
difficult. 

The second approach is of boundary element type. This approach is somewhat new, compared to the first one. 
It attempted to discretize boundary integral formulation without employing a mesh. Of course, grid points in this 
approach are all on the boundaries. Several procedures[1, 3-5] have been proposed with different discretization 
concepts. 

The third approach employs radial basis functions (RBF). The essence of this approach is its employment of 
high-order interpolating functions to approximate solutions of differential equations. All RBFs possess the 
property that their values are determined only by distances and have nothing to do with directions. Therefore, 
they are spherically symmetric functions. According to the theories of partial differential equations, they are 
especially applicable to elliptic type equations. 

One may find many RBFs in the literature, such as, for example, monomials, various orthogonal polynomial 
functions, Fourier series, and so on. These simple RBFs are only applicable to simple differential equations with 
simple geometries. The development of more advanced RBFs originated from interpolation of multivariate 
functions. Their outstanding accuracy in interpolations has been widely validated. For example, Frank[6] 
compared nearly 30 interpolating methods for discrete data and found that Duchon’s thin-plate spline and 
Hardy’s multiquadric function fit data best. These two functions are special cases of RBFs. In the literature, the 
multiquadric function, reciprocal multiquadric function, Gaussian function, and thin-plate spline are 
representatives for fitting discrete data. Recently, Kansa[7-8] introduced multiquadric functions to solve 
hyperbolic, parabolic and elliptic differential equations with collocation methods. He found that they had quite 
good convergence properties and achieved outstanding computational efficiency. More recently, Cheng, et al[9] 
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conducted a thorough study of mutiquadric RBFs applied to partial differential equations and showed their 
superior convergence property. In fact, the RBF is of spectral convergence order for interpolation of discrete 
data points. Many believe that this property is preserved in solving differential equations with collocation 
methods. 

In addition to remarkable convergence property, there are several other advantages in using RBFs together 
with a collocation method to solve differential equations. For example, the solution procedure is truly meshless. 
Furthermore, the dimensionality of space has no effects on the convergence rate. Only the density of grid points 
does. 

Applied to solution of partial differential equations, the RBFs have their own inherent disadvantages, too. 
For example, they are usually globally supported, rather than compactly supported. This leads to a full 
coefficient matrix. In addition, in solving simultaneous algebraic equations, they easily result in poor 
conditioned coefficient matrices. Several remedies for these inherent drawbacks have been proposed in the 
literature. Among them, the most promising one is the compactly supported RBFs[10-12]. 

 Nevertheless, it is quite unfortunate that discussions and applications of RBFs for solving differential 
equations are seldom examined from the view point of differential equation theories. Even though we may 
approximate solutions of differential equations by superposition of RBFs which are carefully chosen, it is 
believed that more reliable and efficient computations can be achieved when the choice of RBFs is considered in 
connection with theories of differential equations. 

Furthermore, one of early applications of meshless methods to potential flow computations has been due to 
Alturi and Zhu[1]. They illustrated capabilities of the Galerkin-based meshless method in computing the external 
uniform flow past a circular cylinder. Nevertheless, they were not interested in the flow physics and did not 
discuss in their numerical procedure how to circumvent the non-uniqueness problem encountered in this multi-
connected flow setup. Following the idea of Galerkin-based meshless method, Mosqueira, et al[13] proposed “the 
enrichment function” to improve accuracy in computations of potential flows. In addition, Tolstykh[14] first 
employed simple RBFs to compute external flow problems.  

2 THEORETICAL FORMULATION AND RADIAL BASIS FUNCTION 

2.1 Theoretical formulation 
A uniform potential flow past a lifting body in two dimensions can be described by the Laplace equation 

02 =φ∇                                                                                (1) 

where ),( yxφ=φ  is the velocity potential through which we have the velocity field 

φ∇=u                                                                                (2) 

The boundary conditions are 
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where n and U = Uxi + Uyj denote outward unit vector normal to the body’s surface and the uniform velocity far 
away from the body, respectively. For the incoming flow, the angle of attack, ,α  is defined as 
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Since the above flow setup in two dimensions establishes a multi-connected problem, an additional Kutta 
condition must be specified to ensure the well-posedness of the mathematical formulation. 
 
2.2 Logarithmic Radial Basis Function 

In the literature, the multiquadric function  

22

1

cr
f

+
=                                                                           (4) 

where r represents distance between the collocation point and any point in the field and c some proper constant, 
is usually employed as the RBF for the solution of Eq. (1). It is interesting to find that this function is 
surprisingly similar in form to the analytical spherically symmetric solution of Eq. (1) in three dimensions 
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.
4
1

rπ
−=φ                                                                                (5) 

Therefore, it is somewhat expectable that the multiquadric function is a good choice in computations to 
approximate the solution of Laplace equation. 

Nevertheless, it is well known that in two dimensions, the spherically symmetric solution to the Laplace 
equation is of the form 

rln
2
1
π

=φ                                                                                (6) 

Hence, one may expect that a logarithmic form of RBF 

)ln( 22 crf +=                                                                           (7) 

is a more suitable choice for computational purpose. In fact, the enrichment function proposed by Mosqueira, et 
al[13] is similar to Eq. (7). They employed such a function to improve numerical accuracy in solving the Laplace 
equation. Unfortunately, their formulation is of Galerkin type and they did not have further discussions. 

 
2.3 The Meshless Method 

Having chosen the proper RBF, we can discretize Eq. (1) and boundary conditions. First, we properly select 
a set of collocation points, ),,( iii yx=x  where ni ...,,2,1= . Then, we express the solution to be 
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where ia are coefficients to be determined and ir  is the distance between the field point x and the collocation 
point ix . The approximate solution, Eq. (8), satisfies the governing equation at all interior collocation points 
and the boundary conditions at boundary collocation points, from which we obtain simultaneous equation 
system for unknown coefficients.  

3 TESTS OF CAPABILITTY OF LOGARITHMIC RADIAL BASIS FUNCTIONS 

To test the capability of the logarithmic RBF in solving the two-dimensional Laplace equation, we carried 
out a series of case studies. The test problem is to solve the Laplace equation in a unit square domain with 
different types of boundary conditions.  

3.1 Test 1 (Dirichlet Boundary Conditions) 

For the first test, Dirichlet boundary conditions are specified on all sides of the square domain, as shown in 
Figure 1(a). On the right, left, and bottom sides of the domain, we prescribed .0=φ  On the upper side, we 
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(a) Test problem with Dirichlet boundary conditions.           (b) Errors for different grid densities and RBFs.
 

Figure 1.  Test domain and computational results. 
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specified a sinusoidal function, .sin xπ=φ  

Both the logarithmic and multiquadric RBFs were implemented in our computations with different densities 
of collocation points. In addition, to compare these two functions, we employed three sets of collocation points 
in computations. All the three sets are uniformly distributed. The distances in both x- and y-directions between 
two consecutive points are ,2.0=h  0.1, and 0.05. The total numbers of collocation points for the three sets are 
25, 121, and 441, respectively. 

Figure 1(b) shows the errors at the best values of c. The maximum error represents the maximum deviation 
of the computed data from the analytical solution at the collocation points. The average error denotes the L2-
norm of deviation. As we have expected, the data shown in Figure 1(b) indicate that employing the logarithmic 
RBF leads to more accurate computational results. Generally speaking, the results due to the logarithmic RBF 
are at least one-order better than those due to the multiquadric RBF if the density of collocation points keeps the 
same.  To reach the error order of 10−3, the number of collocation points for the logarithmic RBF is about 1/4 for 
the multiquadric RBF. 

3.2 Test 2 (Neumann & Dirichlet Boundary Conditions) 

For the second test, we replaced the Dirichlet boundary condition on the upper side with a Neumann type of 
boundary condition, ,sin/ xn π=∂φ∂  as shown Figure 2(a). 

We employed the same grid distributions stated in Sec. 3.1. The computational results are shown in Figure 
2(b). Again, the results shown here were obtained with the best choices of c. They show that the choice of 
logarithmic RBF gives a better numerical solution, compared to the multiquadric RBF at the same density of 
collocation points. And again, to reach the error order of 10−3, the number of collocation points required for the 
logarithmic RBF is about 1/4 for the multiquadric RBF. 

3.3 Summaries from the Tests 

The two simple tests given above show that the logarithmic RBF seems a good choice in approximating two-
dimensional problems. In fact, it exhibits a better approximation to the exact solution in either case. Of course, 
this is what one may expect because of its similarity to the spherically symmetric solution for the Laplace 
equation in two dimensions. 

Here we do not discuss how the value of c is chosen. For detail, see the work by Chen[15]. General 
observations show that it depends on the density of collocation points. The value becomes smaller for a denser 
collocation point distribution. 

 

4 APPLICATIONS TO LIFTING-BODY PROBLEMS 

To apply the collocation method to a lifting-body flow problem, we have to address two additional features 
which bring forth numerical difficulties.  

The first one arises because of flow physics. In the formulation, the far-field boundary condition, Eq. (3), is a 
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(a) Test problem with mixed boundary conditions.           (b) Errors for different grid densities and RBFs. 
 

Figure 2.  Test domain and computational results. 
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vector-valued one. Directly applying approximate expression of the velocity potential, Eq. (8), at any far-field 
boundary point leads to two algebraic equations. It generally results in a simultaneous equation system in which 
the number of equations is larger than that of unknown coefficients. To circumvent this dilemma, we devised a 
symmetric set of collocation points. 

The second one comes from the Kutta-condition. It states that the flow leaves the trailing edge at a finite 
velocity. There are several practical ways to apply this condition. The way we chose here is that the flow speeds 
on upper and lower surfaces of the lifting body are equal at equal distances from the trailing edge. In the present 
study, it was usually applied at the midpoint between the trailing edge and closest collocation points on the body  
surface from the trailing edge. 

4.1 Flow past a Circular Cylinder without Lift 

The first case we studied is a uniform flow past a circular cylinder without lift. The Kutta condition was 
specified at the rear point of the cylinder, which gives a symmetric flow pattern.  

A staggered collocation point arrangement that was used in the present study is schematically shown in 
Figure 3(a). In our computations, the computation domain was truncated at a radius of 10R, in which R 
represents the radius of cylinder. 

Solving the algebraic equation system, we obtain the approximate expression of the velocity potential. Then 
we substituted it in the Bernoulli equation to find the pressure field. And the pressure coefficient, defined as 

2
2
1 U

pp
C p ρ

−
= ∞                                                                                  (9) 

can be computed. Here ∞p  and ρ  represent the pressure at the far field and the density of fluid, respectively. 
For the present study, the computed pressure coefficient on the cylinder surface is shown in Figure 3(b). The 
horizontal axis represents the azimuthal angle measured from the x-axis with origin at the center of cylinder. 
Compared to the analytical solution of pressure coefficient, the present computational results show very good 
agreement. 

4.2 Flow past a Circular Cylinder with Lift 

For the second case, we prescribed the Kutta condition at the point ).5.0,2/3(),( −=   yx  This is a somewhat 
unnatural specification. However, it provides a good test case in that there exists an analytical solution for such a 
flow. Theoretically, such a specification of the Kutta condition introduces in the flow a circulation of strength 

Uπ= 2Γ in which U represent the speed of flow at the far field. 
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(a) Schmatic diagram of collocation point arrangement.     (b) Pressure coefficient distribution on cylinder 
surface. 

 
Figure 3. Flow past a circular cylinder without lift. 
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The collocation point arrangement employed in the 

first test case was adopted for computations in the 
present study. Through the same computation procedure 
described above, the computed pressure coefficient 
distribution on the cylinder is shown in Figure 4.  Again, 
we find that the present method gives reasonable results. 

4.3 Flow past a Hydrofoil 

We now proceed to compute the potential flow past 
a two-dimensional hydrofoil. The NACA16-006 foil 
section, a typical section used in hydrofoils, was 
adopted for computations. This is a symmetric foil 
section without camber. The maximum thickness is 
0.06c, in which c denotes the chord length of the foil 
section. 

The collocation point arrangement is shown 
schematically in Figure 5. It was generated simply by 
the use of H-grid concepts in the conventional grid 
generation, even though we believe that not so many 
collocation points are required for the regions far up 
above and down below from the hydrofoil. Owing to its 
symmetry, only half of the computational domain is 
shown here. Furthermore, in Figure 5, the scaling in the 
direction normal to the incoming flow is magnified in 
order to show clearly the collocating points. The 
computation domain is 7c in length and c in half width. 
For computation purposes, the chord length is usually 
normalized to unity. 

Two computational cases were carried out here. For 
the first one, the incident flow angle of attack is at 

0=α . Since the foil section is a symmetric one, the 
flow in this study case is symmetric and there is no lift. 
Figure 6(a) shows the pressure coefficient distribution 
on the upper surface of hydrofoil. Compared to the 
measured data[16], the results of the present method have 
a reasonable agreement. 

For the second test, the incident angle of incoming 
flow is 3=α . The results are shown in Figure 6(b). In 

0.00 0.20 0.40 0.60 0.80 1.00

x-1.20

-0.80

-0.40

0.00

0.40
-Cp

solid line: ¤ å Äm [16]
dot: present study

        0.00 0.20 0.40 0.60 0.80 1.00

x-1.00

-0.50

0.00

0.50

1.00
-Cp

 
 

(a) α  = 0°.                                                                                 (b) α  = 3°. 
 

Figure 6. Pressure coefficient distributions on the hydrofoil with an NACA16-006 section. 
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Figure 4. Pressure coefficient distribution on the 

cylinder for which the Kutta condition 
is specified at =),( yx   )5.0,2/3( − . 

 
 

 
 

Figure 5. Schematic diagram of collocation point 
arrangement. 
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this case, we do not have data for comparisons. However, the trend shown in the plot seems reasonable. The area 
enclosed by the two curves of pressure coefficients distributions for the upper and lower surfaces represents the 
lift coefficient. 

5 CONCLUSIONS 

The logarithmic radial basis function, together with a collocation method, has been successfully applied to 
computations of lifting-body flow problems in two dimensions. 

This new RBF is introduced from the theoretical point view. Results of some preliminary test cases have 
shown that this type of RBF gives a good approximation. In fact, the numerical solutions obtained in the test 
cases indicate that it gives a better approximation with fewer collocation points.  

Then it was applied with a symmetric collocation point distribution to solve the potential flow around a 
lifting body. The Kutta condition was applied in a way suitable to collocation point method. The computed 
results in the test cases show that the present procedure works well. 
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Abstract.  Discontinuous Galerkin discretization is applied for the numerical solution of the Euler and Navier-
Stokes equations. Second- and fourth-order accurate solutions are obtained for simple inviscid and viscous 
flows computed with triangular meshes and polynomial bases of first and third order, respectively. For flows 
with discontinuities, classical slope limiters are applied for second- and third-order accurate solutions. In 
addition, characteristic based filters are used to make possible higher order accurate solutions of flows with 
discontinuities at a reduced computing cost. Discretization of the viscous terms is performed by solving an 
additional auxiliary equation for the gradient of the conservative variables. Inviscid and viscous flow solutions 
of different order of accuracy computed with triangular elements are presented. 
 
1 INTRODUCTION 
 Many CFD applications, such as rotor aerodynamics, large eddy simulations (LES) of compressible flow, 
and computational aeroacoustics (CAA) require high-order accuracy in space. In the last few years, efficient 
finite-difference methods[1-10] found widespread application in these fields. These methods were applied in 
simple Cartesian-type meshes [3, 7] and more complex domains through the use of generalized coordinate 
transformations.[5, 10] For highly accurate computations in three dimensions, grid smoothness is required to retain 
the designed order of accuracy of high-order methods and extreme caution is needed for the computation of 
metric quantities[5] that appear in the generalized coordinate transformations in order to preserve the high-order 
of spatial accuracy provided by centered finite-differences[5] or WENO schemes.[10] For high order methods that 
require wide stencils,[7, 10] specification of boundary conditions is not straight forward. In addition, domain 
decomposition[5] often used for complex domain grid generation (multi-block meshes) or for parallelization, 
requires overlap in order to ensure that the high-order accuracy of the interior scheme is retained at the 
interfaces of the domains.  
 Unstructured grid methods[11-15] overcome some problems associated with domain decomposition and 
discretizations of complex domains. Preservation of high order accuracy in unstructured finite volume 
methods[11] is computationally intensive. The recently proposed spectral volume method[15] for triangular meshes 
and the discontinuous Galerkin (DG) method for triangular[12, 16, 17] or quatrilateral[14] unstructured meshes 
overcome the shortcomings of high-order finite volume methods for unstructured grids. The DG method appears 
to offer certain advantages over the spectral volume method[15] because it is highly local, easy to parallelize, and 
possible to extend for viscous flow computations.[13, 17] Furthermore, the DG method is suitable for high-order 
accurate discretizations of complex domains with triangular, quadrilateral, or mixed-type elements and can 
preserve high order of accuracy in distorted meshes and meshes with hanging nodes that may result from local 
grid refinement.[14] In addition, the systematic study of Ref. 18, demonstrated that for wave propagation the DG 
method has very good performance even for anisotropic grids.  
 In this paper, applications of the DG finite element method for the numerical solution of the Euler and the 
Navier-Stokes (NS) equations are presented. High-order polynomial representations of the approximate solution 
within the elements (up to fifth order) are used. The accuracy of the DG method is demonstrated for 
discretizations with triangular meshes. It was found that for linear-type problems, such as weak acoustic 
pressure pulse spread, the achieved order of accuracy is approximately the order of the polynomial basis plus 
one. The achieved order of accuracy for third- and fifth-order polynomial bases is demonstrated for long time 
integration of a nonlinear problem, the isentropic vortex convection. Additional results for supersonic inviscid 
flows are presented. The accuracy of viscous flow computations is also demonstrated. 
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2 GOVERNING EQUATIONS 
The two-dimensional Euler or Navier-Stokes equations in conservation law form are considered. 

inv inv vis vis

2

inv inv 2
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F G F GU
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uu u p
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e e p u e p
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(1) 

 
where U  is the solution vector for the conservative variables, and inv inv,F G  are the inviscid flux vectors, and 

vis vis,F G  are the viscous fluxes. The nonlinear Euler equations can be used for propagation of weak or strong 
acoustic type disturbances. In these cases, a source term ( , , )S x y t , which contains disturbances of density 

( , , )o o x y tρ ρ=  and pressure ( , , )o op p x y t= , is imposed as initial condition. The evolution of weak acoustic-type 
disturbances is governed by the linearized Euler equations for the acoustic velocities and pressure. Therefore, for 
validation purposes, solutions computed with the numerical solution of the full nonlinear Euler equations could 
be compared with available exact solutions of the linearized Euler equations. 

Time marching of the viscous or inviscid equations, Eq. (1), can be performed with computationally 
intensive but unconditionally stable implicit methods. [16, 17] Third- or fourth-order accurate Runge-Kutta 
methods may also be applied for explicit time marching. In this work the total variation diminishing (TVD) third 
order Runge-Kutta TVD RK-3 method of Refs. 19, 20, and 21 was used. This method is TVD in the sense that 
the temporal operator itself does not increase the total variation of the solution. The TVD property of the time 
integration scheme may not be important for linear problems. It plays however, an important role for time 
marching of nonlinear hyperbolic problems when using DG space discretizations. 

Explicit time marching of DG discretizations with the TVD RK-3 method is appropriate for demonstrating 
the accuracy of steady state, but more important, of time accurate solutions. For high order DG discretization the 
stability of explicit time marching schemes [22] degrades dramatically. As a result, numerical solutions of realistic 
high Reynolds number flows are not possible with explicit time marching. Recent applications of implicit 
schemes [16, 17] with the DG method demonstrated very good performance for both steady-state [16] and time 
accurate solutions[17] of time dependent problems. 

 

3 SPACE DISCRETIZATION 

The DG method was used for the first time by Reed and Hill [23]  for the numerical solution of the neutron 
transport equation. The DG method is briefly described in this section. Further information, more details, and 
analysis of the DG method the can be found in the original references [20, 21] and the review articles of Refs. 12 
and 24. For each time step the approximate solution, hu , of the governing equations, Eq. (1), written in 

conservation law form as, ( ) 0t∂ + ∇ ⋅ =u F u  is sought in the finite element space of discontinuous functions hV  

such that { ( ) : | ( ), }ϕ Ω ϕ Τ∞= ∈ ∈ ∀ ∈h h h K hV L V K K  where hT  is a discretization of the domain Ω  using 

triangular or quadrilateral elements and ( )V K  is the local space that contains the collection of polynomials up 
to degree k . The weak formulation of the inviscid part of the governing equations is  
 

,( , ) ( ) ( ( , )) ( ) ( ( , )) ( ( ))e K
e KK e K

d u x t x dx F u x t n x d F u x t x dx
dt

ϕ ϕ ϕ
∈∂

= − ⋅ Γ + ⋅∇∑∫ ∫ ∫  (2) 

 
where ( )xϕ  is any sufficiently smooth function and ,e Kn  is the outward, unit normal to the edge e .  

 Assuming polynomial expansions of the approximate solution hu  in Eq. (2), and using the same polynomials 
for the weighting function ( )xϕ  (Galerkin approximation) the weak form can be solved numerically. The mass 
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matrix integral at the left hand side of Eq. (2) is evaluated numerically using Gauss-Radau integration rules. The 
integrals on the right hand side of Eq. (2) are evaluated using quadrature rules as follows: 
 

( ) ( ), ,
1

( , ) ( ) ( , ) ( ) | |
L

e K l el e K el
le

F u x t n x d F u x t n x eϕ ψ ϕ
=

⋅ Γ ≈ ⋅∑∫  (3) 

 

1
( ( , )) ( ( )) ( ( , )) ( ( )) | |

J

j K j K j
jK

F u x t x dx F u x t x Kϕ ω ϕ
=

⋅∇ ≈ ⋅∇∑∫  (4) 

 
It is important to compute the line integrals of Eqs. (3) and (4) using appropriate order Gaussian quadrature 
rules. For example, with a third-order polynomial basis a quadrature rule that integrates exactly at least sixth-
order polynomial must be used in Eq. (3). 
 The data are assumed discontinuous across the interfaces of the continuous domain and at each interface two 
values are available. Therefore, the flux ( ) ,( , ) ( )e KF u x t n xϕ⋅  is replaced by a suitable numerical flux 

, ( , )e KF x t  for the approximate solution hu  and the test function ( )h V Kϕ ∈ . Using , ( , )e KF x t  in Eqs. (2) and 

(3), and the desired expansion order for the approximate solution hu  we obtain 
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∑∫

∑ ∑
 (5) 

 
where time advancement of Eq. (5) is performed with the third order accurate Runge-Kutta method. 

The major difference of the DG formulation with a standard node-based Galerkin finite element method is 
that the expansion in each element is local without any continuity across the element boundaries. The value of 
the numerical flux , ( , )e KF x t  at the edge of the boundary of the element K  depends on two values of the 

approximate solution, one from the interior (right) of the element K , int( )( , )R K

hu u x t= , and the other from the 

exterior (left) of the element K , ( )( , )L ext K

hu u x t= . Any consistent, conservative exact or approximate Riemann 

solver can be used to obtain the numerical flux ( )int( ) ( )

, ( , ), ( , )K ext K

e KF u x t u x t  as follows 
 

*
, , ,

1( , ) ( ) ( ) ( , )
2

L R L R L R
e K e K e KF u u F u n F u n F u u⎡ ⎤= ⋅ + ⋅ −⎣ ⎦  (6) 

 
where *( , )L RF u u  is the dissipative part of the numerical flux. The computationally efficient local Lax-
Friedrichs flux and the Roe’s flux were used in our implementation.  

It was shown (see Ref. 12 and references therein) that the formal order of accuracy of the DG method is at 
least 1/ 2n +  if polynomials of degree at most n  are used as basis functions. Furthermore, it was shown that for 
linear problems and Cartesian-type or semi-uniform triangular grids the order of accuracy is ( 1)n + . For 
simplicity in the rest of this paper, the method is called ( 1)n + th order accurate if the basis functions are 
polynomials of degree at most n . 

The approximate solution within each element is expanded in a series of local bases functions (polynomials) 
as follows: 

1
( , , ) ( ) ( , )

J
k

h j j
j

u x y t c t P x y
=

= ∑  (7) 

where ( )jc t , 1,2,...,j J=  are expansion coefficients or degrees of freedom for each element, to be computed 

at each time step, and ( , )k

jP x y  are polynomial nodal or modal bases of degree k  the most. In this work, first- 
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third- and fifth-order nodal polynomials for the master element were used. First order polynomial expansion, 
1k = , can be obtained with a hierarchical basis that contains ( 1)( 2) / 2 3k k+ + =  first order polynomials. The 

following non-hierarchical nodal basis of orthogonal, first-order polynomials was used: 1

1 1 2 ,P y= −  
1

2 2 2 1P x y= + − , 1

3 1 2P x= − . Each of these polynomials takes unit value at one node, located in the middle of 
an edge, and zero value at the other nodes located at the middle of the other edges. Orthogonality of the 

1 1 1

1 2 3, ,P P P  polynomials implies that the mass matrix resulting from the integration at the left hand side of Eq. (4) 
is diagonal. Second and higher-order nodal polynomial bases are not orthogonal. Nonorthogonality of the 
polynomials 3

, 1,...,10
j

P j = , for example, implies that the mass matrix of Eq. (5) must be computed using high-
order accurate Gauss-Radau integration. The fifth-order polynomial basis ( 5k = ) requires 
( 1)( 2) / 2 21k k+ + =  fifth degree polynomials. This expansion basis yields sixth-order accuracy but is very 
computationally intensive for the solution of the Navier-Stokes equations. 
 

4 LIMITING OF DG DISCRETIZATIONS 

Limiting operators[12, 20] hΛΠ  on piecewise linear DG expansions hu  are constructed in such a way that 

they satisfy accuracy (if hu  is linear, then h h hu uΛΠ = ) conservation of mass for every element K, and slope 

limiting (the gradient of h huΛΠ  is not bigger than that of hu  for each element K). Theoretical analysis of the 
slope-limiting operators can be found in Cockburn et al. [20] Cockburn and Shu.[25]  

For solutions with 1
jP  base functions inside the triangle K  the expansion of Eq. (7) is used for the 

approximate solutions ( )hu x y t, , , where the degrees of freedom or expansion coefficients ( )ic t  are the values 
of the numerical solution at the midpoints of the edges. The basis function is a linear function that takes unit 
value at the midpoints im  of the i th−  edge and zero value at the midpoints of the other two edges. For more 
details see Refs. 12 and 20. Limiting of higher order accurate DG discretizations is more complex and 
computationally intensive. Therefore characteristic based filters in the spirit of Ref. 3 were used to make 
possible high order accurate solutions with discontinuities. 

5 VISCOUS TERM DG DISCRETIZATION 
The compressible Navier-Stokes (NS) equations can be written in compact vector form as follows: 
 

( ) ( ) 0
t

∂
+∇ ⋅ + ∇ ,∇ =

∂ i v
u f u f u u  (8) 

 
where u  is the vector of the conservative variables and if , vf  denote the inviscid and viscous flux functions. 
The discretization of the viscous, diffusive part of the NS equations with the DG method is less well known and 
different than the method described previously for the convective, inviscid part. The straightforward way to 
extend the scheme of the DG discretization of Eq. (2), which was developed for the convective part of the NS 
equations, using a centered flux leads to numerically stable but inconsistent solutions.[13, 26] The numerical 
solutions seem to converge with mesh refinement but have (1)O  errors with exact solutions.  

Bassi and Rebay[27] introduced a formulation for the discretization of the compressible Navier-Stokes 
equations with the DG method that is convergent and consistent. Baumann and Oden[28] presented another 
successful method that avoids the inconsistencies of the simple formulation by adding extra penalty terms to the 
inner boundaries. The consistent formulation of Bassi and Rebay[27] for the spatial discretization of the viscous 
term in the NS equations was constructed by resorting to a mixed finite element formulation. The second-order 
derivatives of the conservative variables required for the viscous terms were obtained by using the gradient of 
the conservative variables, ( )u∇ =u S , as auxiliary unknowns of the NS equations. The NS equations were 
therefore reformulated as the following coupled system to the unknowns S  and u .  

 
0−∇ =S u  

( ) ( ) 0t i v∂ +∇ ⋅ +∇ ⋅ , =u f u f u S  
(9) 
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The weak formulation of the first equation of the system of Eq. (9) is  

 

0h
K e K

S dx d dxφ φ φ− ⋅ Γ+ ∇ =∫ ∫ ∫h hu n u  (10) 

where the term h ⋅u n  in the second (contour) integral of Eq. (10) is replaced by a numerical flux 

( )sH − +, ,u u n . This numerical flux is the average between the two interface states  
 

1( ) ( )
2sH − + − +, , = +u u n u u n  (11) 

The computed auxiliary variables hS  are used to form the second equation of the system in Eq. (11) as follows:  
 

inv inv

vis vis

( ) ( )

( , ) ( , ) 0
K e K

e K

dx d dx

d dx

φ φ φ

φ φ

− ⋅ Γ + ∇

+ ⋅ Γ− ∇ =

∫ ∫ ∫

∫ ∫

h h h

h h h h

u f u n f u

f u S n f u S
 (12) 

In Eq. (12), the term vis ( )h h, ⋅f u S n  is replaced with the following centered numerical flux 

1( ) [ ( ) ( )]
2v v v

− − + + − − + +, , , , = , + , ⋅h u S u S n f u S f u S n  (13) 

6 RESULTS 
The accuracy of the numerical method presented in the previous sections was first demonstrated for simple 

problems in Cartesian domains. Next inviscid and viscous flow solutions in more complex domains were 
obtained. Time accurate numerical solutions were computed for the propagation of weak disturbances. The 
accuracy of the numerical solutions was evaluated by comparing the computed results with the exact solution of 
the linearized Euler equations. A test problem, which has an exact solution, the propagation and reflection of a 
Gaussian pressure pulse from a solid wall, was considered. A small disturbance initial condition for the full 
Euler equations is specified by 2 2( , ) exp( ln 2[ ( ) ] / )op x y x y y w= − − − where w  is the width of the pulse and 

o
y  is the distance from the wall. The computed pressure disturbances from the numerical solution of the full 

nonlinear Euler equations were found in very good agreement with the exact solution of the linearized Euler 
equations.  
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Figure 1. Comparison of the computed solution 
( 0.5x∆ = ) with exact result at time T=10. 

 Figure 2. Error of numerical solutions computed 
with 1.0x∆ = , 3P , and 5P  polynomial bases. 

 
Further validation of time accurate solutions was carried out for the convection of an isentropic vortex. 
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Numerical solutions of the Euler equations were computed until nondimensional time T=10 (100 unit lengths) 
with third- and fifth-order polynomial bases on a series of meshes with 0.25x∆ = , 0.50x∆ = , and 1.0x∆ = . 
A comparison of the computed solutions with the exact result is shown in Fig. 1. The error of the computed 
solutions with 1.0x∆ =  is shown in Fig. 2. Grid convergence of the computed solutions is shown in Fig. 3. The 
plot of Fig. 3 that includes the 4th and 6th order theoretical slopes, indicates that the numerical solutions achieves 
the designed order of accuracy. 

Supersonic flow computations with the total variation bounded (TVB) limiter are shown in Figs. 4 and 5. 
Fig. 4 shows the computed pressure field over a cylinder at 2.0M

∞
= . The oblique shock reflection problem at 

3.9M
∞
=  was also solved numerically. The computed solutions of Figs. 4 and 5 indicate that the TVB limiter 

with the parameter values of Ref. 12, is appropriate for capturing of strong shocks. Further investigation is 
required for accurate and sharp capturing of transonic shocks. For transonic flow computations, in Ref. 29 
instead of the TVB limiter a stabilization operator was applied. It was shown in Ref. 29 that computed solutions 
with the stabilization operator and sufficient grid resolution preserve monotonicity and produce sharp capturing 
of transonic shocks. Evaluation of our approach for stabilization of DG discretizations for transonic flow using 
characteristic based filters[3] is currently in progress.  
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Figure 3. Grid convergence of the numerical solutions 
computed with 3P  and 5P  polynomials. 

 Figure 4. Computed pressure for inviscid 2.0M∞ =  
supersonic flow over a cylinder. 
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Figure 5. Computed Mach number for oblique shock reflection; 3.9M∞ = . 
 
Computations of viscous flows with third order polynomial expansions (fourth-order accurate solutions) 

were carried out for low Reynolds number, laminar, compressible viscous flows. It was pointed out in section 2 
(see also remarks by Atkins and Shu[22]) that with the increase of the order of polynomial expansion basis of the 
DG discretizations the CFL stability reduces dramatically. As a result, with the available computing resources it 
was possible to demonstrate and validate the approach for the DG viscous term discretization only for solutions 
of simple, low Reynolds number viscous flows, which do not require very small grid spacing to accurately 
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capture the near wall steep gradients. Two representative examples are shown; (1) channel flow, (2) low Mach 
number laminar boundary layer that is compared with the Blasius incompressible flow solution.  
 The computed flowfield in the channel is shown in Fig. 6. A comparison of the computed velocity 
distribution with the analytic parabolic velocity distribution is shown in Fig. 7. In spite of the coarse mesh very 
good agreement of the solution computed with 3P  polynomial bases (for both inviscid and viscous fluxes) is 
obtained with the exact result. The laminar boundary layer flow at Re 500=  was computed using three meshes. 
The coarse mesh contains 1350 triangular elements and the minimum length of the orthogonal triangle side 
(distance from the wall) is 0.04y h∆ = = . The minimum distance from the wall of the medium and fine mesh is 

0.02y h∆ = =  and 0.01y h∆ = = , respectively. The computed solution is shown in Fig. 8. A comparison of the 
coarse and fine grid solutions with the Blasius solution is shown in Fig. 9. Good agreement is obtained for the 
fine grid solution. 
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Figure 6. Computed velocity field for channel flow 
at 0.3.M∞ =   

Figure 7. Comparison of the computed solution with 
the incompressible flow exact result.  
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Figure 8. Computed velocity for zero pressure 
gradient flat plate boundary layer flow at 0.3.M∞ =  

 Figure 9. Comparison of the computed velocity with 
the Blasius exact result. 

7 CONCLUSIONS 
The DG finite element method was used for high order accurate discretization of the Euler and Navier-

Stokes equations. Time marching was performed with the explicit, third order accurate, TVD-RK3 method. 
Supersonic shocks were captured using a TVB limiter with first-order polynomial expansions. Application of 
this limiter with higher order polynomial expansions is computationally intensive and alternative ways to 
suppress oscillations are currently investigated. The viscous terms in the Navier-Stokes equations were 
discretized in the DG framework using an auxiliary equation for the gradient of the conservative variables. 
Computed solutions for viscous and invicid flows were in good agreement with exact results. Severe time step 
limitations for high-order polynomial expansions with explicit time integration make high-order accurate 
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numerical solutions very intensive computationally and incorporation of implicit time marching is required for 
solutions of realistic viscous flow problems with the DG method. 
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Abstract. A primary goal of turbulence modeling based on the Reynolds-Averaged Navier-Stokes equations is 
to determine the Reynolds stress tensor in order to close the turbulence problem at the mean velocity level. 
However, the Reynolds stresses alone do not characterize adequately the turbulence, especially in presence of 
rotation; the structure of the turbulence is also important. Hypothetical turbulent eddies are used to bring 
awareness of turbulence structure into the turbulence model. Averaging over an ensemble of eddies produces a 
set of one-point statistics, representative of the eddy field, and a set of equations of state relating the Reynolds 
stresses to these statistics. An algebraic model for the eddy statistics is constructed in terms of the local mean 
deformation normalized by a turbulence time scale. The algebraic model is closed with evolution equations for 
turbulent scales borrowed from the f−2v [3] turbulence model (V2F), providing the turbulence time scale, the 
turbulent kinetic energy, and a velocity scale for the turbulent transport of the turbulent scales. It is shown that 
the algebraic structure-based evaluation of the Reynolds stresses can be used directly with a conventional model 
for the turbulence scales. The model is evaluated in spanwise rotating channel flow and in flat plate boundary 
layers. 
 
 
1 INTRODUCTION 

Flow predictions have become a standard feature of modern flow system design. Where turbulence is 
important there is need to have a good model for the turbulent transport and for the turbulent stress, in order to 
produce adequate predictions of skin friction, flow separation, heat and mass transfer, and other flow features. 
As a result of the efforts of many contributors, turbulence models are now quite adequate for simple flows, but 
there remain important engineering problems where improved models are needed. For example, improved 
models for turbulence in rotating systems would enable better turbomachinery design. Linear eddy-viscosity 
models are known to be inaccurate in predicting the effect of strong streamline curvature and frame rotation.  
There is no shortage of modifications and adjustments proposed in the literature to correct their behavior. For 
example Shih et al.[1] modify the ε−k  model by introducing coefficients in the ε -equation that depend on the 
shear rate and frame rotation.  A more consistent redesigning of the ε -equation for flows with rotational effects 
has been proposed by Haire and Reynolds[2]. Another recent attempt by Durbin and Pettersson-Reif[3] consists in 
the modification of the eddy-viscosity coefficient (again by introducing dependency on the shear rate and frame 
rotation). In the latter case the justification for the choice of the selected functional dependency comes from the 
study of solutions of second-moment models in the case of homogeneous rotating shear. Although these 
modifications are shown to provide encouraging predictions for simple flows with rotation, their accuracy for 
more complex situations remains unclear. Differential Reynolds stress models, on the other hand, possess the 
obvious advantage that the turbulence production terms and the stress anisotropy are automatically accounted 
for. Unfortunately, the difficulties in modeling the stress redistribution terms and their inherent numerical 
stiffness make them not amenable to mainstream use in engineering calculations. Algebraic Reynolds stress 
models have received a substantial amount of attention given the potential benefit of introducing stress 
anisotropy in the controlled environment of an eddy-viscosity closure. Several models[4,5] have been devised 
with various degree of success. The basic idea behind these models is to express the Reynolds stress tensor as a 
function of one or more (up to ten) different tensors. This is not different from what is used to derive the so-
called non-linear eddy-viscosity models where additional (high-order) terms are added to the Boussinesq 
relationship between mean strain and Reynolds stresses. 
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Reynolds and coworkers[6,7,8] have repeatedly argued that for adequate modeling and description of rotating 

turbulence, information about the turbulence structure is crucial. The Reynolds stresses only characterize the 
componentality of turbulence, that is, which velocity components are more energetic.  The turbulent field has 
much more information than that contained in the Reynolds stresses, which is important in presence of rotation, 
and which is described by the turbulence structure. For instance, the dimensionality of the flow is important. 
This carries information about which directions are favored by the more energetic turbulent eddies: if the 
turbulent eddies are preferentially aligned with a given direction, then the dimensionality is smaller along that 
direction. In the Algebraic Structure-Based Model (ASBM), hypothetical turbulent eddies are used to bring 
awareness of turbulence structure into the turbulence model. Averaging over an ensemble of eddies produces a 
set of one-point statistics, representative of the eddy field, and a set of equations of state relating the Reynolds 
stresses to these statistics. The structure-based approach to build the Reynolds stress closure has lead to the 
development[9,10] of an ASBM closed with a novel two-equation model based on transport equations for the 
turbulent kinetic energy, k , and for the large-scale turbulent enstrophy 2~ω .  The model has been calibrated for 
channel flow simulations and the results have shown excellent agreement with available direct numerical 
simulation (DNS) data. 

The primary objective of this work was to explore the ASBM with transport equations for conventional 
turbulence scalars, namely the V2F model. Advantages of this set of scale equations are its availability in 
computational fluid dynamics (CFD) codes and the fact that it relies on a scalar diffusivity, ,v2  for turbulent 
transport of the scalars, which eases the model’s numerical implementation in complex geometries/flows. 
Results are presented for boundary layer flows, with and without pressure gradients, and for channel flow, with 
and without spanwise rotation.  

2 THE STRUCTURE-BASED ALGEBRAIC STRESS MODEL 

The eddy-axis concept[7] is used to relate the Reynolds stress and the structure tensors to parameters of a 
hypothetical turbulent eddy field. Each eddy represents a two-dimensional turbulence field, and is characterized 
by an eddy-axis vector, ia . The turbulent motion associated with this eddy is decomposed in a component along 
the eddy axis, the jetal component, and a component perpendicular to the eddy axis, the vortical component. 
This motion can be further allowed to be flattened in a direction normal to the eddy axis (a round eddy being 
characterized by a random distribution of kinetic energy around its axis).  Averaging over an ensemble of 
turbulent eddies gives statistical quantities representative of the eddy field, along with constitutive equations 
relating the normalized Reynolds stresses and turbulence structure to the statistics of the eddy ensemble: 
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The eddy-axis tensor, jiij aaVa 2= , is the energy-weighted average direction cosine tensor of the eddy 

axes. The eddy-axis tensor is determined by the kinematics of the mean deformation. Eddies tend to become 
aligned with the direction of positive strain rate, and they are rotated kinematically by mean or frame rotation. 

Motion around the eddy is called vortical, and motion along the axis is called jetal. The eddy jetting 
parameter φ  is the fraction of the eddy energy in the jetal mode, and ( )φ−1  is the fraction in the vortical mode. 
Under irrotational mean deformation, eddies remain purely vortical ( )0=φ . Shear produces jetal eddies, and in 
the limit of infinite rapid distortion ( )1→φ  for shear in a non-rotating frame. For shear in a rotating frame, φ  
ranges from 1 for zero frame rotation to 0 for frame rotation that exactly cancels the mean rotation in the frame, 
for which the mean deformation in an inertial frame is irrotational. 

The eddy helix vector kγ  arises from the correlation between the vortical and jetal components. Hence 
0=kγ  for purely vortical turbulence ( )0=φ  or for purely jetal turbulence ( )1=φ . Typically kγ  is aligned with 

the total rotation vector T
kΩ . The eddy-helix vector is the key factor in setting the shear stress in turbulent fields. 

Flattening is used to describe the degree of asymmetry in the turbulent kinetic energy distribution around an 
eddy. A round eddy has no preferential distribution. If the motion is not axisymmetric around the eddy axis, the 
eddy is called flattened. The eddy-flattening tensor, ijb , is the energy-weighted average direction cosine tensor 
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of the flattening vector. The intensity of the flattening is given by the flattening parameter, χ . Under rapid 
irrotational deformation in a fixed frame eddies remain axisymmetric.  Rotation tends to flatten the eddies in 
planes perpendicular to the rotation direction. 

Following Reynolds et al.[11], the eddy-axis tensor, ija , is computed on the analysis frame, where the 
turbulence might be at equilibrium or very close to it. The eddy-axis tensor is computed with no reference to the 
frame rotation, as it is only kinematically rotated by it[7,2]. The evaluation is divided in two parts. Initially a 
strained eddy-axis tensor, s

ija , is evaluated based on the irrotational part of the mean deformation. Next a 
rotation operation is applied, sensitizing the eddy-axis tensor to mean rotation. This procedure produces eddy-
axis tensor states that mimic the limiting states produced under rapid distortion theory (RDT) for different 
combinations of mean strain with on-plane mean rotation, while guaranteeing realizability of the eddy-axis 
tensor. 

The strained s
ija  is given by 
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ijkkijij SSS δ−=  is the traceless strain-rate tensor with ( ) 2/// ijjiij xuxuS ∂∂+∂∂= , τ  is a time 

scale of the turbulence, Eq. (14), and 6.10 =a  is a ‘slow’ constant. This gives realizable states for the eddy-axis 
tensor under irrotational deformations. 

The final expression for the homogeneous eddy-axis tensor, ija  (for near-wall regions see Eq. (9)), is 

obtained by applying a rotation transformation to the strained eddy-axis tensor, s
ija , 
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2h  is determined with reference to RDT for combined homogeneous plane strain and rotation[11,2], 
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The flattening tensor ijb  is modeled in terms of the mean rotation rate vector, iΩ , and the frame rotation rate 
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The helix vector kγ  is taken as aligned with the total rotation vector, 
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Modeling φ , β  (see Eq. 7), and χ  is a crucial part in the construction of the model. The equations for these 

scalars are found by analyzing target turbulent states corresponding to a mean deformation.  Throughout the 
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model development there is a strong effort to make it consistent with RDT solutions, aiming to improve model 
dependability and realizability for a wide range of mean deformations, as well as to obtain guidance in the 
functional shape chosen for the structure parameters.  Tentative functional forms for the structure parameters are 
thus chosen with reference to RDT. A set of parameter values is chosen to mimic the isotropic turbulent state 
(the eddy structure is expected to consist of axisymmetric ( )0=χ , vortical ( )0=φ  eddies). Finally interpolation 
functions (along with model constants) are chosen to bridge these limiting states (isotropy and RDT). They are 
selected specially to match a canonical state of sheared turbulence, observed in the log region of a boundary 
layer. 

The structure scalars are parameterized in terms of mη , fη , and 2a , representatives of the ratio of the mean 
flow rotation to the mean flow strain, frame rotation to mean flow strain, and a measure of anisotropy 
respectively, 
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mη , fη  are weighted by the eddy-axis tensor, allowing the model to satisfy the principle of material frame 
indifference to rotation, when appropriate. 

As a no-slip wall is approached, the velocity is driven to zero through the action of viscous forces. 
Furthermore, the velocity vector is reoriented into planes parallel to the wall through an inviscid mechanism 
(wall blocking) which acts over distances far larger than the viscous length scale. Thus the velocity component 
normal to the wall is driven to zero faster than the tangential components. In the structure-based model it is 
postulated that the eddy orientation shall also be parallel to the wall. A wall-blocking procedure is then 
introduced to reorient the eddies into planes parallel to the wall. The structure parameters are also sensitized to 
wall blocking, such that the modeled Reynolds stresses are consistent with the expected near wall asymptotic 
behavior. 

As in Reynolds et al.[11], the homogeneous eddy-axis tensor, h
ija , is computed based on the homogeneous 

algebraic procedure, Eqs. (2, 3) (note that the superscript ‘h’ has been added in the current section). It is then 
partially projected onto planes parallel to the wall,  
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where ikH  is the partial-projection operator, and 2
aD  is such that the trace of ija  remains unity. The blockage 

tensor ikH  gives the strength and the direction of the projection. If the wall-normal direction is 2x , then 22B  is 
the sole non-zero component, and varies between 0 (no blocking) far enough from the wall, to 1 (full blocking) 
at the wall. ijB  is computed by 
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If all gradients of Φ  vanish, ijB  is computed from an average over surrounding points. The blocking 

parameter, Φ , is computed by an elliptic relaxation equation 
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with 1=Φ  at solid boundaries, and 0/, =∂Φ∂≡Φ nn x  at open boundaries, where nx  is the direction normal to 
the boundary. The definition of L  is inspired by Durbin and Pettersson-Reif[3]. Here 50=νC , and 
 

.15
0.1 22 +

=
τ
τ

S
SCL      (12) 

 
with jiij SSS 22 = . This form is chosen so as to limit the growth of L  in rotating flows, when ε  decreases 
substantially. An overgrown L  would enforce too much blocking on the turbulence structure over too much of 
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the flow. An alternative solution[12] would be to add to ε  the viscous dissipation. This would in fact again limit 
the decay of ε  near a stable wall in rotating flows. 

To recover proper asymptotic behavior of the Reynolds stresses, ( )212 xOr ∝  and ( )2
222 xOr ∝ , as the wall 

at 02 =x  is approached, the homogeneous jetal, hφ , and helix, hγ , parameters are modified using 

( )( ) ( )kk
h

kk
h BB −=−−+= 1,111 2 γγφφ .    (13) 

A consequence of this approach is that realizability is automatically satisfied for ijr .  

3 SCALES AND NUMERICAL IMPLEMENTATION 

In Langer and Reynolds[9] the model was closed with two scalar transport equations, for the turbulent kinetic 
energy, k , and the large-scale turbulent enstrophy, 2~ω . These make use of the structure information made 
available by the ASBM. They provide the energy to scale the normalized stresses that come out of the ASBM, a 
length scale needed to determine the blocking of the stresses, and also a time scale, τ , used to normalize the 
mean flow strain and rotation rates, as well as the frame rotation rate, which are fed to the ASBM. Here these 
scale equations are substituted by a set of V2F scale equations[13], not reproduced here. Besides the turbulent 
kinetic energy  and a blocking length scale, these scalars also provide a velocity scale, 2v , for the turbulent 
transport term present in the scale equations, and again a time scale, used to normalize strain and rotation rates 
fed to the ASBM. The time scale is given by: 
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We consider the V2F scale equations here as an early simplification in the model development. The V2F 

equations are more readily available in existing 3D multi-purpose codes, have been well tested and developed, 
and provide a simple turbulent transport model. In the original model, the turbulent transport followed a 
tensorial model, which could be challenging to implement in an implicit solver. 

The mean momentum equations receive the gradient of Reynolds stresses returned by the model, ijij krR 2= . 
In eddy-viscosity models it is trivial to treat the Reynolds stress gradient term implicitly, which is important for 
stability. With the ASBM the Reynolds stresses are computed with an algebraic procedure and added explicitly 
to the momentum equations. For improved numerical stability, the Reynolds stress gradient is treated in a 
manner akin to the deferred correction approach[14], where n represents the iteration level 
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and Tν  is the turbulent viscosity as provided by the V2F model. Upon convergence the terms involving the 
turbulent viscosity cancel out and only the Reynolds stress gradient remains.  

4 NUMERICAL RESULTS 

We first compare the model with two flat-plate boundary layers: a zero pressure gradient (ZPG) boundary 
layer at 1410Re =θ

[15], and an adverse pressure gradient (APG) boundary layer[16]. Figures (1) and (2) show 
comparisons of the ASBM combined with the V2F scale equations for the ZPG and for the APG boundary 
layers, respectively. Comparisons are made using wall units, and in the APG case, only one station is reported, 
2/3 of the way through what Spalart and Watmuff[16] call the ‘comparison region’, 80.0=x . The mean velocity 
is very well captured in the ZPG case, while the agreement is not so good in APG case. The discrepancy in the 
value of the free stream velocity indicates an underprediction of the skin friction coefficient. The anisotropies of 
the turbulence intensities predicted by the model are in good agreement with the DNS.  

For a fully developed channel flow undergoing orthogonal mode rotation, the mean continuity equation is 
automatically satisfied ( )0/ =∂∂= xUV . The momentum equation in the streamwise direction becomes a 
balance between the (modified) pressure gradient and the viscous and turbulent fluxes. The presence of frame 
rotation in this particular configuration allows the investigation of the model's response to rotation in perhaps the 
most critical fashion, when all secondary effects are solely due to the turbulence. In more complex flows, other 
terms representative of the mean motion (convective, Coriolis, body force, and especially pressure gradient 
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terms) can also be active in the momentum equations, sharing some of the job of representing distinct physical 
phenomena. Then inaccuracies in the turbulence model itself may be overshadowed due to smaller importance 
of the Reynolds stress in the momentum equations. 

Results shown here correspond to a family of pressure-driven fully-developed channel flows, in presence of 
spanwise frame rotation, aligned with the mean flow vorticity. The mean flow is given by ( ){ }0,0,yUU i =  in a 
coordinate system { }zyxxi ,,=  where y  is the wall normal, x  is the streamwise direction with streamwise  

 

 
 

Figure 1. Mean velocity and turbulence intensities for ZPG boundary layer. Solid lines: DNS[15], Dashed lines: 
model 
 

 
 
Figure 2. Mean velocity and turbulence intensities for APG boundary layer, at x=0.80. Solid lines: DNS[16], 
Dashed lines: model. 
 
velocity U , and z  is the spanwise direction. The frame rotation rate vector is given by { }ff

i 3,0,0 Ω=Ω . The 
wall-normal mean velocity necessarily vanishes by continuity for a fully developed channel flow with zero 
velocity at the walls. The solutions depend on two parameters; the friction Reynolds number, νττ /Re hu= , and 

the rotation number, b
f UhRo /2Ω= , where fΩ  is the magnitude of the frame rotation rate, h  is the half 

height of the channel and bU  is the bulk velocity in the channel. For the fully developed rotating channel flow 

the friction velocity can be defined in terms of the streamwise pressure gradient, ( )dxPhdu ρτ /2 −= . 
Figure 3 corresponds to a set of fixed frame channel flows. On the left are mean velocity profiles in wall 

coordinates (normalized by the wall shear stress and viscosity) for a series of friction Reynolds numbers. 
Comparisons are made with DNS[17] at { }590,395,180Re =τ . Two distinct log laws[18,19] are also shown. On the 
center are the turbulence intensities for 590Re =τ . The anisotropy predicted in the log region is a testament to 
the accuracy of the ASBM in this case. On the right are the structure-dimensionality components for this case. 
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Of note is the 11d  component. It is the smaller component indicating structures preferentially aligned with the 
x -direction. Furthermore it shows a minimum near the wall, where near-wall streaks aligned with the flow 
direction have come to be expected. 

Figure 4 corresponds to a set of channel flows in a rotating frame, where f
3Ω  is aligned with the mean flow 

vorticity. The ASBM is compared against DNS[20]. On the left are mean velocity profiles normalized by the bulk 
velocity at 360Re =τ . With frame rotation, 22.0=Ro , the velocity profile becomes asymmetric about the 
centerline of the channel. In spanwise frame rotation, the Coriolis terms drop out of the mean flow equations 
making them insensitive to direct effects of frame rotation.  The mean flow asymmetry is then a secondary effect 
due to the effect of the frame rotation on the Reynolds stresses and turbulence structure. In the center the ASBM 

   
 
Figure 3. From left to right. Mean velocity, turbulence intensities and dimensionality tensor components for 
fixed-frame fully-developed channel flow. Symbols: DNS[17], Lines: model, correlations[18,19]. 
 
turbulence intensities are compared to the DNS results. The ASBM captures the anisotropy of the Reynolds 
stresses and its dependence on frame rotation. Notice in particular the fact that the wall-normal intensity, v' , 
outgrows the streamwise intensity 'u  in the core region of the channel. In the right are profiles of the structure 
dimensionality tensor. Comparing with Figure (3) it is clear that the dimensionality is little affected by the frame 
rotation. It does display an asymmetry, but this results directly from the asymmetry in the mean velocity 
gradient. There are no dramatic changes as in the Reynolds stresses. 

   
          
Figure 4. From left to right. Mean velocity, turbulence intensities and dimensionality tensor components for 
spanwise-rotating fully-developed channel flow. Symbols: DNS[20], Lines: model. 

 

4 CONCLUSIONS 

A new algebraic structure-based model has been presented as an alternative for the engineering analysis of 
complex flows. The results presented here demonstrate (i) the capability of the ASBM, coupled to the V2F 
equations, to be integrated directly to the wall, (ii) the response of the model combination to boundary layer 
flows and to situations where strong rotation is present, and where the turbulence is the sole responsible for the 
secondary effects observed, and (iii) the possibility of coupling the ASBM with the conventional scale 
equations, readily available in CFD packages.  
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Abstract. A numerical algorithm based on the control volume approach is developed for the simulation of the 
flow in a 2-dimensional centrifugal pump impeller. The flow domain is discretized with a polar, Cartesian mesh 
that covers a periodically symmetric section of the impeller. Advanced numerical techniques for adaptive grid 
refinement and for the treatment of cells that contain both fluid and solid regions are implemented in order to 
achieve a fully automated grid construction for any number of blades or blade geometry. The process is verified 
by a precision check of the numerical results. Then, a methodology is developed to extract the characteristics 
curves of a pump using the numerical results for the impeller section only. This also needs an estimation of the 
additional losses through the casing and the inlet and outlet sections of the pump. The regulation of the 
corresponding loss coefficients is done for a commercial pump, for which there are available measurements 
with both the original and a modified design impeller (different blade number and geometry) in place. Finally, 
the completed evaluation algorithm is used to find the optimum impeller geometry that maximizes the pump best 
efficiency point, using as design variables the blade angles at the leading and the trailing edge. The results show 
that the developed methodology, which is easily extensible to 3-dimensions, can be used for performance 
prediction and design optimization in hydraulic turbomachines. 
 
 
1 INTRODUCTION 

The numerical simulation of the fluid flow for the design of hydraulic turbomachinery has become a 
requisite tool in order to increase efficiency and reduce cavitation. However, in spite of the continuous increase 
in computing power, the inverse design numerical optimization is still a laborious task, because it needs a large 
number of flow field evaluations. Such computations may be very costly, especially when the entire 3D domain 
in both the impeller/runner and the casing of the machine are simulated, and many design variables are 
incorporated. For this reason, few real 3D inverse design methods have been developed, as the inverse time 
marching method,[1] the pseudo-stream function method,[2] and the Fourier expansion singularity method.[3] 
These methods are very time consuming and exhibit some difficulties in correlating the design parameters with 
the blade geometry (the first two) or convergence problems (the latter). A quasi-3D method is recently 
proposed,[4, 5] which performs a blade-to-blade solution and saves computer time by using only one 
representative hub-to-shroud surface. All the above models are based on the inviscid simplified assumption. The 
application of fully 3-dimensional turbulent flow analysis tools for the impeller/runner design increases in the 
last years,[6–9] whereas the use of Navier-Stokes validation in inverse design optimization methods is still not a 
common practice, since in addition to the time-consuming calculations, there is a need for automated mesh 
generation in complex geometries. Some recently developed models are based on this advanced approach.[10,11]  

The computer time needed by these models depends strongly on the generation cost of the body-fitted grid, 
as well as on the grid quality. An alternative practice in complex domains is the use of Cartesian grids that need 
much reduced construction effort. The main drawback of these grids is the inability to fit the grid lines to a 
sloped boundary. Several numerical techniques have been developed to improve the accuracy in such regions, 
globally classified in cell-cut and immersed boundary methods.[12,13] 

In the present work such advanced numerical techniques developed for the automatic generation of Cartesian 
grids in irregular geometries are incorporated in a computer algorithm for the simulation of a centrifugal pump 
operation. The optimization algorithm has been recently tested for laminar flows in simple geometries.[14] In 
order to accelerate the shape optimization process, the computational domain contains only the pump impeller in 
a 2-dimensional approach, while special modeling is applied to produce the characteristic curves of the whole 
pump. With this methodology the cost per evaluation is much reduced compared to a fully 3D simulation of the 
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pump, giving thus a quick and reasonable estimation of the optimum values of the design parameters.  

2 THE NUMERICAL METHODOLOGY 

For the simulation of the flow in a 2-dimensional pump impeller the incompressible Navier-Stokes equations 
are expressed in polar coordinates and for a rotating with the impeller system. The latter, in conjunction with a 
circular inner and outer boundaries used here, results in a steady flow field throughout the domain, hence the 
governing equations for a horizontal space (no gravity) become: 

Continuity: 0=⋅∇ w          (1) 

Momentum: ( ) wpwwww 22 ∇+
∇

−××−×−=∇⋅ ν
ρ

ωωω      (2) 

where w  is the fluid velocity in the rotating system (relative fluid velocity), ω is the angular rotation speed of 
the impeller, and p, ρ, ν are the fluid pressure, density and kinematic viscosity, respectively. The system of the 
averaged form of the above equations, along with the k-ε turbulence model, is numerically solved with the finite 
volume approach and a collocated grid arrangement, using a preconditioned bi-conjugate gradient (Bi-CG) 
solver. Setting cyclic boundary conditions the solution can be restricted to the 1/z part of the impeller, where z is 
the number of blades.  

2.1 Numerical grid 

As stated in the Introduction, the use of Cartesian grids for numerical design optimization provides the 
significant advantage of a fast and automated grid generation process. Other desirable features include the 
easiness in the construction and control of locally or adaptively refined regions, as well as the capability to use 
discretization schemes of higher, in general, accuracy, compared to other grid types. All the above features are 
recently developed and incorporated in the numerical algorithm, which is used for the present study after 
transporting to polar, rotating coordinates. The numerical technique, more details of which can be found in 
Anagnostopoulos,[15] introduces a multiple stencil that allows the application of second order discretization 
schemes to any grid cell, regardless of its refinement ratio or local grid topology, therefore it is applicable not 
only to refined but also to completely unstructured Cartesian grids. Moreover, in spite of the gain in accuracy, 
the resulting expressions remain simple and robust, and for some schemes become even simpler than the original 
ones.[15] Finally, this method can be easily extended to 3-dimensions. An indicative picture of such a 2-
dimensional grid, adaptively refined near the blades of a centrifugal impeller, is shown in Figure 1. For a given 
accuracy of the results, it was found that the above technique achieves considerably greater savings in computer 
cost than each of the local grid refinement and the higher-order discretization methods alone.[15]  

 

         

Figure 1.  Indicative grid for a 2D pump impeller and detailed view at the blade leading edge. 

2.2 Geometry representation 

A cell-cut, sharp-interface grid construction method, developed and tested with success in various applied 
studies in the past,[16] is now modified and further improved in order to increase its accuracy from first order to 
almost second order near irregular boundaries. With this new method no cell-merging is performed, but all the 
grid cells that are totally or even partly filled with fluid are solved using the same general equation of the 
following linearized form: 

D,U,S,N,W,Ei,AA,SA)SA(
i

iiPUV
i

iiiPPVP ==+=− ∑∑ γγΦγΦγ   (3) 

where Ai are the coefficients linking the dependent variable ΦP with its neighbors on the adjacent grid volumes, 
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and SU, SP are additional source terms. The geometric coefficients γi and γv represent the free portion (not 
blocked by the solid boundary) of the cell faces and volume, respectively.[16]   

The fluid variables (velocities, pressures, etc) are computed at the centroid of the Cartesian cells, which for a 
partly filled cell does not coincide with its geometric centre, as shown in Figure 2. For this reason, special 
stencils are introduced to compute the cell-face values and the gradients of the flow variables, making a 
compromise between simplicity and accuracy, which results in cost-effective relations with almost second-order 
accuracy. The additional terms are included in the coefficients of the general equation (3), whereas all the 
needed geometric quantities are computed by a preprocessing algorithm. As a result, after defining the geometry 
of the computational domain, the grid construction process can be performed in a fast and fully automated way. 
Wall boundary conditions are also set automatically to every boundary cell (e.g. cells P1 to P4 in Fig. 2).  

The above partly-filled-cells (PFC) method preserves the accuracy of the boundary representation and retains 
the conservation property. Moreover, it was not found to affect the stability of the solution algorithm, while its 
simplicity makes it easily applicable to both 2D and 3D complex geometries. An indicative picture of such a grid 
can be observed in Figure 1, where only the solvable cells are drawn.   
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2.3 Impeller head and power calculations 

Using a convergent flow field, the net energy added to a unit mass of fluid by the impeller can be calculated 
after computing the total energy of the fluid at the impeller inlet and exit, as shown in Figure 3. Hence the fluid 
head H12  is obtained from the flux-weighted relation: 

∫ ⎟
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where c is the absolute velocity of the fluid, Qu  the flow rate through the impeller and g the gravity acceleration, 
while the subscripts 1 and 2 denote impeller inlet and exit conditions, respectively. The integration is 
approximated by a summation over the radial flow rates δq at all the grid cells facing the inlet or the exit 
circumference of the impeller. On the other hand, the power absorbed from the impeller, Nu, can be calculated 
from the torque Mu on the blades: 

( ) ( )[ ]∫ ⋅⋅⋅×+⋅×⋅=⋅=⋅⋅⋅=
2

1

r

r
wuuuu drbcotrpnrMHQgN βτωωρ    (5)  

where n  the unit vector normal to the blade surface, wτ  the wall shear stress, β the blade angle and b the 
impeller width, whereas the integration covers both the pressure side and the suction side of the blade (Fig. 3). 
Although the simulation is 2-dimensional, the impeller width b is a function of radius r, as in the real impeller. 

2.4 Pump characteristic curves 

Although the simulation is restricted to the impeller geometry, which furthermore is considered 2-
dimensional, the numerical results can be used as a basis to estimate the performance of the entire pump. To do 
this, the additional hydraulic losses are properly expressed and abstracted from the head results, according to the 
following analysis (Figure 3). The effect of the impeller shroud and hub surfaces can be computed using Darcy’s 
law, from the relation: 

Figure 3.  Sketch of a centrifugal pump impeller.Figure 2.  Treatment of partly filled grid cells.
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where λ is the friction coefficient, wr  and wu  are the flow radial and (relative) tangential velocity components, 
and Dh ≈ 2b is the hydraulic diameter, with b the impeller width.  

At the exit of the real pump impeller the flow enters into the spiral volute and decelerates. The sudden 
expansion losses are proportional to the absolute exit velocity of the fluid, namely: 

2
222 ckdh ⋅=          (7) 

The above Eqs. (6) and (7) are flux weighted along the impeller periphery in order to compute the corresponding 
average values.  

Away from the design flow rate conditions additional losses appear at the suction side, due to the impeller 
incidence and the inlet pipe recirculation, as well as at the volute tongue. All these losses can be included in an 
approximate expression of the type:   

( )2
033 1 QQkdh −⋅=         (8) 

where Q0 is the design flow rate. The rest hydraulic losses in the inner and outer pump section, as well as in the 
spiral volute, can be taken proportional to the pump flow rate Q: 

2
44 Qkdh ⋅=          (9) 

Using the above relations, the pump head H can be estimated by abstracting from the computed impeller 
head Hu (Eq. 4) all the above losses: 

432112 dhdhdhdhHH −−−−=        (10) 

The mechanical losses at the shaft bearings, along with disk friction power, can be taken into account by 
increasing the computed impeller power Nu (Eq. 5): 

mu /NN η=          (11) 

and the volumetric losses due to leakage flow are expressed as: 

uQ Q/Q=η          (12) 

Hence, the pump efficiency can be finally computed from the relation: 

mQ
uH

H
N

QHg ηηρη ⋅⋅=
⋅⋅⋅

=        (13) 

In order to use the above relations, the values of the coefficients k2 to k4 and the efficiency factors ηQ and ηm 
must be known, otherwise they can be regulated using experimental or statistical data.  

2.5 Numerical optimization 

In order to find the combination of the impeller design variables that maximizes the target value, an 
optimization algorithm is developed based on the unconstrained gradient approach. This selection is made after 
some preliminary numerical tests showed that the cost function (here the pump efficiency) does not exhibit local 
maxima outside a global maximum region. However, this is not an analytic function, and hence a problem of 
non-continuity and scattering arises. The algorithm is specially designed to operate even for such discrete data, 
using a varied with trial-and-error step along the gradient direction. Also, the gradients are computed using 
forward finite differences at the beginning, and central differences when the cost function approaches maximum, 
and with a variable step size. The algorithm converges very fast within the region where the cost function 
maximizes, although due to scattering it cannot always find the absolute maximum. However, the fast 
performance allows repeating the calculations from different starting values, to verify or correct the resulting 
optimum. 

3 RESULTS 

3.1 Accuracy and precision checks  

The accuracy of the representation of the blade geometry with the PFC method was tested first, along with 
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the grid dependency of the flow field results. This was performed using the base-case geometry of Figure 4, that 
is a periodically symmetric section of the centrifugal impeller (z = 9 blades). Then, the impeller is turned step-
by-step at a small fraction (1/20) of the tangential width of the boundary cells, resulting in a number of different 
grid configurations at the blade boundary line. The scattering in the corresponding flow field results is due to the 
numerical error introduced by the PFC method.  
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The computed values for the fluid head and impeller power (Eqs. 4 and 5) are concentrated in Figure 5, for 
two grids: a coarse (8000 nodes) and a finer (27000 nodes) that has two refined layers around the blade, as in the 
example of Figure 1. The precision of the refined grid results is satisfactory, since the mean and maximum 
deviation from the mean values are of the order of 0.5% and 1% respectively. These are about one fourth of the 
coarse grid corresponding ones, confirming that the PFC method preserves the accuracy of the discretization 
scheme.  

On the other hand, the differences in the mean values between the two grids represent the grid-dependency 
of the results, and they are again of the order of 1%, which is an adequate accuracy. Consequently, the refined 
grid is selected to be used for the rest calculations.  

3.2 Regulation of the model 

The adjustable coefficients involved in the model Eqs. (6) to (13) are regulated using the characteristic 
curves of a commercial centrifugal pump operating with a new impeller, constructed in the Laboratory. The 
impeller has 9 two-dimensional (non-twisted) blades with inlet and exit diameter D1=70 mm, D2=190 mm, exit 
width b2=9 mm, and inlet and exit angle β1=26 deg, β2=49 deg (Fig. 4). The blade shape is a simple circular arc 
of constant thickness 5 mm, and with both ends rounded.  
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Figure 6.  Measured and computed characteristic curves of the pump. 
 
The measured characteristic curves H–Q and η–Q for this pump are shown in Figure 6, along with the 

numerical results from the 2-dimensional impeller simulation, obtained by Eqs. (4) and (5). The head H12 that 

Figure 5.  Predicted values of the fluid 
head and the impeller power. 

Figure 4.  Pressure contours and flow 
streamlines in the computational domain. 
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the water acquires in the impeller is as expected quite higher than the pump head H. Next, the efficiency 
coefficients ηQ and ηm were defined from statistical data, whereas using least-squares regression analysis, the 
values of the adjustable coefficients k2, k3 and k4 were computed so as the pump head H from Eq. (10) 
approximates well the corresponding experimental curve.  

Finally, the efficiency of the pump is calculated from Eq. (13) and the resulting curve is also plotted in 
Figure 6. Although this curve is not produced by fitting, the agreement with the corresponding measured curve 
is very good, and this verifies the consistency of the followed modeling strategy and the validity of the adjusted 
coefficients for this particular pump.  

3.3 Optimal blade design 

The objective here is to maximize the best efficiency value of the pump, using as design variables the inlet 
and the exit blade angles. However, the exact location of the best efficiency point (BEP) of the pump depends on 
the blade design, therefore it must be found for every set of the blade angles. This would need the construction 
of the η-Q characteristic curve of the pump, by computing several points on it with corresponding runs of the 
evaluation algorithm. An alternative and much faster method is tested here, according to which the unknown 
flow rate at the BEP is treated as an additional design variable, along with the blade angles, and its value is 
obtained when the optimizer converges.  

 
 
 
 
 
 
 
 
 
 

 

Figure 7.  Examples of blade shape and the computed flow field:  a) β1=35, β2=72 deg;  b) β1=21, β2=22 deg. 
 
During the optimization process the evaluation algorithm is capable to generate the grid and solve the flow 

equations for a wide range of different blade configurations, two extreme examples of which are plotted in 
Figure 7. The convergence rate of the optimization algorithm, which is described previously in chapter 2.5, is 
shown in Figure 8, for two different starting values. Although the starting values are selected far from the 
optimal region, the algorithm reaches there in less than 20 evaluations, whereas final convergence occurs in 
about 60 to 80 evaluations, which can be performed in about 15 to 20 hours by a P4 PC.  
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The corresponding variation of the blade angles during the optimization process is drawn in Figure 9, where 

contour lines of constant efficiency are also plotted, as they computed for the optimal flow rate. The two paths 
converge to the same region, although not to exactly the same point, due to non-continuity effects. The optimal 
inlet blade angle is about 20-21 deg, which is more consistent with the present rotation speed (3000 rpm) and the 

Figure 9.  Variation of the design 
variables during optimization. 

Figure 8.  Convergence history of the 
optimization algorithm.

(a)  (b) 



John S. Anagnostopoulos 
impeller inlet diameter (the real laboratory blade had been constructed with an inlet angle of 26 deg, in order to 
operate the pump effectively as a turbine too). On the other hand, the exit blade angle exhibits a wider optimal 
region, ranging between 50 and 58 deg, which is in agreement with theoretical and statistical data. For example, 
the classic blade number selection relation of Pfleiderer[17] 
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⎛ +
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⋅=
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for β2 = 54 deg. gives  z = 8.6 → 9 blades.  
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Figure 10.  Pump characteristic curves with the initial and the optimal impeller. 
 

The calculated characteristic curves of the pump with the optimized impeller are drawn in Figure 10, along 
with the corresponding initial blade curves (shown also in Fig. 6). The maximum efficiency of the pump with 
the optimal blade is about 3% higher (from 70.5% to about 73.5%). However, the BEP is displaced to smaller 
flow rates comparing to the initial one (52 m3/h from 63 m3/h), and the same is valid for the maximum head. The 
latter is now reasonably higher because of the larger exit angle (initially β2 = 49 deg). 

4 CONCLUSIONS 

A numerical methodology for the calculation of the flow field in a pump impeller and the prediction of the 
pump characteristics curves is developed, regulated, and tested against experimental and statistical data, with 
encouraging results. The computer algorithm is found suitable to be used for design optimization purposes in 
hydraulic pumps and turbines, thanks to the automatic grid generation and the increased precision of 
representing irregular boundaries. The main advantage validated in the present study is that the methodology 
provides the ability to localize the optimal region of the design variables at low computer cost.  

A more elaborate design would require the detailed simulation of the fluid passage through the 3D impeller/ 
runner geometry and even the casing of the machine, by performing costly Navier-Stokes solutions. 
Consequently, the less accurate but much faster modeling approach proposed here can be used as a starting 
optimization strategy in order to locate the region of maxima, and thus to reduce the number of the subsequent 
3D evaluations.  
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Abstract. An existing method and the corresponding software for the numerical solution of the Euler and

Navier–Stokes equations in high–speed flows is extended to account for low–speed flows as well. This is

achieved through the multiplication of the governing equations by a precondition matrix which is defined

at each grid node in terms of the local Mach number and ensures adequately clustered eigenvalues and,

thus, optimal convergence characteristics at all flow speeds. A second–order upwind scheme is adapted

to the preconditioned system of equations through appropriate assumptions, which are clearly presented

in this paper. 2D or 3D, inviscid or turbulent flow problems are analyzed, in external aerodynamics and

turbomachinery.

1 INTRODUCTION

It is well known that the numerical solution of the compressible fluid flow equations for the low Mach
regime suffers from slow convergence and increased computing cost. It is also known that the main reason
for the performance degradation of the relevant software, based on time–marching schemes and the theory
of hyperbolic system of equations, is the large disparity between acoustic waves and fluid speeds. To
overcome this problem, completely different formulations for the prediction of low–speed or incompressible
flows such as pressure correction and pseudo–compressibility methods, have been developed. However,
maintaining and extending two different CFD tools by the same research group is, in fact, cumbersome.
The only way to use the same time–marching solution method regardless of the flow speed, is through
preconditioning.

Conceptually, preconditioning is based on the multiplication of the pseudo–time derivative by an appro-
priate precondition matrix without affecting the steady state solution. The precondition matrix is defined
in terms of the local Mach number [1], [2], [3] and degenerates to the unit matrix at sonic speed. According
to the hyperbolic system theory, the Jacobians of the convection terms are multiplied by the inverse of the
precondition matrix and this gives rise to much more clustered eigenvalues compared to those of standard
Jacobians. The selection of the precondition matrix depends on the vector of solution variables. In the
literature, different precondition matrices have been proposed depending on whether the flow equations
are solved in terms of

−→
Q = [p u v T ]T or

−→
W = [% %u %v E]T (see [4] or [5] and [6], respectively).

The implementation of preconditioning in a numerical flow solver depends practically on the discretiza-
tion scheme used. The present method [7], [8] is based on the finite volume technique for unstrucured grids
with an upwind scheme for the discretization of convection terms. The latter are computed by sweeping
the grid edges and employing a 1D Riemann flow solver between the two edge nodes. To maintain the
existing formulation, a couple of assumptions concerning the management of the precondition matrix are
made. These assumptions concern even the residual of the iteratively solved equations and contribute to
the elimination of pressure oscillations that the conventional system of equations produce at low Mach
numbers, particularly close to the leading and trailing edges of airfoils.

595



V.G. Asouti et al.

2 GOVERNING EQUATIONS AND LOW–MACH PRECONDITIONING

Though this paper is concerned with both 2D and 3D all–speed flows, for the sake of simplicity, the
analysis of the method will be restricted to 2D flows; any extension to 3D flows is straightforward and,
thus, omitted. The 2D Euler equations for compressible flows are written, in conservative form, as follows

∂
−→
W

∂ t
+

∂
−→
F

∂ x
+

∂
−→
G

∂ y
= 0 (1)

where

−→
W =















%
%u
%v
E















,
−→
F =















%u
%u2 + p

%uv
(E + p)u















,
−→
G =















%v
%uv

%u2 + p
(E + p)v















(2)

Here % is the density, u and v the velocity components, E the total energy per unit volume and p the
pressure. Note that only steady flow simulations are of interest. Starting from eq. 1, the preconditioned
equations are obtained by multipliying the pseudo–time derivative term by the inverse of an appropriate
precondition matrix Γ, namely

Γ−1 ∂
−→
W

∂ t
+

∂
−→
F

∂ x
+

∂
−→
G

∂ y
= 0 (3)

or

∂
−→
W

∂ t
+ ΓAx

∂
−→
W

∂ x
+ ΓAy

∂
−→
W

∂ y
= 0 (4)

where Ax = ∂ ~F

∂ ~W
and Ay = ∂ ~G

∂ ~W
are the Jacobian matrices for the conservative variables. Eq. 4 can also be

written in terms of the primitive variable array
−→
V = [% u v p]T as follows

∂
−→
V

∂ t
+ Γ Ax

∂
−→
V

∂ x
+ Γ Ay

∂
−→
V

∂ y
= 0 (5)

where Ax and Ay are the corresponding Jacobian matrices, Ax = M−1AxM , Ay = M−1AyM , Γ =

M−1ΓM and M = ∂ ~W

∂~V
.

As already mentioned in the introduction, the role of the precondition matrix Γ (and, subsequently,
the role of Γ ) is to alleviate the disparity between acoustic waves and the fluid speeds which characterize
the non–preconditioned (regular) system of flow equations and is the main reason for the slow convergence
of any numerical solution method applied to low Mach number flows. This paper adopts the precondition
matrix originally proposed by [6], namely

Γ =









1 0 0 − 1−a
c2

0 1 0 0
0 0 1 0
0 0 0 a









(6)

where a = min[1, M2] and M is the local Mach number; Γ can be obtained from Γ, since Γ = MΓM−1.
Through the application of the Gauss’ divergence theorem, the integration of eqs. 5 over any finite

volume cell leads to the integral of numerical fluxes crossing its boundary. Let ~n = (nx, ny) denote the
normal vector to the boundary; the application of any upwind scheme to numerically compute these fluxes
as well as the convergence characteristics of the resulting solution method is determined by the eigenvalues
of the preconditioned directional Jacobian matrix

AΓ = Γ A = Γ(Axnx + Ayny) (7)

which are

λ1 = λ2 = ~υ · ~n

λ3,4 =
1

2
{(1 + a)~υ · ~n ±

√

[(1 − a)~υ · ~n]2 + 4ac2|~n|
2
} (8)
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It can be shown that, for low Mach number flows, the eigenvalues, (eq. 8) are much more clustered
than those of the non–preconditioned system λ∗

1 = λ∗
2 = ~υ · ~n, λ∗

3 = λ∗
4 = ~υ · ~n + c |~n|, giving thus rise

to better convergence properties. Fig. 1 compares the ratio λ3/λ1 of the preconditioned and the non–
preconditioned system λ∗

3/λ∗
1 for two different ranges of the Mach number. It can clearly be observed that,

through preconditioning, eigenvalues become much more clustered as Mach number approaches zero.
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Figure 1: Comparison of the λ3/λ1 ratio for the preconditioned and the non–preconditioned system for
0.1 ≤ M ≤ 1 (left) and 0.01 ≤ M ≤ 0.1 (right).

3 DISCRETIZATION AND NUMERICAL SOLUTION

The preconditioned equations are integrated over vertex–centered finite volumes 0 defined in fig. 2 for
2D problems. To carry out the integration, the assumption that Γ stays out of the integral, which facilitates
considerably the subsequent development of equations, is made. The meaning of this assumption is that,
in any vertex–centered cell, Γ remains fixed and equal to that defined at the enclosed node P . So

∫ ∫

0

∂
−→
W

∂t
d0 + Γ

∫

∂0

(
−→
F nx +

−→
Gny) d∂0 = 0 (9)

which, through further analysis of terms, yields

0P

∆ tP
δ
−→
WP + ΓP

∑

Q∈nei(P )

−→
Φ PQ = 0 (10)

Figure 2: Control volume surrounding a node.

or, equivalently,

0P

∆ tP
δ
−→
WP + ΓP

∑

Q∈nei(P )

(Γ−1Γ
−→
ΦPQ) = 0 (11)

where nei(P ) is the set of grid nodes that are linked with P through grid segments and
−→
Φ PQ is the numerical

flux crossing the interface of the finite volumes defined around adjacent nodes P and Q. Between P and
Q, the 1D Roe approximate Riemann solver [9] is employed, according to which
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−→
ΦPQ =

1

2
[H(

−→
WP , ~nPQ) + H(

−→
WQ, ~nPQ)] −

1

2
|ÃPQ|∆

−→
WPQ (12)

where ÃPQ is the Roe–averaged Jacobian at the midnode between P and Q and ∆
−→
WPQ =

−→
WP −

−→
WQ

For second order accuracy,
−→
WL =

−→
WP + 1

2

−−→
PQ∇

−→
WP and

−→
WR =

−→
WQ + 1

2

−−→
PQ∇

−→
WQ should substitute for

−→
WP and

−→
WQ, respectively. The last term in eq. 12 is rewriten as follows:

|ÃPQ|∆
−→
W PQ = |Γ̃−1

PQΓ̃PQÃPQ|∆
−→
WPQ

' Γ̃−1
PQ|Γ̃PQÃPQ|∆

−→
WPQ

= Γ̃−1
PQ|ÃΓP Q

|∆
−→
W PQ (13)

Here |ÃΓP Q
| is defined by

|ÃΓP Q
| = P̃ΓPQ

|Λ̃ΓPQ
|P̃−1

ΓP Q
(14)

where Λ̃Γ is the diagonal eigenvalue matrix of ÃΓP Q
whereas P̃Γ and P̃−1

Γ are the diagonalization matrices
composed of the right and left eigenvectors, respectively. Subscript Γ denotes that the matrices are derived
from the preconditioned system and any quantity marked with ˜ is Roe–averaged. Through eqs. 13 and
14, eq. 12, becomes

−→
Φ PQ =

1

2
[H(

−→
WP , ~nPQ) + H(

−→
WQ, ~nPQ)] −

1

2
Γ̃−1

PQ|ÃΓP Q
|∆

−→
WPQ (15)

According the stability criteria applied for the preconditioned system, the local time step is

∆t =
CFL hT

1
2{(1 + a)|~υ| +

√

[(1 − a)|~υ|]2 + 4ac2|~n|2}
(16)

which is simplified to ∆t = CFL hT

|~υ|+c|~n| for the non preconditioned case (a = 1). In the 2D case, eq. 16 is used

to compute ∆t at each triangle using its minimum height hT and the CFL number defined by the user.
Time steps are then scatter–added to nodes.

4 RESULTS AND DISCUSSION

A number of test problems has been selected to demonstrate the capability of the programmed software
to cope with all–speed flows. Our intention is not to demonstrate how accurate the computed results are,
but to convince the reader that, through preconditioning, one can exploit software based on the theory
of hyperbolic equations even in low Mach number flows where, by nature, time–marching methods are
slow. No comparison with experimental or other reference computational results is shown, since the non–
preconditioned method was adequately validated in the past at high subsonic and transonic flows. The
demonstration that follows is concerned with inviscid and viscous flows, around an isolated airfoil, in
a compressor cascade and around a complete aircraft. Any comparison concerning convergence speed is
presented as a function of iterations. The CPU cost per iteration of the preconditioned system of equations
is slightly higher than that of the non–preconditioned one, due to the excess number of floating point
operations it involves. However, the difference in CPU cost is almost negligible and, thus, the comparison
in terms of iterations can be interpreted as a comparison in terms of cost.

The first problem is concerned with the computation of the inviscid flow around the isolated NACA12
airfoil. The same unstructured grid (950 nodes, 1800 triangles) was used to predict the flow field at three
different infinite Mach numbers, namely M∞ = 0.1, 0.01 and 0.005, with the same infinite flow angle
α∞ = 5o. Fig. 3 compares the residual drop in terms of iterations. Note that no stopping criterion
was used, so any comparison between the performance of the non-preconditioned and preconditioned
equations can be objectively quantified, depending on the desired maximum allowed residual. In all cases,
preconditioning leads to better convergence characteristics; it is clear that the lower the Mach number the
lower the computing cost.

In the M∞ = 0.1 case, the gain achieved through preconditioning is not that important, though it
does exist. For higher M∞ values, both systems give very similar convergence characteristics and this can
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be explained by the precondition matrix form, eq. 6, which tends to the unit matrix. By comparing the
residual curves of the preconditioned equations in all three cases, it can be seen that they remain close to
each other whereas the convergence of the non-preconditioned equations drifts much more slowly as the
Mach number decreases. In the cases M∞ = 0.01 and 0.005, assuming a stopping criterion for the residual
equal to 10−10, preconditioning leads to convergence of about five to eight times lower CPU cost.
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Figure 3: Inviscid flow around the NACA12 airfoil. Convergence diagrams for M∞ = 0.1 (top–left),
M∞ = 0.01 (top–right) and M∞ = 0.005 (bottom).

Fig. 4 shows a close up view of the unstructured grid used and the Mach number contours computed
through the preconditioned equations around the airfoil, for M∞ = 0.005.

Figure 4: Inviscid flow analysis for NACA12 airfoil. Mach number contours for M∞ = 0.005, and Mach
number increment ∆M = 0.0002.

Fig. 5 compares the pressure distribution around the airfoil, produced by the preconditioned and
non–preconditioned solver with the same computing cost. Close to the leading and trailing edges, the
preconditioned equations eliminate non–physically accepted pressure kinks, thanks to the modified last
term in eq. 12 which acts as smoothing term.
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Figure 5: Inviscid flow analysis for NACA12 airfoil. Pressure coefficient distribution (M∞ = 0.1).

The second problem examined is that of the inviscid flow analysis in a 3D compresor cascade. The
exit isentropic Mach number equals to 0.1 or 0.3 and a1 = 47o. A 2D unstructured grid (1800 nodes,
3300 triangles) was generated at first which was then stacked in the spanwise direction to create the
3D unstructured grid with 40000 tetrhedra and 9000 nodes. Symmetry conditions were employed over
the upper and the lower plane in the spanwise direction. Fig. 6 shows the residual convergence history
for M2,is = 0.3 and 0.1. In the high Mach case, both solvers, either with or without preconditioning,
converge easily ; however, the preconditioned equations converge faster. In the low Mach number case, the
preconditioned equations solver converges within 400 iterations (the stopping criterion for the residual is
the same as in the previous case); on the other hand, without preconditioning, even 4000 iterations do not
suffice to get an adequately converged solution.
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Figure 6: Inviscid flow in a 3D compressor cascade. Convergence diagrams for M2,is = 0.3 (left) and
M2,is = 0.1 (right).

The turbulent flow over the same linear cascade was also analysed. The 2D grid consists of 5000
nodes and 9400 triangles, which results to a 3D grid with 170000 tetrahedra and 34700 nodes. The
Spalart–Allmaras one–equation turbulence model [10] was used along with the wall function technique; in
particular, a non zero (slip) velocity was allowed to occur over the blade nodes through assuming that
the real solid wall is located at distance δ from the boundary node; δ is a user-defined parameter so that
boundary nodes be in the logarithimic region of the boundary layer. Fig. 7 shows the calculated Mach
number contours and compares the convergence of the preconditioned and non–preconditioned equations
for Re = 100000 and M2,is = 0.1. With the maximum allowed residual value be equal to 10−5, the
preconditioned equation converge at half the CPU cost of the conventional solver. The lower the stopping
residual threshold, the more important the CPU gain.
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Figure 7: Turbulent flow in a 3D compressor cascade (Re = 100000). Mach number contours of the
preconditioned system (left) and convergence diagram (right).

Last case is that of the computation of the inviscid flow around a complete aircraft. The computational
grid generated around half of the aircraft (due to symmetric flow conditions) consists of 256000 tertahedra
and 45000 nodes.

This case was studied for M∞ = 0.1 and α∞ = 0o. Fig. 8 shows the convergence curves for the
preconditioned and non–preconditioned equations and the iso–Mach contours over the aircraft surface.
The preconditioned equations converge faster and the gain in CPU is expected to increase at lower Mach
numbers.
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Figure 8: Inviscid flow around an aircraft. Convergence diagram (left) and iso–Mach contours for M∞ = 0.1
(right).

5 CONCLUSIONS

The implementation of low–Mach preconditioning in a time–marching, primitive variable flow solver can
increase its robustness, yielding equally satisfactory convergence at all flow speeds. A couple of assumptions
is made during this implementation in the contest of a second–order upwind scheme, as demonstrated in
this paper. These assumptions often affect positively the accuracy of the predictions by improving the
quality of the solution in areas close to leading and trailing edge of an airfoil. The proposed method leads
to a considerable economy in CPU cost which becomes more important as the Mach number decreases.
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Abstract.  Blown film extrusion involves melting and pumping of a polymer melt through a die (usually of the 
spiral variety) for the formation of a tubular film, which is stretched in the machine direction and 
simultaneouysly radially inflated. Cooling is accomplished by tangentially impinging external air jets and 
sometimes by internal vertically impinging air jets. Simulations of laminar very low Re flow through the spiral 
die geometry are performed for the determination of flow channel geometry that would result in even melt 
outlflow from the die. The bubble inflation process is described on the basis of thin membrane theory using 
ordinary differential equations. Bubble cooling by external and internal air jets is simulated using k-epsilon 
theory. The importance of the Venturi and Coanda effects in bubble stability and film production is discussed. 

1. INTRODUCTION     

 Blown film extrusion is the most important process for the production of plastic films, ranging in 
thickness from 0.5 mm to as thin as 5 µm. The polymer is melted in an extruder and the hot melt is pumped 
through a die to form a thin walled tube, which is simultaneously axially drawn and radially expanded. In most 
installations the extruder(s) are horizontal and the blown film bubble is formed vertically upward as shown in 
figure  1. 
              Cooling is accomplished by air jets (frequently issuing from dual air lips) externally and vertical jets 
impinging on the bubble internally. The rate of cooling determines the film production rate. The air-jet velocity 
through the Venturi effect in narrow passages helps stabilize the thin bubble of molten polymer, which 
eventually solidifies at the so-called freeze-line.  

2. DIE FLOW SIMULATION AND DESIGN 

 The purpose of an extrusion die is to impart the desired shape to the polymer melt stream produced 
continuously by the extruder. In blown film extrusion a thin tubular film is formed as the melt flows through the 
die lips. The die lip gap width usually ranges from 0.76mm to 3mm and die diameter from a few centimeters for 
laboratory lines to more than one meter for industrial installations producing more than one ton of film per hour.  
The annular flow is formed in the gap between the inner mandrel and the outer die body.  By far the most 
common die geometry for blown film production is the spiral one, which is shown schematically in figure  2. The 
polymer is fed by a number of melt tubes ending with a “port” at the start of each spiral. It flows both along the 
spirals and in the gap between the mandrel and the die body. The flow rate becomes progressively uniform 
around the circumference towards the die exit.  
 Above the die lips the outgoing polymer stream must have uniform thickness. Uneven thickness tends 
to be exaggerated by the subsequent inflation and stretching operations resulting in unacceptable film 
production. Polymer melts tend to flow preferentially directly above the ports resulting in periodic thick and thin 
sections as shown schematically in figure 3. The tendency for uneven thickness distribution becomes greater as 
the power-law exponent in the viscosity function decreases, i.e. shear thinning increases. Thickness variation of 
more than 5% above the die lips is usually unacceptable. Another problem is the poor flow distribution along the 
spirals and between mandrel and die body. Many dies are currently in operation in industrial installations capable 
of producing a film of acceptable uniformity but having part of the spiral channel with stagnant flow regions. 
Stagnant flow regions may result in polymer degradation and other production problems.  
 Computer modeling is necessary for die designs producing uniform thickness without any stagnant flow 
regions. This can be achieved by 2-D approximations of the Hele-Shaw variety using control volumes[ 1, 2, 3] 
relating local pressure to local flow rates or fully 3-D finite element simulations[ 4] for very slow viscous 
(creeping) non–Newtonian flow. 
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3. BUBBLE FORMATION AND MODELING 

 As the molten polymer emerges from the annular die lips, the thin tube is undergoing non-uniform 
biaxial stretching. The deformation effectively ceases at the freeze line, because the stresses are not large enough 
to deform the solid film. For typical film production rate and thinness, it is reasonable to neglect inertia forces, 
surface tension, air drag and gravity on the highly viscous melt. Perhaps the neglect of gravity is the weakest 
assumption when high production rates are involved.  
 Figure 4 shows a sketch of an axisymmetric thin tubular film (of thickness h) with an embedded 
Cartesian system having unit vectors in the direction of flow m (meridional), in the tangential t and normal n 
directions. Mass conservation gives 

constantRhV2Q m =π=  (1) 

where Q is the volumetric flow rate, R is the bubble radius, h the bubble thickness and Vm the velocity in the 
meridional direction.  
 The equilibrium of forces in the normal direction for the thin membrane assumption is  

t

t

m

m

h
P

ρ
σ

+
ρ
σ

=
∆  (2) 

where ρm, ρt are the curvatures in two directions m and t , σm and σt are the corresponding stresses and ∆P is the 
inflation pressure. 
 The force balance on any plane z gives, 

 constantFRh2PR Tm
2 ==θσπ+∆π− cos  (3) 

where FT is the total force exerted on the thin membrane.  
               By determining the two radii of curvature and combining with the force balance equations we end up 
with a single ordinary differential equation[ 5, 6, 7] which, when solved, provides the bubble shape for a Newtonian 
viscosity model. The role of viscoelasticity is to decrease the ultimate bubble radius[ 7, 8]. 

4. BUBBLE COOLING 

 The air-cooling system is an integral part of any blown film line. It greatly affects not only the heat 
transfer from the molten polymer film but also the stability and the shaping of the bubble. The bubble shape is 
primarily determined by mechanical manipulations and aerodynamics[ 9]. Film cooling ultimately affects both 
production rate and final film properties.  
 Two important aerodynamic phenomena may be associated with the cooling airflow, namely the 
Venturi and Coanda effects. The well-known Venturi effect is caused when a fluid flows through a constricted 
area: its speed increases and the pressure drops. In film blowing, the lower orifice air is flowing through the 
narrow gap between the bubble surface and the air ring cone. The resulting Venturi effect causes the bubble to be 
pulled towards the air ring cone, visibly deforming the bubble.  
 The Coanda effect occurs when a free jet emerges close to a surface: the jet tends to bend, “attach” 
itself and flow along the surface. The surface may be flat or curved and located inclined or offset to the jet. The 
Coanda effect is more pronounced near curved surfaces. Blown film bubble surfaces with the cooling air 
impinging on them at an angle, offer the possibility of Coanda type jet attachments and detachments. 
               Sidiropoulos and Vlachopoulos[ 10, 11] studied the aerodynamics of dual orifice air-rings using a 
commercially available finite volume software package to solve the Reynolds averaged Navier-Stokes equations. 
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 In these equations the effect of turbulence is included through the Reynolds stresses ( jiuu ′′ρ− ), which 

involve products of the velocity fluctuations. A variation of the so-called k-ε turbulent model was used to 
achieve closure of the system of differential equations. In this approach the contribution of Reynolds stresses to 
the momentum balance is introduced through the concept of the “effective” viscosity. Although there are more 
accurate models to simulate the airflow, the results are often marginally different to justify the increased 
complexity of the simulation . 
 Figure 5 shows a simulation example depicting the calculated airflow streamlines around a typical 
blown film bubble. The two simulated airflows (presented on the left and right side of the same figure) 
correspond to slightly different setups for the adjustable part of the air ring. Although the geometrical differences 
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are minute, the simulation predicts significant differences in the local airflow pattern, which consequently result 
in differences in local heat fluxes. 
 The numerical simulations explained the importance of under-pressure generated by the Venturi effect, 
which is large enough to force the bubble to take the shape of the air ring. It appears that the Venturi effect 
overwhelms any tendency for different bubble shapes dictated by viscoelasticity. Generally, the Venturi effect is 
used to stabilize the process. However, it is known from industrial practice that sometimes even small 
adjustments to the airflow may cause bubble instability. 
 Internal Bubble Cooling (frequently called IBC) of blown film bubbles employs various mechanisms to 
exchange the internal air of the bubble. Naturally, this helps to increase the cooling of the film, which would 
ultimately lead to increased production rates. IBC typically involves specifically designed equipment, engaged in 
exchanging the warm internal air with colder external air and also constantly circulating and mixing the internal 
air. In some cases the external air is chilled before injected inside the bubble to maximize the cooling benefit. 
With IBC, the expected production rate improvement becomes increasingly important as die size and film layflat 
width increase. Production rate increases range from 20% for small bubbles (up to 8´´ in die diameter) to as 
much as 80% for very large bubbles. A simulation of IBC has been published[ 12]. 

5. CONCLUDING REMARKS 

 The use computer simulation for the determination of flow channel geometry to produce uniform 
outflow of a thin polymer tube and stagnation-free regions is absolutely necessary for successful die designs. The 
bubble inflation modeling provides insights into the polymer deformation process, but the bubble shape is 
primarily determined by mechanical manipulations and the Venturi effect. Turbulent air jet simulations provide 
significant information on air ring and internal bubble cooling system design. 
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1 Figure  1. Schematic of the film blowing process 
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2 Figure  2. Schematic of a spiral mamdrel die 
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3 Figure 3. Thickness variation as a function of position for a four port die 

 
 

 
4 Figure 4. Blown film bubble and intrinsic coordinate system (n, m, t) 
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5 Figure 5. Cooling air streamlines around an LLDPE blown film bubble  

for different setups of the adjustable ring (moderate air-flow)  
left side: low position, right side: high position 
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Abstract. We examine the transient, axisymmetric, squeeze flow of viscoplastic materials, under creeping flow. 
Both cases of the disks moving with constant velocity and under constant force are studied. This is a transient 
simulation, performed for the first time for such materials, in order to determine the transient force or velocity, 
respectively, the shape of the liquid/air interface and the effect of gravity very accurately. All these are 
impossible with the quasi steady state models used up to now. For the simulation of the viscoplastic behaviour 
we employ the approximate model suggested by Papanastasiou. As a numerical scheme we use the mixed finite 
element method coupled with a quasi-elliptic mesh generation scheme in order to follow the large deformations 
of the flow domain. We show that unyielded material arises around the two stagnation points of flow at the 
center of the disks and that the size of these domains increases with the Bingham number. When the disks move 
with constant velocity the unyielded region decreases, as time passes and the distance between the two disks 
decreases. On the other hand, when a constant force is applied on the disks, they slow down until they finally 
stop, because eventually all the material between them becomes unyielded. 
 
1. INTRODUCTION 

Squeeze flow is widely used as a typical experiment for the rheological characterization of Non-Newtonian 
fluids [1]. The rheological experiment is usually conducted in two different ways, either by measuring the force 
required to push the disks at a constant velocity [2] or by measuring the velocity of the disks towards each other 
when a constant force is applied [3]. Our efforts are aimed at developing an accurate and efficient numerical 
method in order to simulate both versions of such a rheological experiment for the special case of a viscoplastic 
material. The deformation and flow of such materials are very important since many multicomponent fluids such 
as suspensions, pastes, paints, foodstuffs, foams and slurries, which are very frequently encountered in industrial 
processes, are viscoplastic [4]. When the applied stress is below a particular value, which is called yield stress, 
these materials exhibit small or no deformation at all (solid like behavior). Above the yield stress these materials 
flow with viscosity that depends on the local shear rate. 

The behavior of viscoplastic materials in squeeze flow has attracted the attention of several researchers in the 
past. In early theoretical studies, the most usual approach was the lubrication approximation [5]. However, 
although it was noticed since then that this kind of analysis led to profound kinematic inconsistencies in the 
calculated velocity fields, it is still used extensively to evaluate experimental results. O’Donovan & Tanner [6] 
were the first who recognized the need to solve the squeeze film problem without assuming the lubrication 
approximation. They solved numerically the constant velocity problem employing the biviscosity model for 
modeling the viscoplastic behavior of the material and they finally concluded that unyielded material arise only 
adjacent to the centre of the plates. Quite recently Smyrnaios & Tsamopoulos [7] provided a qualitative analysis 
and numerical simulations for this problem assuming a quasi steady state model. They employed both the 
original Bingham model [8] and the exponential one, which was proposed by Papanastasiou [9], clarifying all the 
misleading speculations on the position and the existence of yield surfaces in this flow field. They showed that 
unyielded material could only exist around the two stagnation points of flow confirming and extending the work 
by O’Donovan & Tanner [6]. Matsoukas & Mitsoulis [10] also solved numerically the squeeze flow of 
viscoplastic materials, assuming steady state, for both planar and axisymmetric flow confirming the earlier 
results by Smyrnaios & Tsamopoulos [7] for the axisymmetric case. They have also provided a more exact 
relation for the force that must be applied on the disks’ surface in order to maintain their constant velocity.  

In the present work we solve the transient squeeze flow of a viscoplastic material for both cases where the 
disks are moving with constant velocity and under constant force. The transient simulation which is done for the 
first time for such fluids enables the determination of the transient force or velocity, respectively, the shape of 
the liquid/air interface, and the location of the yield surface. Moreover we are able to study the effect of possible 
slip of the fluid on the disk surface and the effect of gravity on the flow field.  
 
2. PROBLEM FORMULATION 
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We consider the axisymmetric squeeze flow of a viscoplastic material with a constant yield stress, yτ , and  

upon yielding a constant dynamic viscosity, οη . We assume that the fluid has a surface tension, σ  and that it is 
incompressible with constant density, ρ . Fig. 1 illustrates a schematic of the flow geometry examined herein: 
the space between two parallel coaxial disks, whose radial dimension is represented with a , is filled with a 
cylindrical sample of a viscoplastic material. The radius of this sample is denoted with b . Initially the disks are 
not moving and so the free surface of the fluid is assumed to be straight. At the same time, the pressure inside the 
fluid is considered to be uniform, assuming that the ambient pressure is zero. 

 

 
 

Figure 1. Schematic of the squeeze flow geometry between two parallel coaxial disks. 
 
We scale all lengths with half the initial distance of the two disks, L , and time with *VL , where *V  is the 

characteristic velocity. For the constant velocity problem the choice of the characteristic velocity *V is rather 
obvious and it is the constant velocity of the disks V . On the other hand although no characteristic velocity 
exists for the constant force problem, due to the decelerating nature of the flow, we have chosen as such the 
initial velocity of the disks )0( +=tV . In addition, both pressure and stress components are scaled with viscous 

scale 
L
V *
οη . Thus the dimensionless groups that arise are the Reynolds number 

oη
ρVL

=Re , the Bingham 

number 
Vη
L

Bn
o

yτ= , the Capillary number 
σ
η V

Ca o= , the Stokes number 
V

gLSt
oη

ρ 2
= , when gravity is taken 

under consideration, and finally the aspect ratios 
b
L

=ε  and 
L
aw = . 

The flow of an incompressible fluid is governed by the momentum and mass conservation equations which in 
their dimensionless form are:  

0 =−⋅∇+∇+ zeStP
Dt

vDRe τ           (1) 

0=⋅∇ v             (2) 
where τ  is the viscous part of the total stress tensor σ ,  

τσ += IP ,             (3) 

while v , P  are the axisymmetric velocity vector and the pressure respectively. 
To complete the description of the flow problem specification of a constitutive equation which describes the 
rheology of the fluid is required. In the present study we employ the continuous constitutive equation that has 
been proposed by Papanastasiou [9] which relates the stress tensor, τ , to the rate of strain tensor, γ , by a simple 

exponential relation. The dimensionless form of this constitutive equation is 

γ 
γ
eBnτ

γN

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
+−=

−11            (4) 

where γ  is the rate of strain tensor defined as Tvv ∇+∇=γ , γ  is its second invariant, 21]:
2
1[ γγγ = and N  

is the stress growth exponent 
L

mVN = . 
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Smyrnaios & Tsamopoulos [7] have shown that for relatively large values of the exponent coefficient, N , 
this model closely approximates the discontinuous Bingham behavior. However Burgos et al. [11] have 
suggested that extremely large values of that coefficient should be avoided for reasons that have to do with 
numerical stability and the stiffness of the resulting discrete system. The main advantage of this constitutive 
equation is the fact that it is continuous and it holds uniformly in yielded and unyielded regions. Thus the 
determination of the shape and the location of the yield surface can be done a posteriori in contradiction to the 
discontinuous Bingham model. The criterion for this determination has the following form 
 Yielded material:  Bn> τ           (5) 
 Unyielded material: Bn≤ τ           (6) 

Along the free surface the velocity field should satisfy a local force balance between the surface tension and 
the viscous stresses in the liquid 

n
Ca
Hn 2

=⋅σ             (7) 

where n  is the outward unit normal to the free surface and H2 is its mean curvature which is defined as 
nH s ⋅∇−=2 ,  ∇⋅−=∇ )( nnIs           (8) 

Taking the tangential and normal to the free surface components of the force balance we get 
 0: =σnt             (9) 

Ca
Hnn 2: =σ           (10) 

In addition, the boundary conditions that must be imposed on the axis of symmetry ( 0r = ) and on the plane of 
symmetry ( 0z = ) are 

0=⋅ vn            (11) 
0: =σnt           (12) 

On the surface of the disk, two boundary conditions are imposed. On the axial direction the boundary condition 
depends actually on the problem that is examined each time. That is for the constant velocity problem the fluid 
has the same axial velocity with the disks, and thus 

1−=⋅ vn           (13) 
while for the constant force problem the condition that must be imposed is 

02
0

=− ∫
cR

zz rdrF πσ          (14) 

In the present study we also examine the effect of slip of the fluid on the surface of the disks. To this end we 
adopt a modification of the slip model that was originally proposed by Kamal et al. [12]. The slip coefficient is 
an exponential function of the radial distance from the triple contact point and thus the slip model has the 
following form  

vtent csl Rr
sl ⋅= −−  : ))(( αβσ         (15) 

where Rc is the radial distance of the triple contact point from the axis of symmetry, slβ  is a parameter which is 
used to adjust the level of slip velocity in comparison to the wall shear and slα  is another parameter which is 
used to adjust the length of the slip region. The model reduces to the no-slip condition as these two parameters 
increase whereas when slα  becomes zero, slip occurs over the entire wall boundary. 
The model is completed by assuming that the fluid initially is at rest 0)0,,( ==tzrv , the free surface is flat 

with radius b  and finally that the fluid is under constant pressure 
Ca
ε)t,z,r(P == 0 . 

 
3. NUMERICAL IMPLEMENTATION 
 
In order to numerically solve the above set of equations we have chosen the mixed finite element method 
combined with an elliptic grid generation scheme for the discretization of the transient physical domain. 
 
3.1 Elliptic grid generation 
 
In the present study we employ a quasi elliptic mesh generation scheme that has been recently developed and 
applied in several cases by Dimakopoulos & Tsamopoulos [13]. With this scheme the time dependent physical 
domain ),( zr  is mapped onto a fixed with time computational one ),( ξη . As such computational domain we 
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choose the volume that is initially occupied by the fluid. This mapping is based on the solution of the following 
system of quasi elliptic partial differential equations  

( ) 01 122

22

1 =∇
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
−+

+

+
⋅∇ ξεε

ηη

ξξ

zr

zr
        (16) 

0=∇⋅∇ η           (17) 
where the subscripts denote the differentiation with respect to the variable indicated and 1ε  is a parameter that is 
adjusted by trial and error. In order to solve the above system of differential equations appropriate boundary 
conditions must be imposed. On the fixed boundaries we impose the equations that define their position and the 
remaining degrees of freedom are used for the equidistribution of the nodes along the boundaries. In addition, 
along the moving interface we impose the kinematic equation 

v
Dt

FD
=           (18) 

where zr ezerF +=  is the position vector of the free surface, together with a condition that requires the 
uniform distribution of the nodes along the free surface.  
 
3.2 Mixed finite element method 
 
The computational domain is discretized using triangular elements because they can conform better to the large 
deformations of the transient physical domain. We approximate the velocity vector with quadratic basis 
functions, iφ ,  and the pressure as well as the position vector with linear basis functions, iψ . We employ the 
finite element/Galerkin method which results into the following weak forms of the momentum and mass 
balances 

[ ] 0  Re =Γ⋅+Ω⎥⎦
⎤

⎢⎣
⎡ ⋅∇+ ∫∫

ΓΩ

dnd
Dt

vD iii φσσφφ       (19) 

0 =Ω⋅∇∫
Ω

dviψ           (20) 

where Ωd  and Γd  are the differential volume and surface area respectively. The surface integral that appears in 
the momentum equation is split into four parts, each one corresponding to a boundary of the physical domain. 
We must also derive the weak forms of the mesh generation equations. Thus after applying the divergence 
theorem we get  
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⎝
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zr iψξεε
ηη
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0=Ω∇⋅∇∫
Ω

diψη          (22) 

The resulting set of algebraic equations is solved with the following two-step Newton-Raphson/Non-linear 
Gauss Seidel iteration scheme. At each time step the momentum and mass balances are solved until convergence 
assuming the physical domain from the previous time step. Thus once the velocities and pressure are known, the 
new locations of the mesh points can be determined from the mesh generation equations and their boundary 
conditions. This procedure continues until convergence is achieved for both the flow and mesh equations. Finally 
the set of algebraic equations is integrated in time with the Predictor-Corrector Euler method using an automatic 
adaptation of the time step for optimizing the code performance. The iterations are terminated using a tolerance 
for the absolute error of the residual vector which is set to 10-9.  
 
4. RESULTS AND DISCUSSION   
 
4.1 Constant velocity problem 
 
Fig. 2 illustrates the flow field in a volume of a viscoplastic material that initially fills only partially the space 
between the two disks, that is when ba > . The snapshots are taken at times 2.0=t , 5.0=t , 6.0=t  and each 
one of them shows the contour plots of the axial velocity, on the upper half, and the radial velocity, on the lower 
half, for 10=Bn , 0Re = , 310=Ca , 0=St , 15=w , 1.0=ε , 5=slα , 1=slβ , 500=N . At early times the 
fluid moves inside the disks while near the end of the simulation it exits from them. On the left hand side we can 
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see the axis of symmetry while on the right hand side we see the free surface of the fluid. We observe that the 
free surface, which initially was straight, deforms everywhere even at small times. The axial velocity has its 
smallest (negative) values near the disk walls because the fluid follows the motion of the disks in the axial 
direction and its values monotonically increase towards zero at the mid-plane. 
 

 
 
Figure 2. Contour plots of the axial, upper half, and the radial, lower half, velocity component at 2.0=t , 

5.0=t , 6.0=t  and for 10=Bn , 0Re = , 310=Ca , 0=St , 15=w , 1.0=ε , 5=slα , 1=slβ , 500=N  
 
As for the radial velocity component on the axis of symmetry it becomes zero because of the symmetry. 
Moreover, the slip condition which was introduced in this simulation divides the surface of the disks into a 
noslip region where the radial velocity is zero and a slip region near the triple contact point. In the slip region, 
although the disks force the fluid to move in the axial direction, the fluid near the disks follows only partly that 
motion because it is also allowed to slip in the radial direction. Another significant difference is observed on the 
axial velocity field near the axis of symmetry. The axial velocity of the fluid remains equal to the velocity of the 
disk up to almost half the distance of the disk from the mid-plane and this happens because unyielded material 
arises in that region. Smyrnaios & Tsamopoulos [7] have also noticed a similar dependence of the size of these 
domains on the aspect ratio. It must be noted though that the different aspect ratios in their quasi steady state 
analysis correspond to different time moments in our transient simulation. 

 
Figure 3. Yield surfaces for 0Re = , 310=Ca , 0=St , 10=w , 1.0=ε , 10=slα , 1=slβ , 500=N  and 

various Bn  numbers at time 510−=t  
 

Fig. 3 shows the shape of the yield surface as a function of the Bn  number for 0Re = , 310=Ca , 0=St , 
10=w , 1.0=ε , 1=slβ , 10=slα  and 300=N  at time 510−=t . As we can see in the figure the 
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viscoplasticity of the material affects significantly the size of the unyielded regions that arise in the flow domain. 
More specifically their size increases substantially with the increase of the Bn  number. 

We also examined the effect of the slip coefficients slα  and slβ  on the flow field. When the value of slβ  
increases the level of the slip velocity, near the triple contact point, decreases which has an effect on the shape of 
the fluid/air interface. However the velocity field away from the triple contact point is not affected significantly. 
The other parameter, slα , controls the rate of decrease of the slip velocity and thus it can be used for adjusting 
the length of the slip region. The smaller the value of slα  the larger the slip region becomes. Simulations have 
shown that slα  has a very small effect on the shape of the fluid/air interface. However its effect on the domain 
of the unyielded region is rather important. Fig. 4 shows the shape of the yield surface for two different 
parameters of slα .  

 
Figure 4. Yield surfaces at time 510−=t  for 30=Bn , 0Re = , 310=Ca , 0=St , 5=w , 5.0=ε , 10=slβ , 

300=N  and various slα  
 
We observe that when the slip region becomes longer the domain of the unyielded material becomes smaller or 
for even smaller value of slα , that is when 5.2=slα  which is not presented here, the unyielded area totally 
disappears. This happens because as the slip length increases and slip is allowed at a larger portion of the disk 
surface, the fluid follows only partly the axial motion of the disks towards the mid-plane and flows also in the 
radial direction. Thus the flow becomes extensional near the disk surface and the axis of symmetry which 
prohibits the formation of an unyielded domain. 
It is very interesting to calculate the squeeze force that must be applied on the disks in order to maintain their 
constant velocity because usually in such a rheological experiment the force is the only measured quantity. We 
calculate the force acting on the disks by integrating the normal to the disks component of the total stress tensor, 

zzσ , over the portion of the disk surface which comes into contact with the fluid 

∫=
cR

zz rdrF
0

2πσ  

Fig. 15 shows the dependence of the squeeze force on time and for various Bn  numbers. The rest of the 
parameters are 0Re = , 310=Ca , 0=St , 10=w , 1.0=ε , 1=slβ , 5=slα  and 300=N . We observe that 
the squeeze force increases significantly as time passes because of the decreased distance of the disks. 
Furthermore we notice that there is a substantial increase in the force that must be applied on the disks as the Bn  
number increases especially at early times. This dependence of the force on the viscoplasticity of the material 
was also noted by previous researchers in the past [7],[10]. The variation of the force is almost of one order of 
magnitude as the Bn  number increases from 1 to 50. Thus we can say that measuring the force that must be 
applied on the disks to maintain their constant velocity can be an efficient way of determining the value of the 
yield stress for a viscoplastic fluid. 
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Figure 5. Evolution of the squeeze force with time for 0Re = , 310=Ca , 20=w , 1.0=ε , 5=slα , 1=slβ , 

300=N  and various Bn numbers 
 

4.2 Constant force problem 
 
The measured quantities in a squeeze flow experiment that is conducted under constant force are the axial 
velocity of the disks and their position with time. The motion of the disks in such an experiment is decelerating 
because as they approach each other the resistance of the fluid continuously increases which makes them to slow 
down and eventually to stop. Fig.16 shows the evolution of the axial velocity and position of the upper disk with 
time for the case of a viscoplastic fluid with 10=Bn , 0Re = , 310=Ca , 0=St , 5=w , 5.0=ε , 100=slβ , 

5=slα  and 300=N .  

 
Figure 16. Evolution of the squeeze velocity and the distance of the upper disk from the mid-plane dz  with time 

for 10=Bn , 0Re = , 310=Ca , 5=w , 5.0=ε , 5=slα , 100=slβ , 300=N  
 
Indeed, one can see in the figure that the velocity of the disks reduces very rapidly, especially at early times. It is 
characteristic that the disk has already lost the 90% of its axial velocity already by the time 70.0=t  while the 
distance of the upper disk from the mid-plane is 78.0=dz . After that point the disk velocity reduces with much 
smaller rate and it finally becomes practically zero at time 78.7=t . The position of the disk at that time moment 
is 64.0=dz . The motion of the disks eventually stops because all the material between the two disks behaves as 
a rigid solid.  
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5. CONCLUSIONS 
 
We studied the transient squeeze flow of a viscoplastic material between two parallel coaxial disks. Both cases 
of the disks moving with constant velocity and under constant force, were studied. This is the first truly transient 
simulation of squeeze flow for viscoplastic material and allows us to determine the shape of the liquid/air 
interface which was impossible with the quasi-steady state models. The simulation of the process is based on the 
mixed finite element method for the discretization of the governing equations coupled with a quasi-elliptic mesh 
generation scheme in order to follow the large deformations of the physical domain.  
We examined the effect of the yield stress, the slip coefficients and the gravity forces. In the constant velocity 
problem is shown that unyielded material arises around the two stagnation points of flow at the disk centers, 
verifying previous steady state calculations. The size of these domains increases with the Bingham number but 
reduces with time because of the decreased distance of the disks. The force that must be applied on the surface of 
the disks in order to maintain their constant velocity increases substantially with Bingham number and with time. 
The slip condition on the surface of the disks is found to affect significantly the flow field. More specifically the 
level of the slip velocity near the triple contact point alters the contact angle of the moving interface with the 
surface of the disks, which decreases from 180o. Moreover as the length of the slip region increases, the size of 
the unyielded areas reduces significantly. Under typical gravity conditions the flow inside the two disks is not 
affected significantly whereas when enough fluid exits them, the effect of gravity on the flow field as well as on 
the shape of the free surface becomes rather important. 
Finally, when constant force is applied on the disks their motion is decelerating until they finally stop since at 
that time all the material between them behaves as rigid solid. The time that is needed for the disks to stop 
moving as well as their final position depends strongly on the viscoplastic properties of the material. As the 
Bingham number increases the time reduces while the final distance of the disks increases.  
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Abstract. Semisolid slurries used in the processing of alloys are materials with thixotropic behavior and yield 
stress. All existing and future semisolid technologies are based upon the unique combination of their solid-like 
and fluid-like behavior. However, an intrinsic difficulty in utilizing the potential of the process is the rather 
complex flow behavior of the slurries. As a two-phase mixture of liquid and solid particles the bulk flow behavior 
is determined by the way the two phases interact and evolve during processing. This suggests that process 
variables change continuously in a way that is very different from liquid casting. 

The objective of rheological studies of the slurries is to describe qualitatively the solid phase structure, the 
contribution from the liquid phase, and to express the apparent mechanical response in terms of structural 
parameters, such as grain size, degree of agglomeration, etc., and their kinetics. Presently, this ultimate objective 
is rather difficult to achieve. Instead, the alternative is to introduce a phenomenological approach that captures 
and generalizes the salient features of semisolid behavior. These features are: (a) the existence of a finite yield 
stress, (b) the apparent shear-thinning behavior in steady-state shear rate, and (c) the apparent shear-thickening 
behavior during rapid transients where the shear rate is variable. Broadly speaking, the mechanical response of 
semisolid slurries corresponds to that of a thixotropic, non-linear visco-plastic material with history-dependent 
material parameters. 

However, the determination of material constants for the assumed behavior is difficult to achieve due to the 
high temperature of the suspensions and the short duration of the material response. In this paper we demonstrate 
the use of computational rheology as a way to determine the material constants. We show that by modeling exactly 
actual classical tests using computational methods we can determine the material constants that fit the assumed 
bulk rheological behavior. We show also that the same approach can be used to test various hypotheses about 
structure breakdown and the associated time scales.   
 
 
1 INTRODUCTION 

 
Semisolid slurries are a mixture of rounded, rosette-like solid particles and liquid at a temperature between the 

solidus and liquidus isotherms. The average solid volume fraction is a function of the bulk temperature of the 
suspension and depending on the local temperature it varies from zero to unity. These materials exhibit a yield 
stress, which depends on the solid volume fraction. During processing the viscosity changes significantly due to 
segregation effects of the internal microstructure. In general, semisolid materials behave like visco-plastic fluids 
characterized by a finite yield stress τ0 and by material properties that are time and shear rate depended. Therefore, 
Herschel-Bulkley fluid model with time dependent parameters could be applied to characterize the flow and time 
depended phenomena of semisolid slurries [1]. 

The Herschel-Bulkley model is based on the combination of the Bingham and power-law models. Thus, 
Herschel-Bulkley fluids exhibit a yield stress, τo, which is the minimum stress required for the material to deform. 
The existence of yield stress in semisolid materials is due to bonding and dry friction between particles. Once the 
yield stress is exceeded the material behaves either as a shear-thickening or as shear-thinning fluid with a non-
linear stress strain relationship [1]: 
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0=γ        oτ≤τ             
                                  (1) 

γ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
γ+

γ
τ

=τ −   1n0 K      oτ≥τ          

 
where K is the consistency index and n is the power-law index, which determines the nonlinear behaviour of the 
fluid upon yielding; the fluid is shear-thinning for n<1 and shear-thickening for n>1 [2]. For n=1 the Bingham 
model is recovered, in which case Κ represents the constant viscosity. The three material parameters, Κ, τo and n 
are determined from experimental data. The Herschel-Bulkley model cannot be used in practical problems because 
it is singular when the shear rate approaches zero. With the exception of ideal unidirectional problems, 
viscoplastic behavior is usually described using non-singular approximations of Eq. (1). A popular regularization 
is the one proposed by Papanastasiou, which is valid uniformly at all levels of γ  [2,3,4,5]: 

 

 
( )o n 1  1 exp m   

  K  −
⎧ ⎫τ − − γ⎡ ⎤⎪ ⎪⎣ ⎦τ = + γ γ⎨ ⎬

γ⎪ ⎪⎩ ⎭
  with  

1
2

IIγγ =         (2) 

 
In the above constitutive relation II stands for the second invariant of a tensor and m is a stress growth exponent. 
The above regularized constitutive equation provides a satisfactory approximation of the Herschel-Bulkley model 
for sufficiently large values of m and is valid uniformly at all levels of γ . The need to determine the yielded and 
unyielded regions of the flow is thus eliminated. It should be noted that large values of m might lead to 
convergence difficulties while small values can lead to wrong results. Hence, the value of m should be chosen very 
carefully [3, 4, 6]. 

 

2 COMPRESSION EXPERIMENT 

2.1 Description of the Experiment 
 

In this study, we investigated numerically the compression of a finite amount of Herschel-Bulkley fluid by 
considering constant, time-independent properties. The numerical simulations were performed under constant load 
as well as under constant velocity applied only on the upper side of the sample. This is an important difference 
from other experimental studies, in which the compression is performed simultaneously from both sides of the 
sample. The objective here is to study the influence of the controlling parameters such as the Bingham (Bn) 
number on the compression experiment and other derived material quantities. The topology of the yielded (τ > τo) 
and unyielded (τ  τo) zones and their evolution during processing is examined here as a key derived quantity. 

This aspect is important in understanding the structural changes and rheological attributes of the material during 
flow. Alexandrou and his collaborators [3, 7] demonstrated that regularized models such as the Papanastasiou, the 
biviscosity and other viscoplastic models could predict the flow and represent the topography of the yield surfaces 
reasonably well provided that the regularizing parameters are properly selected. 

Figure 1 shows the axisymmetric sample of initial radius R and height H=2R used in the simulations. Due to 
the non-dimensionalization the height is equal to one (H=1) and the width is D/2=R=0.5.  The material is placed 
on a plate and compressed from the top by applying either constant force or constant velocity.  
Due to symmetry, only one-half of the sample is used in the simulations. A related flow to this problem is Stefan’s 
squeezing flow, in which both sides are set under external pressure. Symmetry boundary conditions are imposed 
along the axis of symmetry (r=0) and the velocity vector is zero along the bottom. 

In the experiment performed under constant velocity, the specimen is compressed (from the top), and the 
transverse velocity (pointing downwards) is set to unity. While in the case of experiment performed under 
constant load, the boundary condition at the top of the sample is given by the relation: 

 
   zs

F e dS= σ⋅∫               (3) 

where S refers to the area at the top. The velocity in this case is everywhere set to zero at t=0. 
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2.2 Governing Equations 
 
The flow is governed by the continuity and momentum equations for an incompressible fluid:  

 
   0∇ ⋅ =u               (4) 

    
t

⎛ ⎞∂
ρ + ⋅∇ = ∇ ⋅σ⎜ ⎟∂⎝ ⎠

u u u             (5) 

 
where ρ is the density of the fluid, and σ is the total stress tensor defined as σ = -pI + τ, p being the pressure and I 
the unit tensor. The viscous stress tensor τ is assumed to obey the regularized Herschel-Bulkley equation (2) 
which closes the system of equations (4) and (5). 

The governing equations in Lagrangian coordinates together with the constitutive relation, boundary conditions 
and the free surface are descretized using the mixed-Galerkin finite element method with the standard nine-node 
quadrilateral elements. The resulting non-linear system of equations was linearized using a Newton-Raphson 
iteration procedure and a solution is considered converged when the maximum error is less than 10-5. 

 
2.3 Non-dimensionalization 

 
The non-dimensional form of the equations 4 & 5 for both experimental cases (constant load and constant 

velocity) becomes: 
0u∗∇ ⋅ =              (5) 

 
*

* * *
*  

t
⎛ ⎞∂

+ ⋅∇ = ∇ ⋅σ⎜ ⎟∂⎝ ⎠

u u u            (6) 

The dimensionless form of the regularized Herschel-Bulkley constitutive relation (2) takes the form: 
 

*
* *(n 1) *

*

1 exp( M )Bn −⎡ ⎤− − γ
τ = + γ γ⎢ ⎥γ⎣ ⎦

          (7) 

where  γ * is the dimensionless rate of strain tensor, Bn is the Bingham number and M the dimensionless  

Load 

r R P=0 

H 

z 
Ur=Uz=0  at  t=0 

Free 
surface 

Ur=Uz=0  at  t=0 

Figure 1: Geometry of the compression experiment. 
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stress growth exponent. 

In the case of constant load there is no characteristic velocity and the Bingham number Bn and the 
dimensionless growth exponent M are defined in terms of the force F: 

 
                 (8) 
 
 
                 (9) 

 
where H is the initial height of the sample. 

In the case of constant velocity the Bingham number Bn and the dimensionless growth exponent M are defind 
by: 

 
                (10) 
 
 
                (11) 
 

where U is the compression velocity. 
 

3 NUMERICAL RESULTS 
For the selection of the most suitable mesh refinement we employed five meshes (10x10 to 20x20) with 

number of elements in the range from 100 to 400 (10x10 to 20x20) and we examined the convergence of the 
numerical results. By taking into consideration also computer’s processor speed, we selected the mesh with 256 
(16X16) elements, which gives practically converged results. 

In Figure 2 is shown typical mesh shapes with 256 (16X16) elements, obtained during an experiment under 
constant load with Bn=0.1 and M=300. Note that the mesh appears to be more refined due to the fact that the 
graphics package divides each nine-node element into four quadrilaterals.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Figure 2: Typical meshes obtained during a constant force experiment; Bn=0.1 and M=300 
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The effects of the Bingham number, Bn, and the power-law exponent, n, on the evolution of the sample height, 

i.e. on the rate of compression, under constant load are illustrated in Figures 3 and 4 respectively. Figure 3 shows 
the evolution of the sample’s height for five different Bingham numbers (Bn=0.05, 0.1, 0.3, 1 and 2), which 
increases by increasing the Bingham number (Bn) and reaches earlier the steady state. In experiments under 
constant load, compression is in general very rapid initially and then decelerates slowly approaching a “steady”  
state. As for the influence of the power-law exponent illustrated in Figure 4 the rate of compression, as expected, 
increases for higher values of n. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Effect of the Bingham number on the evolution of the sample’s height;  
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Figure 4: Effect of the power-law exponent n on the evolution of the sample’s height in a constant 
force experiment; Bn=0.1
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Figure 5 shows snapshots of the sample in an experiment under constant load  and Bn = 0.1, taken at different 

times. Note that for presentation purposes the snapshots are not in scale. The evolution of the yielded (grey colour) 
and the unyielded (black colour) areas is also shown. Initially the material is yielded at the edges of the sample’s 
upper side. As expected, the size of the yielded regions increases as the experiment proceeds. The compression of 
the sample begins soon after the whole material is yielded, with the exception of the unyielded spot located just 
above the bottom of the sample and around the axis of symmetry, which persists till the end of the compression 
experiment. Although the load remains constant on the top side decreases, due to the increase of the area of the 
compressed side, the total applied stress. Interestingly, in these final stages the unyieded area grows again 
instantaneously because the effective stress field in the sample decreases. This phenomenon is due to the fact that 
the sample is compressed with constant load, which is applied from its top side. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5:  The evolution of the yielded (grey colour) and unyielded (black colour) areas in a 
constant force experiment; Bn = 0.1. 
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Abstract. The time-dependent, two-dimensional compressible Newtonian flow over the reservoir-die region is 
solved assuming that slip occurs along the die wall following a non-monotonic slip law. The combination of 
compressibility and nonlinear slip leads to self-sustained oscillations of the pressure drop and of the mass flow 
rate at constant piston speed, when the latter falls into the unstable negative slope regime of the flow curve. The 
effect of the reservoir volume on the amplitude, the frequency and the waveform of the pressure oscillations is 
studied and comparisons are made with experimental observations concerning the stick-slip polymer extrusion 
instability.  

1 INTRODUCTION 

Slip at the wall is considered to be a key factor in polymer extrusion instabilities, such as the stick-slip 
instability[1,2]. A characteristic of the stick-slip instability not encountered with other types of extrusion 
instability, such as sharkskin and gross melt fracture, is that this is accompanied by pressure and mass flow rate 
oscillations which result in extrudate shapes characterized by alternating rough and smooth regions[1,2]. Recent 
work concerning numerical modeling of the stick-slip instability has been reviewed by Achilleos et al.[3] who 
discuss three different instability mechanisms: (a) combination of nonlinear slip with compressibility; (b) 
combination of nonlinear slip with elasticity; and (c) constitutive instabilities. In the present work, we 
investigate further the compressibility-slip instability by means of numerical simulations.  

The compressibility-slip mechanism has been tested by Georgiou and Crochet[4,5] in the Newtonian case, 
with the use of an arbitrary non-monotonic slip equation relating the wall shear stress to the slip velocity. These 
authors numerically solved the time-dependent compressible Newtonian Poiseuille and extrudate-swell flows 
with non-linear slip at the wall, showing that steady-state solutions in the negative-slope regime of the flow 
curve (i.e. the plot of the wall shear stress versus the apparent shear rate or the plot of the pressure drop versus 
the volumetric flow rate) are unstable, in agreement with linear stability analysis. Self-sustained oscillations of 
the pressure drop and of the mass flow rate at the exit are obtained, when an unstable steady-state solution is 
perturbed, while the volumetric flow rate at the inlet is kept constant. These oscillations are similar to those 
observed experimentally with the stick-slip extrusion instability. In a recent work, Georgiou[6] obtained similar 
results for the  compressible, axisymmetric Poiseuille and extrudate-swell flows of a Carreau fluid with slip at 
the wall, using an empirical  slip equation that is based on the experimental measurements of Hatzikiriakos and 
Dealy[7,8] on a HDPE melt. Unlike the experimental observations[8,9,10], however, the limit cycles of the periodic 
solution obtained in all these numerical studies do not follow the steady-state branches of the flow curve.   

As pointed out by Georgiou[6], including the reservoir is necessary in order to account for the compression 
and decompression of most part of the fluid, and obtain limit cycles following the steady-state branches of the 
flow curve, i.e. for obtaining pressure and extrudate flow rate oscillations characterized by abrupt changes, as is 
the experiments. Only such abrupt changes can lead to extrudates with alternating relatively smooth and 
sharkskin regions, which is the basic characteristic of the stick-slip instability. Note that the reservoir region is 
taken into account in various one-dimensional phenomenological models, which are also based on the 
compressibility/slip mechanism[11]. These describe very well the pressure oscillations but they are not predictive, 
because they require as input certain experimental parameters.  

The objective of the present work is to extend the simulations of Georgiou[6] by including the reservoir 
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region and study the effect of the reservoir length on the pressure oscillations. According to experiments[8,9,12], 
the period of the oscillations scales roughly with the volume of the polymer melt in the reservoir. Weill[9] and 
Durand et al.[10] also studied experimentally the effect of the reservoir length on the durations of compression 
and relaxation and found that both times increase linearly with the reservoir length, which indicates that the 
latter does not affect the waveform of the oscillations.  

In Section 2, the governing equations, the slip equation and the boundary and initial conditions are discussed. 
In Section 3, we describe briefly the numerical method, present the numerical results, and make comparisons 
with experimental observations. Finally, in Section 4, we summarize the conclusions.  

2 GOVERNING EQUATIONS AND BOUNDARY CONDITIONS 

The geometry of the flow corresponds to the actual setup used in the experiments of Hatzikiriakos and 
Dealy[8]. There is a contraction region at 45 degrees between the barrel and the die as shown in Fig. 1. The 
actual values of the radii of the barrel and the die, denoted respectively by Rb and R, and the length of the die, L, 
are tabulated in Table 1.In the simulations, the length of the barrel, Lb, varied from 20R to 200R.  

 
 

 

Figure 1. Geometry and boundary conditions for the time-dependent. compressible, axisymmetric flow over the 
reservoir-capillary region, with slip along the capillary wall 

 
 

Symbol Parameter Value 
Rb 
Lb 
 
R 
L 

Radius of the barrel 
Length of the barrel 
Contraction angle 
Radius of the die 
Length of the die 

0.9525 cm 
 
45 degrees 
0.0381 cm 
0.762 cm 

Table 1 : Symbols and values of various lengths concerning the flow geometry 

 
To non-dimensionalize the governing equations, we scale the lengths by the capillary radius, R, the velocity 

vector, v, by the mean velocity V in the capillary, the pressure, p, by  ηV/R, η denoting the constant viscosity, the 
density, ρ, by a reference density, ρ0, and the time by R/V. With these scalings, the dimensionless continuity and 
momentum equations for time-dependent, compressible, isothermal viscous flow in the absence of body forces 
become: 
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where Re is the Reynolds number, defined by  

 
0 RV

Re
ρ
η

≡       (3) 

 
The above equations are completed by an equation of state relating the pressure to the density. We used the first-
order expansion:  

 
1 B pρ = +       (4) 

 
where B is the compressibility number, 
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≡       (5) 

 
β being the isothermal compressibility.  

Along the capillary wall, slip is assumed to occur following the three-branch multi-valued slip model:  
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     (6) 

 
where vw is the relative dimensionless velocity of the fluid with respect to the wall, σw is the dimensionless shear 
stress on the wall, vc2 is the maximum slip velocity at σc2, and  vmin is the minimum slip velocity at σmin. The third 
branch is the power-law slip equation suggested by Hatzikiriakos and Dealy[8] for the right branch of their flow 
curve. The first branch results from the slip equation they propose for the left branch of  their slope curve after 
substituting all parameters for resin A at 180oC and taking  the normal stress as infinite. Finally, the second 
negative-slope branch, which corresponds to the unstable region of the flow curve for which no measurements 
have been possible, is just the line connecting the other two branches. The values of all the slip equation 
parameters and the definitions of the dimensionless numbers Ai can be found in Ref. 6.  

The other boundary conditions of the flow are shown in Fig. 1. Along the axis of symmetry, we have the 
usual symmetry conditions. Along the barrel and the contraction walls both velocity components are zero (no 
slip). Along the capillary wall, only the radial velocity is zero, whereas the axial velocity satisfies the slip 
equation (6). At the inlet plane, it is assumed that the radial velocity component is zero while the axial velocity 
is uniform, corresponding to the motion of the piston at constant speed. Note that the imposed volumetric flow 
rate, Q, is scaled by πR2V. The simulations are carried out on a fixed domain, i.e. the motion of the piston is not 
taken into account. This is a reasonable assumption provided that the piston speed is low. At the capillary exit, 
the radial velocity component and the total normal stress are assumed to be zero.  

Finally, as initial condition, we use the steady-state solution corresponding to a given volumetric flow rate 
Qold that we perturb to Q at t=0. 

3 NUMERICAL RESULTS 

We use the finite element formulation for solving this Newtonian flow problem, employing biquadratic-
velocity and bilinear-pressure elements. For the spatial discretization of the problem, we use the Galerkin forms 
of the continuity and momentum equations. For the time discretization, the standard fully-implicit (Euler 
backward-difference) scheme is used. Various finite element meshes have been used in the simulations with the 
reservoir length, Lb, ranging from 20 to 200. These were refined near the walls, and around the entrance of the 
capillary. The longest mesh (Lb=200) consisted of 4511 elements corresponding to 42403 unknowns. In all 
results presented below the following values for the slip equation parameters and the compressibility number 
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have been used: m1=3.23, A1=0.0583, m2=2.86, A2=0.929, m3=-4.43, A3=4.04, and B=1.54 10-4 .  

We first constructed the steady-state flow curves for the reservoir-capillary region. In Fig. 2, we show the 
log-log plot of the pressure drop, measured along the centerline from the piston to the die exit, versus the 
volumetric flow rate obtained with Re=0.01 and Lb=80. Due the non-monotonicity of the slip equation, the flow 
curve exhibits a maximum and a minimum, which define the limits of the unstable regime, i.e. only the steady-
state solutions corresponding to the two positive-slope branches are stable. As already mentioned, the steady-
state solutions are perturbed by changing the volumetric flow rate from an old value to the desired one Q. Given 
that the flow is compressible, the behavior of the time-dependent solution depends on whether the new value of 
Q corresponds to a positive-slope branch, or to the negative-slope branch which is unstable. In the first case, the 
new steady-state is obtained without any oscillations, whereas, in the second case, the solution is oscillatory and, 
after a transition period, becomes periodic. Self-sustained oscillations of the pressure drop and the mass flow 
rate are obtained which are similar to those observed experimentally in the stick-slip extrusion instability 
regime. All the results presented below have been obtained in the unstable regime.  

 

 

Figure 2. Flow curve for Re=0.01 and Lb=80 

 
In Fig. 3, we show the oscillations of the pressure drop (Fig. 3a) and the volumetric flow rate (Fig. 3b) 

obtained by perturbing the steady-state solution for Re=0.01, Lb=80 and Q=1.35. In Fig. 3a, we show two 
different possibilities when the pressure drop is measured across the entire flow domain, (∆P)tot, and across the 
capillary, (∆P)cap. Sudden jumps of the pressure drop are observed in the latter case. The volumetric flow rate at 
the capillary exit is also characterized by sudden jumps which is consistent with experimental observations. 
Plotting the trajectory of the solution on the flow curve plane (Fig. 4) shows that, after a transition period, a limit 
cycle is reached which follows exactly the positive-slope branches of the steady-state flow curve. The 
volumetric flow rate increases together with the pressure following exactly the left positive-slope branch of the 
flow curve and, when the pressure reaches its maximum value, Q jumps to the right positive slope branch. The 
volumetric flow rate then starts decreasing together with the pressure following this branch till the pressure 
reaches its minimum and then jumps to the left positive-slope branch and starts the next oscillation cycle. This 
behavior agrees well with experimental observations[8,10]. Note also that in our previous study[6], the limit cycles 
did not follow the steady-state flow curve due to the omission of the reservoir region. This drawback was also 
exhibited by the one-dimensional model of Greenberg and Demay[13] , which does not include the barrel region. 
Note that one-dimensional phenomenological relaxation/oscillation describe the oscillations of the pressure and 
the volumetric flow rate in the stick-slip instability regime under the assumption that these follow the 
experimental flow curve[14,15]. The present simulations are the first to show that the limit cycle follows the 
steady-state flow curve.  

 
 

P∆

Q



Eleni Taliadorou, Georgios Georgiou and Andreas Alexandrou 

 
 

Figure 3. Pressure and flow rate oscillations for Q=1.35, Re=0.01 and Lb=80 

 
 

 

Figure 4. Trajectory of the solution on the flow curve plane; Q=1.35, Re=0.01 and Lb=80 

 
We then reduced the value of the Re from 0.01 to 0.001 in an attempt to approach the experimental value 

(1.43 10-5). As shown in Fig. 5, where we compare the oscillations of ∆P during one cycle for Re=0.01 and 
0.001, Lb=80 and Q=1.35, decreasing the Reynolds number has no practical effect on the oscillations. However, 
the artificial overshoots are observed in the flow rate. Thus instead of trying to eliminate the overshoots by 
reducing the time step (which would have resulted into much longer runs), we decided to continue the runs with 
Re=0.01. Note that in our previous study[6] for the extrudate-swell flow, in which the reservoir region has been 
excluded, we observed that as the Reynolds number is reduced the amplitude of the pressure-drop oscillations is 
reduced, the amplitude of the mass-flow-rate oscillations is increased and the frequency of the oscillations is 
considerably increased. This shows once again the importance of including the reservoir region.  
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Figure 5. Comparison of the pressure oscillations for Re=0.01 and 0.001; Lb=80 and Q=1.35 

 

 

Figure 6. Effect of the reservoir length on the pressure oscillations; Q=1.35 and Re=0.01 
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In order to study the effect of the reservoir length on the pressure oscillations we obtained results for various 

values of Lb. In Fig. 6, we show the pressure oscillations for different values of Lb, Re=0.01 and Q=1.35. We 
observe that the period of the pressure oscillations increases with Lb while their amplitude seems to be less 
sensitive. This is more clearly shown in Fig. 7, where the period and the amplitude of the pressure oscillations 
are plotted versus the reservoir volume. In agreement with experiments with different polymer melts[8,10,16,17] , 
the period T increases linearly with the reservoir volume while the amplitude is essentially constant. In Fig. 7a, 
the period appears to pass through the origin which is not the case with the experiments. Finally, in order to 
show the effect of the reservoir on the waveform of the pressure oscillations we plotted the normalized pressure 
oscillations during one cycle for Lb =20 and 200 (Fig. 8). The waveform is independent of the reservoir length, 
i.e., the durations of the compression and relaxation increase linearly with the reservoir length. This agrees well 
with the experiments of Weill[9], Hatzikiriakos and Dealy[8] and Durand et al.[10].  

 

 
 

Figure 7. The period and the amplitude of the pressure oscillations versus the reservoir volume; Q=1.35 and 
Re=0.01 

 

 

Figure 8. Effect of the reservoir length on the waveform of the pressure oscillations; Q=1.35 and Re=0.01 
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4 CONCLUSIONS 

We solved numerically the time-dependent, compressible flow of a Newtonian fluid over the reservoir-
capillary region, assuming that slip occurs along the capillary wall following a non-monotonic slip law based on 
the experimental findings of Hatzikiriakos and Dealy[7,8] for certain polyethylene melts. By using meshes of 
different length, we have studied the effect of the reservoir length on the pressure oscillations occurring when 
the imposed flow rate falls in the unstable negative-slope regime of the flow curve. Our calculations showed that 
the pressure oscillations follow the steady-state flow curve and that their period increases linearly with the 
reservoir length, while their amplitude and waveform remain unaffected. These results are in good agreement 
with the experiments of Weill[9] , Hatzikiriakos and Dealy[8], Durand et al.[10], and others, which have also shown 
that the period and the shape of the pressure oscillations vary also with the imposed flow rate, where their 
amplitude remains unaffected. The effect of Q on the pressure oscillations is currently under study.   
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Abstract: Applied liquid coatings are often dried or cured to their final form. Under uniform conditions, drying 
can be taken to be one-dimensional, i.e. top-down, in most coatings except at the edges, where it is both top-
down and edge-in. However, uniform drying conditions are difficult to achieve, and in-plane gradients in 
concentration, shrinkage, and stress develop. Drying at the edge is the archetype of such non-uniform drying; 
modeling it can help in assessing the effects of in-plane gradients. A two-dimensional theory of drying is 
formulated  and used to model non-uniformly drying coatings. The equation system is solved by a method of 
lines. The solutions illustrate effects of non-uniformities on concentration distribution, and consequently on 
shrinkage and stress gradients. The resulting stresses can produce curling, cupping, cockling, cracking, 
delaminating from the substrate, and other defects in the final coating. 

1 INTRODUCTION 

Coatings are generally applied as liquid, then dried or cured to their final solid form. Whether by gelation or 
vitrification, the transition from liquid to solid can be approximated as occurring at a specific concentration[1,2]. 
Solvent evaporation during drying reduces the stress-free state of the coating causing its current state to shrink. If 
the coating is liquid, its current state shrinks isotropically and with no slip at the substrate. If differential 
shrinkage produces deviatoric strain, deviatoric viscous stress appears in proportion to the local strain rate; the 
proportionality is the viscosity. If the coating is an elastic solid, in-plane shrinkage of its current state is 
frustrated by adhesion to the substrate. If differential shrinkage produces elastic strain, elastic stresses appear in 
proportion to the local strain; the proportionality is the elastic modulus. Only solvent loss and shrinkage after 
solidification produces stress in the drying coating[1,2].  

Far from the edge, drying is top-down and, under uniform conditions, gradients in concentration, stress and 
shrinkage are one-dimensional: normal to the substrate. However, non-uniformities in mass transfer, coating 
thickness, and substrate profile can lead to in-plane gradients in concentration, shrinkage and stress; so can other 
factors. Near the edge, drying is both top-down and edge-in; and even under uniform conditions, gradients in 
concentration, stress and shrinkage are two- or three-dimensional: normal and parallel to the substrate. One-
dimensional models of drying and stress development are inadequate for understanding these gradients and their 
consequences. 

2 THEORY AND COMPUTATION 

Theory of two-dimensional drying is brought to bear on coatings applied as liquid that solidify at a moving 
front to their final dried solid form. The governing equations are those describing solvent mass transfer by 
diffusion and convection; viscous flow in the liquid coating; appearance and subsequent migration of the 
solidification front; shrinkage and stress development in the solid coating; and the effect of falling solvent 
concentration on the coating’s diffusivity, viscosity, elastic modulus, yield stress and post-yield viscosity. 

The governing equations are highly non-linear, and difficult if not impossible to solve in terms of standard 
domain-spanning functions. So the equations are solved by a “method of lines:” Galerkin’s method with finite 
element basis functions in space, and finite-differencing of the time-dependent basis function coefficients. 
DASSL package[3] is used to solve the equations by a Newton’s method with secant-approximated Jacobian[4]; and 
Hood’s frontal solver[5] is used to solve the linear matrix problem at each iteration. 

The model system chosen resembles closely a polystyrene-toluene solution. The coating behaves like a 
Newtonian liquid before solidification, a neo-Hookean elastic solid after. Wherever the local stress in the solid 
coating exceeds the yield stress, the coating relaxes stress to the yield value by plastic yielding of the stress-free 
state. Von Mises yield criterion[6] and its associated flow rule are used to model stress relaxation by yielding. 
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Available experimental data on the concentration dependence of diffusivity, viscosity, and elastic modulus[7,8,9,10] 
were fitted empirically and the curves were extended to regions where data were not available. There appears to 
be neither experimental data nor theoretical framework about the concentration dependence of yield stress and 
post-yield viscosity. So the yield stress was taken to be a constant fraction of the elastic modulus, and post-yield 
viscosity was assumed to vary with composition as does the Newtonian viscosity. 

3 RESULTS AND DISCUSSION 

3.1 Drying near the edge after solidification 

 Solidified drying coatings that adhere to the substrate cannot shrink freely in the in-plane direction i.e., 
parallel to the substrate. The difference between the current state and the stress-free state of the coating is elastic 
strain, to which stress is proportional; the proportionality factor is elastic modulus. At the edge, drying is both 
top-down and edge-in, and inherently two-dimensional. Non-uniform solvent removal there causes non-uniform 
shrinkage, and produces in-plane gradients in stress, as shown in Figure 1. Stress varies close to the edge but 
only imperceptibly more than four to six thicknesses away. Far away from the edge, the cross- and down-web 
tensile stresses fall to their transversely isotropic value, as seen in Figures 1a and 1b; the normal peeling stress 
and shear stress vanish, as seen in Figures 1c and 1d. Near the edge, the cross- and down-web tensile stresses 
vanish at the free corner; and the peeling and shear stresses are theoretically “infinite” — an elastic singularity 
— at the pinned corner. In-plane stress gradients can produce defects such as cockle. The high tensile stress 
concentration at the pinned edge can lead to delamination from the substrate. Even uniform in-plane tensile 
stress away from the edge, when excessive, can produce defects like curling and cupping, and failures like 
cracking and crazing. If the coating yields, i.e. relaxes stresses plastically, the local stress in the coating falls to 
the yield value everywhere that value has been exceeded. Thus, plastic yielding reduces the level of stress 
overall and variation of the concentrated stress near edges, and therefore the danger of defects and failures. 
Predictions from the model show that high elastic modulus and high yield stress raise the level of stress and in-
plane stress gradients; high post-yield viscosity prevents the stresses from relaxing rapidly, producing a stress 
peak. 

The high elastic modulus and yield stress of hard coatings make them susceptible to cracking and 
delamination. A method sometimes advocated to lower the overall stress is to apply a thin sub-layer of softer 
material between the hard layer and the substrate. The idea is that the softer sub-layer would allow the upper 
layer to retract more from the edge without significantly affecting the coating’s functionality. Retraction of the 
upper layer’s edge would allow its current state to be closer to its stress-free state, thereby lowering its strain and 
stress. 

Figure 2 shows the effect of sub-layer thickness on the upper layer’s edge retraction and stress concentration. 
The upper layer’s elastic modulus, yield strength, and post-yield viscosity are five times greater than those of the 
sub-layer. The upper layer’s initial thickness is 50 microns in all cases; whereas the sub-layer’s thickness was 
varied from 0 to 50 microns. With rising sub-layer thickness, the edge of the upper layer retracts more and its 
stress falls. However, edge retraction is limited and soon asymptotes. The retraction’s effect is felt only near the 
edge, and falls quickly about four to six thicknesses away. Figure 3 shows the effect of the sub-layer’s thickness 
on stress concentration in the sub-layer. Because edge retraction lowers stress in the top-layer, it exerts less 
traction at the interface between the two layers producing less stress in the sub-layer. The stress concentration at 
the pinned edge is significantly lower than that in the single layer coating. Predictions from the model indicate 
that the amount of edge retraction depends on the ratio of the moduli of the two layers and the ratio of their 
thicknesses. Weaker, thicker sub-layers allow the upper layer’s edge to retract more but only up to a limit. 
Therefore the method advocated cannot lower stress overall, yet it can at an edge, and thereby reduce the danger 
of delaminating from the substrate. 

3.2 Drying near the edge before solidification 

 Whereas the concentration of stress in a solidified coating reaches no more than six thicknesses from the 
edge (as noted earlier by Tam[11] and Lei[12]), instances are numerous[13] where the edge effects have intruded 
much farther. Such defects can develop or begin developing when the coating is still liquid. 

To examine this aspect, a flat liquid coating with an initially rounded edge, as shown in Figure 4a was 
modeled. If drying accompanies flow, the evolution of edge shape can be split into two stages: in the first, drying 
is insignificant and the volume of liquid is constant; in the second, drying becomes appreciable and the liquid 
volume shrinks continuously. 

In the first stage, flow of the liquid coating is driven by capillarity, i.e. the gradient in curvature of the free 
surface. Liquid is driven away from the curved edge toward the middle, as shown in Figures 4b to 4e, until 
ultimately the coating reaches its static equilibrium shape. The profile is an arc of a circle if the effect of gravity 
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is negligible, as shown in Figure 4f. 
In the second stage, the loss in solvent volume causes the stress-free state of the liquid to shrink. The 

difference between the current state and stress-free state is deviatoric strain to which deviatoric viscous stress is 
proportional; the proportionality is viscosity. If the viscous stress exerts a net local force (i.e. non-vanishing 
divergence of the stress tensor — or stress dyadic), the liquid coating flows. The capillary pressure force is much 
larger than the viscous force from the rate of shrinkage. The liquid profile remains an arc of a circle. Because 
solvent evaporates, the arc’s radius changes with time, as shown in Figures 4g to 4i. 

Only in narrow stripe coatings can the liquid attain the arcuate shape. Otherwise, the coating solidifies before 
the capillary flow from the edge reaches the middle of the coating. The shape of the dried coating depends on the 
liquid shape at the time of solidification. Initial solvent concentration and drying conditions determine the time 
to solidify; resistance to flow determines the liquid edge shape. Flow resistance depends on the coating’s 
viscosity, surface tension, and thickness. Solutions of the governing equations illustrate that higher viscosity, 
lower surface tension, and thinner coatings increase the flow resistance and in that way prevent the edge effect 
from extending far inward. 

3.3 Drying near the edge during solidification 

Edge effects that develop when the coating is still liquid would continue to move inward unless they were 
arrested by solidification. Solidification starts where the solvent concentration is the lowest, usually at the edge 
where the coating is the thinnest, and propagates to the interior of the coating. To study the effect of 
solidification on edge effects, a drying coating that solidifies at a moving front was modeled. Solidification was 
taken to occur at a specified concentration, and the solidification front was tracked explicitly with separate 
material (“Lagrangian”) meshes for the liquid and for the solid. The boundary between the meshes was the 
solidification front.  

Initially, the coating was taken to be fully liquid, and drying, shrinkage and flow are modeled as described 
above. Onset of solidification was declared when the solvent concentration in a small number of finite elements, 
about five or six, dropped below the specified concentration. The solver was halted; the coating was remeshed 
into solid and liquid parts; the old solution was transferred onto the new mesh; and the solver was restarted. 
Figure 5a shows the liquid and solid regions near the edge at the onset of solidification. The meshes deformed so 
that the interface always corresponded to the isopleth of the solidification concentration, as shown in Figures 5b 
to 5h. The two meshes were remeshed when necessary to maintain numerical accuracy. End of solidification was 
declared when the maximum solvent concentration in the coating was no more than 0.1% of the solidification 
concentration. The coating continued to dry as a solid until no more solvent remains in the coating. 

The in-plane stress gradients in a fully dried coating are shown in Figure 6. Predictions from the model show 
that solidification alleviates some of the edge effects that developed when the coating was still liquid. As in the 
fully solid case, stress varies close to the edge but falls off quickly away from the edge. Perceptible edge effects 
extend up to ten thicknesses from the edge, compared to six thicknesses in the fully solid case and twenty 
thicknesses in the fully liquid case.  

4 SUMMARY AND CONCLUSIONS 

Elastic stresses develop in a solidified drying coating in response to its frustrated in-plane shrinkage. The 
effects of the coating’s elastic modulus, yield strength, and post-yield viscosity on stress development and 
distribution can be analyzed and predicted, as is done here. Edge retraction of the upper layer in a drying two-
layer coating can reduce stress near the edge of a coating and so reduce the danger of delaminating from the 
substrate but cannot significantly affect stress in the rest of the coating. 

Edge effects that arise from flow in the liquid phase intrude farther from the edge than those from post-
solidification shrinkage and elastic stress. The final edge shape of dried coating depends on the edge shape of the 
liquid coating at the start of solidification, which in turn depends on initial shape, surface tension, and the liquid 
coating’s resistance to flow. The thinner and more viscous a coating, and the lower its surface tension, the 
narrower the edge region where thickness varies in an otherwise uniform coating. 

Edge effects that arise in the liquid phase tend to be alleviated by flow until a coating solidifies. When 
solidification begins at the edge, flow in the liquid coating away from the edge relative to the solidified coating 
reduces the thickness variation making the coating more uniform. Elastic stresses can appear only after 
solidification, and they develop in the same way as stresses developed in drying solid coatings. 
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Figure 1: Stress distribution near the edge of a fully dried solid coating. 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 2: Cross-web tensile and peeling stresses in the top layer of a two-layer solid coating. 
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Figure 3: Cross-web tensile and peeling stresses in the bottom layer of a two-layer solid coating. 
 
 
 

 
 

Figure 4: Edge shape of a still liquid coating at different times of drying.  
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Figure 5: Solidification front movement near the edge of a drying coating. 
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Figure 6: Final stresses near the edge of an applied liquid coating that solidified at a moving front. 
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Abstract. Fountain flow is the phenomenon of deceleration and outward motion of fluid particles as they
approach a slower moving interface. Numerical simulations have been undertaken for the flow of Newtonian
and viscoelastic fluids, obeying an integral constitutive equation of the K-BKZ type, capable of describing the
behaviour of polymer melts. The flow simulations are performed for planar and axisymmetric geometries and
show the shape and extent of the free surface, as well as the stresses and pressures in the system. The semicircle
is a good approximation for the free surface of fountain flow, but detailed computations show the effect of
elasticity on the free surface, which is non-monotonic as the elasticity level (or Weissenberg number) increases.
The Newtonian values are faithfully reproduced and the new viscoelastic results show subtle differences, which
influence the stress levels in the flow field.

1 INTRODUCTION

Fountain flow is a well-known fluid-mechanics phenomenon present in all cases where a moving fluid
displaces another immiscible fluid[1]. Within the context of non-Newtonian fluid mechanics, this type of flow is
of interest in polymer processing, and in particular in the flow of polymer melts in injection-mold filling[2]. The
theoretical problem has been adequately addressed in the mid-80’s by a number of researchers[3-5], who dealt
primarily with Newtonian fluids and showed intricate patterns developing when tracing particles, in agreement
with experiments[3-6]. Mavridis et al.[3] showed in a sample run that power-law fluids only slightly affect the
position of the flow front. Beris[7] argued that fountain flow patterns (especially the observed V-shapes[8]) are
independent of the model and form as a consequence of fluid-mechanics principles that the fluid obeys at the
front. Quite recently, Bogaerds et al.[9] performed calculations with a viscoelastic model (the extended pom-
pom[10]) and showed that the flow front is not affected appreciably by the elasticity of the polymer melt, and it
does not deviate much from a semicircle for a wide range of flow rates in a planar domain. All these works have
shown that the results range from 0.8 to 1.05 of the radius of the semicircle, with the lower values corresponding
to the axisymmetric case of a Newtonian fluid, while shear-thinning of power-law fluids brings the results closer
to a semicircle front.

Although the problem is well understood from the physics and fluid mechanics points of view, it has become
evident that numerically subtle differences exist for different fluid models and types of domain geometry (planar
vs. axisymmetric). It is, therefore, the purpose of the present paper to address these issues and provide detailed
results both for the free surface location and the other flow variables in the system for Newtonian and viscoelastic
fluids.

In the present work, a standardized commercial low-density polyethylene melt (IUPAC-LDPE)[11] with long-
chain branching is studied with the purpose of finding how rheology affects the flow behaviour in fountain flow.
First the polymer is rheologically well-characterized with a modified K-BKZ integral model. Then it is simulated
in fountain flow between parallel plates with the purpose of determining the free surface and finding the amount
of centerline front movement. The results from the simulations are compared with the corresponding Newtonian
results. Conclusions are drawn regarding the behaviour of different types of fluids in injection molding, where
fountain flow is prominent.

2 MATHEMATICAL MODELLING

The problem at hand is that of a polymer melt flowing under a pressure gradient in a tube (or between parallel
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plates) and acquiring a free surface at the moving front, called the “fountain”. The tube has a radius R (or the
plates have a half gap of H) and a length of L as shown here schematically in Figure 1. The polymer flows under
shear flow in most of the domain except near the front, where due to the presence of the free surface and the
stagnation point at B, rearranges itself to accommodate the free surface. The centerline front location zcl reduced
by the radius R gives rise to the definition of χ = ∆zcl/R, in equivalence to the definition of extrudate swell[12]. In
what follows, we consider that the channel length L is long enough (L/R = L/H =10) so that it is adequate to
impose at entry a fully developed velocity profile even for highly viscoelastic polymer melts.

n·v=0
R

vr=0, τrz=0A

vz=vr=0

B

CD p=0

0

r z

L

vz=f(r)
vr=0

B'

∆zcl

Figure 1. Schematic representation of fountain flow in a tube together with the boundary conditions for
determination of the free surface at the moving front.

The flow is governed by the usual conservation equations of mass and momentum for an incompressible fluid
under isothermal conditions:

0=⋅∇ v (1)

ττττ⋅∇+−∇= p0 (2)

where v  is the velocity vector, ττττ  is the extra-stress tensor, and p is the scalar pressure.
The constitutive equation that relates the stress to the deformation history is a K-BKZ integral equation. In its

more general form, it is written as[12]

1

N 1
k

t t
k 1 k k

t
1 a t texp ( , ) (t ) (t ) dt

1 C C
H I I C C−

−

=
−∞

 ′ −  ′ ′ ′= − + θ  − θ λ λ   
∑∫ττττ (3)

where λk and ak are the relaxation times and relaxation modulus coefficients at a reference temperature T0,
respectively, θ is a material constant, and H(IC, -1CI ) is a strain-memory function depending on IC, -1CI , the first
invariants of the Cauchy-Green tensor tC  and its inverse 1

tC− , the Finger strain tensor. The material constant θ
is given by

N
N

2

1 1
=

−
θ

θ
(4)

where N1 and N2 are the first and second normal stress differences, respectively.
The strain-memory (or damping) function H proposed by Papanastasiou et al.[13] has the following form

1

1

( )
( 3) (1 )C

CC

H I
I I
α

α β β
−

−

=
− + + −

   (5)

where α and β are material constants. This damping function, called PSM, has been used extensively for
predicting the viscoelastic character of polymer melts with good success[13,14]. Note that in principle, multiple Hk

can be used by having different αk’s and βk’s  for every relaxation mode.
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3 DIMENSIONLESS PARAMETERS

For viscoelastic materials a generalized Weissenberg number Ws is defined as[12]:

V
Ws =<

H
λ > (6)

where <λ> is the average relaxation time of the polymer and V is a characteristic velocity, usually taken as the
average velocity of the melt, Vavg.

In the case of fountain flow of polymer melts and with respect to Figure 1, it has been customary to define the
quantity aγ , called the apparent shear rate, which is related to the volumetric flow rate Q and the width W by

(axisymmetric geometry) aγ  = 4Q / πR3 (7a)

(planar geometry) aγ  = 6Q / W(2H)2 (7b)

The apparent shear rate can be used as a convenient representation of flow rate in the absence of a single
relaxation time. This measure has been used in the experiments by Meissner[11] and will be used in the present
work as well.

4 RHEOLOGICAL CHARACTERIZATION

This work is concerned with a low-density polyethylene (LDPE), under the code name IUPAC-LDPE melt A,
and used previously as a benchmark material for rheological characterization and flow behaviour[11,14]. Some of
its specific data is given in Table 1[15].

Table 1: Material parameter values for the IUPAC-LDPE melt A[15].
Property LDPE
Density, ρ (25oC) (g/cm3) 0.918
Mass-Average Molar Mass, Mw (g/mole) 258,000
Polydispersity, Mw/Mn 16.6
Melt Temperature, Tm (oC) 108
Zero-Shear-Rate Viscosity, η0 at 150oC (Pa⋅s) 51,500
Activation Energy, Ea (J/mole) 58,000

This polyethylene has a random-like long-chain branched structure due to radical polymerization at high
pressure. The degree of long-chain branching cannot be determined quantitatively. The rheological material
functions of polymer melts are dynamic properties, such as the storage and loss moduli, and steady properties,
such as their viscosity in shear and elongation, and the normal stresses in shear. The viscosity in shear was
measured by mechanical-dynamic experiments using a rotational rheometer. In Figure 2a, storage and loss
moduli at 150oC are shown as a function of frequency (symbols on the graphs). These data can be used for the
determination of the relaxation spectra, which are required for modelling the flow behaviour (lines on the
graphs). Figure 2b shows the viscosity function calculated from G′ and G′′.

The above material data have been modelled with the K-BKZ integral eqn. (3) and the damping function PSM
(eqn. 5) in order to determine the parameters of the model. These are reproduced in Table 2 and show a spectrum
with 8 relaxation times. From the relaxation spectrum it follows that the zero-shear viscosity η0=ΣΣΣΣ(akλk) = 51,064
Pa⋅s and the average relaxation time < λ >=ΣΣΣΣ(akλ2

k)/ Σ Σ Σ Σ(akλk) = 58.7 s, thus giving evidence of the pronounced
elasticity of LDPE.

Table 2: Material parameter values used in eqn. (3) for fitting data of the IUPAC-LDPE melt at 150oC
(θ = −0.25, ρ = 0.92 g/cm3, < λ > = 58.7 s, η0 = 51,064 Pa⋅s).

k λk  (s ) ak  (Pa) αk βk

1 10-4 129,000 14.38 0.018
2 10-3 94,800 14.38 0.018
3 10-2 58,600 14.38 0.08
4 10-1 26,700 14.38 0.12
5 100 9,800 14.38 0.12
6 101 1,890 14.38 0.16
7 102 180 14.38 0.03
8 103 1.0 14.38 0.002

647



Evan Mitsoulis

4

(a) (b)

Figure 2. Rheological data for the IUPAC-LDPE melt. Symbols represent experimental data. Lines correspond to
model predictions according to the K-BKZ model (eqn. 3) with the parameters of Table 2.

With the parameters of Table 2, it is possible to fit the experimental data for different shear rates and obtain the
shear-thinning behaviour for the shear viscosity, as well as the quadratic behaviour at very low shear rates for the
first normal stress difference, as shown in Figure 2.

For the uniaxial elongational viscosity ηE, multiple values of the β−parameter have been used to reduce the
amount of strain-hardening at higher elongational rates. We also note in Figure 2b that the planar extensional
viscosity ηP starts from the Newtonian value of ηP = 4η0 and follows the shear viscosity ηS in its thinning
behaviour. The biaxial extensional viscosity ηB starts from the Newtonian value of ηB = 6η0 and also follows the
shear viscosity in its thinning behaviour. Previous experience with simulations for polyethylene melts[8] has
shown that the extensional behaviour is crucial in predicting correctly their flow behaviour in both axisymmetric
and planar flows.

The data for the second normal stress difference N2 have shown a non-zero value, θ = −0.25[12].

5 METHOD OF SOLUTION

The special numerical scheme developed by Luo and Mitsoulis[16] for the implementation of integral-type
constitutive equations with the finite element method (FEM) has been used. This scheme is effectively an EVSS-
G/SI scheme in the jargon of viscoelastic simulations. This means that there is a splitting of elastic and viscous
stresses (Elastic-Viscous-Stress-Splitting), that the viscous stresses enter the stiffness matrix using a reference
viscosity (ηref = 1), while the elastic stresses enter the load vector and are incremented to reach higher elasticity
levels. The elastic stresses are calculated according to the constitutive eqn. (3) using streamline integration (SI).
Galerkin averaging is used for the velocity-gradient field (the G in EVSS-G) to obtain a smooth field. However,
our method uses as primary variables only the two velocities and pressure (u-v-p formulation) instead of also
using the stresses and the rates-of-strain, as done in the mixed formulation (u-v-p-τij- γ ij) for differential models.
This renders the simulations extremely fast, even for multiple relaxation modes.

The numerical algorithm for convergence is Picard iteration, i.e., direct substitution. Convergent solutions
have been obtained for a wide range of apparent shear rates for a fixed domain[16]. However, for flows with free
surfaces, such as the ones considered here, and due to the highly viscoelastic nature of the melts manifested by
very high deformations in the order of 100%, it was found necessary to proceed carefully and use severe under-
relaxation for the free surface movement in the order of 10%, sometimes allowing only as much as 1% movement
of the newly updated position.

The solution procedure advances slowly from low flow rates (Newtonian behaviour) to higher ones by using a
flow rate increment scheme. On average 13 CPU s per iteration were needed with a mesh having 600 elements on
an AthlonTM 64 processor at 3400+ MHz for a total of 1150 iterations up to aγ  = 300 s-1. The criterion for
convergence was 10-3 for the maximum changes in the velocities, 10-2 for the pressure, and 10-3 for the free
surface.

The initial meshes form a rectangle, with the origin at the RHS centerline. During the solution process the
mesh deforms to accommodate the fountain flow with the free surface at the front. The deformed finite element
meshes used in this study at the end of the computations are shown in Figure 4 for Newtonian fluids (both
geometries) and for the LDPE melt in planar flow. The domain in its entirety extends to –10H upstream of the
front to ensure the correct imposition of a fully developed velocity profile upstream. Because of symmetry only
half the domain is used. The grid consists of 600 quadrilateral 8-node serendipity elements, 1901 nodes, and
4453 unknown u-v-p degrees of freedom (DOF).
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(a) (b)
Figure 4. Deformed finite element meshes used in the simulations: (a) full view (upper half is the original mesh,

lower half has quadruple number of elements for the calculation of the stresses and the stream function), (b)
blown-up view of the computational domain near the front.

6 RESULTS AND DISCUSSION

6.1 Newtonian results – Flow field

First the numerical simulations have been carried out for Newtonian fluids in both planar and axisymmetric
geometries. The Newtonian values are: χ = 0.876 (axisymmetric) and χ = 0.931 (planar). We note a difference of
5.5% in favour of planar geometry (cf. the extrudate swell values of 13% for axisymmetric and 18.5% for planar
geometries[12,17]). Thus, the maximum thrust forward of the advancing front at the centerline can be at most
87.6% (tube) and 93.1% (flat channel) for Newtonian fluids.

Behrens et al.[5] have produced a table indicating such values, which is updated here as Table 3. The reasons
for the discrepancies are due to the mesh construction and its density, especially around the singular exit point C.

Table 3. Dimensionless centerline front location χ for Newtonian fluids.
Investigator Geometry Frame of Reference χ

Mavridis et al.[3] Planar Moving-steady 0.90
Coyle et al.[4] Planar Moving-steady 0.93
Behrens et al.[5] Planar Moving-steady 0.94
Behrens et al.[5] Planar Fixed-transient 0.91
Bogaerds et al.[8] Planar Moving-steady 0.92
This work Planar Moving-steady 0.93

Mavridis et al.[3] Axisym. Moving-steady 0.83
Behrens et al.[5] Axisym. Moving-steady 0.82
Behrens et al.[5] Axisym. Fixed-transient 0.86
Behrens et al.[5] Axisym. Exp. result 0.83±0.04
This work Axisym. Moving-steady 0.88

NEWTONIAN (axisymmetric)

NEWTONIAN (planar)

LDPE (planar, 300 s-1)
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It must be pointed out that the fountain flow problem is more difficult than the extrudate swell problem,
because the free surface is perpendicular to the main flow direction, whereas in extrudate swell the free surface
follows the main flow direction. Also, in the Newtonian extrudate swell the domain gets deformed in the order of
13-19%, while in fountain flow the domain is deformed in the order of 88-93%.

The numerical solutions give a wealth of information regarding all kinematic and dynamic variables of the
flow field. The results for axisymmetric and planar geometries are shown in Figure 5, where contours are given
for several variables. The kinematic variables are the stream function (PSI), the two velocities vx or vz (U) and vy

or vr (V), and the shear rate xyγ or rzγ  (GXY), while the dynamic variables are the pressure, p (P), and the 3

(planar) or 4 (axisymmetric) extra stresses, τxx or τzz, τyy or τrr, τxy or τrz and τθθ (or TXX, TYY, TXY, T33).
Interesting points to notice is the fully developed flow upstream, which extends down to about one radius R or
half gap H from the exit. The streamlines, u-contours and shear rate contours are parallel to the walls and the
isobars are vertical lines. The maximum value for the pressure occurs at entry (not shown), while the reference
zero value has been set at the exit point C. Small negative pressures also occur at the flow front and are a
consequence of the singular point at the exit wall. The strain rates are equal to the stresses due to assuming a unit
viscosity. Most of the rearrangement occurs right at the exit where the minima and maxima occur because of the
exit singularity. Eleven (11) contours have been drawn between the minimum and the maximum values.

Figure 5. Contours of kinematic and dynamic variables obtained from the simulations of fountain flow for
Newtonian fluids. Eleven (11) contour values are shown between maximum and minimum.

6.2 Viscoelastic results – Flow field

The viscoelastic numerical simulations have been carried out for a wide range of apparent shear rates aγ
from 0.001 s-1 and reaching as high as 300 s-1. Typical results from one such run are shown in Figure 6, where
contours are given for the highest apparent shear rate aγ  = 300 s-1 (Ws=5870, from eq. 6) for several variables.

The kinematic variables are the stream function (PSI), the two velocities vx (U) and vy (V), and the shear rate
xyγ (GXY), while the dynamic variables are the pressure, p (P), and the 3 extra stresses, τxx, τyy, τxy (or TXX,

TYY, TXY). The pressure and the stresses are given in dimensionless form, being divided by η0Vavg/H. The
velocities are divided by Vavg. Interesting points to notice and in contrast with the Newtonian flow fields are the
squeezing and bending of the streamlines near the exit due to the viscoelastic nature of the melt. Also the fully
developed shear flow is reduced compared to the Newtonian. The melt now takes a full gap (2H) to rearrange
itself near the exit, and produces a bullet-like profile with less roundness than in the Newtonian case. Because of
the assumed non-zero second normal stress difference (θ≠0), the isobars are not vertical lines but exhibit a
parabolic profile between the walls. The maximum value of the pressure is at entry (not shown), while high
negative pressures occur near the singularity, which is now much more pronounced. The shear rates for this case
are indeed high, reaching values at the die wall > 500 s-1. The stress contours show that the flow rearranges itself

NEWTONIAN (axisymmetric) NEWTONIAN (planar)
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more than a gap from the exit, with most of the rearrangement occurring right at exit where the minima and
maxima occur because of the exit singularity.

 

 

 

Figure 6. Contours of kinematic and dynamic variables obtained from the simulations of fountain flow for the
IUPAC-LDPE melt A at aγ  = 300 s-1. Eleven (11) contour values are shown between maximum and minimum.

6.3 Viscoelastic results – Centerline front location

The dependence of the centerline front location on the apparent shear rate aγ  is presented in Figure 7 for the
IUPAC-LDPE melt A. The behaviour of the front location is typical of polymer melts, i.e., starting from the
Newtonian value of 93% of the half gap H at extremely low shear rates, it first decreases reaching a minimum of
79% around 0.3 s-1, and then increases substantially reaching values of 108% at apparent shear rates of 300 s-1.
An important observation that can be made is that the phenomenon is nonlinear. In the past, it has been assumed
that fountain flow profiles are approximately those of a semicircle[1-2], and they do not change much either for
different fluid models or different types of geometry. The current results show that those observations are
generally true in a rough way. However, different fluid models do play a role, the χ-variable depends for polymer
melts on the flow rate, and the type of geometry is also an important parameter.
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Figure 7. Centerline front location as a function of apparent shear rate for the IUPAC-LDPE melt A at 150ºC.
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7 CONCLUSIONS

The current work has addressed the issue of simulating Newtonian and viscoelastic polymer melts flowing
under a pressure gradient between parallel plates or tubes for the determination of fountain flow. The simulations
were undertaken for the flow of a standardized branched low-density polyethylene melt (IUPAC-LDPE). For the
viscoelasticity of the polymers, rheological data of dynamic and steady properties were used over a wide-range of
shear and elongational rates. The rheological data has been fitted with the K-BKZ/PSM model with a spectrum of
8 relaxation times and associated parameters for the melt. This well-known model has been used for the first time
in fountain flow simulations of polymer melts.

The simulations have addressed the issue of finding the moving fountain front by constructing a streamline,
which is the free surface of the fluid. This is done after a solution for the conservation and constitutive equations
has been achieved via the Finite Element Method. FEM uses as primary variables the two velocities and pressure
(primitive variables approach). Then the stresses are calculated via streamline integration and then the free
surface coordinates are found by using the updated velocity field and integrating the velocity profiles there. The
simulations revealed a distinct behaviour in the LDPE melt compared with the Newtonian simulations. LDPE
shows a bullet-like fountain flow at high shear rates with less roundness of the front than the Newtonian fluids.
These results are a prelude for a full study of non-isothermal effects in fountain flow of polymer melts.
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Abstract. In this paper the possibility of making use of fractional derivatives for the simulation of the flow of 
water through porous media and in particular through soils is considered. The Richards equation, which is a 
non-linear diffusion equation, will be taken as a basis and is used for the comparison of results.                   
Fractional derivatives differ from derivatives of integer order in that they entail the whole history of the function 
in a weighted form and not only its local behavior, meaning that a different numerical approach is required. 
Previous work on the topic will be examined and a consistent approach based on fractional time evolutions will 
be presented.  
 
1 INTRODUCTION 

Infiltration is defined as the flow of water through porous media and in particular through soils. It follows 
the ordinary laws of hydrodynamics. The Richards equation, which is a non-linear diffusion equation, is usually 
used for its description [1, 2, 3], even though in several cases it fails to predict variations in the behavior of 
different types of soil. The present work is an attempt to ascertain whether fractional calculus is suitable as a tool 
for the simulation of the saturation front in partially saturated porous media. Therefore the substitution of the 
derivative with respect to time with a fractional derivative of order smaller than unity is considered [4, 5]. 
Fractional calculus is a branch of mathematics related to integrals and derivatives of arbitrary order and dates 
back to the 17th century [6]. Fractional derivatives differ from derivatives of integer order in that they entail the 
whole history of the function in a weighted form and not only its local behavior. Lately it was found to have 
many applications in physics and mechanics, especially concerning the description of anomalous diffusion [7, 8]. 
It has been suggested[5] to replace the time derivative in the Richards equation by a fractional derivative as a way 
to describe experimental observations that show deviations from normal diffusive scaling. We found that the 
referenced paper [5] contains several theoretical errors (see also [9]), and we discuss ways how these can be 
eliminated. An improved and consistent approach based on fractional time evolutions [7] will be presented. 

2 ABSORPTION IN POROUS MEDIA 

2.1 Derivation of the Richards equation 
A soil mass generally consists of a network of partially or totally interconnected interspaces of various sizes 

and shapes. These interspaces may be filled with air or water or both. The volumetric moisture content ( ),tθ x , 
also called local volume fraction of water, is defined as the ratio of the volume of water to the volume of a 
representative elementary soil volume located at position x. Under the assumption that the porosity (defined as 
the volume fraction of pores) is constant, and that the speed of the solid phase vanishes, the mass balance for the 
liquid phase yields:  

 

 ( )div
t
θ∂ =−

∂
q  (1) 
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where q  is the specific discharge of fluid through the interstices of the solid matrix. The flow of liquids in 
unsaturated media is determined by the pressure, gravity and capillary forces acting on the liquid. We consider 
the capillary potential (per unit weight of water): 
 
 ( )/ wp g zρΨ = +  (2) 

 
where the pressure is determined by the surface tension and curvature of the air-liquid interface. We will 
consider horizontal absorption and therefore neglect the effect of gravity. Thus the moisture discharge vector is 
related to the total potential by means of the following equation: 
 
 ( )gradK=− ⋅ Ψq  (3) 

 
which is known as the moisture conduction equation. Combining equations (1) and (3) we acquire the following 
equation, known as the Richards equation: 
  

 ( ) ( ) ( )D D D
t x x y y z z
θ θ θ θ θ θ θ

⎛ ⎞⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂⎟⎜⎟ ⎟⎜ ⎜⎟= + +⎟ ⎟⎜⎜ ⎜⎟⎟ ⎟⎜⎜ ⎜⎟⎜⎝ ⎠ ⎝ ⎠∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠
 (4) 

 
where ( ) ( )/D K d dθ θ= Ψ  is known as the moisture diffusivity. For example from Philip [10] we get the 
following empirical moisture diffusivity function  
 
 0 exp( )D D c θ≈ ⋅  (5) 
 
where 7 2

0 8.3 10 /D cm min−= ⋅  and 19c= . In Fig. 1 the experimental data and the fitted function of eq. (5) are 
presented. In what follows we will only consider one - dimensional moisture diffusion along horizontal soil 
columns. For this case the Richards equation will take the form 
 

 ( )D
t x x
θ θ θ

⎛ ⎞∂ ∂ ∂ ⎟⎜= ⎟⎜ ⎟⎜⎝ ⎠∂ ∂ ∂
. (6) 

 
We choose the coordinate system such that 0x=  corresponds to the left end of the horizontal soil column. 
 

 
Fig. 1: Empirical diffusivity function from reference [10].  

The fitted line corresponds to eq. (5). 
 

2.2 Discussion 
In the former analysis, the soil skeleton has been assumed to be rigid and the inertial effects have been 

assumed to be negligible, as the progress of the phenomenon is slow. The thermal effects and the effects of 
condensation and evaporation have been neglected, as well as the complications arising from the interplay of air 
and water [11,12]. With the introduction of the similarity variable 
 

 x
t

ξ =  (7) 
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Richard’s equation (6) transforms into an ordinary differential equation, which has been used to find analytical 
solutions for soil water flow problems and also to find the dependence of the conductivity on the degree of 
saturation [13]. However, as summarized in a recent publication by Pachepsky et al. [5], significant deviations 
from the scaling law eq. (7) have been observed in many published experiments.  Relationships between 
positions and times at which a particular value of the volumetric moisture content is observed suggest a 
similarity transformation of the form 

 
 / 2x t αξ −= ⋅  (8) 

 
The case of 1α<  could be interpreted as non-Brownian transport of particles that remain motionless for 
extended periods of time, for example, when waiting periods have a power law distribution.  

In the aforementioned paper of Pachepsky et al. [5] the defect of Richards law is addressed by resorting into 
non-standard diffusion mathematical models that involve fractional derivatives with respect to time. It is worth 
noticing that one of us[4] has shown that the analysis of Pachepsky et al. (2003) et al. is mathematically flawed. 
An attempt to correct this analysis and the corresponding numerical integration of the fractional diffusion 
equation is shown below.  

 

3 FRACTIONAL CALCULUS 

Fractional calculus is the field of mathematical analysis which deals with the investigation and applications 
of integrals and derivatives of arbitrary order [6,7]. Although the term ‘fractional calculus’ is actually a misnomer, 
the designation ‘integration and differentiation of arbitrary order’ being more appropriate, it is well established 
due to prevailing use. In contrast to integration and differentiation of integer order, for integration and 
differentiation of arbitrary order a great variety of definitions exists. That is both one of the advantages and one 
of the disadvantages of fractional calculus.  

If  ( )f x  is locally integrable on( ),γ ∞ , then the right hand fractional Riemann-Liouville integral of ( )f x   
of  order 0α> is defined as 
  

 ( )
( )

( ) ( )11 x
I f x x u f u duαα
γ γα

−
+ = −

Γ ∫   (9) 

 
for almost all xγ−∞< < <∞  and for suitable f . The subscripts in I  denote the terminals of integration in 
the given order. 

The following general definition of fractional derivatives was introduced in [7]: The right sided fractional 
derivative of order 0 1α< <  and type 0 1β≤ ≤ with respect to t  is defined by 
  

 ( ) ( ) ( )( )( ) ( )1 1 1, dD f t I I f t
dt

β α β αα β
γ γ γ

− − −
+ + +

⎛ ⎞⎟⎜= ⎟⎜ ⎟⎜⎝ ⎠
 (10) 

 
for functions for which the expression on the right hand side exists.  

The fractional Riemann – Liouville derivative is a special case of eq. (10) corresponding to 0β = , namely 
 

 ( ) ( ),0 1dD f x I f x
dx

α α
γ γ

−
+ +=  (11) 

 
where 0 1α< < . 

Another definition introduced by Liouville [14] in 1832, but often referred to as “the Caputo approach”, 
corresponds to the fractional derivative of order α  and type 1 as defined in eq. (10) and has proved to be very 
popular among engineers, especially as far as the field of viscoelasticity is concerned. It reads 
  

 ( ) ( ) ( )
( )

( )
,1 1 1

1
x f udD f x I f x du

dx x u
α α
γ γ αγα

−
+ +

′
= =

Γ − −∫  (12) 

 
where 0 1α< < . This is a far more restrictive definition than the previous one, in that it demands that the 
derivative of ( )f x  be absolutely integrable.  

It is crucial to note that the different definitions of the fractional derivatives and integrals have a different 
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physical meaning. It is therefore of great significance that care is taken, when entering the field of applications. 
One example of this fact is the connection of the fractional derivatives to continuous time random walks. 
Eq.(13) has a rigorous relationship with continuous time random walks, whereas the solution of eq.(14) does not 
admit a probabilistic interpretation [15]. 
 

 ( ) ( )2
,1

0 2

,
,

f x t
D f x t C

x
α

α+

∂
=

∂
 (13) 

 

 ( ) ( )2
,0

0 2

,
,

f x t
D f x t C

x
α

α+

∂
=

∂
 (14) 

 
where Cα  is a fractional diffusion constant. 

4 PREVIOUS WORK 

Pachepsky et al. [5], following the scaling deviations observed in experiments from the scaling resulting from 
the Richards equation (cf. Table 1 of that reference) considered the equation 
 

 ( ),0
0D D

x x
α

α
θθ θ+

⎛ ⎞∂ ∂ ⎟⎜= ⎟⎜ ⎟⎜⎝ ⎠∂ ∂
 (15) 

 
replacing the derivative with respect to time with a fractional one. Consequently they attempted a solution of the 
resulting time-fractional absorption equation by inserting the similarity variable from eq. (8) and transforming 
the equation into an ordinary differential equation, as was done by Philip, who introduced the similarity 
transform in the Richards equation. In an attempt to reproduce the results, we found that the transformation of 
eq. (15) into an ordinary fractional differential equation is not possible in the same way as in the case 1α= . 
This is because the authors assumed the following relationship to hold: 
 

 ,0 ,0
0 0

dD D
d

α αθθ ξ
ξ+ +=  (16) 

 
which leads to the ordinary fractional differential equation: 
  

 ( ) ( )
( )

1 / 2
0

1 3 / 2
d d dD
d d d

αθ θθ ξ
ξ ξ α ξ
⎛ ⎞ Γ −⎟⎜ ⎟− =⎜ ⎟⎜ ⎟⎜ Γ −⎝ ⎠

 (17) 

 
Let as assume as a counterexample that ,a bt tθ ξ= =  .Then, for the eq. (16) the following relationship 

should hold for all values of b: 
 

 ( ) ( )
( )

11
1

b
z b const

b b a
Γ +

= =
Γ + −

 (18) 

 
However, as can be seen in Fig. 2 this is not true. This finding gives rise to serious doubts concerning the 

validity of the numerical solution presented in [5]. An additional implication is the fact that the equation 
considered would in fact require an initial condition of integral type, which is not provided and in experimental 
situations is hard to obtain. 
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Figure 2: Counterexample demonstrating the inapplicability of the “chain rule”, used in eq. (16) 

 

5 FRACTIONAL RICHARDS EQUATION 

The derivative of order equal to unity may be defined as follows 
 

 ( ) ( ) ( ) ( ) ( ) ( )
0 0

lim lim
t t

f s f s t t f s f sd f s
ds t t→ →

− − −
= =−

T  (19) 
 

which identifies d dt− as the infinitesimal generator of time translations defined as 
  
 ( ) ( ) ( )t f s f s t= −T  (20) 
 

As shown by one of us [7], fractional derivatives arise respectively as the infinitesimal generators of coarse 
grained time evolutions  
 

 ( ) ( ) ( ) ( )
0

u duT t f s u f s h
t tα α

∞ ⎛ ⎞⎟⎜= ⎟⎜ ⎟⎜⎝ ⎠∫ T  (21) 
 

where t  is considered as a duration of time and therefore it is always positive, and hα is a one-sided stable law 
[7]. The order α of the derivative lies between zero and unity, and gives a quantitative measure for the decay of 
the averaging kernel hα . The case 1α≠ indicates that memory effects and history dependence may become 
important. 

Taking into consideration the nature of the problem and the initial conditions provided, it is obvious that we 
need to consider a fractional derivative of type 1β = , which would result in the following equation 
 

 ( ) ( ) ( ),1
0

,
,

t x
D t x D

x x
α

α

θ
θ θ+

⎛ ⎞∂∂ ⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎟⎜∂ ∂⎝ ⎠
 (22) 

 
with initial condition 
 

 ( ) ( )0, x xθ θ=  (23) 
 

where Dα is the fractional diffusivity and is in general dependent on θ . From this point on we will refer to eq. 
(22) as the fractional Richards equation. 

 

6 NUMERICAL METHOD 

For the solution of eq. (22) we will make use of an Adams-Bashforth-Moulton algorithm introduced by 
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Diethelm and Freed[16]. Eq. (22) is rewritten as a weakly singular Volterra equation of the second type 

 

 ( ) ( )
( )

( ) 1

0

1, 0,
t

t x x t u D du
x x

α
α

θθ θ
α

− ⎛ ⎞∂ ∂ ⎟⎜= + − ⎟⎜ ⎟⎜⎝ ⎠Γ ∂ ∂∫  (24) 

 
Considering an equidistant mesh  
  

 ( ) ( ) ( ) ( )( ) ( )( )1 , 1 1, 1 1 1
0

1 , , , ,
n

P
n j n j j n n n n

j

x x a f t x x a f t x xθ θ θ θ
α+ + + + + +

=

⎛ ⎞⎟⎜ ⎟= + +⎜ ⎟⎜ ⎟⎟⎜Γ ⎝ ⎠
∑  (25) 

 
where the predictor ( )1

P
n xθ + is evaluated by the relationship 

 

 ( ) ( )
( )

( )( )1 , 1
0

1 , ,
n

P
n j n j j

j

x x b f t x xθ θ θ
α+ +

=

= +
Γ ∑  (26) 

 
and the constants are evaluated as follows 
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( ), ,f t x θ  signifies D
x xα

θ⎛ ⎞∂ ∂ ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠∂ ∂
, and for its evaluation finite elements will be used. 

 

7 RESULTS 

The fractional Richards equation, namely eq. (22), was solved by means of the numerical method presented 
in section 6. For the fractional diffusivity function we assumed 

 
 ( )D Dα αθ =  (28) 
 
where 20.1 /D cm minα

α =  . The initial condition was assumed to be a step function given as 
 

 ( ) 1

2

, 0
, 0

c x
x

c x
θ

⎧ =⎪⎪= ⎨⎪ >⎪⎩

   
   

 (29) 

 
where 1 0.6c =  and 2 0.2c = . 

In Figs. (3a) and (3b) the volumetric moisture content as a function of the distance from the beginning of the 
soil column is shown for the fractional Richards equation and Richards equation respectively. The curves 
displayed are isochrones corresponding to times equal to 0, 100, 200, 300, 400, 500, 600, 700, 800, 900 and 
1000 min . The lowermost curve corresponds to the initial conditions, whereas the uppermost to time equal to 
1000 min . For the case of the fractional Richards equation these results were achieved for order of the 
fractional derivative equal to 0.9. As can be seen in this case the process appears indeed to be slower than 
evaluated by the Richards equation and could therefore be termed as sub-diffusive.  

In Fig 3(a) we plot x  versus t , where x  and t  solve the equation 
 

 ( ), 0.3.t xθ =  (30) 
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Here ( ),t xθ  is the solution of eq. (22) for 0.9α= , ( )Dα θ given in eq. (28) and initial conditions as in eq. (29). 

In Fig. 4(b) the isochrones of volumetric moisture content as a function of x  are exhibited for different 
values of the fractional derivative and time equal to 1000 min. The curve closest to the axis corresponds to 
α =0.70, whereas the uppermost curve corresponds to the classical Richards equation.  

 

 
Figure 3: Isochrones of the volumetric moisture content ( ),t xθ  as a function of x  for t =0, 100, …, 1000 min  
and initial conditions given by eq. (29). The uppermost curve corresponds to t =1000 min , whereas the one 
closest to the axis to the initial conditions. (a) Fractional Richards eq. (22) with ( ) 20.1 /D cm minα

α θ =  ;  (b) 

Richards equation eq.(6) with ( ) 20.1 /D cm minθ =  . 
 

 
Figure 4: (a) Plot of the positions in time and space at which a volumetric moisture content ( ),t xθ  equal to 0.3 
was observed for the Richards and the fractional diffusion equation, that is the solution of eq.(30); (b) The 
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volumetric moisture content ( ),t xθ as a function of x  is exhibited for different values of the fractional 

derivative α , with initial conditions given by eq. (29), ( )Dα θ given in eq. (28) and t  equal to 1000 min . 
 

8 CONCLUSIONS 

The present study has shown that fractional calculus could be used to model the saturation front in partially 
saturated porous media in cases of subdiffusive behavior. It is important however that the right type of fractional 
derivative is introduced and the proper initial conditions are considered. Further on, it must be kept in mind that 
this approach has so far no proven connection neither to continuum mechanics nor to continuous time random 
walk theory and can be termed as phenomenological. 

To further establish the possibility of using fractional derivatives to better model anomalous diffusion 
behavior of water in porous media, it is important that the relationship of the classical diffusivity to the 
fractional diffusivity is investigated and that work similar to the above for the case of varying diffusivity is 
produced, as we encountered numerical instability, when the exponential law, eq. (5), was implemented. It 
would also be of great interest to investigate the relationship between the movement of water in soil and the 
continuous time random walk with long-tailed power law distribution of waiting times. 
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Abstract. In the paper discrete-continuous mechanical models built by means of the one-dimensional visco-
elastic continuous structural macro-elements are applied for dynamic investigations of mechanical systems and 
structures. The coupled vibration and wave effects are used for fault detection and localization in the most 
important components of the considered objects, i.e. in shafts, axles, beams, rods cantilevers and others. 
 
1 INTRODUCTION 

The commonly observed fast development of machines operating under great material loadings requires more 
and more precise fault detection and localization of their most heavily affected and responsible parts. The 
dynamic methods for fault detection and localization based on the vibratory[1] and wave[2] approaches are very 
popular now. A practical application of these methods realized in the form of on-line dynamic diagnostics or test-
rig-exciting of real objects must be supported by proper theoretical investigations carried out by means of several 
analytical or numerical methods and mechanical models. Currently, the finite element method belongs on the one 
hand to the most advanced and reliable, but on the other hand this method is not free of numerous drawbacks and 
disadvantages. In this paper there is proposed an alternative method of modeling and dynamic analysis of 
mechanical systems described in details in [3] and applied e.g. in [4,5]. This method is based on discrete-continuous 
models built by means of the finite structural elements with continuously distributed inertial-visco-elastic 
properties, called further the visco-elastic continuous macro-elements (V-ECM). The main purpose of the 
research carried out in this paper is a fault detection and localization in responsible parts of machines and 
structures by means of dynamic analyses performed using the discrete-continuous mechanical models. 

2  GENERAL ASSUMPTIONS FOR THE DISCRETE-CONTINUOUS MODELS BUILT BY MEANS 
OF THE V-ECM 
The most heavily affected and responsible components of a broad class of machines and mechanisms are 

shafts, axles, rods, cantilevers, guideways and others. For dynamic analyses they can be usually regarded as one-
dimensional media. Here, each segment of such real component of constant or almost constant cross-section can 
be substituted in the model by the structural macro-element of continuously distributed inertial-visco-elastic 
properties of the length li, cross-sectional area Ai and polar and diametral moments of inertia J0i and Ii, i=1,2,…,n, 
as shown in Figure 1, where n denotes the entire number of such macro-elements in the assumed model.  

 
Figure 1.  The visco-elastic continuous macro-elements (V-ECM)  
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In order to represent inertial properties of the components remaining almost undeformed during studied dynamic 
processes, such as rotors, impellers, coupling disks, gears, flywheels and others, to the extreme cross section of 
the V-ECM the rigid disk of mass mi and diametral and polar mass moments of inertia Ji and I0i can be attached 
directly or by means of the massless elastic membrane. The defined in this way macro-elements can be applied 
for investigations of bending, torsional and longitudinal vibrations, which usually are the most important in 
majority of machines and mechanical systems. Torsional and longitudinal motion of cross-sections of the V-ECM 
is described by the following partial differential equations  
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where in the i-th macro-element θi(x,t) denotes the angular or longitudinal displacement of the cross-section of 
the co-ordinate x, the symbol Γ is equal to the Kirchhoff modulus G in the case of torsional vibrations or to the 
Young modulus E in the case of longitudinal vibrations and ρ, τ denote the material density and the retardation 
time of material damping, respectively. The function qi(x,t) describes the external excitation continuously 
distributed along the macro-element. Flexural motion of cross-sections of the V-ECM can be described by the 
partial differential equations derived using various beam theories, e.g. the Bernoulli-Euler, Rayleigh or the 
Timoshenko one. For example, motion of the rotating with the speed Ω beam macro-element described by the 
Rayleigh beam theory is governed by the following equation 
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where vi(x,t) denotes the complex transverse displacement in two perpendicular planes and ksi, csi are respectively 
the stiffness and damping coefficient of the visco-elastic continuous foundation. These macro-elements are 
mutually connected directly according to the structure of the real object or coupled with each other by means of 
discrete oscillators which can also describe the assumed imperfections in the considered systems in the form of 
cracks, bearing support misalignments, local rotor-shaft anisotropies or rigid coupling misalignments. In the 
discrete-continuous models such connections are expressed in the form of geometric and dynamic boundary 
conditions for the motion equations, e.g. (1) and (2). The geometric boundary conditions describe displacement 
identities of the extreme cross-sections of the directly connected adjacent macro-elements. The dynamic 
boundary conditions are equations of equilibrium of the inertial, elastic, damping, external, gyroscopic, support 
reaction forces and moments formulated for the directly connected adjacent macro-elements as well as for the 
macro-elements mutually connected by means of discrete oscillators.  

3 MATHEMATICAL FORMULATION AND SOLUTION OF THE PROBLEM  

The mathematical formulation of the problem investigated by the use of the assumed discrete-continuous 
models is based on the local analytical solutions of the partial differential equations of motion of the V-ECM 
cross-sections. In the paper the Fourier solution in the form of infinite series in orthogonal eigenfunctions is used, 
which leads to the following system of ordinary differential equations in the modal co-ordinates[3,4,5]  

)3()).(),(,2,()())(,()())(),(,,()()( trtrtttrtttrtrttt Ω=+Ω+ FrKrCrM  

These equations can be uncoupled in the linear case or mutually coupled by the taken into consideration 
nonlinear, parametric and skew-symmetrical terms contained in the variable or response-dependent mass, 
damping-gyroscopic and stiffness matrices M, C and K, respectively. In (3) r(t) denotes the vector of unknown 
modal co-ordinates r(t) and F is the time- and response-dependent external excitation vector. Moreover, the 
d’Alembert solution in the form of travelling longitudinal and shear elastic waves has been applied leading to the 
mixed systems of algebraic and ordinary differential equations with a retarded argument[3]. Numerical integration 
of both mentioned above types of equations enables us to obtain dynamic responses of the considered mechanical 
systems or structures with assumed imperfections. It is to emphasize that the computational algorithms built on 
the basis of mathematical relations derived in a consequence of the applied Fourier and d’Alembert solution are 
characterized, in a comparison with the traditional methods, by very strong numerical efficiency and stability – so 
important for simulations being performed many times, in particular, when the fault detection and localization 
procedure reduces to an inverse problem investigation.  
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4 EXAMPLES OF APPLICATION 

 In the computational examples there is considered the multi-bearing rotor-shaft system with a transverse 
crack and with a local shaft anisotropy associated by a bearing misalignment. For this system the vibratory 
approach for fault detection is applied. Here, by means of numerical simulations of coupled lateral-torsional-axial 
shaft vibrations the cause-symptom relationships have been collected in order to detect and localize the 
imperfection during operation monitoring of the real object. The wave approach is applied in the case of cracked 
cantilever rod and beam, where the determined reflected waves inform us about a fault existence and position.  

4.1 The rotor-shaft system with the cracked shaft 

The discrete-continuous model of the rotor-shaft system with the transverse crack and with the coupling disk 
misalignment is presented in Fig. 2. The investigations have been performed for the rotor-shaft system with two 
identical bladed disks supported on three journal bearings. Each bearing is represented by means of the dynamic 
oscillator of two degrees of freedom, where beyond the oil-film interaction also visco-elastic properties of the 
bearing housing and foundation are taken into consideration. With a reasonable for practical purposes accuracy 
the bladed disks can be substituted in the discrete-continuous model by the system of dynamic oscillators in the 
form of rigid rings mutually attached to the rotor-shaft by means of the visco-elastic mass-less membranes 
enabling rotations of these rings as well as their translational displacements in the shaft axial direction, as shown 
in Fig. 2. Parameters of these oscillators have been determined by the use of the proper modal reduction method. 
In the considered rotor-shaft system the transverse crack of depth a/D=0.3 in the shaft segment between the 
second bearing #2 and the first bladed disk was assumed, which is demonstrated in Fig. 2. An additional local 
shaft flexibility caused by the crack is represented by the mass-less spring connecting the adjacent shaft 
segments, coupling shaft lateral motion with torsional and axial one as well as realizing crack “breathing” 
process. The 6×6 stiffness matrix of this spring has been determined similarly as in [1], i.e. using the fundamentals 
of fracture mechanics.  

 
Figure 2.  Discrete-continuous model of the rotor-shaft system with the transverse crack and with the coupling 

disk misalignment  

The system non-linear dynamic response has been obtained by solving (3) in the range of system rotational 
speeds 1200÷5000 rpm for four circumferential crack positions on the shaft αp=0, 90, 180 and 270 deg in order 
to investigate a severity of coupling effects of the rotor-shaft bending-torsional-axial vibrations indicating the 
presence of the crack. For each considered rotational speed and the gravitational load acting on the considered 
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system the proper mean values of the oil film stiffness and damping coefficients have been determined. In this 
way the bearing anisotropic and non-symmetric properties were introduced. The only assumed source of dynamic 
external excitation are the static residual unbalances of the bladed disks mutually shifted by the phase angle 
∆=180 deg. Thus, the torsional-axial vibrations can be regarded here as an output effect caused by bending 
vibrations of the rotor-shaft. The quantities of particular interest in these investigations are bending vibration 
displacements of the shaft at the bladed disk locations, the dynamic torque transmitted by the shaft between the 
bladed disks and the thrust bearing axial force. The results of simulations are presented in Fig. 3 in the form of 
amplitude characteristics of the listed quantities expressed as functions of the constant rotational speed values. 
The amplitude of the transverse shaft displacements is defined as one half of the longer diameter of the ellipse 
featuring the disk center orbit. The amplitudes of the remaining quantities are regarded as maximum fluctuation 
values with respect of their average values of the steady state dynamic response. In Figs. 3a,b there are shown the 
transverse displacement amplitude characteristics for the 1st and 2nd disk, respectively. Both plots are similar to 
each other and they are characterized by one resonance peak at the rotational speed ca. 3648 rpm corresponding 
to the system 2nd bending natural frequency 60.8 Hz determined by means of the Rayleigh- and confirmed by the 
Timoshenko-beam theory. It is to remark that respective plots obtained for four considered crack position angles 
αp almost overlay, which means that in the considered system the circumferential crack location does not 
influence the rotor-shaft bending vibrations. Fig. 3c presents the amplitude characteristics of the dynamic torque 
induced by the shaft bending vibrations. These plots are also characterized by one resonance peak at the 
rotational speed ca. 3264 rpm corresponding to the system 1st torsional natural frequency 54.4 Hz. It is to remark 
that the not presented in a graphical form time histories of this torque oscillate with the fundamental synchronous 
frequency Ω/2π. This means that the coupling between shaft bending vibrations and torsional-axial vibrations of 
the shaft-bladed disks system indicates the greatest magnitude in the conditions of ordinary parametric resonance 
of the first order, in a contradistinction to such coupling studied in [4] caused by residual disk unbalance only. At 
this juncture, the combined parametric resonance is observed and the dynamic torque fluctuates with double-
synchronous frequency Ω/π. In the considered case the system axial response in the form of thrust bearing force 
indicates the parametric ordinary resonance of the frequency 54.4 Hz and the ordinary “bending” resonance of 
the frequency 60.8 Hz, which follows from the respective peaks of the amplitude characteristic shown in Fig. 3d. 
The time histories of this force are characterized on the one hand by very small extreme values, but on the other 
hand by much richer frequency spectra including synchronous, double-synchronous and higher-frequency 
components of comparable magnitudes. From the respective plots in Fig. 3c it follows that the torsional-axial 
responses of the shaft-bladed disks system are particularly severe for the crack location angles αp=0 and 90 deg, 
when the crack remained all of the time continuously open. Then, one obtains the extreme values which in the 
case of dynamic torque are important not only from the diagnostic viewpoint. However, the analogous plots in 
Fig. 3c obtained for αp=180 and 270 deg have no importance. This result confirms rightness of the commonly 
applied assumption that for practical purposes in the field a crack can be treated as a permanently open crack.  
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Figure 3.   Amplitude characteristics of the system coupled dynamic responses  
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4.2   The rotor-shaft system with the local shaft anisotropy and with the bearing misalignment 

Analogous amplitude characteristics of the coupled bending-torsional-axial dynamic responses have been 
obtained for the similar double-span rotor shaft system characterized by the local shaft anisotropy associated with 
the bearing misalignment. The discrete-continuous model of this system is presented in Fig. 4. In order to collect  

 
Figure 4.  Discrete-continuous model of the rotor-shaft system with the local shaft anisotropy and with the 

bearing misalignment 

for the two mentioned rotating systems with the assumed imperfections the cause-symptom relationships for fault 
detection and localization during real object monitoring, it is necessary to perform a qualitative analysis of these 
amplitude characteristics. For the transverse forces in bearings #1, #2, #3, the dynamic torques in the shaft 
between the bladed disks (T2) and between the second bladed disk and the right-hand shaft end (T1), the blade 
rim retarding transverse forces acting on the disks (D1), (D2) and for the axial force in the thrust bearing in Figs. 
5 and 6 there are shown results of the FFT analysis obtained for two exemplary rotational speeds n=1740 and 
2200 rpm of the rotating system with the local shaft anisotropy and the bearing misalignment. In these figures 
there are plotted response amplitude components in the domain of frequency related to the synchronous 
frequency X. Each amplitude peak excited by natural multiple of the synchronous frequency X corresponds to the 
induced bending (B) or torsional-axial (T-A) eigenform of the investigated mechanical system. For the four 
mentioned above studied quantities in Table 1 such relationships between the excitation frequency and the 
number of induced eigenform have been collected for the most important amplitude peaks at four selected 
rotational speed values n=1740, 2200, 2610 and 3012 rpm. In the all cases of rotational speeds the resonance 
phenomena are observed. For n=1740 rpm the parametric resonance of the coupled bending-torsional-axial 
vibrations occurs yielding the response components of the excitation frequency 4X. At n=2610 rpm the ordinary 
resonance is observed with the external excitation frequency 2X and at n=3012 rpm an increase of response 
amplitudes has a character of the parametric resonance with the excitation frequency components 1X, 2X and 3X. 
The case of n=2200 rpm can be regarded as the “mixed” one, in which the bending response is induced by the 
ordinary resonances of the external excitation frequency 2X and the torsional-axial response is characterized by 
the induced components of frequencies 1.4X, 3X and 4X.  

The collected in this way excitation frequency – induced eigenform relationships for greater number of 
rotational speeds within the exploitation range of the rotor-machine inform us about possible coupling effects 
between the bending, torsional and axial vibrations caused by the assumed fault, e.g. the crack, shaft anisotropy,  
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Figure 5.  Results of the FFT analysis of the system dynamic response for n=1740 rpm 
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Figure 6.  Results of the FFT analysis of the system dynamic response for n=2200 rpm 

bearing or coupling misalignment and others. Then, proper comparisons of these relationships with the analogous 
monitored on-line responses of the real object enable us to detect and localize the given type of imperfection.  
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Rotational speed 
n  [rpm] 1740 2200 2610 3012 

Synchronous freq.  
X   [Hz] 29.0 36.667 43.5 50.2 

Bearing forces  2X→1 B 
4X→5 T-A 2X→5 B 2X→7 B 2X→ excitation 

 
Dynamic torques in 

the shaft  

 
4X→5 T-A 

∼1.4X→1 T-A 
2X→ excitation 

3X→5 T-A 
4X→ 7 T-A 

 
2X→3 T-A 

 
1X→1 T-A 

Blade rim transverse 
retarding force  

 
4X→5 T-A 

∼1.4X→1 T-A 
2X→ excitation 

3X→5 T-A 
4X→7 T-A 

 
2X→3 T-A 

 

 
1X→1 T-A 
2X→ 4 T-A 

Axial force in the 
thrust bearing 4X→5 T-A 4X→7 T-A 2X→3 T-A 2X→4 T-A 

3X→7,8 T-A 

Table 1 : Cause-symptom relationships due to the imperfections in the rotor-shaft system 

4.3 Crack detection in the cantilever rod and beam using the wave approach 

The transverse cracks have been also detected and localized in the cantilever rod and in the cantilever beam 
by means of the analysis of traveling elastic waves propagating and reflecting in these objects due to the 
diagnostic high-frequency impulses exciting respectively longitudinal waves in the rod and shear waves in the 
beam. The cracked cantilever rod and beam is represented by two longitudinally or transversally deformable 
visco-elastic continuous macro-elements (1) and (2), as shown in Fig. 7. Motion of their cross-sections is 
described by the homogeneous partial differential equations (1) for Γ=E in the case of the longitudinal wave 
analysis in the rod and for Γ=sG in the case of the shear wave investigation in the Timoshenko beam of the cross-
sectional shear ratio s. The equations of motion (1) are solved with boundary conditions describing the support 
properties, external loading as well as the presence of the crack. The introduced by this crack an additional 
longitudinal or transverse flexibility is represented by the mass-less spring of stiffness k0 determined by means of 
the Castigliano theorem using the fundamentals of fracture mechanics, in an analogous way as for the cracked 
rotor-shaft discussed in Chapter 4.1. The diagnostic excitation force P(t) has been applied in the form of the 
triangular impulse modulated by the high-frequency sinusoid, i.e. in the identical way as in [6], where the similar 
problem was considered by means of the spectral finite element method.  

 
Figure 7.  Discrete-continuous model of the cracked cantilever rod or beam 

For the rod and beam model presented in Fig. 7 the Fourier and d’Alembert solutions of the motion 
equations (1) can be applied. The former, in the considered here linear case, leads to the infinite set of uncoupled 
modal equations (3). The latter leads to the above mentioned set of algebraic and ordinary differential equations 
with the retarded space-time argument z in the following form  

),22(2)(2 lzfzg −−=   ),1(2)1(2)12(1)12(1)(1)(1 lzglzflzflzfKzgzgK −+−+−−−′=+′  

),
1

(
1

)(2 lzfzf −′=′   ),(
1

)()(1 zgzFzf ′+=′                                             (4) 

where the functions fi and gi, i=1,2, represent longitudinal or shear waves propagating along the x-axis 
respectively in positive and negative sense, Fig. 7, K=ΓA/(k0ls), F(z)=P(t)ls/(ΓA), l2=l-l1, and ls [m] is the 
reference distance. An integration of the appropriately truncated number of the modal equations (3) or sequential 
solving of equations (4) yield in time domain system dynamic responses in the form of travelling elastic 
longitudinal or shear waves. For sufficiently small integration step both solutions lead to almost identical results.  
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Figure 8.  Transverse displacement of the free end of the cantilever beam with a crack in the middle (a) of its 
entire length and in the cross-section distant 75% of the entire length from the clamped end (b) 

In Fig. 8 there are presented exemplary simulation results of shear wave propagation in the form of 
transverse displacements of the cantilever cracked beam, where the crack has been assumed in the cross-section 
distant respectively one half of the beam entire length l, i.e. for x=l1=0.5l, Fig. 8a, and 75% of the beam length, 
i.e. for x=l1=0.75l, from its clamped end, Fig. 8b. In these figures several “great” displacement peaks of the beam 
free end are observed, where the “first” peak corresponds directly to the action of the external force P(t) and the 
“next” two “great” peaks are caused by successive reflections of the shear waves from the clamped end of the 
beam. “Between” the “great” peaks in Figs. 8a,b several additional “small” peaks occur. These “small” peaks 
appear regularly after successive wave reflections from the beam cross-section, in which the crack has been 
assumed. Here, the simulated effect of wave reflections as well as the time delays, after which the waves reflected 
from the crack are recorded, are the most essential. An appearance of these additional reflected waves informs us 
about an existence of the imperfection as well as the known value of wave propagation velocity multiplied by the 
proper time delay enables us to localize this imperfection in the considered continuous medium.  

5 CLOSING REMARKS  

In the paper the rod- and beam visco-elastic continuous macro-elements (V-ECM) have been used to build 
structural discrete-continuous physical models of mechanical systems and structures applied for fault detection 
and localization in the rotor-shafts, cantilever rods and beams. The continuous distribution of inertial-visco-
elastic properties of the V-ECM enables us a fault detection by means of the vibratory and the wave approach. 
The vibratory approach for fault detection applied here to the rotor machine for a determination of cause-
symptom relationships necessary for dynamic diagnostic of the real object is on the one hand rather labour-
consuming and not very sensitive to small defects. But on the other hand, this method can be applied to complex 
mechanical systems and structures for an analysis of parametric and non-linear coupled vibrations. However, the 
wave approach for fault detection and localization reducing to investigation of travelling elastic wave 
propagation and reflections in time domain is very simple in applications and much more sensitive to small 
defects than the vibratory one. But on the presented level, the wave method can be applied to relatively simple 
models of elements of machines and structures. Nevertheless, in the case of both approaches the proposed here 
method of discrete-continuous modeling of mechanical systems and structures based on the V-ECM is a reliable 
and computationally very effective tool for dynamic analysis and fault detection in numerous cases of practical 
applications and theoretical studies.  
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Abstract. Earthquake-resistant design of structures using probabilistic analysis is an emerging field in 
structural engineering. This paper examines the application of Neural Networks (NN) to the probabilistic 
analysis of real-world structural systems under seismic loading. Probabilistic analysis is carried out using the 
Monte Carlo Simulation (MCS) method incorporating the improved Latin Hypercube Sampling technique. 
Limit-state fragilities for steel moment resisting frames are determined by means of nonlinear time history 
analysis with a suite of ground motion records. The use of NN is motivated by the large number of time 
consuming nonlinear time history analyses required for MCS. The Rprop algorithm is implemented for training 
the NN utilizing available information extracted from each record. The trained NN is used to compute the level 
of damage which is expressed as maximum interstorey drift values, thus leading to a close prediction of the limit 
state fragility curves. 

1 INTRODUCTION 

Extreme earthquake events may produce extensive damage to structural systems. It is therefore essential to 
establish a reliable procedure for assessing the seismic risk of real-world structural systems. Probabilistic 
analysis provides the framework to model the various sources of uncertainty that may influence structural 
performance under seismic loading conditions. Probabilistic analysis is performed in order to obtain fragility 
curves, which provide a measure of the safety margin of a structural system for different limit states. 

The theory and the methods of structural reliability have been developed significantly during the last twenty 
years and are documented in a large number of publications[1]. In this work the probabilistic safety analysis of 
framed structures under seismic loading conditions is investigated. Randomness of ground motion excitation 
(that influences seismic demand) and of material properties (that affect structural capacity) are taken into 
consideration using Monte Carlo Simulation. The capacity assessment of steel frames is determined using 
nonlinear timehistory analysis. The probabilistic safety analysis using Monte-Carlo Simulation and nonlinear 
time history analysis results in a computationally intensive problem. In order to reduce the excessive 
computational cost, techniques based on Neural Networks (NN) are implemented. For the training of the NN a 
number of Intensity Measures (IMs) are derived from each earthquake record, for the prediction of the level of 
damage, which is measured by means of maximum interstorey drift values θmax. 

2 FRAGILITY ANALYSIS USING MONTE CARLO SIMULATION 

The seismic fragility of a structure FR(x) is defined as its limit-state probability, conditioned on a specific peak 
ground acceleration, spectral velocity, or other control variable that is consistent with the specification of 
seismic hazard 

 ( ) [ / ]R iF x P LS PGA x= ≥  (1) 

where LSi represents the corresponding ith limit state and the peak ground PGA is the control variable. If the 
annual probabilities of exceedance P[PGA ≥ x] of specific levels of earthquake motion are known, then the mean 
annual frequency of exceedance of the ith limit state is calculated as follows: 

  (2) [ ] ( ) [ ]i RP LS F x P PGA x dx= ∫ ≥
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Equation (2) can be used to make decisions about, for example, the adequacy of a design or the need to retrofit. 
In the present study we seek the fragility FR(x). Once the fragility is calculated the extension to eq. (2) is 
straightforward.  

Often FR(x) is modelled with a lognormal probability distribution, which leads to an analytic calculation. In 
the present study Monte Carlo Simulation (MCS) with improved Latin Hypercube Sampling (LHS) is adopted 
for the numerical calculation of FR(x). Numerical calculation of eq. (1) provides a more reliable estimate of the 
limit state probability, since it is not necessary to assume that seismic data follow a lognormal distribution. 
However, in order to calculate the limit state probability, a large number of nonlinear dynamic analyses are 
required for each hazard level, especially when small probabilities are sought. 

The proposed methodology requires that MCS has to be performed at each hazard level. Earthquake records 
are scaled to a common intensity level that corresponds to the hazard level examined. Scaling is performed using 
the first mode spectral acceleration of the 5% damped spectrum (Sa(T1,5%)). Therefore, all records are scaled in 
order to represent the same ground motion intensity in terms of Sa(T1,5%). Earthquake loading is considered as 
two separate sources of uncertainty, ground motion intensity and the details of ground motion. The first 
uncertainty refers to the general severity of shaking at a site, which may be measured in terms of any IM such as 
PGA, Sa(T1,5%), Arias intensity, etc. The second source refers to the fact that, although different acceleration 
time histories can have their amplitudes scaled to a common intensity, there is still uncertainty in the 
performance, since IMs are imperfect indicators of the structural response. The first source is considered by 
scaling all records to the same intensity level at each limit state. The second source is treated by selecting natural 
records as random variables from a relatively large suite of scenario based records. The concept of considering 
separately seismic intensity and the details of ground is the backbone of the Incremental Dynamic Analysis 
method[2], while Porter et al.[3] have also introduced intensity and different records as two separate uncertain 
parameters in order to evaluate the sensitivity of structural response to different uncertainties. 

The random parameters considered in this study are the material properties and more specifically the 
modulus of elasticity E and the yield stress fy, as well as and the details of ground motion where a suite of 
scenario based earthquake records is used. The material properties are assumed to follow the normal distribution 
while the uniform distribution is assumed for the records in order to select them randomly from a relatively large 
bin of natural records. The first two variables are sampled by means of the iLHS technique in order to increase 
the efficiency of the sampling process. 

In reliability analysis the MCS method is often employed when the analytical solution is not attainable and 
the failure domain can not be expressed or approximated by an analytical form. This is mainly the case in 
problems of complex nature with a large number of basic variables where all other reliability analysis methods 
are not applicable. Expressing the limit state function as G(x)<0, where x=(x1,x2,..,xM)T is the vector of the 
random variables, the probability of exceedance can be obtained as 

  (3) LS x
G(x) 0

P f (x
≥

= ∫ )dx

where fx(x) denotes the joint probability of failure for all random variables. Since MCS is based on the theory of 
large numbers (N∞) an unbiased estimator of the probability of failure is given by  

 
N

LS j
j 1

1P I
N

∞

=∞

= ∑ (x )  (4) 

where I(xj) is a Boolean vector indicating “successful” and “unsuccessful” simulations. In order to estimate PLS 
an adequate number of Nsim independent random samples is produced using a specific probability density 
function for the vector x. The value of the failure function is computed for each random sample xj and the Monte 
Carlo estimation of PLS is given in terms of the sample mean by 

 H
LS

sim

N
P

N
≅  (5) 

where NH is the number of simulations where the maximum interstorey drift value exceeds a threshold drift for 
the limit state examined. In order to calculate eq. (5) Nsim nonlinear time history analyses have to be performed 
at each hazard level. Clearly the computational cost of performing so many nonlinear dynamic analyses is 
prohibitive. In order to reduce the computational cost, properly trained Neural Networks are implemented. 

3 FEED-FORWARD NEURAL NETWORKS  

A feed-forward neural network consists of a number of units linked together and attempts to create a desired 
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mapping between the inputs and the target of the training set. The training set is a set of input-target pairs  
D = {xm, tm}, where m is the number of the pairs and xm, tm are the input and target vectors, respectively. A 
neural network architecture A consists of a specific number of layers, a number of units in each layer and a type 
of activation functions. If a set of values w is assigned to the connections of the network a mapping y(x; w, A) is 
defined from the inputs x to the outputs y. The quality of this mapping, with respect to the training set, is 
measured by an error function: 

 ( 2m
D

m

1(D| , ) = ( ; , )
2

−∑w y x wE A A )mt

w

 (6) 

A learning algorithm tries to determine the values of w, in order to achieve the right response for each input 
vector applied to the network minimizing the value of ED. The numerical minimization algorithms used for the 
training generate a sequence of weight parameters w through an iterative procedure. To apply an algorithmic 
operator O we need the starting weight parameters w(0), while the iteration formula can be written as follows 

  (7) 
(t+1) (t) (t) (t) = ( ) = +Δw w wO

The changing part of the algorithm Δw(t) is further decomposed into two parts as 

  (8) 
(t) (t)

tΔ =aw d

where d(t) is a desired search direction vector of the move and at the step size in that direction. 
 
Regularization 

In the error function ED various modifications have been applied, like the addition of the momentum term and 
the inclusion of noise in the learning process. In this work an extra regularizing term EW(w) is added to the ED, 
which penalizes the large values of the weights in order to achieve a smoother or simpler mapping: 

 

2
W i

i j

1( , ) = w
2∑∑wE A j

w

 (9) 

the EW is called weight energy term, and the error function to be minimized becomes: 

   (10) W D = ( , ) + (D| , )α βwE E A E A

The constant α is called regularizing constant and should not be confused with the momentum term. The two 
constant α and β are determined using the following two rules[4]: 

 

W

D

2  =  
2  = Ν - 
α γ
β γ
E
E  (11) 

with 

 

k
i

i i

λ
 = 

λ i
γ

+∑
 (12) 

where λi are the eigenvalues of the quadratic form βED, N is the number of output units times the number of the 
training pairs and k is the total number of the weight parameters. 
 
Learning algorithm 

Learning algorithms can be divided to two categories. (i) Algorithms that use global knowledge of the state of 
the entire network, such as the direction of the overall weight update vector, which are referred as global 
techniques. In the conventional back-propagation learning algorithm the gradient descent algorithm is used 
belonging to the global learning algorithms. (ii) Local adaptation strategies based on weight specific information 
only such as the temporal behaviour of the partial derivative of the corresponding weight. The local approach is 
more closely related to the neural network concept of distributed processing in which computations can be made 
independent to each other. Furthermore, it appears that for many applications local strategies achieve faster and 
more reliable prediction than global techniques despite the fact that they use less information[5]. In this work the 
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Rprop[6] algorithm has been adopted since it has been proved very efficient[7]. 

The Rprop learning algorithm with locally adaptive learning rates is based on an adaptive version of the 
Manhattan-learning rule and has been developed by Riedmiller and Braun[6]. The abbreviation Rprop algorithm 
stands for the Resilient backpropagation algorithm. The weight updates can be written as 

 

(t) (t) t
ij ij

ij

w η sgn  
w

⎛ ⎞∂
Δ = − ⎜ ⎟⎜ ⎟∂⎝ ⎠

E

 (13) 
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where α=1.2, b= 0.5, ηmax=50 and ηmin=0.1[7]. The learning rates are bounded by upper and lower limits in order 
to avoid oscillations and arithmetic underflow. It is interesting to note that, in contrast to other algorithms, Rprop 
employs information about the sign and not the magnitude of the gradient components. 

4 PREDICTIONS OF THE SEISMIC RESPONSE USING NEURAL NETWORKS 

As already mentioned feed-forward Neural Networks are used in order to reduce the number or earthquake 
simulations required for the calculation of the probability of eq. (5). The principal advantage of a properly 
trained NN is that it requires a trivial computational effort to produce an acceptable approximate solution. Such 
approximations appear to be valuable in situations where actual response computations are CPU intensive and 
quick estimations are required. Neural Networks have been applied in the past by Papadrakakis et al.[8] in order 
to calculate the probability of failure for steel moment frames using inelastic static analysis. In recent studies 
NN have been adopted for the reliability analysis of structures by Nie and Ellingwood[9] and Hurtado[10]. 
However, in the present study the NN are implemented in order to predict the maximum seismic response with 
natural earthquake records replacing the time consuming nonlinear time history analysis. The NN are trained in 
order to predict the maximum interstorey drift θmax for different earthquake records which are identified by NN 
using a set of Intensity Measures (IM). 

Table 1 : Intensity measures 
No Intensity Measure 
1 PGA (g) 
2 PGV (m) 
3 PGD (m) 
4 V/A (sec) 
5 Arias intensity (m/sec) 
6 Significant duration (5 to 95 % of Arias) (sec) 
7 RMS acceleration (g) 
8 Characteristic Intensity 
9 CAV 

10 Spectral Intensity 
11 Total Duration (sec) 
12 Sa(T1) (g) 
13 Sv(T1) (cm) 
14 SaC, c=2 (g) 
15 SaC, c=3 (g) 

 
The term Intensity Measure is used to denote a number of common ground motion parameters which 

represent the amplitude, the frequency content, the duration or any other ground motion parameter. A number of 
different IMs has been presented the literature[11], while various attempts to relate an IM with a damage measure 
such as maximum interstorey drift values exist[12]. The IMs adopted can be classified as structure-independent 
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(e.g. PGA, Arias Intensity) or as both structure and record dependent (e.g. SaT1). The complete list of the IMs 
used in this study is given in Table 1.  

It can be seen that the IMs selected, vary from widely used ground motion parameters such as peak ground 
acceleration (PGA) to more sophisticated measures such as SaC. The definitions and further discussion on the 
first thirteen measures of Table 1 is given by Kramer[11]. The last two IMs refer to the measure proposed by 
Cordova et al.[13] which is defined as: 

 1
1

1

( )
( )

( )
Sa c T

SaC Sa T
Sa T

⋅
=  (15) 

The parameter c takes the value 2 and 3 for the 14th and the 15th parameter of Table 1, respectively. These IMs 
were introduced in order to assist the NN to capture the effects of inelasticity by considering the elastic spectrum 
at an “effective” period longer than T1, thus reflecting the reduction in stiffness. 

For each hazard level separate training of the NN is performed by means of the above IMs. The training 
process is based on the fact that the trained NN will assign small weights to the IMs which have poor correlation 
with the damage measure selected. Instead of using the whole set it was examined the suitability of using only 
some of the IMs of Table 1. The parametric study was performed for various intensity levels since the 
performance of an IM depends also on the level of nonlinearity that the structure has undergone. The 10 
combinations of IMs, shown in Table 2, were compared. 

Table 2: Intensity measures combinations 

ID IM combinations 
A 1 
B 1,2 
C 1,2,3 
D 1,2,3,5 
E 1,2,3,5,9 
F 1,2,3,5,9,10 
G 1,2,3,5,9,10,12 
H 1,2,3,5,9,10,12,14 
I 1,2,3,5,9,10,12,14,15 
J ALL 

Table 3: Prediction errors (%) on the maximum interstorey drift θmax

IM Combination 
 A B C D E F G H I ALL 

PGA = 0.05g 
MAX 49.7 39.6 19.6 32.6 15.9 14.8 4.9 27.0 23.6 9.0 
MIN 4.4 0.2 0.9 0.3 0.3 0.6 1.0 1.8 0.6 0.3 
MEDIAN 29.1 9.9 4.8 5.2 5.9 5.5 2.9 5.3 4.7 4.0 

PGA = 0.27g 
MAX 32.6 28.2 21.4 26.6 46.7 23.6 9.5 24.5 35.9 9.6 
MIN 0.9 0.1 1.1 0.5 1.4 0.1 0.6 0.7 0.3 1.5 
MEDIAN 16.9 16.1 9.8 17.2 9.0 7.2 4.9 7.2 4.4 4.4 

PGA = 0.56g 
MAX 62.0 67.2 28.8 42.2 35.4 28.0 33.2 29.3 16.4 9.2 
MIN 6.7 3.2 0.2 0.6 0.1 0.2 0.7 1.3 2.2 0.8 
MEDIAN 18.5 20.4 9.7 12.6 19.2 15.5 9.0 9.2 7.1 4.3 

PGA = 0.90g 
MAX 72.1 45.2 51.0 23.3 13.3 16.9 12.0 8.7 12.5 9.2 
MIN 3.0 6.1 1.4 0.5 1.2 0.9 0.5 0.6 0.2 0.9 
MEDIAN 36.5 15.2 15.7 3.0 2.8 7.8 1.8 3.8 2.9 3.5 

 
The performance of each combination is shown in Table 3. The efficiency of the NN is evaluated for the ten-

storey steel moment resisting frame described in the next section. For this parametric study the material random 
variables were considered with their mean values. The efficiency is measured by means of the error on the 
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prediction of θmax, obtained by means of eq. (10). From Table 3 it is clear that the use of record dependent only 
measures, such as PGA, lead to increased error values, while more refined measures help to reduce the error 
considerably. The use of the complete set of IMs in Table 1 is preferred since it performed equally well for all 
four hazard levels examined in the parametric study. 

5 NEURAL NETWORKS BASED FRAGILITY ASSESMENT 

A suite of 95 scenario-based natural records were used in this study. All records correspond to relatively large 
magnitudes of 6.0–6.9 and moderate distances, all recorded on firm soil and bearing no marks of directivity. In 
order to obtain the fragility curves, sixteen hazard levels expressed in PGA terms ranging from 0.05g to 1.25g 
were used. For each hazard level, risk assessment is performed and five limit state fragilities are calculated. Each 
limit state is defined by means of a corresponding maximum interstorey drift θmax value. In the present study the 
five limit states considered range from serviceability, to life safety and finally to the onset of collapse. The 
corresponding θmax threshold values range from 0.2 to 6 percent. 

The test example considered to demonstrate the efficiency of the proposed procedure is the five-bay, ten-
storey moment resisting plane frame of Figure 1. The mean values of the modulus of elasticity is equal to 
210GPa and the yield stress is fy=235MPa. The coefficients of variation for E and fy are considered as 5% and 
10%, respectively, while both variables are assumed to follow the normal distribution. The constitutive law is 
bilinear with a strain hardening ratio of 0.01, while the frame is assumed to have rigid connections and fixed 
supports. The permanent load is equal to 5kN/m2 and the live load is taken as Q = 2kN/m2. The gravity loads are 
contributed from an effective area of 5m. All analyses were performed using a force-based fiber beam-column 
element[14] that allows the use of a single element per member, while the same material properties are used for all 
the members of the frame. Geometric nonlinearities were taken into consideration. Therefore, the FE model 
allows collapse to take place only due to second order effects, which however are not so pronounced for the 
frame considered in this study.  

 

 
Figure 1. Ten-storey steel moment frame 

 
For training the NN both training and testing sets have to be selected for each hazard level. The selection of 

the sets is based on the requirement that the full range of possible results has to be taken into account in the 
training step. Therefore, training/testing triads of the material properties and the records are randomly generated 
using the Latin Hypercube sampling. In the case of earthquake records the selection has to take into account that 
the scaling factor should be between 0.2 and 5. This restriction is applied because large scaling factors are likely 
to produce unrealistic earthquake ground motions. Furthermore, the records selected for generating the training 
set have to cover the whole range of structural damage for the hazard level in consideration. Thus, nonlinear 
time history analyses were performed, for mean E and fy values, where the θmax values of each record that satisfy 
the previous requirement were determined for each hazard level. In total 30 records are selected for generating 
the training set of each hazard level taking into account that the selection has to cover the whole range of θmax 
values. Therefore, training sets with 90 triads of E, fy and record number, all sampled as discussed above, are 
generated. Finally, a testing sample of 10 triads is also selected in a similar way in order to test the performance 
of the NN. 
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Figure 2. Fragility curves 
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Figure 3. Number of NN-Simulations required (Near collapse limit state, θmax ≥ 6.0%) 
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Figure 4. Prediction of θmax for the testing sample 

 
The fragility curves obtained for the five limit states considered are shown in Figure 2. Figure 3 shows the 

number of MCS simulations required for the fragility curve of a one limit state, in particular the Near Collapse 
limit state (θmax≥6.0%). It can be seen that depending on the calculated probability of exceedance the number 
simulations required for a single point of the fragility curve, ranges from 50 to 1000. The validity of the 
prediction obtained with the NN is shown in Figure 4. The maximum interstorey drift values predicted for the 10 
components of the testing set compared to the values obtained with nonlinear timehistory analysis are shown in 
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Figure 4 for four hazard levels. Figure 4, gives the impression that better prediction is obtained for the lower 
intensity levels, however this occurs because the horizontal axis of Figure 4 corresponds to θmax values and not 
on the relative error on θmax, which practically remains constant for all four intensity levels. 

6 CONCLUSIONS 

A very efficient procedure for the fragility analysis of structures based on properly trained Neural Networks is 
presented. The NNs are trained by means of a set of intensity measures that can be easily extracted from the 
earthquake records. The proposed methodology allows the use of Monte Carlo simulation for the calculation of 
the limit state fragility curves, where the only simplifying assumptions made are the distributions of the 
uncertain parameters. The proposed formulation may be more complicated compared to other simplified 
approaches, however it offers a different approach to an emerging problem in earthquake engineering leading to 
reduction of the computational cost. The results obtained once combined with regional hazard curves can be 
directly applied to the performance-based design of steel frames. 
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ABSTRACT 
Modern developments in the space of aeronautics, particularly since the incident of 11th of September 

2002 in the U.S.A. which affected negatively the economic potential of air companies worldwide, render explicit 
the need for exploitation of air structures up to their designed structural life or even further and consequently 
the need for adoption of maintenance techniques supporting their structural integrity in an acceptable, 
according to their designed criteria, manner. One of the most promising techniques is the so called “composite 
patch repair method”, a method capable to repair cracked metallic structures using adhesively bonded 
composite patches, that constitutes an effective method for re-establishment of structural integrity. However, 
even though this method has important advantages, problems concerning the long-term behavior of the adhesive, 
the appearance of debonds, etc. appear and have led to the considerable delayed widespread acceptance of this 
method.  

In the present study the realization and implementation of elements of a structural health monitoring 
system for composite patch repairs is being performed, combining elements from the theory of structural repair 
mechanics, the theory of intelligent materials and structures and particularly the technology of optical sensors 
and neural networks.  

The inverse problem of fault detection, qualification / quantification and life expectancies are studied 
using neural network techniques. Various network learning algorithms are evaluated for the corresponding 
failure cases and comparison results are developed. The data taken from the experimental test series (part I of 
the study) are used as network exemplars for training/test reasons and the corresponding deviations are 
calculated as well as the network performance metrics.  

 

INTRODUCTION 
Current economic world conditions are forcing to the operation of all structural types, especially for 

complex, expensive and multidisciplinary structures, beyond their design life. This requirement has led to a 
maximization effort of the performance vs. cost ratio, in order to achieve the optimum Return of Investment. In 
that respect, alike the philosophy for human body monitoring using periodical check ups, modern structural 
elements do require the same attention as it comes to their structural integrity. Current trends are dealing with on 
line health monitoring systems capable to trace the external stimulus and the subsequent failures this stimulus 
can lead to. These trends are expressed mainly in the aeronautic technological field due to the requirement of 
high performance – load budget operation of air structures. The modern systems expressing this structural health 
monitoring (SHM) philosophy are split in two main categories [1]: 

 
• Monitoring using load spectrum: these systems are capable to estimate the cumulative damage due 

to fatigue loading of a structure using elements of load spectrum, operational usage and field experience. These 
systems are based on prior knowledge of analytical/numerical models of the structure and are not capable to 
identify an existing failure but are limited to damage prognosis. 
 

• Health monitoring systems: these systems are capable to trace a number of predetermined field 
variants and usually are embedded on the structure under consideration. Most of the times these systems tend to 
be integrated, using sensing, adaptation and damage logic, or semi-integrated, having only sensing and damage 
logic. 

Moreover, the level of integration of the system defines the model of sensing and damage logic required 
for a specific application. For example a system designed to monitor the health of a large scale structural element 
(a bridge) should use global approach techniques using distributed sensing elements, due to the fact that a point-
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wise system resolution is not required. On the other hand, for the case of monitoring a crack propagating on the 
skin of an aircraft, where high strain resolution is required, a local sensing technique should be preferred 
combined with the proper damage logic. 

The damage logic itself is expressed by the two following techniques [2]: 
 
• Logic based on analytical/numerical models that apply to the specific structure or a family of 

identical structures, having predetermined field distributions for each discriminated fault signature. 
 

• Logic based on decoupled from the structure itself numerical techniques, that do not take into 
account the geometry or the constituents of the structure but are based on existing load experience and field 
mapping. Such techniques are based on statistical models, on neural networks, on genetic algorithms or any 
combination of these. 

According to the level of detail required by a health monitoring and damage identification system, four 
levels of logic implementation can be used [3]: 
 

• Level 1: Damage verification and identification 
• Level 2: Damage localization 
• Level 3: Damage quantification 
• Level 4: Life expectancy 

 
In the present work, the use of neural networks and genetic algorithms is studied with specific 

application in a composite patch adhesively bonded to a crack metallic structure, in order to implement a 
structural integrity logic (four levels of implementation) concept in terms of health monitoring of the repair. In 
that respect, various learning algorithms are examined and compared using the fiber optic behavior of [4]. 

LEARNING ALGORITHM 
 In order to design the best solutions available for each level of implementation, two main network types 
were used: a classification network and a function approximation network. Each network was used for a specific 
level of implementation. Thus, for levels 1 and 2 a classification network was used while for levels 3 and 4 a 
function approximation multilayer perceptron network was used. For further information on these types of 
networks, the reader is advised to refer to [5] and [6].  

In order to secure the best possible results in terms of output error, convergence to a solution, etc. the 
following five network learning algorithms [5] were examined and verified: 
 

• Momentum 
• Step 
• Delta-Bar-Delta 
• Quick Prop 
• Conjugate Gradient 

 
A portion of the data set used as a learning/testing/validation set for the network performance, is provided in 
Table 1. 

Specimen Sensor A Sensor B Crack Length 
B 0.455 0.324 10 
B 0.461 0.323 11 
B 0.482 0.322 12 
B 0.501 0.321 14 
B 0.535 0.320 13 
B 0.650 0.340 15 

Table 1: Input data set for network learning algorithm evaluation 

The data set was consisted of 400 exemplars (data points). The network used for the algorithm evaluation was 
consisted of 10 to 30 hidden processing elements and the test was performed with 1000 to 5000 epochs 
(iterations). The network architecture used is presented in figure 1. 
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Figure 1: Network Architecture 

 
The results of the test for each specific algorithm in terms of learning and test error are presented graphically in 
figure 2, where as L is denoted the learning error whereas T is the testing error, for the range of epochs and PE’s.  
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Figure 2: Learning and test error vs number of PE’s 

From the above results, it was obvious that the best algorithm available, in terms of minimum learning and 
testing error was the momentum learning algorithm. On the contrary, the most stable and fast convergent 
algorithm was QProp and Step. Considering that: 

• the data to be used are generally a small set, the required convergence would occur soon 
• the data variance is negligible 

 
the momentum algorithm was chosen for the developed network algorithms. 
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SHM LEVEL1 
 For the implementation of the capability to identify and verify fault that occurred in a composite patch 

repair, due to the lack of experimental data from [4], the learning data set used was produced using the finite 
element method, for the model presented on figure 3. 

 

 
Figure 3: The structure FE model and the assumed sensor positions 

 
Three types of failure were model as typical failures that can occur in a composite patch, which are presented in 
figure 4: 
 

 
Figure 4: Modeled failure types 

The data set was consisted of 500 exemplars (data points). The network used for the algorithm evaluation was 
consisted of 10 to 30 hidden processing elements and the test was performed with 1000 to 5000 epochs 
(iterations). Using the figure 3 strain measurements as inputs, for the various load cases, for a typical 
classification multi layer perceptron network using the momentum learning algorithm, the following results were 
achieved for the considered network output: 
 

Network Epochs Hidden PE’s Test Error MSE NMSE r 
1-MOM05-1000 1000 5 14.14% 0.488 0.816 0.441 
1-MOM10-1000 1000 10 14.68% 0.502 0.841 0.434 
1-MOM15-1000 1000 15 13.50% 0.5 0.838 0.431 
1-MOM20-1000 1000 20 13.73% 0.5 0.847 0.431 
1-MOM25-1000 1000 25 14.33% 0.496 0.83 0.429 
1-MOM30-1000 1000 30 13.98% 0.499 0.836 0.432 
1-MOM05-2000 2000 5 14.01% 0.486 0.813 0.446 
1-MOM10-2000 2000 10 14.48% 0.492 0.823 0.433 
1-MOM15-2000 2000 15 14.16% 0.493 0.826 0.434 
1-MOM20-2000 2000 20 14.15% 0.495 0.828 0.429 
1-MOM25-2000 2000 25 15.91% 0.568 0.951 0.315 
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1-MOM30-2000 2000 30 16.12% 0.572 0.958 0.307 
1-MOM05-3000 3000 5 14.64% 0.485 0.812 0.456 
1-MOM10-3000 3000 10 13.84% 0.491 0.822 0.44 
1-MOM15-3000 3000 15 14.29% 0.489 0.819 0.436 
1-MOM20-3000 3000 20 15.94% 0.61 1.03 0.343 
1-MOM25-3000 3000 25 13.44% 0.522 0.873 0.429 
1-MOM30-3000 3000 30 16.34% 0.6 1 0.377 

Table 2: Results from SHM Level 1 network 

 
where the network codification used, had the format (SHM Level) – (Learning Algorithm) (PE’s) - (Epochs), 
MSE stands for Mean Square Error, NMSE is Nominal Mean Square Error and r is the correlation coefficient 
[6]. From the results provided, the best test error was achieved for the 1-MOM25-3000 network and was 
13.44%. This error could be misinterpreted as high enough, but for the case of a classification network is 
acceptable since the major concern is the number of misclassifications (how many misclassifications happened 
in the test sample) and not the variations of the probability of classification (which for the specific case the mean 
probability to belong to the specific class of failure was 85% that is an acceptable result). 

SHM LEVEL 2 
 Using the same approach as for the case of SHM Level 1, a typical classification multilayer perceptron 
was used to locate the potential damage occurred within a composite patch. Due to the monitoring capabilities 
provided in [4], three classes of failures were assumed for the case of a composite patch, which are presented in 
figure 5. 
 

 
Figure 5: Classes of failure for SHM Level2 

 
The data set was consisted of 850 exemplars (data points). The network used for the algorithm evaluation was 
consisted of 10 to 30 hidden processing elements and the test was performed with 1000 to 5000 epochs 
(iterations). Following the very same approach as in the case of SHM Level 1, the network output results are 
presented in table 3: 
 

Network Epochs Hidden PE’s Test Error MSE NMSE r 
2-MOM05-1000 1000 5 8.25% 0.39 0.96 0.54 
2-MOM10-1000 1000 10 14.41% 0.83 6.64 0.662 
2-MOM15-1000 1000 15 3.60% 0.9 2.22 0.56 
2-MOM20-1000 1000 20 3.82% 0.92 2.28 0.52 
2-MOM25-1000 1000 25 15.30% 0.86 6.88 0.65 
2-MOM30-1000 1000 30 3.22% 0.81 2 0.6 
2-MOM05-2000 2000 5 9.27% 0.46 1.15 0.6 
2-MOM10-2000 2000 10 7.72% 0.34 0.84 0.66 
2-MOM15-2000 2000 15 7.75% 0.41 1.01 0.63 
2-MOM20-2000 2000 20 7.65% 0.32 0.8 0.67 
2-MOM25-2000 2000 25 8.38% 0.5 1.23 0.6 
2-MOM30-2000 2000 30 9.39% 0.45 1.13 0.57 
2-MOM05-3000 3000 5 9.30% 0.47 1.16 0.6 
2-MOM10-3000 3000 10 10.18% 0.49 1.21 0.57 
2-MOM15-3000 3000 15 8.24% 0.41 1.02 0.62 
2-MOM20-3000 3000 20 8.37% 0.46 1.15 0.61 
2-MOM25-3000 3000 25 9.20% 0.42 1.04 0.59 
2-MOM30-3000 3000 30 8.11% 0.37 0.91 0.64 

Table 3: Results from SHM Level 2 network 

From these results, it was found out that the minimum error was achieved using the 2-MOM30-1000 network 
and, generally, the error varied from 3.22% to 15.3%. 
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SHM LEVEL 3 
 Using the same approach with SHM Level 1& 2 networks, but using instead a function approximation 
network, for the mapping 
 

hcracklengtf sensor
z

sensor
z →),( 21 εε  

 
 the results achieved are presented in table 3: 
 

Network Epochs Hidden PE’s Test Error MSE NMSE r 
3-MOM10-1000 1000 10 7.09% 0.097 0.1385 0.971 
3-MOM15-1000 1000 15 4.08% 0.038 0.053 0.975 
3-MOM20-1000 1000 20 8.20% 0.01 0.152 0.971 
3-MOM25-1000 1000 25 6.34% 0.05 0.07 0.997 
3-MOM30-1000 1000 30 7.48% 0.006 0.097 0.974 
3-MOM10-2000 2000 10 2.81% 0.003 0.052 0.975 
3-MOM15-2000 2000 15 6.69% 0.005 0.084 0.975 
3-MOM20-2000 2000 20 5.50% 0.005 0.077 0.974 
3-MOM25-2000 2000 25 2.19% 0.007 0.1 0.978 
3-MOM30-2000 2000 30 4.46% 0.005 0.07 0.974 
3-MOM10-3000 3000 10 5.52% 0.004 0.06 0.975 
3-MOM15-3000 3000 15 6.03% 0.005 0.07 0.975 
3-MOM20-3000 3000 20 6.84% 0.006 0.08 0.975 
3-MOM25-3000 3000 25 6.93% 0.005 0.08 0.978 
3-MOM30-3000 3000 30 2.69% 0.004 0.05 0.974 
3-MOM10-4000 4000 10 3.25% 0.003 0.04 0.975 
3-MOM15-4000 4000 15 3.73% 0.003 0.05 0.975 
3-MOM20-4000 4000 20 6.03% 0.005 0.07 0.975 
3-MOM25-4000 4000 25 8.30% 0.007 0.113 0.975 
3-MOM30-4000 4000 30 6.37% 0.005 0.07 0.978 
3-MOM10-5000 5000 10 6.53% 0.005 0.08 0.975 
3-MOM15-5000 5000 15 4.80% 0.004 0.05 0.975 
3-MOM20-5000 5000 20 5.33% 0.004 0.06 0.975 
3-MOM25-5000 5000 25 3.57% 0.003 0.05 0.975 
3-MOM30-5000 5000 30 6.41% 0.005 0.07 0.975 

Table 4:  Results from SHM Level 3 network 

Whereas, it is obvious that the best network output is achieved using the 3-MOM25-2000 network architecture, 
while the error in all configurations varied between 2.19% and 8.3%. 

SHM LEVEL 4 
 Finally, for the case of life expectancy of the repaired crack, having a propagating failure, suing the 
same techniques as those in SHM Level 3 networks for the mapping 
 

ectedconsumed
sensor
z

sensor
z hcracklengtf exp

21 ),,,( Ν→Νεε  

 
the following results were achieved using a data set of 2000 epochs: 
 

Network Epochs Hidden PE’s Test Error MSE NMSE r 
4-MOM10-1000 1000 10 10.46% 0.0001 0.001 0.999 
4-MOM15-1000 1000 15 13.79% 7.1E-05 0.00044 0.999 
4-MOM20-1000 1000 20 16.69% 0.0001 0.001 0.999 
4-MOM25-1000 1000 25 15.96% 0.00052 0.003 0.998 
4-MOM30-1000 1000 30 17.32% 0.0003 0.002 0.998 
4-MOM10-2000 2000 10 10.5% 0.00002 0.001 0.999 
4-MOM15-2000 2000 15 13.94% 7.9E-05 0.0005 0.999 
4-MOM20-2000 2000 20 7.14% 0.0001 0.0006 0.999 
4-MOM25-2000 2000 25 3.82% 0.00008 0.0004 0.999 
4-MOM30-2000 2000 30 14.90% 0.00013 0.00083 0.999 
4-MOM10-3000 3000 10 10.97% 0.00003 0.0002 0.999 
4-MOM15-3000 3000 15 3.53% 0.00038 0.0002 0.999 
4-MOM20-3000 3000 20 4.34% 0.00004 0.0002 0.999 
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4-MOM25-3000 3000 25 8.38% 0.0001 0.0008 0.999 
4-MOM30-3000 3000 30 8.49% 0.0004 0.0005 0.999 

Table 5: Results from SHM Level 4 network 

Whereas, it is obvious that the best network output is achieved using the 4-MOM20-3000 network architecture, 
while the error in all configurations varied between 3.53% and 17.32%. 
 

RESULTS 
 Having completed the training process as well as the validation of the network architectures for the 
given data set, the optimum network architecture for each SHM Level was submitted to a “live” process, during 
which real strain data (not training or validation set data) taken from the sensors were fed on the networks. The 
network outputs for this “unknown” data set were very good, close enough to the expected causes. For economy 
of space, the most interested cases of network architectures for SHM Level 3 and 4 are presented in figure 6. 
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Figure 6: Network output using “unknown” data set for SHM Level 3 and 4 on various test specimens 

Similar results were achieved for the rest of the network architectures used for SHM Level 1, 2. Moreover, in 
order to check the stability of the solutions due to small data perturbations, uniform “noise” (from 1 to 5%) was 
added to the data input of the networks in order to evaluate their response. Due to the fact that a uniform type 
“noise” filter was added to the design of the networks, these small perturbations did not result to solution 
instability, but on the contrary, validated the stable performance of these networks as presented on figure 7. 
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Figure 7: Network output stability testing SHM Level 3 and 4 

CONCLUSIONS 
Following the here presented analysis, it was found out that, the inverse problem of fault detection, 

qualification / quantification and life expectancy of a composite patch repair, during its operational usage, can be 
treated using neural network techniques and fiber optic sensors. The results achieved showed that the 
combination of fiber optic sensors and neural network damage prognosis and diagnosis capabilities can be 
considered a semi-integrated health monitoring system for the composite patch repair technique, ensuring the 
long term stability and durability of the repair.  
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ABSTRACT 
Modern developments in the space of aeronautics, particularly since the incident of 11th of September 

2002 in the U.S.A. which affected negatively the economic potential of air companies worldwide, render explicit 
the need for exploitation of air structures up to their designed structural life or even further and consequently 
the need for adoption of maintenance techniques supporting their structural integrity in an acceptable, 
according to their designed criteria, manner. One of the most promising techniques is the so called “composite 
patch repair method”, a method capable to repair cracked metallic structures using adhesively bonded 
composite patches, that constitutes an effective method for re-establishment of structural integrity. However, 
even though this method has important advantages, problems concerning the long-term behavior of the adhesive, 
the appearance of debonds, etc. appear and have led to the considerable delayed widespread acceptance of this 
method.  

In the present study the realization and implementation of elements of a structural health monitoring 
system for composite patch repairs is being performed, combining elements from the theory of structural repair 
mechanics, the theory of intelligent materials and structures and particularly the technology of optical sensors 
and neural networks.  

This investigation was carried out within the purposes of a Research project by the Research and 
Product Design Department of Hellenic Aerospace Ind. 

INTRODUCTION 
Current economic world conditions are forcing to the operation of both military and civilian aircraft 

well beyond their original design life, resulting in innovative repair techniques. The recent development of high 
strength fibres and adhesives has led to the invention of a new methodology for the repair of metallic structures 
by the adhesive bonding of patches manufactured by composite materials. Bonded repairs are mechanically 
efficient, cost effective and can be applied rapidly to produce an inspectable damage tolerant repair. The actual 
objective of the repair of a cracked or corroded metallic structure by an adhesively bonded composite patch is, 
practically, the transfer of loads from the one side of the sound material to the other via the patch, deviating the 
damaged area. With this technique the patch is usually manufactured using carbon / epoxy or boron / epoxy 
composite materials, while its bonding on the structure is achieved using high strength adhesives. The load 
transfer from the component to the patch and vice versa is achieved by the shear stresses applied on the adhesive 
layer. Even though the technique presents great advantages from a life cycle cost point of view for the aeronautic 
structures, the certification of the method for operational usage is not yet completed. Problems such as the long 
term stability of the adhesive bonding, precludes the method from a widespread acceptance as a field repair 
technique.  

In order to advance the potential spreading of the composite patch repair technique, on line health 
monitoring should be adapted to secure the long term stability and the structural integrity of the repair and the 
structure as a whole. In that respect and in order to enable on line monitoring of the local stress field into a composite 
patch during a potential failure, such as crack or debond propagation, optical fiber sensors can be structurally 
integrated into it. Fiber optic sensors became lately a main research area in the field of  “Smart Structures” because of 
the significant advantages they offer compared to previous efforts in the area of stress-strain monitoring (e.g. strain 
gages, etc.). Various types of sensors can be intrinsically embedded in a composite material, like the Bragg Grating, 
Fabry-Perrot, the Polarimetric, etc. On the contrary, there are not many candidate fiber sensors in the case of a 
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composite patch due to the miniature dimensions used, the single fiber embedding and interface requirement, the 
requirement to trace a single, decoupled strain component, etc. Therefore, in the present study, Fiber Bragg grating 
sensors were embedded in the composite patches, to trace the mechanical field variations. The field variations, for 
simplicity reasons, were assumed mechanical only, decoupled from any thermal effect, by keeping the environmental 
conditions stable during the experimental study. 
 

SPECIMEN DESIGN 
In order to proceed to the experimental studies, various specimens were designed and manufactured. 

First of all and before any other experiment, the behavior and the repeatability of the strain measurements taken 
from the Bragg sensors should be evaluated as well as the durability of the sensor during the test process. Three 
specimens (Type I) were manufactured, according to the geometrical characteristics presented in figure 1. 

 
 

 
Figure 1: Measurement repeatability specimen (Type I) 

The materials used, considered isotropic, are presented on Table 1.  
 

Material Thickness(mm) E (MPa) G (MPa) ν 
Aluminium 2024-T3 6 72000 26900 0.3 
Textron 5521 Prepreg 0.125 per lamina  207000 4800 0.21 
FM73 Film Adhesive 0.2 --- 750 --- 

Optical Fiber Diameter 0,1mm 70000  0.29 

Table 1: Material properties 

 
The vertical projection of the crack tip of the metallic structure was chosen as the sensor location, based on 

the numerical simulation results presented in [1]-[5]. The composite patch used was manufactured using six 
laminates of carbon epoxy prepreg. The sensor was embedded between the third and fourth lamina, based on the 
results of [4]. The physical characteristics of the sensors were the following: 
 

• Center wavelength λΒ= 1535±10 nm 
• ∆λ=~0.7nm 
• Reflectivity R= 85~97 % 
• Sensor length L= 2mm 

 
The specimens were submitted to a tensile testing process using an Instron test machine. The specimens 

were gradually loaded to a range of 1 to 10 KN tensile load and measurements for each load condition were 
recorded from the optical fiber sensors. A COTS Micron Optics Bragg Interrogator had been used for the 
acquisition of measurements, having the capability to store digitally the wavelength shifts of the sensors during 
the loading process. 

Moreover, specimens were manufactured in order to study potential fault propagation. Taking into account 
that the faults studied were the crack or debond propagation, the specimens of figure 2 were manufactured (Type 
II). Each of these specimens was representing a potential debond (yellow area) developed in the area of the crack 
tip, between the composite patch and the repaired metallic area. The aim of the test series was to examine the 
possible propagation patterns of the cracked and/or debond area, using NDI techniques. Fiber optic sensors were 
not embedded in these specimens, due to the fact that measurements should not be taken. The specimens, 
manufactured using the materials of table 2 with six ply composite patch, were submitted to fatigue testing, 
using the following load data: 
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• Mean load : 2,1 tn 
• Amplitude : 1,9 tn 
• Load frequency : 10 Hz 

 
Figure 2: Fault propagation study specimens (type II-1, 2 and 3 respectively) 

Finally, in order to monitor the propagation of a failure in a composite patch repair, more specimens were 
manufactured, having embedded optical fiber sensors, as presented in figure 3. Each of these specimens had two 
embedded optical sensors, in positions determined after the experimental study of specimens type II, using the 
same materials and sensors of specimens type I and II. The crack tip sensor was called as sensor “a” while the 
second sensor was called “b”. The loading conditions of the specimens were identical with the conditions of 
specimens type II. 
 

 
Figure 3: Monitored specimens (type III-1, 2 and 3 respectively) 

For each of the above, three specimens were manufactured in order to secure the experimental results. The exact 
specimen details are presented in Table 2. 
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III-1 III-2 III-3 Specimen Code 
Α D G B E H C F I 

FBG a – Center 
Wavelength (nm) 1551,24 1551,28 1563,47 1551,12 1551,59 1562,36 1551,8 1551,34 1551,51 
FBG b - Center 
Wavelength (nm) 1551,32 1551,26 1530,14 1551,65 1551,52 1551,82 1551,4 1551,89 1551,39 
FBG a – Reflectivity 
(%) 99 98 97,8 98,6 98,8 97,1 99,3 98,9 97,6 
FBG b - Reflectivity 
(%) 97,5 98,75 32,9 98,4 98,9 97,9 93 98,75 98,8 

Table 2: Specimen type III details 

The data acquisition during the fatigue loading of specimens type III, was based on the following technique: 
 

• Measurement of crack length at 10K cycles and every 2.5K cycles with simultaneous sensor wavelength 
shift recording 

• Measurement of debond area using C-Scan NDI every 10K cycles 
• Ramp type tensile loading (figure 4) every 10K cycles with simultaneous sensor wavelength shift 

recording 

 
Figure 4: Ramp type loading of specimens type III 

EXPERIMENTAL RESULTS – SPECIMENS TYPE I & II 
 The results of the tensile loading of specimens type I are presented in figure 4. It is shown that the 
repeatability of measurements is very satisfying and the strain measuring capability of the sensor is accurate, 
therefore the sensors were appropriate for the experiment. 

 
Figure 5: Load vs Strain results during the repeatability test series 

It was also found that during the initial tensile loading, compressive loads are developed near the crack 
tip, due to the fact that the specimen has a resulted curvature from the curing process because of the thermal 
coefficient mismatch of the patch and the aluminum material. 

The results of the specimen type II loading, with respect to crack extension, are presented in figure 5. 
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Figure 6: Crack extension of specimens type II 

 
Moreover, C-Scan NDI was performed on these specimens in order to check the debond propagation 

due to the fatigue loading. From the results of the studies it was found out that the crack propagated faster on the 
specimen type II-3 compared to the specimen type II-1 or 2. From these results it was obvious that specimens 
type II-3 were more prone to damage compared to the other two specimens. These results are self explanatory 
since the position of the debond of specimen type II-3 results in a more stress intensive crack tip area as 
compared to the other specimens, due to the fact that all loads are undertaken by the structure and not the patch 
at the specific area. 

EXPERIMENTAL RESULTS – SPECIMENS TYPE III 
 
Following the above described test procedure, various results were taken form the fiber optic sensors during the 
testing of specimens type III. The results are split in two major categories: results related to the debond extension 
and results related to the crack propagation. 

Debond Extension 
 
The measured results for each specimen of Table 2, in accordance with the bond extension monitoring, are 
presented in figure 7. 
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Figure 7: Debond extension monitoring and final debond area for specimens type III A, B, C, E and G   

 
From the above results it is obvious that, during the ramp loading, there is a shift in strain measurement due to 
the fact that the debond has propagated and resulted in a field alternation near the fiber optic sensors. The 
amount of debond extension determines the strain shift for the sensors. 

Crack Propagation 
 
The measured results for each specimen of Table 2, in accordance with the crack propagation monitoring, are 
presented in figure 8. 
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Figure 8: Crack Propagation monitoring for specimens type III B, C, D, E, F and G   

 
From the above results, a strain increment is obvious during the crack propagation. Moreover, for the sensor “b” 
of each specimen, a sudden strain increment was noticed when the crack was passing through the vertical level 
of the sensor.  

RESULT ANALYSIS 
Taking into account the above results, a study was made to relate the measured results with the propagating 
failure. Considering the crack propagation as the major failure that could lead to the degradation of the repair 
strength and the final structure failure, the above data were further analyzed, assuming that: 

• A: strain of sensor a 
• B: strain of sensor b 
• ∆Α: strain increase of sensor a 
• ∆B: strain increase of sensor b 
• ∆a: crack length increase 

Using this notation, the test results for the crack propagation failure case, are presented in figure 9. 
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Figure 9:  Strain increment due to crack propagation for specimens type III B, C, D and G 

From the above figure, it is obvious that during the crack propagation and when the crack “passes” from the 
sensor “b”, the increment curves of the two sensors cross each other, giving a notion of the crack length on that 
time. Relevant curves can be developed for the case of the debond propagation, presenting the capability of the 
sensors to trace a failure propagation in the repaired structure. 

CONCLUSIONS 
Following the here presented experimental analysis, it was found out that optical fiber sensors can be used 
efficiently to monitor the health of a composite patch repaired structure. The sensors presented very good 
measurement stability, great sensitiveness and the capability to trace effectively propagating failures in the 
repaired area.  
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Abstract. A fiber model algorithm for the analysis of arbitrary cross sections under biaxial bending and axial 
load is presented. The method can be applied to complex cross sections of irregular shape and curved edges, 
with or without openings and consisting of various materials. The only assumption is that plane sections remain 
plane. The cross section is described by curvilinear polygons. The material properties are user – defined; the 
stress – strain diagrams of all materials consist of any number of consecutive polynomial segments (up to cubic). 
Various effects such as concrete confinement, concrete tensile strength, strain hardening of the reinforcement 
etc. may be taken into account. Apart from ultimate strength analyses of cross sections, the algorithm can be 
applied to other problems in which the Bernoulli – Euler assumption is valid. Based on the proposed algorithm, 
a computer program with full graphical interface was developed. 
 
 

1 INTRODUCTION 

The analysis of an arbitrary cross-section under biaxial bending and axial load has received extensive 
attention in the literature lately [6], [4], [9]. With the advent of inexpensive computer systems, the generation of 
the failure surface has been made possible using the “fiber” approach. This approach produces consistent results 
that agree closely with experimental results [2].  

The failure of the cross section corresponds to the top of the moment – curvature diagram. However, the 
conventional failure, defined by design codes, occurs when any of the materials reaches its predefined maximum 
allowable compressive or tensile strain. 

The results of such an analysis are important as they can be used in non-linear analyses of structures where 
the plastic deformations of a structural element are functions of the load history and the distance of the load 
vector from the surface. Moreover, it provides grounds for the damage analysis of the cross section. 

2 GENERATION OF FAILURE SURFACE 

There exist three different techniques to generate the failure surface of an arbitrary cross section: (1) 
interaction curves for a given bending moments ratio, (2) load contours for a given axial load and (3) isogonic or 
3D curves. 

The first two techniques require the calculation of the exact position of the neutral axis. The set of 
equilibrium equations are non-linear and coupled and an iterative approach such as the quasi-Newton method is 
needed to determine the position of the neutral axis, as proposed by Yen [10]. These procedures are not 
straightforward to implement and, in many cases, are sensitive to the selection of the origin of the reference 
system. Moreover, these algorithms usually become unstable near the state of pure compression.  

On the other hand, the third technique, which is used in the method presented, is more direct because the 
direction of the neutral axis is assumed from the very beginning. The produced points describe a more complex 
3D plot, because the meridians of the failure surface, in general, are not plane. This is due to the asymmetry of 
the cross section, as described later. 

3 CROSS SECTION 

The curvilinear polygon is the only type of graphical entity that is used for the description of all cross 
sections. A curvilinear polygon has edges that may be straight lines and/or circular arcs. Since these polygons can 
be nested in any depth, it is obvious that almost any cross section can be described accurately. Circles are taken 
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into account as two-sided curvilinear polygons with curved edges. Notice that even small objects, such as the 
reinforcement bars, are treated as actual graphical entities and not dimensionless individual fibers.  

In order to significantly reduce the expensive calculations required to identify the various regions in a 
complex cross section with several materials, each curvilinear polygon is treated separately. Two material 
properties are defined: the “foreground” material and the “background” material. The foreground material is 
taken into account with a positive sign, whereas the background material is taken into account with a negative 
sign. Therefore, almost any cross section can be described, as shown in the example of Figure 1: 

 

1

2

3

4

5

6 - 22

23 - 41

opening

 

Entity Number  
of Nodes 

Foreground  
material 

Background 
 material 

1 5 Unconfined 
(outer) concrete None 

2 5 Confined  
(inner) concrete 

Unconfined  
(outer) concrete 

3 16 Structural  
steel 

Confined  
(inner) concrete 

4 2 None Structural 
steel 

5 2 Structural  
steel 

Confined  
(inner) concrete 

6 – 22 2 Reinforcement Confined  
(inner) concrete 

23 – 41 2 Reinforcement Unconfined  
(outer) concrete  

Figure 1. Example of complex cross section consisting of various materials 

4 MATERIAL PROPERTIES 

The stress – strain diagrams of all materials are composed of any number of consecutive segments. Each 
segment is a polynomial expression (up to cubic), which is automatically defined by an appropriate number of 
points; for example, a cubic segment is defined by four consecutive points. Therefore, the stress strain diagrams 
of a certain kind of concrete and steel may be defined as shown in Figure 2: 

stress

strain

cubic
linear

stress

strain

linear
parabolic

(a) Example of stress - strain diagram (concrete) (b) Example of stress - strain diagram (steel)  

Figure 2. Example of stress – strain diagrams (tension positive) 

5 CALCULATIONS 

5.1 Rotation 
We assume that the X axis is parallel to the central axis of the element. Any convenient point may be used as 

the origin for the calculations. Since the direction of the neutral axis is assumed from the beginning, it is 
convenient to express all coordinates in another YZ Cartesian system with Y axis parallel to the chosen direction 
of the neutral axis. Therefore, the Cartesian system is rotated counter-clockwise around the origin by an angle �, 
as shown in Figure 3. In this way, the strains and therefore the stresses vary only in Z axis. 
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Yc

Y

Zc

Z

�

 

Figure 3. Rotation of cross section 

 
5.2 Decomposition of curvilinear polygons 

The next step is the decomposition of all curvilinear polygons into curvilinear trapezoids. The top and bottom 
edges of the curvilinear trapezoids are straight lines parallel to the neutral axis whereas the left and right edges 
may be straight lines or arcs. This procedure is required only once for every direction of the neutral axis; this 
basic set of trapezoids may be stored in memory and retrieved when needed.  

Figure 4 shows an example of decomposition of a steel section and some of the produced curvilinear 
trapezoids. Note that the section is described exactly by a 16-node curvilinear polygon: 

 

Figure 4. Decomposition of a steel section into curvilinear trapezoids 

For reasons of simplicity we will drop the term “curvilinear” for both the curvilinear polygons and the 
curvilinear trapezoids. 
 
5.3 Calculation of integrals 

The next step is the calculation of the basic integrals of the trapezoids. These integrals are of the form ym
�zn, 

where m, n, are specific integers (equation (1)). All expressions for the integrals are analytical. Again, the 
integrals need to be evaluated only once for every direction of the neutral axis and the results can be stored in 
memory for later use. Therefore, the overhead for using analytical expressions is minimal. 

 

 
� � � �

� � � � � �

,
 

, 0,0..4 ,  1,1..4

j m n
m n

trapezoid j

I y z

m n

� �

�

�
 (1) 

 
This method is also used for the exact calculation of cross sectional properties, such as area, first moments of 

area, centroids, moments of inertia, products of inertia, principal axes etc. 
 

5.4 Strain distribution 
As mentioned before, the main assumption is that plane sections remain plane. Therefore, three parameters 

are needed to define the deformed plane, namely the direction of the neutral axis (angle �), the curvature k and 
the strain �0 at the origin, as shown in Figure 5: 
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Figure 5. Deformed plane (expressed in terms of strains) 

Since the Cartesian system has been rotated by an angle �, the strain is a function of z only (equation (2)): 
 
 � � 0z k z� �� � �  (2) 

 
Given k, �0, the neutral axis is defined as the line parallel to the Y axis at a distance given by equation (3): 

 

 0
naz

k
�

� �  (3) 

 
5.5 Calculation of stress resultants 

The calculation of stress resultants will take place for an imposed deformed configuration defined by a set of 
given values of the parameters �, k, �0. In general, we assume that the segment of the stress – strain diagram 
covering the specific trapezoid is a cubic polynomial expression of the following form: 

 

 � � � �
3

0

i
i

i

a	 � �
�

� �
  (4) 

 
The coefficients �i are known from the properties of the material. Substituting relation (2) into (4) we obtain: 
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 (5) 

 
The stress resultants of trapezoid j are calculated by integration of equation (5) as: 
 

 � � � � � �� �
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Note that the integrals I(m,n)

j have already been calculated and are independent of k, �0. By a simple 
summation of the stress resultants of all trapezoids, the overall forces and bending moments required to impose 
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the specific deformed configuration are obtained. Therefore, the steps to calculate the stress resultants are as 
follows: 

� Pick k, �0. 
� For trapezoid j: 

Calculate bi as functions of �i (equations (5)) 
Calculate the stress resultants using the known values of I(m,n)

j (equations (6) to (8)). 
� Sum the results from all trapezoids to obtain overall stress resultants NX, MY, MZ.  

6 CONSTRUCTION OF MOMENT-CURVATURE DIAGRAM 

For a specified axial load and direction of neutral axis (angle �), a full moment – curvature diagram can be 
constructed. After the initialization (rotation of cross section, decomposition of polygons into trapezoids, 
calculation of the basic integrals of the trapezoids), small increments of �k are applied as imposed curvature. 
Since �, k are given, the deformed plane is only a function of strain �0 at the origin. The algorithm calculates an 
upper and lower bound of �0 and uses a fast Van Wijngaarden – Dekker – Brent method to calculate �0 in order to 
achieve axial equilibrium to a specified accuracy. 

As the curvature increases, the neutral axis moves perpendicular to its direction. This incremental procedure 
continues until the moment reaches a maximum (failure), or until one of the materials reaches the maximum 
compressive or tensile strain specified by the user (conventional failure). Thus, the complete moment – curvature 
diagram can be obtained, both for the primary moment MY and for secondary moment MZ. In general, the 
secondary moment MZ, expressed by equation (8), is small as compared to the primary moment M�. Finally, the 
moments can be expressed in the global reference system with an inverse rotational transformation. 

The algorithm uses a variable curvature step which is adjusted automatically; therefore, the final result is 
independent of the initial curvature step (specified by the user). A small initial curvature step produces a smooth 
moment – curvature diagram. 

7 CONSTRUCTION OF INTERACTION CURVES AND FAILURE SURFACES 

By repeating the procedure described previously for different directions � of the neutral axis in the range of 00 
– 3600, we are able to construct the interaction curve for a given axial load. In addition, by constructing 
interaction curves for various axial loads, we are able to construct the full failure surface of the cross section 
equator – by – equator. 

8 DEFORMED CONFIGURATION UNDER GIVEN LOADS 

The algorithm can also be used for calculating the deformed configuration of a cross section under given 
loads. The calculation is a trial and error procedure (Figure 6). The task is to calculate the parameters �, k, �0 of 
the deformed plane for which the cross section is in equilibrium with the external loads NXc

T, MYc
T, MZc

T. 

YcM

ZcM

� �0,0

� �I

� �II

� �,II II
Yc ZcM M

I��

T
XcN N�

T

� �,I I
Yc ZcM M

� �,T T
Yc ZcM M

� �0 0,Yc ZcM M

 

Figure 6. Calculation of deformed configuration under given loads 
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All calculations are performed with axial load equal to NXc

T. The origin can be any point; therefore, we first 
have to calculate the bending moments MYc

0, MZc
0 required for a deformed plane with no curvature (k=0). Since 

curvature is always increased from zero until failure, this bending moment vector is the first result for any 
direction � of the neutral axis. Therefore, the paths of all analyses stem from (MYc

0, MZc
0). The target vector � 

connects (MYc
0, MZc

0) with (MYc
�, MZc

�). 
As first attempt (I), we set the direction �I of the neutral axis equal to the direction of the target vector T. As 

curvature is increased, the path of the analysis deviates because of the secondary moment MZ; when the norm 
reaches the norm of the target vector, the analysis stops and the result (MYc

I, MZc
I) may differ from the target 

values (MYc
�, MZc

�). The direction of the neutral axis is then corrected by the difference ��I found in the first 
iteration. In the second attempt, the results (MYc

I�, MZc
I�) are much closer to the target values. The procedure 

stops when a specified accuracy is achieved. 

8 COMPUTER IMPLEMENTATION 

A computer program, called myBiAxial, which implements the method proposed, has been developed. The 
program features a full graphical interface. Some screen shots are shown in Figure 7: 

 

  
(a) (b) 

Figure 7. MyBiAxial computer program 

9 VALIDATION - EXAMPLES 

9.1 Example 1 
Eurocode 2 provides design charts for common reinforced concrete cross sections. These charts provide 

combinations of axial loads and their respective ultimate bending moment capacities for a range of longitudinal 
reinforcement expressed by the mechanical reinforcement percentage 	. 

The axial load and bending moment are in a non-dimensional form with respect to the concrete properties and 
the cross sectional dimensions; therefore, a single chart covers all cases for a certain steel grade. 

Eurocode 2 specifies the value of 0.020 as the ultimate strain limit for longitudinal steel reinforcement. Also, 
for large compressive axial loads, it reduces the ultimate curvature capacity by imposing the rotation of the strain 
profile around point C which is located at a distance 3/7�h from the most compressed fiber and has a strain of �0=-
0.002. This restriction is included easily in the algorithm; however, it is of little practical interest since large 
compressive axial loads in concrete cross sections must be avoided for other reasons i.e. creep. 

The developed computer program was used to calculate pairs of axial loads and bending moments for the 
rectangular cross section of Figure 8a. The characteristic strengths and partial safety factors for concrete and 
reinforcement bars were taken as follows: fck=20MPa, 
c=1.5, fy=500MPa, 
r=1.15. 

Five different cases of longitudinal reinforcement were considered, i.e. 	=0.00, 0.50, 1.00, 1.50, 2.00. The 
computed results follow the corresponding curve exactly, as shown in Figure 8c. 
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Figure 8. (a) Rectangular reinforced concrete cross section (distances in mm) (b) Corresponding EC2 design 
chart (steel grade S500) (c) Results from proposed algorithm superimposed over the design chart 

 
 
9.2 Example 2 

This is an example presented by Chen et al. [2], which invokes the polygonal composite column cross section 
of Figure 9. The cross section consists of a concrete core, an asymmetrically placed H – shaped steel section, 15 
reinforcement bars of diameter 18mm and a circular opening. 

 

Figure 9. Composite column cross section 

 
Chen et al. use a quasi – Newton method [10] to analyze the cross section. However, the convergence of the 

iterative process invoked by this algorithm cannot be guaranteed when dealing with large axial loads i.e. loads 
that approach the axial load capacity under pure compression. In order to ensure the stability of Chen’s 
algorithm, the plastic centroid must be used as the origin of the Cartesian system. In this case, the coordinates of 
the plastic centroid with respect to the bottom left corner are [2] Ypc=292.2mm, Zpc=281.5mm. 

The stress – strain curve for concrete (CEC 1994) which consists of a parabolic and a linear (horizontal) part 
was used in the calculation, with fcc=0.85�fck/
c, �0=0.002 and �cu=0.0035. The Young modulus for all steel 
sections was 200GPa while the maximum strain was �u=±0.010. The characteristic strengths and partial safety 
factors for concrete, structural steel and reinforcement bars were taken as follows: fck=30MPa, 
c=1.5, 
fs=355MPa, 
s=1.1, fy=460MPa, 
r=1.15. The analysis was carried out with an angle step of 5 degrees and an 
initial curvature step of 1e-05. 

Figure 10a shows the interaction curve produced by the proposed algorithm for compressive axial load 
4120kN. The image is superimposed over the results taken from [2]; it is obvious that the curves almost coincide. 
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The same figure also shows the paths of the analyses and the directions of the neutral axes that correspond to 
each spike. Note that the data for each spike becomes denser near failure; this is because the curvature step is 
decreased in order to achieve accuracy. By repeating this procedure for various axial loads we obtain the 
complete failure surface of Figure 10b. 

  
(a) (b) 

Figure 10. (a) Interaction curve for compressive axial load 4120 kN (b) Complete failure surface 

10 CONCLUSIONS 

A generic algorithm for the analysis of arbitrary cross sections under biaxial bending and axial load is 
presented. The algorithm has some unique features as compared to the literature. The cross section is described 
by curvilinear polygons, i.e. closed polygons with straight or curved edges; the material stress – strain diagrams 
are fully user – defined as piecewise functions of polynomial segments; the integration of the stress field is 
analytical. Apart from producing interaction curves and failure surfaces, the algorithm can be used for the 
calculation of the deformed state of the cross section under given loads. 

The algorithm has proved to be very stable and fast, while providing accurate results for non-linear analysis. 
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Abstract. Based on the two theorems of plasticity, direct methods of limit analysis provide a better alternative 
than time stepping procedures for the estimation of the strength of a structure. Two methods, based on the upper 
bound theorem, are considered in the present work and are applied to plane structures. The first method 
considers lumped plastic deformation along the edges of rigid finite elements. With a linearised von Mises yield  
criterion the problem is converted to a linear programming problem. On the other hand, a nonlinear 
optimization problem must be solved with the yield criterion in its proper nonlinear form. Both programs are 
solved using a nonlinear programming algorithm, which given a good initial guess, converges rapidly. The 
second method determines the limit load by a sequence of linear elastic solutions. Within an elastic solution, the 
stresses in regions of the body exceed the yield condition. The stresses in such locations are then reduced to a 
yield value by changing the elastic properties, assuming the strain field remains unchanged. A new resolution 
then may take place since the new stress field does not satisfy equilibrium. The procedure results to a sequence 
of load factors which converge to the true one. Examples of application are included in the paper. 

1 INTRODUCTION 
 Plastic analysis of structures is nowadays an important tool in civil engineering used to accomplish precise 
predictions of the limit load carrying capacity which contributes to the economy of a structure. For planar 
structures in particular, these types of problems occur in the plastic analysis of discs, in soil mechanics for the 
load carrying capacity of footings, etc. 
 Usually plastic analysis is carried out through the cumbersome time-stepping finite element method. There 
are however methods depending on the kinematic theorem of plasticity for determining the upper bound of the 
limit load of a structure[1-3] (called direct methods), which may give a very good approximation to the true limit 
load. These methods need much less computing time and also give a better insight to the inelastic behaviour of 
structures. 
 In this work two classes of direct methods are investigated. In the first part (sections 2-3), the direct methods 
which are based on the minimization of the load factor through a sequence of compatible modes of collapse are 
investigated. The methods are applied to a 2D structure. In section 4 an alternative method based on an iterative 
procedure which updates the modulus of elasticity, at each iteration, so that the stresses lie within the yield 
surface is presented. An application of the method to a simple 1D example is also included. 

2 DIRECT METHODS 

2.1  Kinematical equations 
 The plane structure is divided into an adequate number of elements, (triangular or quadrateral), whose 
common edges may serve as possible yield lines of the structure. It is assumed that these elements have the 
capability of motion and not rotation i.e. they have the capability to move like rigid bodies in the plane without 
rotating round their mass axis. Every possible collapse mechanism of the structure may be described by the 
velocity rate of the horizontal and perpendicular component of displacement on the yield line. It is also assumed 
that the total plastic deformation of the structure is concentrated between adjacent elements and there are no gaps 
or overlaps between these elements[4-5]. 
 The collapse mechanism is kinematically acceptable if the adjacent to the yield line elements may be 
separated either tangentially or perpendicularly or finally by a combination of both. The perpendicular and 
tangential relative velocity between elements i and j which are separated by the line m are described through the 
displacement rate of the two elements , , , and  and are given by the following relation: iu iv ju jv

n j i j ie (u u ) sinα (v v ) cosα= − − ⋅ + − ⋅   (1) 

t j i j ie (u u ) cosα (v v ) sinα= − ⋅ + − ⋅  (2) 
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 where α is the angle between the horizontal principle axis and the common edge of the two elements, (Fig. 1).  
 Grouping all the above kinematical equations for all the elements which constitute the structure we may 
obtain the following matrix equations: 

Y,v

X,u

en

et

α
j

i

 
Figure 1. Plasticity lumped along common edges.                                                                                

n n= ⋅e B d   (3) 

t t= ⋅e B d  (4) 

 The vectors  and  contain the vertical and tangential rates of the relative displacements. The vector d  
contains the rate of the displacements.  

ne te

2.2 Yield criterion 
 The direct method uses the von Mises yield criterion which is expressed for plane structures as: 

2 2
m mF σ 3 τ σ= + ⋅ = 2

y   (5) 

where  is the normal stress,  is the shearing stress along a yield line and  is the yield stress of the 
material.  

mσ mτ yσ

2.2.1 Linearization of the yield criterion 
 If we replace ,  mσ X= m3 τ Y⋅ =  and yσ R=  the above equation is transformed to an equation of a circle 
whose center lies at the start of the principal axes  and . Instead of using the full circle one may use the 
circumscribed polygon. The coordinates of the vertices of this polygon are given by the following equations:  

mσ mτ

k
k

R cos(a β)
X

cosβ
⋅ −

=   (6) 

k
k 1

R cos(a β)
X

cosβ+

⋅ +
=    (7) 

k
k

R sin(a β)
Y

cosβ
⋅ −

=   (8) 

k
k 1

R sin(a β)
Y

cosβ+

⋅ +
=   (9) 

with , k ,  ka 2 k π= ⋅ ⋅ 1, 2,...., K=
πβ
K

=  
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 K is the total number of the sides of the circumscribed polygon.  
 With the help of the above equations we obtain the following relation which is actually the equation which 
describes each side of the polygon. 

k kcos a X sina Y R⋅ + ⋅ =   (10)

 Therefore the linearized yield criterion is expressed by the following equation: 

k k m k mF cosa σ 3 sina τ σ= ⋅ + ⋅ ⋅ = y   (11) 

 The components of the plastic flow rate on the sides of the linearized equation are obtained by differentiating 
the above equation with respect to the normal and shearing stresses respectively which results to the following 
relations: 

k kk
n,m m m k

m

F
e λ λ cos a

σ
∂

= ⋅ = ⋅
∂

  (12) 

k kk
t,m m m k

m

F
e λ 3 λ sin a

τ
∂

= ⋅ = ⋅ ⋅
∂

  (13) 

2.2.2 Nonlinear yield criterion 
 In this case, the components of the plastic flow rates are derived straight away by differentiating (5) with 
respect to the normal and shearing stresses and so the following equations are obtained: 

n,m m m m
m

Fe λ 2 λ σ
σ
∂

= ⋅ = ⋅ ⋅
∂

  (14) 

t,m m m m
m

Fe λ 6 λ τ
τ
∂

= ⋅ = ⋅ ⋅
∂

  (15) 

3 GOVERNING EQUATIONS 
 Denoting herein with bold letters vectors and matrices, the rate of the work produced by the external forces 
which act on the structure is given by the following equation: 

T
W µ= ⋅ ⋅f d   (16) 

 where µ  is the load factor and f  is the vector of the external loads. The rate of dissipation of the plastic 
work along the common lines of adjacent elements is given by the relation: 

m m
M Ml l

m m m m m m n,m m t,m m0 0
m=1 m=1

D (σ ε τ γ )dl (σ e τ e )dl= ⋅ + ⋅ = ⋅ + ⋅∑ ∑∫ ∫   (17) 

 where denotes the length of a common edge, M is the total number of the common edges. Using the 
linearized von Mises yield criterion, the above equation is transformed to the following relation: 

ml

m m

m m

m

M K Ml l k k
m n,m m t,m m m m k m m k m0 0

m=1 k=1 m=1
K M K Ml lk k

m k m k m m m y m0 0
k=1 m=1 k 1 m=1

K M lk k
y m m y m m0

k=1 m=1 m=1

D (σ e τ e )dl (σ λ cosa τ 3 λ sina )dl

D λ (cosa σ 3 sina τ )dl λ σ dl

D σ λ dl σ λ l

=

= ⋅ + ⋅ = ⋅ ⋅ + ⋅ ⋅ ⋅

⇔ = ⋅ ⋅ + ⋅ ⋅ = ⋅ ⇔

⇔ = ⋅ ⋅ = ⋅ ⋅

∑ ∑∑∫ ∫

∑∑ ∑∑∫ ∫

∑∑ ∫
K M

k=1
∑∑

⇔

 (18) 

 Equating (16) to (18) and requiring the extra constraint 
T

1⋅ =f d , so that plastic mechanisms may exist, the 
problem is converted to a linear programming problem: 
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K M
k

y m
k=1 m=1

Min σ λ lmµ = ⋅ ⋅∑∑  

 Subject to n n− ⋅ =e B d 0  

t t− ⋅ =e B d 0    (19) 
T

1⋅ =f d  

k
mλ 0≥  

 The elements of ,  are given by equations (12) and (13) respectively. Thus the variables of the program 
are the rate of displacements and  and the plastic multipliers

ne te

iu iv k
mλ . 

 When using the von Mises yield criterion in its proper form, the rate of the plastic work dissipation becomes: 

m m

m m

m

M Ml l

m n,m m t,m m m m m m m m m0 0
m=1 m=1

M Ml l2 2 2
m m m m m y m0 0

m=1 m=1
M Ml2 2

m y m y m m0
m=1 m=1

D (σ e τ e )dl (σ 2 λ σ τ 6 λ τ )dl

D 2 λ (σ 3 τ )dl 2 λ σ dl

D 2 λ σ dl 2 σ λ l

= ⋅ + ⋅ = ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅

⇔ = ⋅ ⋅ + ⋅ = ⋅ ⋅ ⇔

⇔ = ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅

∑ ∑∫ ∫

∑ ∑∫ ∫

∑ ∑∫

⇔

m

  (20) 

 In this case the problem is converted to a nonlinear program with a linear objective function and with 
constraints both linear and nonlinear: 

M
2

y m
m=1

Min =2 σ λ lµ ⋅ ⋅ ⋅∑  

Subject to n n− ⋅ =e B d 0  

t t− ⋅ =e B d 0    (21) 

2 2
m mσ +3 τ =σ⋅ 2

y  

T
1⋅ =f d  

mλ 0≥  

 The elements of ,  are this time given by equations (14) and (15) respectively. The variables of the 

program are the quantities 
ne te

m m m, ,λ σ τ  along the yield lines and the rates of the displacements . i iu , v
 
3.1  SOLUTION OF THE MATHEMATICAL PROGRAMS 
 A critical issue is the amount of computing time for the solution of any of the two programs described above. 
Non-linear optimization techniques are used in this work, even for the linear program, since when using a good 
starting solution we get a quick convergence. An alternative method for the linear programming problem (19), 
the simplex method, despite its convergence in a finite number of steps, a lot of extra (artificial) variables must 
be introduced, for its solution, at the expense of extra computing time. 
 A software package[6] is used to solve the generally constrained minimization problem: 

M in f( )x  

 Subject to the general (possibly nonlinear) constraints 

 rc ( ) 0, 1 r m= ≤ ≤x  (22) 

 And the simple bounds 

i i ix u≤ ≤  
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 Here f and cr are assumed to be twice-continuously differentiable and any of the above bounds may be 
infinite. In our problem the bounds of our variables are either 0, or they are unbounded. 
 To solve the above problem the objective function and the general constraints are combined into a composite 
function which is called the augmented Lagrangian function, 

m m
2

i i ii i
i 1 i 1

1( , ,S,q) f ( ) c ( ) s [c ( )]
2q= =

Φ ν = + ν +∑ ∑x x x x  (23) 

 where the components νi are the Lagrange multipliers estimates, the entries sii are positive scaling factors, and 
q is known as the penalty parameter. 
 An iterative scheme is employed to accomplish the minimization of this function. This iterative scheme is 
made up of three steps. At the start of the j+1 iteration, Lagrange multipliers estimates , constraint scaling 

factors and a penalty parameter are given. The steps performed may be summarized, in order, as follows: 

( j)
iν

( j)
iis ( j)q

1. Test for convergence: The derivative of the Lagrangian function and the constraints are checked against 
some tolerances: 

 ( j)
x LL( ) q∇ ≤x  

 And (24) 

 ( j)
c( ) q≤c x  

 where  is the Lagrangian function. 
m

i i
i 1

L( , ) f ( ) c ( )
=

ν = + ν∑x x x

2.  A quadratic model of the, generally, nonlinear objective function ( )Φ x is built. This model contains the 
function, its derivative and the Hessian matrix. A trust region is also used within which we trust that the 
values of the quadratic model and the function will generally agree. 

 The convergence of the augmented Lagrangian is guaranteed if the penalty parameter is gradually 
reduced to zero, almost regardless of the values of the Lagrange multiplier estimates. We may arrive at a 
good estimate of ( j 1)+x if: 

( j 1) ( j)
x ( )+∇ Φ ≤ ωx  (25) 

 is satisfied for some tolerance . A further test then occurs whether ( j)ω

( j 1) ( j)( )+ ≤ ηc x  (26) 

holds for some other tolerance ( j)η . If (26) is satisfied, the penalty parameter is left unchanged but the 
Lagrange multiplier estimates are updated. Otherwise the penalty parameter is reduced while leaving the 
Lagrange multipliers estimates as they are. 

3. Update the Lagrange multipliers. 

3.2 NUMERICAL EXAMPLE 

 The procedure is applied to the limit analysis of a square plate with a circular hole of diameter of 1/10 of the 
side of the square.  

The dimensions of the plate are 20m x 20 m x 1m. Two uniformly distributed loads parallel to the horizontal 
and to the vertical axes having a maximum value equal to  are applied at the far ends of the plate. Due 
to the symmetry of the problem, only a quarter of the plate was discretized with 98 quadrilateral elements (Fig.2). 
The relevant boundary conditions along the two sides can be seen in the same figure. 

yP1=P2=σ

 The sequence of loading is the following: First P1 is applied as a whole with its maximum value. After that, 
loading P2 is augmented every time by 10% of the maximum value until it also reaches its maximum value. P1 
is then decreased by portions of 10% of its maximum value until it is zeroed.  
 It can be seen from Fig.3 that there is little difference in the results of the two programs (19) and (21). It must 
be noted, nevertheless that the non-linear program (21) uses fewer amounts of variables and constraints and 
therefore needs less computing time. The program (19), however, seems to converge from any starting point (e.g. 
null variables). This is not the case for the program (21) for which some of the variables may be chosen so as to 
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satisfy the yield constraint in an arbitrary way, i.e. all the normal stresses are put equal to  and all the other 
variables are zeroed. 

yσ

P2

P1

 

Figure 2. Finite element dicretization of the plate. 
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Figure 3. Results for the plate problem. 

 Results were compared (Fig. 3) against a time-stepping program (ABAQUS[7]) which uses an arc-length 
method. The same discretization was employed for both methods but the running time was approximately 80 
times less for the direct methods. The difference in the value of the limit load as compared with the one of the 
time-stepping procedure varied between 3.7% and 12.0%. This discrepancy is expected due to the fact the direct 
method pre-assumes a collapse mode along the edges of the elements whereas the time-stepping method takes 
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into account plastification inside the elements. This discrepancy is expected to decrease with more refined 
discretization. 

4 AN ALTERNATIVE DIRECT METHOD 
There has been some interest in the recent structural engineering literature to another class of direct methods 

of computing limit load solutions to plasticity. These methods are also based on the kinematical theorem of 
plasticity and produce a sequence of lower bounds of increasing accuracy. The main essence is to adjust the 
elastic modules within a finite element scheme so that the stresses are brought within the yield condition at a 
fixed strain distribution. The elastic problem is then resolved using the new spatial distribution of elastic moduli. 
At each stage, a lower bound on the limit load can be found by scaling the solutions so that the stresses lie within 
yield for the current elastic solution. Experience has shown that a monotonically increasing sequence of lower 
bounds is usually obtained[8]. 
 
4.1  Illustrative example 

Consider the simple problem shown in Fig. 4 where a uniaxial rod of 2l consists of two sections of length l 
with cross sectional areas of 2A and A and of common Young’s module. The problem is treated as a 
displacement boundary condition and it is assumed that the total deflection rate δ is fixed. The problem has a 
single degree of freedom u.  

l

l

P

1,2A

2,A

u

δ

 

Figure 4. Geometry of the rod. 

 The strains for the two sections are given by: 

1ε = u l , 2ε = (δ u) l−  (22) 

 and for an arbitrary u, through the principle of virtual work, the upper bound of the critical load for δ>0 is 
given by: 

y y
UB

y y

2 A l σ ( u l )+A l σ ( (δ u) l ) δ>u
P δ

2 A l σ ( u l )+A l σ ( (u δ) l ) δ<u
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −⎡ ⎤

⋅ = ⎢ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −⎣ ⎦
⎥  (23) 

 Employing the procedure described above, the modules of elasticity have to change in every iteration. If we 
denote by  and  the Young’s modules in the kth iteration in section 1 and 2 respectively, we obtain the 
following relations: 

j
1E j

2E

j j
2 1=2σ ⋅σ , yj+1 j

1 1 j
1

E =E
σ
⋅
σ

, yj+1 j
2 2 j

2

E =E
σ
⋅
σ

  (24) 

 With the help of the above equations we obtain: 
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j+1 j
1
j+1 j
2 2

E
=2

E E
1E

⋅  (25) 

 Since  then 0 0
1 2E =E E=

j
j1

j
2

E
2

E
=  

The full elastic solution at the jth iteration is given by: 

j j
1 2

δε +ε
l

= , j j
1 2

P2
A

⋅σ = σ = , 
j

j 1
1 j

1

σ
E

ε =  and 
j

j 2
2 j

2

σ
E

ε =   (26) 

This may be solved to give: 

j
1 j+1

1 δε
l1+2

⎛ ⎞= ⋅⎜ ⎟
⎝ ⎠

 and 
j+1

j
2 j+1

2 δε
l1+2

⎛ ⎞
= ⋅⎜ ⎟
⎝ ⎠

  (27) 

So the jth limit load upper bound is given by: 

( )
j+1

j
UB y j+1

2+2P A
1+2
⎛ ⎞

= ⋅σ ⋅⎜ ⎟
⎝ ⎠

  (29) 

 If j→∞  then  j
UB yP A σ→ ⋅

 The convergence is geometric and the error is reduced in each iteration by 50%. 
 The above described method seems to be a good alternative to the orthodox direct methods which are based 
on mathematical programming techniques as it concerns only with the solution of a sequence of elastic problems. 
The applicability of the method to general structures must be further investigated. 

5 CONCLUSIONS 
 The numerical implementation of the direct methods to the limit analysis of plane structures is investigated. 
These methods offer a good alternative to the time consuming step-by-step methods, whenever one only requires 
an estimate of the strength of a structure.  
 The first class of these methods use a rigid finite element formulation with the plasticity lumped along the 
edges of the elements. Employing a nonlinear von Mises yield criterion, two different formulations are presented: 
one using the yield criterion in its proper form and one using it in its linearised form. Both formulations are 
being solved with the aid of a non-linear programming algorithm. The first formulation needs for convergence a 
different from the null starting solution, whereas the second one may converge from any starting solution.  
 The second class of direct methods is based on an iterative procedure which updates the elastic modulus at 
any part of the structure by the amount that the von Mises stress exceeds the yield stress under a fixed strain 
distribution. This approach has been applied to a simple one-dimensional structure and has shown a geometric 
convergence. Further investigation will be needed to clarify its applicability to general structures. 
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Abstract: We present results concerning bubble deformation in Newtonian filaments confined between two disks 
and undergoing stretching by pulling the upper disk along its axis with a constant velocity. The governing 
equations consist of the momentum, continuity and constitutive equations and the free surface boundary 
conditions at the bubble-liquid and liquid-air interfaces. These are solved by a finite element/Galerkin method 
coupled with an implicit Euler for the time integrations. In addition, a robust mesh generation scheme that 
solves a set of partial, elliptic differential equations for the nodal point is used, which has allowed us to study 
multiple bubbles simultaneously deforming in the stretched filament. At each time step the flow equations are 
solved with the mesh equations using Picard iterations. Numerical results are presented concerning the 
dependence of bubble growth and deformation on the dimensionless numbers of the problem (i.e. Ca), the 
geometry aspect ratio, relative bubble size, and bubble-bubble separation. We also report results for the case 
where deforming bubbles are traveling close enough to each other to coalesce into a single bubble, and the 
progressive evolution of the emerging bubble.  
 
 
1.  INTRODUCTION 

In the bulk of materials made up by block copolymers (such as those based on styrene-isoprene 
triblocks or acrylates) that are extensively used nowadays as pressure sensitive adhesives (PSAs), or at their 
interface with a substrate, small cavities or air bubbles often develop. In real-life applications where PSA’s 
undergo large deformations (corresponding to large values of adhesive energies), such cavities propagate along 
the material and, at high deformation levels, can cause fracture. Understanding therefore how these cavities 
affect the rheological response of the material to an imposed flow field is critical in our ability to design new 
polymeric materials with optimal tacky properties.[1]-[6] We recently addressed[7] the issue of single bubble growth 
in a Newtonian or viscoelastic medium undergoing stretching through a numerical algorithm based on the finite-
element/Galerkin method and an algebraic transformation of the physical domain to the computational space. In 
the present study, the analysis is extended to filaments containing more (than one) bubbles closely spaced along 
the filament axis to allow for bubble-bubble interactions to develop during the flow. Our aim is to investigate 
how this interaction affects the rheological response to the imposed stretching flow, especially in filaments 
characterized by small aspect ratios as encountered in practice. 

To account for the multiple moving boundaries accompanying the presence of a large number of 
bubbles in the filament, a robust coordinate transformation has been used, based on the solution of a set of 
elliptic partial differential equations.[8],[9],[10] The method is capable of generating a discretized mesh that 
optimally conforms to an entire domain that undergoes large deformations in primarily one direction (anisotropic 
deformations), thus producing exceptionally smooth mappings and practically quasi-orthogonal grids; further, it 
gives us the freedom to concentrate the coordinate curves in regions of interest where special resolution is 
needed. By combining the new technique with the mixed finite element method, a robust algorithm is formulated 
for the solution of moving boundary flow problems undergoing large deformations, such as those associated with 
the deformation of interacting bubbles in media subject to stretching addressed here. At the present stage of the 
study, the analysis is restricted to bubbles growing in Newtonian liquids.  
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2.  PROBLEM FORMULATION- GOVERNING EQUATIONS 
The mathematical formulation of the problem is described in the next figure: 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
                                       
 
 
                                              (a)                                                                                    (b) 
 

Figure 1: Geometric illustration of the system considered in this work containing two bubbles in the liquid 
filament: a) before stretching (t=0), b) after stretching (t>0). 

 
The liquid filament is assumed to have initially a cylindrical outer surface with a uniform radius Rc0 and 

be confined between two solid and coaxial disks, of radius also Rc0, separated initially by H0. The filament 
undergoes deformation by pulling the upper disk with a constant velocity U0, while the lower disk, onto which 
the filament is permanently bonded, remains always stationary. Inside the filament, we assume the existence of N 
bubbles having initially the shape of a sphere of radius Rb10 , Rb20 , …, RbN0, and located at distances h01, h02 , …, 
h0N, above the solid substrate, respectively. The corresponding successive, initial separations of the bubbles are 
denoted as Lij,0, i,j=1,2,.., N, with i≠j. Based on the above definitions, the following geometric dimensionless 
numbers arise: ei=Rbi0/Rc0, eij=Rbi0/Rbj0, and hi=h0i/H0, ai= Rbi0/H0, i=1,2,…N. A filament aspect ratio Λ=H0/Rc0 is 
also defined. Due to the assumption of axial symmetry (see below), all N bubbles are assumed to lie along the 
axis of symmetry of the filament. A schematic of the system considered is provided in Fig. 1. 

As the upper plate is being pulled, the height H(t) of the filament increases, the bubbles (following the 
deformation of the surrounding medium) deform or translate along the filament axis, and all (bubble-liquid and 
liquid-air) interfaces are distorted. The largest deformations are anticipated to appear in the regions closest to the 
two disks (in particular, near the corners) and around the surfaces of the bubbles. The problem is formulated in 
cylindrical coordinates (r,θ,z) with the centre of the coordinate system placed at the centre O of the lower disk of 
the cylinder. 

The governing equations consist of the conservation equations for the filament momentum and mass, and 
the evolution or constitutive equation for the stress tensor. In dimensionless form and under the assumptions of 
negligible gravitational forces and fluid incompressibility, they are written as: 
 
                                                                           0∇⋅ =u                                                                                      (1)                              
 

                                                            +∂⎛ ⎞+ ⋅∇ = −∇ ∇ ⋅⎜ ⎟∂⎝ ⎠
Re P

t
u u u τ                                                                    (2)      
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                                                                        T( )= ∇ + ∇u uτ                                                                                (3) 
where τ denotes the deviatoric part of the total stress tensor σ (σ = - PI+ τ), and Re is the Reynolds number.  

The above set of equations is closed with the specification of the appropriate set of initial and boundary 
conditions. The shapes of the moving boundaries are determined by invoking the kinematic condition:                                               

                                                                   (z, ) (z, )t t
t

∂
+ ⋅∇ =

∂
R u R u                                                                     (4) 

where R(z,t) describes either the bubble or the liquid-air free surfaces. At the bubble-liquid and liquid-air 
interfaces, a normal force balance results into: 
                                                               ( )( ) 2  +(  - ) G L G LCa P P⋅ − = − ℜ/n τ τ n n                                                  (5) 
where ℜ denotes the curvature of the free surface, n is the unit vector normal to the free surface, while  
Ca=(ηU0)/σ is the capillary number (σ: surface tension, η: medium viscosity, U0: pulling velocity). Initially, we 
assume that the liquid and the gas in the bubbles are under conditions of hydrostatic and thermodynamic 
equilibrium.  

An equation of state describing a reversible adiabatic axpansion is also assumed for the state of the gas 
inside the bubble: 

                                                                      Pb V γ = const.                                                             (6) 
 
3.  NUMERICAL METHOD 

In the framework of the elliptic grid generation scheme, the two dimensional time-varying physical 
domain (r,z,t) is mapped onto a constant computational domain(ξ,η,τ) which is chosen to be the volume 
occupied by the fluid in a filament of radius Rc0 and height H0 in the absence of any bubbles (0≤ξ≤ Rc0, 0≤η≤ 
H0). Following Dimakopoulos and Tsamopoulos[10] this mapping is achieved by solving at each time step the 
following PDEs: 
                                                                                  =Q⋅ ξ∇ ∇           (equation generating the η-curves)            (7) 

                                                  
2 2

12 2 (1 ) 0
r z

r z
η η

ξ ξ

⎛ ⎞+⎜ ⎟ε + − ε η =
⎜ ⎟+⎝ ⎠

1∇ ∇  (equation generating the ξ-curves)     (8) 

The Q term in equation (7) is used to densify the mesh in the regions near the bubbles. The mesh equations (7) 
and (8) are solved with appropriate boundary conditions that can also affect the quality of the generated mesh. 
The above transformation equations generates a duscretization mesh that optimally conforms to an entire 
physical domain that undergoes large anisotropic deformations. 

To decouple flow (1)-(3) and mesh equations (7)-(8), a Picard type Gauss-Seidel iterative method was 
used with each sub-problem being solved with Newton-Raphson iterations and a 10-9 tolerance for the absolute 
norm of the residual vector. The tolerance in the Gauss-Seidel technique was set to 10-8. Implicit Euler was 
employed for the time integration, whose time step was adapted in the course of the calculations based on the 
estimate of the local truncation error (defined by the difference between accurately approximated and explicitly 
predicted values). The flow and mesh equations are discretized by a mixed Galerkin finite element method, in 
the sense that the velocity field is approximated by using biquadratic, the pressure field bilinear and the position 
vector (r,z) at each nodal point linear Langrangian basis functions.[11]  

 
4.  RESULTS 

With the numerical method described above, numerical results have been obtained[12] concerning the time 
evolution of the bubbles and the filament as a function of the parameters defining the kinematics of the imposed 
flow, such as the aspect ratio of the geometry, the value of the capillary number, etc. It was observed that for 
large enough aspect ratios, the bubbles experience large deformations mainly along the axial direction, 
deforming into fibrils. At moderate aspect ratios (Λ~0.5), in addition to axial deformation, a weak radial 
expansion is also observed. In fact, as the aspect ratio is decreased to rather small values (Λ<0.2) large bubble 
deformations are recorded both radially and axially. This result, which is also confirmed experimentally,[2] is 
explained in terms of the high values of the lateral stress σrr developing in filaments with small aspect ratios. 
Typical instantaneous snapshots obtained from the present simulations with a system containing 5 bubbles in a 
filament with aspect ratio Λ=0.5 are shown in Fig. 2. The corresponding force-vs.-time profile required to 
maintain the imposed flow is shown in Fig. 3. 
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Figure 2. Typical plots of the instantaneous bubble-liquid and filament-air interfaces as obtained from the 
present calculations with a system containing 5 bubbles. In all cases: Λ=0.5, Ca = 10, a1=a2= …=a5=0.0625, 

Re=0. 
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Figure 3. Time profile of the axial force on the upper disc required to keep the flow field discussed in Figure 2. 
 
 
At rather high values of the applied pulling velocity, neighboring bubbles are observed to come so close that they 
usually coalesce to form a single, larger bubble.[1],[3],[13] In our computational experiments, bubble coalescence 
was allowed only for bubbles whose separation Lij  in the course of the “experiment” attained values smaller than 
about 0.2Lij,0, where Lij,0 is their initial separation. Once two bubbles are united, the corresponding nodes in the 
physical domain are reconstructed by solving the mesh equations (7)-(8), together with appropriate boundary 
conditions. The new value of the pressure in the daughter bubble was calculated by invoking the assumption of 
isothermal expansion for ideal gases. 
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A typical example of bubble coalescence is shown in Fig. 4. How the emerging bubble evolves evolves is also 
shown in the figure. 
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Figure 4: Time evolution of a system containing two (N=2) bubbles before and after bubble coalescence [Ca=1, 
Λ=0.195, h1=0.286 , h2=0.714, a1=a2= 0.143 ]. 
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5.  CONCLUSIONS 
 

We have developed an efficient and robust numerical algorithm, based on the solution of a set of elliptic 
partial differential equations for the mesh discretization and a mixed finite element method for the solution of the 
discrete equations, that has allowed us to address multi-bubble growth and dynamics in Newtonian liquids 
undergoing stretching, under the assumption of axial symmetry (two-dimensional flow). The method has 
allowed us to address important issues governing or connected with bubble dynamics, such as the effect of the 
geometry aspect ratio. For a given value of the capillary number, a characteristic value of the aspect ratio is 
calculated below which bubbles exhibit significant deformations not only axially (along the axis of pulling) but 
also radially. As the filament aspect ratio decreases, the adhesion strength, quantified, e.g., by the maximum in 
the force measured on the upper plate, exhibits a substantial increase. 

We have also investigated issues related to bubble interaction and bubble coalescence during stretching 
and how this affects their growth and the measured force. Interestingly enough, the presence of more than one 
bubble in the filament was not seen to affect the force needed to maintain the flow. The force-versus-time 
profiles were also seen to be insensitive to bubble coalescence. Whether or not this persists in viscoleastic liquids 
too and/or is an artifact of the axial symmetry assumption (that renders the flow two-dimensional) will be 
addressed in a future work. Relaxing the assumption associated with the symmetry with respect to the azimuthal 
direction, in particular, requires the development of parallel computational methodologies,[14]-[16] and will also be 
left as a future plan. 
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Abstract. A computational package, the FE-BUI, is introduced for automated parallelization of finite element 
codes. The package has been developed at the Computer Center of the School of Chemical Engineering of 
NTUA. Its scope is to provide the ability for parallel execution of serial codes on Beowulf clusters, in an easy 
and efficient way. 
 
 
1 INTRODUCTION 

The main computational cost of the finite element codes comes from the solution of large linear algebraic 
equation systems. Direct (e.g. frontal-type) solvers require large memory and computational cost, and most 
importantly, their serial parts lack the advantage of exhibiting appreciable parallel efficiency. Recent products of 
the development of parallelization tools for finite element codes are freely available packages such as the 
partitioner parMETIS[1] and the solvers Aztec[2] and PETSc[3]. Even with these tools, the effort and cost required 
for parallelization of a serial code might be prohibitively high. The other alternative, the automated 
parallelization of serial codes with parallel compilers, yields no more than 10% reduction of the computational 
cost. 

In this paper is presented a new, homemade, parallel package for the solution of finite element problems. 
This package offers convenience and effectiveness in doing large scale computations since there is no need for 
the user to learn and implement suitable solvers and communication protocols in parallel computer architectures. 
The user simply calls, from the serial code, the parallel solver, which takes care of the mesh partitioning, of the 
load assignment to the available processors and of the parallel solution of the resulting linear systems. The 
package uses parallel iterative solvers that are based on Krylov projection methods[4] and exploits the 
architecture of Beowulf clusters using the MPI (Message Passing Interface)[5] for the processors communication. 
Typical runs with 3D finite element problems on a small, 4-processor cluster yield a reduction of the 
computational cost by a factor of 3. 

2 BEOWULF CLUSTERS 

The outcome of the evolution, during the last decade, of the hardware of the personal computers (PCs), 
mainly in processors, driven by the major companies in this field, Intel and AMD, but also in motherboards and 
memories, is low-cost and high-performance personal computing. Moreover, commodity computer networks 
offer high bandwidth and low latency, like Fast Ethernet, Gigabit Ethernet and the more advanced networks 
Myrinet (http://www.myri.com) and SCI (http://www.dolphinics.com). This progress in conjunction with the 
development of Linux (http://www.linux.org), a freely available, stable and reliable operating system, enables 
large scale computations on Beowulf clusters (http://www.beowulf.org). These clusters are computational 
systems that consist of PCs which are interconnected with a private network. 

Beowulf clusters are distributed memory parallel computers, where each processor has a private memory and 
does not have direct access to the memory of the other processors. Thus, a two-processor communication is 
required when a processor needs data residing in the memory of another processor. This communication can be 
done with the MPI, which is a library of subroutines that a programmer calls from a C or a Fortran code. In this 
case, the parallel execution of a serial code on Beowulf clusters needs the explicit programming of the 
communication between the processors. This is the main obstacle for the user in converting a serial code to a 
suitable, for Beowulf clusters, parallel code. 
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3 THE FE-BUI PACKAGE 

 The FE-BU is programmed in Fortran 77. Its installation requires the freely available libraries: BLAS[6], 
LAPACK[7] and MPICH[8] or LAM/MPI[9]. The main components are shown in Figure 1. 

 
Figure 1. The FE-BUI components 

3.1 KRYLOV ITERATIVE SOLVERS 

 The computational kernel of the FE-BUI is based on the preconditioned Krylov iterative solvers for the 
solution of large and sparse linear systems, such as the GMERS(m), BiCGSTAB and CG; currently, only the 
GMRES(m) solver is employed.  

The GMRES is preferred for the iterative solution of large algebraic equation sets with non-symmetric 
matrices, on the basis of its parallel efficiency[10]. Starting from an initial guess, ox , of the solution of the linear 
system: 

bAx =  (1) 

where NxNNxN b x,and A RR ∈∈ , GMRES uses Arnoldi’s method[11], combined with an orthogonalization 
technique – the Modified Gram-Schmidt method is used here – to construct an orthonormal basis Nxm

mV R∈  of 
the m-dimensional Krylov subspace 

{ }vAv,...,AAv,v,spanv)(A,K 1m2
m

−=  (2) 

where 
2oo r/rv ≡ , oo Axbr −≡ . The new approximation of the solution is 

mmom yVxx +=  (3) 

where my  is a vector of size m and it is computed from the solution of the least squares problem 

m

2m1
y

m y  ,yHβeargminy R∈−=  (4) 

In eq. (4), T
12o ][1,0,...,0e ,rβ =≡  and 1)xm(m

mH +∈R  is an upper Hessenberg matrix, such as 

mm
T
mm1mm HAVVHVAV =⇒= +  (5) 

mxm
mH R∈  is an upper Hessenberg matrix obtained from the mH  by deleting its last row. The least squares 

problem (4) is solved by transforming mH  into an upper triangular matrix mxm
mR R∈ using plane rotations[4]. 

The storage requirements and the computational cost of Arnoldi’s method increase rapidly with m and, thus, 
a restarting variant of the GMRES – the GMRES(m) – is used in practice. When m reaches a certain preset 
value, the algorithm restarts, using the last approximation mx  from eq. (3) as a new initial guess. Thus, two 
iterations are performed: the “inner” m iterations and the “outer” iterations that correspond to the restarts of the 
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GMRES(m). 

3.2 PRECONDITIONING 

A preconditioner is essential in enhancing the convergence rate of a Krylov iterative solver. Thus, the 
original linear system (1) must be transformed to an equivalent one that has better convergence properties. In the 
FE-BUI the linear system (1) is preconditioned from the right 

zM  xb,zAM 11 −− ==  (6) 

In eq. (6), z is a vector of size N and NxN1M R∈−  is the preconditioner matrix which is constructed from a 
deflation technique[12] and it is given by 

T
r

1
N

-1 )UITµU(IM −+= −  (7) 

where µ∈R is the largest eigenvalue of the matrix A, rxr
r

NxN
N I,I RR ∈∈ are identity matrices, NxrU R∈ is an 

orthonormal basis of the r-dimensional invariant subspace, rP , corresponding to the r smallest eigenvalues (in 
terms of the absolute value of their real parts) of the matrix A and rxrT R∈ such as 

AUUT T=  (8) 

The largest eigenvalue and the Schur vectors of the matrix A, needed in eq. (7), are approximated by those of 
the Hessenberg matrix mH . Thus, at each restart of the GMRES(m), a Schur decomposition of the Hessenberg 
matrix is performed to approximate the largest eigenvalue and the Schur vectors corresponding to the smallest 
eigenvalues of the matrix A. These vectors are added to rP , increasing its dimension. In order to save on 
computational cost and memory requirements arising from the preconditioning operations, an upper limit, maxr , 
on r is set; when it is reached, the update of the preconditioner stops and the GMRES(m) continues with the 
same preconditioner. The key idea of this preconditioning technique is to remove by deflation the smallest 
eigenvalues of the matrix A that cause slow or no convergence of the GMRES(m)[13]. 

3.3 PARTITIONING 

 The partitioner of the FE-BUI package is based on an overlapped domains[14] partitioning technique. The 
original domain, tessellated by the finite element method, is divided into subdomains. A subdomain is defined as 
a separate group of elements and it is assigned to a processor. 

 
Figure 2. A sample 2D finite element mesh assigned to 2 processors. Dashed and solid lines depict the 2 

  overlapped subdomains. 

 In Figure 2 is shown a 2D finite element mesh that is assigned to 2 processors. According to this partitioning 
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technique, each processor takes 15 nodes, i.e. 15 rows of the matrix A, 1 to 15 for the first processor and 16 to 
30 for the second processor. Each processor in order to fully assemble every local node contribution to the 
matrix A, makes some extra computations to the common elements 9 to 12. The nodes of these elements are 
called communication nodes. 
 Thus, in FE-BUI the decomposition of the finite element mesh corresponds to the distribution of the matrix 
A rows to the processors. It is known that this technique leads to smaller parallel efficiency than that of other 
domain decomposition techniques[14],[10] (see also section 5), but offers flexibility and usage convenience to the 
FE-BUI package. 

3.4 PARALLEL OPERATIONS IN THE FE-BUI 

 The basic operations of the GMRES method are: (i) Vector updates, (ii) inner products, (iii) matrix-vector 
products. Moreover, preconditioning operations are needed for the preconditioned GMRES(m). The 
performance of these operations depend on the choice of the preconditioner. The deflation preconditioning 
technique can be analyzed in the same basic operations as the GMRES method. All these operations can be 
decomposed in tasks and each task can be independently executed on each processor. More details about the 
parallel implementation of these operations on Beowulf clusters are available in [10]. Briefly, vector updates can 
be done in parallel without communication between the processors. In order to compute an inner product each 
processor computes a local inner product. The latter operation is completed through a global communication 
between the processors to sum up the calculated local inner products. During the global communication, the 
processors exchange data of length of 8 bytes (the scalar local inner product). For the matrix-vector product, a 
communication between its processor and its neighbors is required. During the neighboring communication the 
processors exchange arrays of length equal to the communication nodes. For example, with reference to figure 2, 
the processors exchange data of length of  4085 =⋅ bytes. 

In FE-BUI the matrix-vector product can be done using three methods: a) Compressed Sparse Row Format 
(CSR) were only the nonzero elements of the matrix A are stored. b) The element-by-element matrix-vector 
product and c) With a matrix-free approach[15], that is by approximating the elements of A by differencing; this 
is often the case in nonlinear problems, where A is the Jacobian matrix corresponding to the discretized 
equations. 

4 USAGE OF THE FE-BUI 

 As a first step with the FE-BUI package, the new user can simply call from his/her serial code the driver 
subroutine FEBUIdrv replacing the serial solver call. This driver takes care of the solution of the linear system 
by calling the default partitioning and solver subroutines. At a more advanced level, the user can call selectively 
the appropriate subroutines. 
 The required input data of the FEBUIdrv are already computed in most finite element codes. Typical input 
data are: 
a) the total number of the nodes (NN) and the elements (NE) of the mesh, 
b) the array NpE of dimension NE – NpE(NE) – that contains the number of nodes of each element, 
c) the array NOP(NE,max(NpE)) that associates the local (element level) and global (mesh level) numbering of 

nodes, 
d) the arrays NCOD(NN) and BC(NN), for distinguishing nodes bearing Dirichlet boundary conditions, 
e) an approximation to the solution u(NN), in case of nonlinear equation systems. 
 Also the user must supply the subroutine that computes the element contributions and the right hand side of 

the linear system. 

5 RESULTS 

 The parallel efficiency of an algorithm is measured by the parallel speedup[14],[16], S, which indicates how 
faster the algorithm runs using p processors compared to the performance on one processor: 

processors pon  timeExecution 
processor 1on  timeExecution S =  (9) 

 Ideally, a parallel algorithm must run p times faster when executed on p processors. However, the speedup is 
limited by the ever-present serial tasks in a parallel algorithm, by the load balancing and by the communication 
between the processors that is the main factor of a reduced parallel speedup. 
 The FE-BUI has been tested on the solution of a three-dimensional, nonlinear and free boundary problem of 
intefacial magnetohydrostatics[17]. The achieved speedup of the preconditioned GMRES(m) is shown  in table 1 
for two cases: 
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(i) parallel computations with FE-BUI, 
(ii) parallel computations with a parallel code that was developed in [18]. 
 The computations were done on a linear system of 254,857 nodes at a small Beowulf cluster of 4 nodes 

(http://www.chemeng.ntua.gr/yk/cluster) 
 

CPUs Case (i) Case (ii) 
1 1 1 
2 1.8 1.9 
3 2.7 - 
4 3.4 3.9 
Table 1: Parallel speedup 

 
 The achieved speedup is smaller than the ideal, in both cases, due to the communication between the 4 
processors. The speedup in (i) is smaller than in (ii) since FE-BUI “ignores” particular aspects[18] of the mesh, 
resulting in a slightly unbalanced distribution of the mesh to the available processors; in such a case, the under-
loaded processors have to remain idle until the over-loaded processors finish their tasks. 
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Figure 3. The convergence of the GMRES(m), m = 100, 200 and the DEFLGMRES(100), rmax = 20. 

 In Figure 3 is shown the convergence of the GMRES(m) and the preconditioned GMRES(m) by deflation – 
DEFLGMRES(m). The horizontal axis is the product of m by the restarts of the GMRES(m) or 

DEFLGMRES(m). The vertical axis is the residual 
2

2m

b
Axb

Res
−

= . 

 Another important feature of the preconditioner of the FE-BUI is that the additional communication load 
coming from the extra preconditioning operations, has no appreciable effect on the speedup of the GMRES(m) – 
a significant advantage of the chosen preconditioner compared to a commonly used ILU-type preconditioner[10]. 

The achieved speedup versus the number of processors for two problem sizes, N=68,377 and N=254,857 is 
shown in figure 4. The speedup increases with the number of processors significantly faster in big problems than 
in smaller ones, because in the former case the computational time increases faster than the communication time, 
as it is noticed also from figure 5. The latter figure shows the relative communication (global and neighbouring) 
and computational time as percentages of the total execution time of the parallel preconditioned GMRES(m) 
versus the problem size, when the solver runs on 4 processors. 

725



Antony N. Spyropoulos, Athanasios G. Papathanasiou, John A. Palyvos, and Andreas G. Boudouvis. 

1

1.5

2

2.5

3

3.5

4

1 2 3 4CPUs

Sp
ee

du
p

N = 68,377

N = 254,857

Ideal

 
Figure 4. Parallel speedup versus the number of processors for two problem sizes. 

The main network overhead comes from the global communication time, although the message length is too 
small. This is due to the high latency of the Ethernet network of our cluster. The time (tcomm) that is spend for a 
message of n bytes in length is given from: 

nt comm ⋅+= ba  (10) 

where a is the latency of the network and b is the time for sending 1 byte. Thus, two network related factors 
limit the communication time: the latency and the bandwidth. Latency limits the exchange of small messages, 
mainly required in global communication whereas bandwidth limits the exchange of large messages, as happens 
in the neighboring communication. Thus, for finite element parallel computations with iterative Krylov solvers, 
a network with small latency is strongly preferred. 
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Figure 5. Computational vs Communication time. 

 More information about the usage and the availability of the FE-BUI, is available at 
http://www.chemeng.ntua.gr/yk/cluster. 

ACKNOWLEDGMENTS 

 Financial support for this work was provided by the Ministry of Education through the Research Program 
“Pythagoras” and by the General Secretariat for Research and Technology through the “ΕΝΤΕΡ” Program. 
 
 



Antony N. Spyropoulos, Athanasios G. Papathanasiou, John A. Palyvos, and Andreas G. Boudouvis. 

 

REFERENCES 

[1] http://www-users.cs.umn.edu/~karypis/metis/index.html 
[2] http://www.cs.sandia.gov/CRF/aztec1.html 
[3] http://www-unix.mcs.anl.gov/petsc/petsc-2 
[4] Saad, Y. (1996), Iterative methods for sparse linear systems, PWS Publishing Company. 

Available to http:// www-users.cs.umn.edu/~saad/books.html 
[5] http://www-unix.mcs.anl.gov/mpi/ 
[6] http://www.netlib.org/blas 
[7] http://www.netlib.org/lapack 
[8] http://www-unix.mcs.anl.gov/mpi/mpich 
[9] http://www.lam-mpi.org 
[10] Spyropoulos, A. N., Palyvos, J. A. and Boudouvis, A. G. (2000) "Finite element computations on cluster of 

PC’s and workstations." In Proceedings of the 8th Euromicro Workshop on Parallel and Distributed 
Processing – EURO-PDP’2000, pp. 56-61, Rhodos, Greece, January 2000 (IEEE Computer Society, Los 
Alamitos, CA, USA). 

[11] Arnoldi, W.E. (1951), “The principle of minimized iterations in the solution of the matrix eigenvalue 
problem”, Q. Appl. Math., Vol. 9, pp. 17-29. 

[12] Erhel, J., Burrage, K. and Pohl, B. (1996), “Restarted GMRES preconditioned by deflation”, J. Comput. 
Appl. Math., Vol. 69, pp. 303-318. 

[13] Van der Vorst, H.A. and Vuik, C. (1993), “The superlinear convergence behaviour of GMRES”, J. 
Comput. Appl. Math., Vol. 48, pp. 327-341. 

[14] Smith, B., Bjorstad, P. and Gropp, W. (1996), Domain Decomposition. Parallel multilevel methods for 
elliptic partial differential equations, Cambridge University Press. 

[15] Dennis, J. E. and Schnabel, R. B. (1996), Numerical methods for unconstrained optimization and nonlinear 
equations, SIAM, Classics in Applied Mathematics, 16, Philadelphia. 

[16] Buyya, R. (ed.) (1999), High Performance Cluster Computing: Programming and Applications, Vol. 2, 
Prentice Hall, NJ, USA. 

[17] Spyropoulos, A. N., Palyvos, J. A. and Boudouvis, A. G. (2004), “Bifurcation detection with the 
(un)preconditioned GMRES(m)”, Comput. Methods Appl. Mech. Engrg., Vol. 193, pp. 4707-4716. 

[18] Spyropoulos, A. N. (2003), Large scale computations with parallel processing methods in nonlinear 
problems of interfacial magnetohydrostatics, Doctoral Thesis (in Greek), NTUA. 

727



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 



5th GRACM International Congress on Computational Mechanics 
Limassol, 29 June – 1 July, 2005 

 

ON THE COMPUTATION OF SELF-SIMILAR AND “COARSE” SELF-SIMILAR 
SOLUTIONS 

Michail E. Kavousanakis*, Constantinos I. Siettos†, Andreas G. Boudouvis* and Ioannis G. Kevrekidis‡   

* School of Chemical Engineering 
National Technical University of Athens 

9 Heroon Polytechniou St., Zografos, Athens, Greece, GR-15780 
 

†School of Applied Mathematics and Physics  
National Technical University of Athens 

9 Heroon Polytechniou St., Zografos, Athens, Greece, GR-15780 
 

‡Department of Chemical Engineering & Program in Applied and Computational Mathematics 
Princeton University 

Princeton, NJ 08544, USA  

Keywords: dynamic renormalization, coarse self-similar, template function method, pinning condition 

Abstract. We present and discuss a computational approach to the study of partial differential equations with 
self similar solutions. The solutions of such equations can explode or decay preserving a constant (rescaled) 
shape. The key idea is to introduce a “dynamic pinning condition” through the use of which the solutions are 
studied in a co-exploding, or a co-collapsing frame and self-similarity can be factored out[1,2]. We show how to 
construct dynamic renormalization algorithms for the location of self similar solutions and the corresponding 
similarity exponents[3]. The dynamic renormalization algorithm can be implemented in system models at a 
microscopic level (kinetic Monte Carlo, Molecular Dynamics, Brownian Dynamics, Cellular Automata), where 
the statistics of the problem satisfy a macroscopic equation with self-similar solutions[4,5]. The template based 
approach for the computation of “coarse” self-similar solutions is implemented in the illustrative example of 
random walker diffusion. 
 
1 INTRODUCTION 

In problems with translational invariance one encounters travelling wave solutions, which preserve their 
shape moving in space at a constant speed. It is convenient to study these problems in a co-travelling frame 
where the solution appears stationary and it is much easier to study its stability unencumbered by its constant 
motion. There are good techniques for the computational locating of travelling solutions along with the speed 
they move in space, as a nonlinear eigenvalue problem[6]. However, during transient simulations the solutions 
both travel and approach their ultimate translationally invariant shape; the “right” speed with which the 
travelling solution moves may change from moment to moment and the best way to choose it is not transparent. 
Rowley and Marsden proposed a template based approach[1] which allows to recover such an appropriate 
instantaneous speed. As the transient solution approaches its ultimate translationally invariant shape the speed 
also converges to the correct travelling speed.  

The template based method can be straightforwardly adapted[2,3,7] for the computation of scale-invariant 
solutions, i.e. solutions of dynamic equations which evolve across scales. Self-similar solutions[6] are an 
important class of scale-invariant solutions. In the same sense that a travelling solution is more convenient to 
study in a co-travelling frame, a self-similar solution is more convenient to study in a co-collapsing (decaying 
solutions) or co-exploding frame (blow up solutions). Consider the general form of a partial differential 
equation: 

 )(uDu xt =  (1) 
We restrict our interest in operators which satisfy the scaling relation: 

 
A
xyCAyuDAC

A
xCuD yx =>∀=   where,0, )),(())(( δγ  (2)  

We assume that there exists a family of self-similar solutions for (1): 

 )(),(
*

*
b

a

tt

xUtttxu
−

−=  (3)  

where a and b are the similarity exponents and U is a member of the family of self similar solutions for (1). The 
critical time t* is when the solution “explodes” either forward or backward in time. If we use the expression (3) 
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in (1) then U satisfies the following ordinary differential equation: 

  )()( UD
y
UbyaU y=
∂
∂

−σ  (4) 

where: b
tt

xy
*−

=  and )( *ttsign −=σ . The similarity exponents satisfy: 

  ba δγ +−=− )1(1  (5) 

 The cases where similarity exponents can be obtained using scaling arguments and conservation laws are 
referred to as self-similar of the first kind.  When the similarity exponents cannot be obtained a priori and are 
usually obtained by solving a nonlinear eigenvalue problem for U, the self-similar solution is characterized as of 
the second kind [6]. An alternative approach for the computation of self-similar solutions of both kinds in a 
dynamical frame is the proposed template function method.  

2 TEMPLATE FUNCTION METHOD 
 In this section we describe the template based approach for the computation of self-similar solutions of 
dynamic partial differential equations. We start with a general scaling: 

  ( ) ( ) ( )  ( )
( )

, , ,xu x t B W t
A

τ τ τ τ
τ

= =  (6) 

where A, B and τ are unknown functions; A and B correspond to “width” and “amplitude” of the solution. Setting 
1−= γδτ BA  equation (1) becomes: 

  
A
xyWB

By
WyA

A
WDW

y =
∂
∂

−
∂
∂

∂
∂

+=
∂
∂   where,11)(

τττ
 (7) 

 This is the co-exploding / co-collapsing equation which for self-similar solutions is analogous to the co-
traveling equation for translationally invariant ones. To obtain a unique self-similar solution for (7) we need to 
specify two additional constraints, “pinning conditions” which set the appropriate scales for W(y,τ). In the spirit 
of Rowley and Marsden these pinning conditions can be constructed imposing relationships between the solution 
and essentially arbitrary template functions[3]. These pinning conditions have the general form: 

  
0))(,(

0))(,(

22

11

=
=

yTWg
yTWg

 (8) 

where g1, g2 are typically algebraic expressions. Once the pinning conditions have been imposed, equation (7) 
describes the evolution of both the reconstructed solution W and the scaling factors A and B. It is actually 

possible to eliminate the 
τ∂
∂A

A
1 and 

τ∂
∂B

B
1  terms in equation (7) using the pinning conditions (8), to end up with 

a “co-exploding” PDE which is called MN-dynamics[3]. If the steady state of (7) exists then one can find the 

values of  
τ∂
∂A

A
1 and 

τ∂
∂B

B
1  terms and obtain one additional algebraic equation for the similarity exponents. 

Comparing the coefficients in (4) and the steady state of (7): 

  

∞→∂
∂

∂
∂

=
τττ

)1/()1( A
A

B
Bb

a
 (9) 

From the simple system of equations (5) and (9) one can get the values of similarity exponents a and b. This 
template based approach can be implemented to locate both types of self-similar solutions. Next we present the 
application of the template based approach for the computation of self-similar solutions for the porous medium 
equation. 

3 SELF-SIMILAR SOLUTIONS FOR THE POROUS MEDIUM EQUATION.  
 We present the template based approach for the computation of self-similar solutions for the following 
porous medium equation: 
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  2 with ,2 =∇=
∂
∂ mu

t
u m  (10) 

The 1D Barenblatt solution is the self-similar solution of the first kind to the porous medium equation whose 
initial datum is a Dirac mass at the origin. This solution is known[8] and the similarity exponents are b=-a=1/3. 

The operator in this case is 2

22
)(

x
uuDx

∂

∂
=  and the scaling condition for the similarity exponents is (from 

eq.(5)): 

  ba 21 −=−  (11) 

The equation is discretized  with central finite differences and time integration is carried out with an explicit 
Euler scheme on a domain [0,3] with 1000 nodes. At the boundaries zero flux conditions are imposed. For the 
initial condition we take: 

  
⎩
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≥
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)0,(
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The two pinning conditions we select are:  
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where:< > denotes inner product,
⎩
⎨
⎧

≥−
<

=
1 ,1
1 ,1   

1 y
y

T  and )003.0(2 −= yT δ . The first condition is an orthogonality 

condition between the reconstructed solution and the template T1, and the second forces W to have a constant 
value, equal to that of the initial condition value, at yo=0.003. The evolution of W and similarity exponent b, up 
to steady state are depicted in Fig.1.   
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Figure 1. Time evolution of (i):reconstructed W towards the Barenblatt steady state self-similar solution and (ii): 
similarity exponent b for 1D porous medium equation with m=2. 

 
 The numerical value of similarity exponent b at steady state is b=0.33332 and it is very close to the 
theoretical value of 1/3.  
 The Graveleau solutions to the porous medium equation form a 1-parameter family of axi-symmetric 
focusing solutions which are self-similar of the second kind[9].The partial differential equation examined is: 

  )(1)(
2

r
ur

rr
uDu rt ∂

∂
∂
∂

==  (14) 

It is trivial to verify that the differential operator D satisfies the exponential relation (2) with γ=2 and δ=-2. Then 
the first algebraic equation for the similarity exponents a and b, from (5), is: 

  ba 21 +−=  (15) 
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 Equation (14) is solved in ]10,0[∈r  with boundary conditions 0, 0
10

=
∂
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=
=

r
r

u 
r
u .The initial condition we 

use here is:  
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 The initial condition for u coincides with the initial condition for W, as does the physical space r with the 
rescaled space y. 
 The discretization scheme used is central finite different and the number of discretization nodes 2000. For the 
time stepper we used a fully implicit time integration scheme. The time evolution of (14) is depicted in Fig.2.  
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Figure 2. Time evolution of the radially symmetric solution of the porous medium equation. 

 
In order to apply the dynamic renormalization algorithm we need two additional template conditions (pinning 
conditions). For this problem one choice of pinning conditions is the following: 
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It can be easily verified that the first pinning condition is valid for W=u(r,0) while the second imposes a constant 
value for the reconstructed solution at y=9.98. This constant can be taken equal to u(r=9.98,0).  

 We denote with W the dynamically renormalized solution for the porous medium equation and 
A
ry =  the 

rescaled space. The co-collapsing equation in this case is according to (7): 
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t
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 A unique solution of (19) will be obtained using two additional constraints, i.e. the pinning conditions (17) 
and (18). Then the dynamically renormalized system is the system of equations (17), (18) and (19). At steady 
state solution W corresponds to a member of the family of self-similar solutions for the 2D porous medium 
equation. The similarity exponents can also be evaluated using (15) and: 

   ** /)1/()1( GCA
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Bb

a
=

∂
∂

∂
∂

=
∞→τττ

 (20) 

where C* and G* are the steady state values of C and G, respectively, for the system (17), (18) and (19). The 
numerical value of exponent b is: b≈0.858, and the theoretical value is approximately 0.856, which is in good 
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agreement with the numerical one. 
 The evolution of reconstructed W towards steady state is depicted in Fig.3.  
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Figure 3. Dynamic renormalization for the computation of Graveleau self-similar solution. 

4 COARSE DYNAMIC RENORMALIZATION 
 As a first step, it is interesting to consider the case where the only available tool is a “legacy dynamic code”, 
i.e. a code which simulates the evolution of the original equation but cannot be modified. The so-called 
numerical analysis of legacy codes[10] allows us to utilize the legacy simulator and perform a different set of 
tasks for which it was not designed, by wrapping around the code a computational superstructure. One of these 
tasks is the computation of self-similar solutions for systems where the only available information comes from 
runs of a “black box” simulator. One can evolve in physical variables and then rescale the results as opposing to 
first recalling the equation and then evolving the rescaled equation.  
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Figure 4. Schematic procedure of dynamic rescaling using a legacy simulator. 

 
 Starting with an initial condition one evolves forward for a finite time. Then the template conditions are 
applied in order to rescale the space variable for the final profile. The rescaled profile is given as an initial 
condition for the time stepper, it is evolved, and the new final profile is again rescaled by applying the template 
conditions. The iterated procedure may converge to a member of a family of self-similar solutions. The key idea 
is that rescaling and then evolving the rescaled equation for a finite time commutes with evolving in physical 
space and then rescaling the result[4].  
 Only stable self-similar shapes can be obtained by such a dynamic rescaling and forward integration. 
Unstable self-similar solutions can be found through fixed point algorithms (like Newton-Raphson). If we call 
RT(w(y)) the result of integrating the rescaled solution with initial condition w(y) for a finite time T, the self-
similar solution satisfies: 

  0))(()( =− ywRyw T  (21) 

Matrix-free iterative linear algebra techniques[11] can be used to converge to steady state solutions of equation 
(21). The only available tool is a subroutine that numerically computes ))(( ywRT , yet it is the only necessary 
tool for matrix-free iterative techniques, like Newton-GMRES.  

4.1  “Coarse” self-similar solutions  
 In contemporary problems of scientific and engineering interest the best system models are often available at 
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a fine (microscopic) scale. We need to predict the macroscopic behavior of such a system. In traditional 
continuum modeling, successful closures allow us to write models at a coarse grained - macroscopic level. 
However, such closures are not always available and the range of time and space scales precludes the effective 
macroscopic prediction through direct atomistic simulation. The recently developed “equation-free” approach[10] 
to coarse-grained, computer assisted analysis, attempts to bridge the enormous scale gap (microscopic to 
macroscopic) when macroscopic equations conceptually exist but are not available in a closed form. The main 
idea is to consider the microscopic simulation as a computational experiment which can be initialized at will. 
One can then estimate numerical quantities, such us functional and parametric derivatives, using the results of 
appropriately initialized short bursts of computational experiments, which in turn are used when one applies a 
traditional numerical method.  
 In many cases the macroscopic dynamics do not involve stationary solutions but rather traveling or self-
similar ones. We will show how to construct dynamic renormalization algorithms for the location of self-similar 
solutions when the only available tool is a simulator (time-stepper) at a fine scale (e.g. kinetic Monte Carlo, 
Brownian Dynamics, Molecular Dynamics, e.t.c.). The procedure consists of the following steps[4]: 
 

1. We choose the statistics of interest for describing the coarse-grained behavior of the system and an 
appropriate representation of them. If the system we study is molecular diffusion then the appropriate 
macroscopic observable is the concentration. It is more convenient to use the Cumulative Distribution 
Function (CDF) of particles at each moment. If the CDF is smooth enough then one can use a low-
dimensional description based on a sequence e.g. of low order orthogonal polynomials. We denote this 
macroscopic description with u. These choices determine a restriction operator M from the microscopic-
level description (U: coordinates of a large number of particles) to the macroscopic description, .i.e. 
u=MU.  

2. Choose an appropriate lifting operator µ from the macroscopic to microscopic description, e.g. we can 
assign the position coordinates of each particle using the functional form of the particle CDF. The 
lifting operator should have the property: µM=I. In other words lifting from the microscopic to 
macroscopic description and then restricting should have no effect.  

3. From an initial value at microscopic level (U(to)) run the microscopic simulator for a relatively short 
time horizon T and obtain the new microscopic description U(T). We may need several microscopic 
initial conditions (copies), all consistent with the same macroscopic one, for variance reduction 
purposes.  

4. Obtain the (average) restriction of the new microscopic description: u(T)=MU(T).  
5. Rescale the obtained macroscopic description using the template conditions. If g is the rescaling 

operator applying the template conditions, then the following relation holds between the macroscopic 
and rescaled macroscopic description: uR(T)=g(u(T)).  

6. Lift the rescaled restricted description (U=µuR) and repeat steps 3-6.  
 

 The procedure above is the backbone of the so called “coarse dynamic renormalization” which we expect to 
converge to stable “coarse” self-similar solutions, i.e. self-similar solutions of the unavailable macroscopic 
equation. 
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Figure 5. Schematic depiction of the coarse dynamic renormalization procedure. 
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5 EQUATION-FREE COMPUTATION OF COARSE SELF-SIMILAR SOLUTIONS FOR THE 
SIMPLE 1D PARTICLE DIFFUSION. 
 The simple diffusion process can be simulated by a large number of random walkers. In our micro-simulation 
random walkers move on a 1D domain at discrete time steps: nhtn = . Every walker-particle is moved by  

)2 , 0( DhNdx∈ -the normal distribution with 0 mean value and 2Dh variance-, where D is the diffusion 
coefficient[12]. 
 We are going to work with a single-variable cumulative distribution function (CDF). We use the CDF rather 
than the particle density because it is easy to obtain from the particles, while the computation of the empirical 
density function is numerically sensitive. After each micro-simulation, the new positions of the random walkers 
are sorted and plotted versus the CDF value. In fact it is easier to work with the inverse CDF, the ICDF, which 
gives the x coordinate of a given particle, i. The ICDF of the obtained CDF, whose support lies between [0,1]   
can be easily approximated by orthogonal polynomials[13].  
 For this computation we considered a 5th order polynomial approximation of the ICDF, where the 
macroscopic observables are the appropriately computed coefficients of the orthogonal polynomials. The 
constancy of the number of particles provides the first template condition. The second template condition 
demanded that the coefficient of the first order term in the polynomial expansion be unity. The dynamic 
renormalization procedure converges to the expected Gaussian distribution, which corresponds to the self-similar 
shape solution for the simple diffusion problem.  
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Figure 6. Time evolution of CDF for the 1D simple diffusion using Ntot random walkers. 
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Figure 7. Coarse evolution of the CDF using coarse renormalized timestepping. 

6 CONCLUSIONS 
 We have described a systematic approach for the computation of self-similar and coarse self-similar 
solutions. Locating self-similar solutions becomes a steady state problem for the co-exploding PDE. Therefore, 
tools from numerical bifurcation analysis can be brought to bear on this study. It is possible to implement 
bifurcation / continuation /stability calculations and attempt to locate branches of self-similar solutions (stable, 
unstable, bifurcating). In[7] the template based approach applied on the focusing nonlinear Schrödinger equation 
yields a bifurcation view of the onset of focusing.  
 In case of “coarse” self-similar solutions the only available information comes from microscopic simulations. 
The procedure of coarse dynamic renormalization uses short bursts of appropriately initialized simulations. 
Matrix-free techniques can be implemented for the computation of both stable and unstable self-similar 
solutions, compute finite times to blow up and estimate similarity exponents. We can also check for the stability 
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of solutions through matrix-free eigenvalue analysis.  
 It is also possible to combine the equation-free approach with the so called “gaptooth scheme” and “patch 
dynamics”[10,14,15]. The microscopic simulations are not performed in the whole physical space but in small 
domains (teeth) which are separated by gaps and connected with appropriate boundary conditions. This approach 
exploits smoothness of macroscopic observables (e.g. particle density) in both space and time and, for certain 
problems, has the potential to reduce the necessary microscopic simulation time for the computation of coarse 
self-similar solutions. 
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Abstract. The Quadratic Assignment Problem (QAP) is a well-known combinatorial optimization problem (NP-
Hard) with a wide variety of applications. Many applications and some semi-numerative procedures have been 
proposed for QAP but there is no algorithm on this problem, which is dominant. In this work we survey some of 
most important applications, methods and techniques about the QAP.  Some recent developments with our new 
applications, such as Genetic algorithm approach and some algorithms to solve the problem (QAP) optimality 
will be explained. Also some computational results which show that our approach finds solutions competitive 
with those of which are well known heuristics are given. 

1 INTRODUCTION 

Consider the problem of assigning objects to positions in such a way that each object is designated to exactly 
one position and reciprocally. The demand flows of among the objects, the distance between the positions and 
the assignment cost (the object versus positions) are known. In general, we are given a set of n locations and n 
facilities, and told to assign each facility to a location. To measure the cost of each possible assignment we 
multiply the prescribed flow between each pair of facilities by the distance between their assigned locations, and 
sum over all the pairs. The objective is to find an assignment to all facilities to all locations, such that the total 
cost of the assignment is minimized. This problem is precisely a quadratic assignment problem. If we approach 
mathematically, we can formulate the problem by defining two n by n matrices ( )n n× : a flow matrix F = fij 
element represents the flow between facilities i and j, and a distance matrix D = dij element represents the 
distance between locations i and j. We represent an assignment by the vector p, which is a permutation of the 
numbers N={1, 2, ... , n },  p(j) is the location to which facility j is assigned.  

With these definitions, the QAP can be written as  

∑∑
= =

Π∈

n

i
jpip

n

j
ijp
df

1
)()(

1
 min  

The main idea of this paper is to make some survey of QAP, applications and solution techniques, algorithms 
which is used to sole QAP, some researcher’s solution theory, genetic algorithm application of the problem and 
comparison of the different algorithms to show that our solution has better approach from many known 
algorithms in literature. 

The QAP was originally introduced in 1957 by T.C. Koopmans and Martin Beckman [45] as a mathematical 
model related to economic activities. Since then, it has among the most studied problem in combinatorial 
optimization. 

The most effective algorithms for optimally solving quadratic assignment problems are based on branch and 
bound algorithm. To solve the QAP with on branch and bound algorithm, there are 3 types of algorithms. These 
are single assignment algorithm, pair assignment algorithms and relative positioning algorithm [4]. Some of 
earliest methods on branch and bound algorithms for solving QAPs can be found in detailed in [4] [12] [31] [48] [49] [51] 

[56]. 
This paper will present a general overview of the QAP. An introduction providing a definition will be given 

first together with a brief historical overview. Formal problem description and mathematical formulations will 
be provided. 

In section 2 some formulations and specifications will be introduced. Lower bounds and exact algorithms 
will be the focus of section 3.  Concluding remarks are given in section 4. 
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2 GENERAL FOMULATIONS OF QAP 

The term “quadratic” comes from the reformulation of the problem as an optimization problem with a 
quadratic objective function.  

 
2.1 Some Formulations of QAP 

 
There is an equivalent formulation of QAP as Integer Linear Programming formulation or a quadratic 0-1 

programming formulation. Let )( ijxX =  represents a permutation matrices where the size of this matrix is 

nn× and NΠ  represents set of all permutations of N, then there is a one-to-one correspondence between 

NΠ and X .   Then the entries of the each such matrices satisfies the following constraints; 
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 If the above conditions are met , the QAP can be formulates as follows; where we consider ijf  the flow 

between objects i and j, and kld  the distance between positions k and l. Then our aim is to calculate the 
following 
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With the conditions (1)-(3) we may have an equivalent formulation for the QAP, by working on the space of 
permutation matrices.  A general form of QAP instance of order n is given by flow matrix, distance matrix and 
cost of assignment matrix (cost of the objects to a positions) can be defined as ; 
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Then problem become easier to solve with the linear system (5). A more general form of QAP involves costs 
that do not necessarily correspond to products of flows by distances. This version of QAP was introduced by 
Lawler (1963) [46] and his formulation is as follows: 

∑∑∑∑
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n,,1,j  ,1
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This model was used by many researchers [11] [21] [27] [36] [41] [63]. 
By replacing the quadratic terms by linear terms we have an integer programming formulation of QAP that is 

called mixed integer linear programming formulation (MILP). This can be found in different formats in some 
paper (depending number of variables that is used).  

As in [46] and in [50], 
  and  where   1 , , ,ij ij kl ijkl ik jlc f d y x x i j k l n= = ≤ ≤ ≤  

and he has used n4 variables in his format. For the original problem, some other formulation use relaxations as in 
[11] [17] [48] [50] [55] [57]. There can be huge number of variables and constraints for linearization of QAP on MILP. 
Thus this makes problem more complicated and this is the fact that makes this approach avoided in many cases. 
However, together with some properties the arise from the linearization of the objective function and together 
with some constraint relaxations, the lower bounds for the optimal solution is achieved. Research about 
linearization can be found in [1] [20] [32] [55] (for achieving the best lower bound via relaxation via Lagrangian 
relaxation) [26], which has the advantage of smaller number of restrictions [55] (owing to its polytope description). 

The authors show that the following equations are equivalent to the formulations (1)-(5) [20]. 
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 0 1        , , , 1, , .ijkly i j k l n≤ ≤ = …  (15) 

By taking a simple approach to the pairwise allocation of object costs to adjacent positions is proportional to 
flows and to distances between them.  The QAP formulation uses the permutation concept can be found in [48] [55] 

[59].. There are also some formulations about non-symmetrical QAP through a directed graph. 
 

2.2 Linear Programming and Dual LP Bounds 
 
In section 2.1 we have introduced some equations with some constraints. It is known that large classes of 

bounds for the QAP are related to linear programming relaxations [6]. Defining variables ( ijkl ij kly x x=  ) and by 

dropping the integrality conditions, resulting in linear programming relaxation [6] [32], we have the following 
formulation with some constraints. 
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The constraints in  ,  , , , 1,..., ,ijkl klijy y i j k l n= =  are called symmetry conditions. And they show that 

linear programming for QAP can be formulated by using  ijkl klijy y= , i k≤ ..  Together with the variables that 

can be eliminated using the fact that x is feasible in QAP, the linear programming QAP can be written as a linear 
programming problem. To reduce number of equality constraints more analysis are needed. They can be found 
in [55]. The advantage of those problems which have symmetric data is that the number of variables and equality 
constrains can be halved [55]. It is proved that if the symmetry conditions are dropped the value in LPQAP is 
exactly GLP Adams and Johnson [1].  Many bounding schemes for QAP can be viewed as Lagrangian 
procedures that try to solve dual of Linear Formulation of QAP approximately.  A bounding procedure for the 
QAP extends the Hungarian method for linear assignment problem (LAP) to QAPs, and these are 
computationally most successful schemes [40] [41] [42] [43].   

3 LOWER BOUNDS AND EXACT ALGORITHMS 

Calculation of lower bounds of QAP is one of the most studied topics for the solution of QAP Çela, E. [20].. 
In practice, the lack of efficiently computable, tight lower bounds for QAP has been key factor in the problem’s 
difficulty. They are essential components of branch and bound procedures and they are also used to evaluate the 
goodness of solutions produced by heuristics.  There are many approaches to obtaining lower bounds. Gilmore-
Lawler bound (GLB) is one of the oldest methods, which is widely used.  We have three main classes of lower 
bounds. Gilmore-Lawler bound (GLB), eigenvalue related bounds, and bounds based formulations. More 
explanations about these methods can be found in [1] [3] [5] [6] [8] [9] [11] [12] [27] [30] [38] [39] [41] [43] [48] [61]. 

3.1 Exact Algorithms 

The different methods used to find the global optimum solution for a given QAP. Branch-and-bound, cutting 
planes and dynamic programming methods are some of these techniques. Branch-and-bound is the most known 
technique and it is redefined from allocation and cutting rules [10] [11] [14].. These rules define lower bounds for the 
problem. Branch-and-bound procedures are generally the most helpful for solving QAP. The first enumerative 
schemes, which use lower bounds to eliminate, undesired solutions can find in [33] [46] [47] [49], in Pitsoulis paper [58] 
an excellent description can be found and there are many references concerning QAP branch-and-bound in [1] [33] 

[58] [59].. Although many procedures that combine branch and bound techniques together with parallel 
implementations are being used, for bigger sizes successes depend on the hardware of the computer [19] [54].   

When the flow matrix is the adjacency matrix that formed from tree, the dynamic programming technique 
used. Urban [64] and Christopher and Benavent [22] used this technique for MILP approach for relaxation. They 
used the advantage of the polynomial complexity of instances. 

Cutting plane methods is used formulation of some heuristics that use MILP [14].. When method introduced 
by Bazaraa and Sherali [12], results were not satisfactory. It is proper for small instances [44] [19]. Recently, 
Bender’s algorithm is used to deal with motherboard-designed problem, including linear cost in the formulation 
see [53].  
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4 HEUIRISTICS 

Heuristic algorithms do not guarantee the best solution for the optimality. In this category approximated 
methods can be included where the worst-case guarantees of properties are well known. Here we are introducing 
some known methods. These are the most recent methods that can be adapted wide range of method. These 
procedures do not provide a global optimal solution but can produce good answers within reasonable 
constraints. Construction methods, Limited enumeration method, Improvement Methods, Simulated annealing 
techniques, and Genetic algorithms are five of these basic categories of heuristics of QAP. In this section we will 
concentrate on Genetic algorithms. Some useful results are included for genetic algorithm to show that genetic 
algorithm is competitive to other algorithms that are in the same category. 

4.1 Genetic Algorithms 

J. Holland has developed genetic algorithms in 1975. Genetic algorithms store a set of solutions and then it 
work to replace these solutions with better ones based on some fitness criterion, usually the objective function 
value [36] [57]..  Genetic algorithms are based on the natural selection and natural adaptation [36].. These algorithms 
are parallel and helpful when applied in suitable environment [57].  In [19] is used to solve the different instances 
of QAP. In this paper we solved Nugent problem for different instances of it. Genetic algorithms solved the 
problem in very short time considering other algorithms solution with better optimal solutions for the same costs 
and distances. 

Nugent, Vollman, and Ruml posed a set of problem instances of size 5, 6, 7, 8, 12, 15, 20, and 30, noted for 
their difficulty [1] [19]. These QAP samples have multiple global optima. Even worse, these globally optimal 
solutions are at the maximally possible distance from other globally optimal solutions.  

By enumerating all possible solutions Nugent, Vollman, and Ruml solved the first four of these samples [16] 

[23]. Then, Nug12 and Nug15 were solved using branch and bound heuristics on. In past 14 years, techniques 
such as simulated annealing, genetic algorithms, randomized adaptive search, etc were used to solve instances 
up to Nug24.  

In 2000, Nug30 is solved exactly [6] [7].. The solution was found by applying a branch and bound algorithm, 
[5]. The involved bound was based on convex quadratic programming [5].  

T. Mautor [19] focuses on parallel implementations and exploits the metric structure of the Nugent instances 
to reduce the branching tree considerably. In table 1 and table 2 we used those instances that are probably 
mostly used. The distance matrix contains Manhattan distances of rectangular grids and they are taken form 
QAPLIB. 

The instances of size n = {14, 16, 17, 18, 21, 22, 24, 25} were constructed out of the larger instances by 
deleting certain rows and columns, [25]. For the optimal solutions [64] is concerned. Optimality of Nug21 and 
Nug22 was proved by [1] [15], for Nug24 by [19] [26].. The instances of size n =27 and n =28 were constructed out of 
the instance of size n =30 by deleting the three or two last facilities, respectively, and were solved by 
Anstreicher, Brixius, Linderoth and Groux [7] in 2002.  

In the following two tables, for the different instances of Nugent problem T. Mautor’s solution [15] by using 
branch and bound algorithm and Genetic Algorithm is used. According to [19] genetic algorithm solutions are 
much shorter and less iteration is used to get the feasible solution of the problem. 

 
Name Fitness Permutation 
Nug12 578 (12,7,9,3,4,8,11,1,5,6,10,2) 
Nug14 1014 (9,8,13,2,1,11,7,14,3,4,12,5,6,10)             
Nug15 1152 (1,2,13,8,9,4,3,14,7,11,10,15,6,5,12)           
Nug16a 1610 (9,14,2,15,16,3,10,12,8,11,6,5,7,1,4,13) 
Nug16b 1240 (16,12,13,8,4,2,9,11,15,10,7,3,14,6,1,5)        
Nug17 1732 (16,15,2,14,9,11,8,12,10,3,4,1,7,6,13,17,5)        
Nug18 1930 (10,3,14,2,18,6,7,12,15,4,5,1,11,8,17,13,9,16)      
Nug20 2570 (18,14,10,3,9,4,2,12,11,16,19,15,20,8,13,17,5,7,1,6) 
Nug21 2438 (4,21,3,9,13,2,5,14,18,11,16,10,6,15,20,19,8,7,1,12,17) 
Nug22 3596 (2,21,9,10,7,3,1,19,8,20,17,5,13,6,12,16,11,22,18,14,15) 
Nug24 3488 (17,8,11,23,4,20,15,19,22,18,3,14,1,10,7,9,16,21,24,12,6,13,5,2) 
Nug25 3744 (5,11,20,15,22,2,25,8,9,1,18,16,3,6,19,24,21,14,7,10,17,12,4,23,13) 
Nug27 5234 (23,18,3,1,27,17,5,12,7,15,4,26,8,19,20,2,24,21,14,10,9,13,22,25,6,16,11) 
Nug28 5166 (18,21,9,1,28,20,11,3,13,12,10,19,14,22,15,2,25,16,4,23,7,17,24,26,5,27,8,6) 
Nug 30 6124 (14,5,28,24,1,3,16,15,10,9,21,2,4,29,25,22,13,26,17,30,6,20,19,8,18,7,27,12,11,23) 

   Table 1: Results of Branch and Bound algorithm for Nugent problem [15].. 
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Name Fitness Permutation 
Nug12 578 (3,9,7,12,1,11,8,4,2,10,6,5) 
Nug14 1014 (9,8,13,2,1,11,7,14,3,4,12,5,6,10) 
Nug15 1152 (11,8,7,12,10,9,13,3,5,15,1,2,4,14,6) 
Nug16a 1610 (9,14,2,15,16,3,10,12,8,11,6,5,7,1,4,13 
Nug16b 1240 (14,15,4,16,6,10,2,12,1,7,9,13,5,3,11,8) 
Nug17 1732 (16,15,2,14, 9,11,8,12,10,3,4,1,7,6,13,17,5) 
Nug18 1930 (10,3,14,2,18,6,7,12,15,4,5,1,11,8,17,13,9,16) 
Nug20 2570 (18,14,10,3,9,4, 2,12,11,16,19,15,20, 8,13,17,5,7,1,6) 
Nug21 2438 (4, 21,3,9,13,2,5,14,18,11,16,10,6,15,20,19,8,7,1,12,17) 
Nug22 3596 (2, 21,9,10,7,3,1,19,8,20,17,5,13,6,12,16,11,22,18,4,14,15) 
Nug24 3488 (17, 8,11,23, 4,20,15,19,22,18, 3,14,1,10, 7, 9,16,21,24,12, 6,13, 5, 2) 
Nug25 3744 (5,11,20,15, 22,2, 25,8, 9,1,18,16, 3,6,19,24,21,14,7,10,17,12,4,23,13) 
Nug27 5234 (23,18,3,1,27,17,5,12,7,15,4,26,8,19,20,2,24,21,14, 10, 9,13,22, 25, 6, 16, 11) 
Nug28 5166 (18,21,9,1,28,20,11,3 ,13,12,10,19,14,22,15,2,25,16,4,23,7,17,24, 26, 5, 27, 8, 6) 
Nug30 6124 (14,5,28,24,1,3,16,15,10,9,21,2,4,29,25,22,13,26,17,30,6,20,19,8,18,7,27,12,11,23) 

Table 2: Results of Genetic Algorithm for QAP. 

For the same cost matrices and distance matrices we have different optimal solutions.  The advantage of 
genetic algorithm is to have less iteration and with less time have optimal solution which is better than the used 
method in table 1. 

5 CONCLUSION 

 In this paper we gave a short survey and some methods to solve QAP.  We concentrate on linearization of 
the problem and application of genetic algorithm of the problem. We have some other uncompleted solution of 
the QAP by using Convex Quadratic Optimization application. New matrix formats and redefined algorithm is 
defined for the problem [15].. It is still in test mode.  

The results obtained from Nugent problem form different instances show that genetic approach is 
competitive with other recent heuristic methods.  
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Abstract. The incompressible Navier-Stokes equations are discretized using a high-order accurate in 
space and time numerical method. The momentum equations are discretized on a staggered mesh using 
fourth-order accurate explicit or compact finite-difference schemes. High-order accuracy in time is 
also obtained by marching the solution with the explicit, four-stage Runge-Kutta method. At each stage 
of the Runge-Kutta method, incompressibility is enforced iteratively using two variants of a pressure-
velocity correction technique. The first variant is applied locally and performs corrections cell by cell 
satisfying a fourth-order accurate discrete continuity equation. The second variant performs 
corrections globally by computing  pressure updates from a fourth-order accurate numerical solution 
of a Poisson-type equation. The accuracy and efficiency of the proposed high-order method is 
demonstrated for various incompressible flow problems. 

1 INTRODUCTION 

 In many industrial flows, such as flows over aircraft wings during takeoff and landing, wind-
turbine blades, and hydrofoils, accurate calculation of separated flow occurring at low speeds M∞<0.1, 
which may practically be considered as incompressible, is important. Incompressible flow is also 
encountered in biomedical applications, such as blood flow. Furthermore, the development of high-
speed trains and naval transportation require detailed knowledge of the flowfield because the harsh 
environment of such endeavors imposes high structural and propulsive loads. In most cases, full-scale 
testing is difficult or impossible. Therefore, severe constraints for the evolution of new concepts are 
encountered. All these constitute a strong motive for the development of highly-accurate and efficient 
numerical methods for the simulation of incompressible flows. 

An important problem for the numerical simulation of incompressible flows is coupling of the 
velocity and the pressure fields obtained through the momentum equations while at the same time the 
continuity equation, which has non-evolutionary character, is satisfied by the velocity field. Alternative 
formulations, such as the stream-function-velocity and the vorticity-velocity formulations[21] which 
remove the continuity equation and overcome this problem, are cumbersome to extent to the three 
dimensions. Traditional methods used for the numerical solutions of the incompressible Navier-Stokes 
equations are either the pressure correction based methods[5], [6] or the fractional time-step methods[2], 

[11], [20], [9], [16], [7], [19]. The artificial compressibility or pseudocompressibility method[1], [14], [18] is an 
attractive alternative to the previous methods and was used for the numerical solutions of time-
dependent flows in complex domains [19], [3]. 

Improved aerodynamic design and newly developed conventional and unconventional flow control 
techniques require detailed information of the near wall flowfield, nonlinear instabilities and fine 
turbulent structures. Traditional, second-order accurate in space methods employed for the numerical 
solution of the incompressible Navier-Stokes equations[5], [6], [18] require a large number of grid points to 
resolve these flows. High-order upwind methods on the other hand often produce unacceptable 
solutions by introducing excessive amount of numerical dissipation. Spectral methods which do not 
suffer of such deficiencies do not apply easily for complex domains or for flows with unsteadiness 
caused by wall motion.  

In recent years, highly accurate and robust methods have been developed. High-order accurate 
finite element methods based on high-order expansions of the discrete solution have been proposed[10]. 
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Efficient, highly-accurate finite-difference and finite-volume methods on staggered grids have been 
also pursued for the numerical solution of incompressible flow equations[15], [13]. The important issue of 
conservation for various high-order finite-difference schemes on regular or staggered grids for space 
discretization was studied[15]. In this spirit, a conservative, finite volume approach on staggered grid 
was proposed[13]. 

In the present paper, a high-order accurate in space and time method is proposed for the numerical 
solution of the incompressible Navier-Stokes equations. High-order explicit finite difference formulas 
or compact schemes on a staggered-grid are used to discretize the convective and viscous fluxes in the 
momentum equations. High-order accurate compact schemes shown in Ref. [4] and analyzed in Ref. 
[12] are also employed as alternative to explicit finite-differences. The momentum equations are 
advanced in time using the explicit, fourth-order Runge-Kutta method. In the proposed algorithm, 
incompressibility is enforced using two different approaches; a local pressure correction technique 
analogous to that used in Ref. [6], or a Poisson-equation based global pressure correction method. In 
both cases, fourth-order accurate discretizations are used for the space derivatives involved in the 
continuity equation or the Poisson-type equation. The efficiency and accuracy of the proposed fourth-
order accurate method is evaluated and its conservation properties are discussed and demonstrated with 
the numerical solution of test problems.  

The rest of this paper is organized as follows: In the second section the governing equations in 
Cartesian coordinates are shown. In the third section the space-time discretization and the procedure to 
enforce incompressibility to fourth-order accuracy are presented. In the fourth section the numerical 
results that demonstrate the efficiency and accuracy of the proposed method are shown. The paper is 
closed by a concluding remarks section. 

2 GOVERNING EQUATIONS  

The incompressible Navier-Stokes equations in Cartesian coordinates (x,y) are 

0u v
x y
∂ ∂

+ =
∂ ∂

 (1) 

v vu F G 1 F G
Re y

p
t x y x

⎛ ⎞∂ ∂ ∂ ∂ ∂
+ + = −∇ + +⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

 (2) 

where Tu=[ , ]u v  is the velocity vector and p the pressure, F and G are the inviscid flux vectors given 

by 2 T 2 TF=[ , ] ,  G=[ , ]u uv uv v , Re is the Reynolds number and Fv and Gv are the viscous fluxes 

given by 
TT

v vF , ,  G ,u v u v
x x y y

⎡ ⎤∂ ∂ ∂ ∂⎡ ⎤= = ⎢ ⎥⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦ ⎣ ⎦
. 

3 SPACE-TIME DISCRETIZATION AND INCOMPRESSIBILITY ENFORCEMENT 

In this paper, a high-order accurate algorithm is proposed based on the staggered grid and pressure 
correction procedure of Ref. [6]. Fourth-order accuracy in space is obtained using explicit or compact 
centered finite difference schemes. Incompressibility is enforced using two different approaches, a 
local pressure correction technique analogous to that used in Ref. [6], or a global pressure correction 
through the solution of a Poisson-equation. Both methods are applied iteratively by computing pressure 
corrections, which are then introduced to the discrete momentum equations to update the velocities. 
The pressure corrections terminate once convergence to a divergence free velocity field is reached 
within some tolerance. The first approach computes pressure corrections locally on each cell by 
requiring that the perturbed velocities obtained from a fourth-order accurate discretization of the 
momentum equations (2), satisfy a fourth-order accurate discrete analog of the continuity equation (1). 
The second approach computes pressure corrections globally, i.e. simultaneously on all cells, using a 
Poisson-type equation which results by enforcing zero divergence to the updated velocities. The 
Poisson-type equation is discretized to fourth-order accuracy. Time-marching the solution of (1)-(2) is 
performed using the explicit fourth-order accurate Runge-Kutta method.  

3.1 Space discretization 

The computational domain is divided into rectangular cells. An exterior fictitious layer of three 
cells, adjacent on each side of the physical domain is added to allow imposition of fourth-order 
accurate discrete boundary conditions. A staggered grid configuration is used to discretize the 
dependent variables. On each cell, the pressure p is computed at the cell center, the velocity component 
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u is computed at the mid of the vertical edges, and the velocity component v is computed at the mid of 
the horizontal edges.  In the associated formulation the u-momentum equation (the first of (2)) is 
discretized at the mid of the right vertical edge, the v-momentum equation (the second of (2)) is 
discretized at the mid of the top horizontal edge, and the continuity equation (1) is discretized at the 
cell center.  

The Navier-Stokes equations (1)-(2) are discretized using fourth-order accurate, explicit or 
compact finite-difference schemes. Explicit fourth-order accurate finite differences[15] approximate the 
first- and second-order derivatives at midpoints as follows: 

( )

3/ 2 1/ 2 3/ 2 5/ 2

1
2

2
3/ 2 1/ 2 1/ 2 3/ 2 5/ 2

22
1
2

8 8 ,
12

16 30 16 .
12

i i i i

i

i i i i i

i

f f f fdf
dx x

f f f f fd f
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+ + − −

−

+ + − − −

−

− + − +⎛ ⎞ ≈⎜ ⎟ ∆⎝ ⎠

⎛ ⎞ − + − + −
≈⎜ ⎟

∆⎝ ⎠

  

First derivatives are evaluated to fourth-order accuracy using functional values at integer points as  

1 1 2

1
2

27 27 .
24

i i i i

i

f f f fdf
dx x

+ − −

−

− + − +⎛ ⎞ ≈⎜ ⎟ ∆⎝ ⎠
  

Compact, fourth-order accurate schemes[12], [4] compute first-order derivatives at integer points in a 
coupled fashion using functional values at integer points, by the solution of the following tridiagonal 
linear system 

( ) ( )' ' '
1 1 1 14 3 .i i i i ih φ φ φ φ φ− + + −+ + = −   

First-order derivatives at integer points are computed using functional values at midpoints by solving 
the following tridiagonal linear system 

( ) ( )' ' '
1 1 1/ 2 1/ 222 24 .i i i i ih φ φ φ φ φ− + + −+ + = −   

3.2 Time discretization 

The discrete in space momentum equations resulting from (2) are written as:  

( )U(t) R U,P ,d
dt

=  (3) 

where ( ) ( )R U,P P+A U= −∇ , and A(U) denotes the space discretization of the viscous and 
convective fluxes in (1.2). The fourth-order, explicit Runge-Kutta method when applied to (3) is 
written as:  

,1 ,1

,2 ,1 ,3 ,2 ,4 ,3

U U ,  ,

U U R ,  U U R ,  U U R ,
2 2

n n n n

n n n n n n n n n

P P
t t t

= =
∆ ∆
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( )1 ,1 ,2 ,3 ,4U U R 2R 2R R ,
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with tn=n∆t, tn,1= tn, tn,2= tn,3= tn+ ∆t/2, tn,4= tn+ ∆t, and Rn,l=R(Un,l, Pn,l), for l=2,3,4. The quantities Pn,l, 
for l=2,3,4, required for each stage of the Runge-Kutta method are determined by enforcing the 
incompressibility condition (1) on the velocity vectors Un,l, l=2,3,4, and Un+1 by the pressure correction 
procedures described in the sequel. 

3.3 Incompressibility enforcement 

The first approach[8], which is a fourth-order analog of the pressure correction method of Ref. [6], 
computes pressure corrections locally on each cell by sweeping them in a predefined order and then 
computing velocity updates on each cell. For each stage of the Runge-Kutta procedure, a corrected 
pressure ( ) ( )new oldij ij

p p p= + ∆  is defined on the ij-cell. Substituting this corrected pressure in the 

momentum equations (2) discretized to fourth-order accuracy, a locally perturbed velocity field is 
obtained, and the updated velocity components are given by 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1/ 2, 1/ 2, 3/ 2, 3/ 2,

, 1/ 2 , 1/ 2 , 3/ 2 , 3/ 2

27 ,  ,
24 24
27 ,  .
24 24

new old l new old li j i j i j i j

new old l new old li j i j i j i j

p pu u a t u u a t
x x
p pv v a t v v a t
y y

± ± ± ±

± ± ± ±

∆ ∆
= ± ∆ = ∆

∆ ∆
∆ ∆

= ± ∆ = ∆
∆ ∆

∓

∓
  

Here a2= a3=1/2 and a4=1, and correspond to the coefficients of the Runge-Kutta stages. The pressure 
correction ∆p is computed by requiring that the updated velocities satisfy locally on the ij-cell a fourth-
order accurate discrete analog of (1). All cells are swept in a predefined order. The entire procedure is 
repeated iteratively until global incompressibility is achieved. 

The second approach[8] introduces a globally corrected pressure for all cells  

 ( ) ( ) .new old ijij ij
p p p= + ∆  

Using this correction, perturbed velocities are defined globally on all cells as follows: 

( ) ( ) ( ) ( ) ( ) ( )1/ 2, 1/ 2, 1/ 2, , 1/ 2 , 1/ 2 , 1/ 2
,  .new old l x new old l yi j i j i j i j i j i j

u u a t p v v a t p
+ + + + + +

= − ∆ ∂ ∆ = − ∆ ∂ ∆

 
 

When the perturbed velocities are subjected to a fourth-order accurate approximation of the 
incompressibility condition (1) the updates ∆pij can be determined simultaneously by solving the 
following discrete Poisson-type equation 

( ) ( )2 2 ,old ij
x y ij

l

D
p

a t
∂ + ∂ ∆ =

∆
 (6) 

where 2 2,  x ij y ijp p∂ ∆ ∂ ∆  are evaluated by fourth-order accurate finite difference schemes, and ( )old ij
D  

is the discrete divergence (not necessarily zero) of the original velocities uold, vold. The whole procedure 
is also repeated iteratively until global incompressibility is achieved.  
 
 
4 NUMERICAL RESULTS 

 
In this section the efficiency and accuracy of the proposed space-time discretization method are 

evaluated for the steady-state solution of low Reynolds number driven cavity flow and for the time-
dependent solution of the decaying Oseen’s vortex. The solutions computed with the proposed high-
order method are compared with the exact solutions and solutions obtained with an established second-
order method[6], [18]. Fourth-order of accuracy is demonstrated for the proposed method. Fourth-order in 
space is achieved by both the explicit and the compact fourth-order accurate differencing schemes. The 
computations were performed with CFL numbers below the stability limit of the Runge-Kutta method. 
The discrete divergence free condition is enforced to machine zero accuracy in all cases. 

 
4.1     Driven cavity flow 
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For the numerical solution of the square driven cavity problem a zero normal pressure gradient is 

assumed for all walls and a non slip condition for all walls is imposed except for the top wall where 
u=1 and v=0. Fully converged solutions were obtained by the proposed fourth-order accurate method at 
a Reynolds number Re=100 on the series of 111x111, 121x121, 131x131, 141x141, 151x151, 161x161, 
181x181, 191x191, 201x201, and 221x221 point uniform grids. For comparison, numerical solutions 
were also obtained by a second-order accurate method[6] on the same grids. In addition, a solution was 
computed by the second-order accurate method on a very fine 301x301 point grid.  

In Fig. 1, a comparison of the u-velocities computed by the fourth-order accurate method on the 
201x201 and 221x221 point grids and by the second-order accurate method on the 221x221 and 
301x301 point grids and the results of Ref. [18] is shown. In Fig. 2, an analogous comparison for the v-
velocities is shown. Second-order accurate solutions on finer grids show larger deviations to the 
solution of Ref. [18] than those of the fourth-order accurate solution on coarser grids. The solutions 
shown in Figs. 1 and 2, were obtained after integrating up to 10 time units. Since no difference was 
fond by integrating up to 15 or 20 time units, the steady-state solution was safely reached for 10 time 
units.   
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Figure 1: Driven cavity flow (Re=100). 
Comparison of u-velocity component computed 
by the fourth- and second-order accurate methods 
with a reference solution of Ref. [18]. 

Figure 2: Driven cavity flow (Re=100). 
Analogous comparison for the v-velocity 
component. 
 

 
An a posteriori estimation of the spatial discretization error of the proposed high-order method is 
shown in Fig. 3. A very fine grid solution computed on the 301x301 point grid by an established 
second order accurate method[6] is used as reference solution uR. The L2 norms of the error uN- uR , 
where uN denotes the fourth-order accurate solutions computed on the NxN point grids, with N=111, 
121, 131, 141, 151, 161, 181, 191, 201,  and 221, are shown in Fig. 3.  It is assumed that the reference 
solution uR has negligible error compared to the ‘exact’ solution uE in the L2 norm. Therefore, the L2 
norms of the error uN- uR are good approximations of the L2 norms of the error uN- uE (the error 
between the computed solutions and the ‘exact’ solution). It is evident that the observed order of 
accuracy of the proposed fourth-order method is fair. 

The numerical solutions obtained on the series of grids considered by using compact schemes for 
the space discretization in the proposed fourth-order accurate method coincide. Regarding the two 
different approaches for enforcing incompressibility the following behavior was observed. For the low 
Reynolds number Re=100 numerical solution, the local pressure correction method required less 
computing time than the Poison-equation, global pressure correction method to enforce 
incompressibility to machine accuracy (10-16). However, it was observed that the number of corrections 
per stage/ time-step of the Runge-Kutta method, required by the Poisson-equation pressure correction 
method, is smaller compared to that for the local pressure correction method on the same grid. The 
local correction method in total required smaller computing time because for each correction sweep the 
computing time for solving numerically the Poisson-type equation is larger than that for the simple 
local correction procedure.  

The observation that the number of iterations for the Poisson-equation, global pressure correction 
method was in all cases less that the number of iterations required by the local pressure correction 
method prompted further comparisons the higher Reynolds numbers Re=500, 1000, 2000 and 10000. 
An important outcome of this study was that the increase of the Reynolds number comparatively 
reduces the number of iterations required per time-step by the Poisson-equation pressure correction to 
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the number of iterations required per time-step by the local pressure correction. Therefore, it appears 
that with the progressive increase of the Reynolds number, the Poisson-equation pressure correction 
method becomes more attractive alternative in terms of efficiency than the local pressure correction 
method.      
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Figure 3: Driven cavity flow (Re=100). Grid 
convergence shown by the L2 norm of the error 
obtained by the fourth- and second-order accurate 
methods. 

Figure 4: Oseen vortex decay. Comparison of the 
u-velocity computed by the fourth- and second-
order methods on the 101x101 point grid with the 
exact solution at T=4. 
 

4.2 Oseen vortex decay 
 

The decay of an ideal vortex is an unsteady flow problem of interest to numerical simulations of 
trailing vortices, (LES), and (DES) simulations. The initial velocity profile of the Oseen vortex is 

( , 0) / 2v r t rθ π= = Γ , where Γ is the strength of the vortex and r is the distance from the origin. The 
initial pressure distribution is constant. Under the effects of viscous forces this vortex decays and the 
velocity at time t is given by   

2

4( , ) 1 .
2

r Re
tv r t e

rθ π

⎛ ⎞
−⎜ ⎟⎜ ⎟
⎝ ⎠

⎡ ⎤Γ ⎢ ⎥= −
⎢ ⎥
⎣ ⎦

 (7) 

The time-dependent flow for the numerical experiments shown below was computed with Γ=5. In Fig. 
4 the numerical solutions obtained on  a uniform 101x101 point Cartesian grid, using the fourth- and 
the second-order accurate methods were compared with the exact solution (7) for time T=4. The 
superiority of the fourth-order accurate method when compared to the second-order accurate method is 
evident.  In Fig. 5 numerical solutions obtained on a 1001x1001 point grid by the fourth- and the 
second-order accurate methods for a very large Reynolds number Re= 1010, i.e. for practically inviscid 
flow, are compared with the exact solution. In both cases, a small time step of 1/1000, well below the 
CFL stability limit of the Runge-Kutta method, was used to ensure time accuracy. 

The kinetic energy conservation of the proposed fourth-order accurate method is shown in Fig. 6. 
The kinetic energy is defined as 2E( ) ( , , )t u r t rdrdθ θ= ∫∫ , is plotted for Re= 1, for the exact 

solution and the fourth-order accurate numerical solution computed on the 101x101 point grid. For the 
space discretization the explicit fourth-order accurate finite difference schemes of subsection 3.1 are 
used. The kinetic energy is plotted in the same figure for the inviscid limit Re= 1010, for the exact 
solution and the computed fourth-order accurate numerical on the 1001x1001 point grid. In both cases, 
the kinetic energy conservation of the proposed fourth-order accurate method is evident.  The same 
behavior was exhibited by the fourth-order accurate compact schemes of subsection 3.2, when used for 
the space discretization in the proposed time-space discretization method.  
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Figure 5: Oseen vortex decay. Comparison of the 
u-velocity computed by the fourth- and second-
order methods on the 1001x1001 point grid with 
the exact solution for Re=1010, at T=4. 

Figure 6: Oseen vortex decay. Comparison of the 
kinetic energy E as a function of time obtained 
from the u-velocity computed by the fourth-order 
accurate method for Re=1 (on the 101x101 point 
grid) and Re=1010 (on the 1001x1001 point grid) 
and the corresponding exact solution. 

 
5 CONCLUSIONS  

 
A fourth-order accurate in space and time method, for the numerical solution of the incompressible 

Navier-Stokes equations was shown. The method uses fourth-order accurate explicit or compact 
schemes for the space discretization. The fourth-order explicit Runge-Kutta method is used for time 
marching the numerical solution. The computed velocities at each stage/ time-step of Runge-Kutta 
procedure are subjected to the incompressibility condition using two different approaches. The first 
approach iteratively computes pressure updates locally on each cell which then proceeds in to local 
velocity corrections until incompressibility is enforced. The second method solves a global Poisson-
type equation to compute pressure updates simultaneously for all cells; velocity is recomputed globally. 
The space derivates in the continuity equation (1) or the Poisson-type equation (4) used by the two 
approaches for incompressibility enforcement, are discretized to fourth-order accuracy.  
 The accuracy of the proposed fourth-order method is accessed. Computed solutions by the proposed 
method are compared with exact solutions for incompressible flow problems. Numerical results for the 
steady-state flow in a driven cavity and the unsteady flow for the decay of the Oseen vortex are 
presented. The proposed fourth-order accurate method is more efficient than the second-order accurate 
method. Fourth-order accuracy in space was established for the proposed method both when fourth-
order accurate explicit or compact finite difference schemes were used for the space discretization. 
Fourth-order accuracy in time was also achieved. The local pressure correction method was observed to 
perform better for low Reynolds numbers than the Poisson-equation pressure correction method. The 
later appears to become a more attractive alternative as the Reynolds number increases.    
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Abstract. In the past years, Domain Decomposition Methods (DDM) emerged as advanced solvers in several 
areas of Computational Mechanics. In particular, during the last decade, in the area of Solid and Structural 
Mechanics, they reached a considerable level of advancement and were shown to be more efficient than popular 
solvers, like advanced sparse direct solvers. The present contribution follows the lines of a series of recent pub-
lications by the authors on DDM. In these papers, the authors developed a unified theory of primal and dual 
methods and presented a family of DDM that were shown to be more efficient than previous methods. The pre-
sent paper extends this work, presenting a new family of related DDM, thus enriching the theory of the relations 
between primal and dual methods. 
 
1 INTRODUCTION 

In the last decade Domain Decomposition Methods (DDM) have undergone a significant progress leading to 
a large number of methods and techniques, capable of giving solution to various problems of Computational 
Mechanics. In the field of Solid And Structural Mechanics, in particular, this fruitfull period led to the extensive 
parallel development of two large families of methods: (a) the Finite Element Tearing and Interconnecting 
(FETI) methods and (b) the Balancing Domain Decomposition (BDD) methods. Both introduced at the begin-
ning of the 90s[1,2], these two categories of methods today include a large number of variants. However, their 
distinct theories led to the lack of extensive studies to interconnect them in the past. Thus, in the present decade 
two studies[3,4] attempted to determine the relations between the two methods. 

In particular, the studies [4,5] set the basis of a unified theory of primal and dual DDM. This effort also led 
to the introduction of a new family of methods, under the name “Primal class of FETI methods”, or in abbrevia-
tion “P-FETI methods”. These methods are derived from the Dirichlet preconditioned FETI methods. They, 
thus, inherit the high computational efficiency properties of these methods, while their primal flavour gives them 
increased efficiency and robustness in ill-conditioned problems. However, so far there has not been presented a 
primal alternative for the lumped preconditioned FETI methods. Filling this hole is the object of the present 
study and even though the new formulations do not appear to share the same advantages as the P-FETI formula-
tions, they serve the purpose of diversifying our knowledge of the relations of primal and dual methods. 

This paper, thus, presents the primal alternatives of the lumped preconditioned FETI methods and is organ-
ised as follows: Section 2 presents the base formulation of the introduced methods. Section 3 sets up some alge-
braic relations that lead to the transformation of the algorithms in a more economical form, which is derived in 
the section that follows. Finally, section 5 presents numerical results for comparing the new formulation with 
previous ones and section 6 gives some concluding statements. 

2 BASIC FORMULATION OF THE PRIMAL ALTERNATIVES OF THE FETI METHODS 
EQUIPPED WITH THE LUMPED PRECONDITIONER 

The P-FETI methods were built on the concept of preconditioning the Schur complement method with the 
first estimate of displacements obtained during the FETI methods. Accordingly, the primal counterparts of the 
lumped preconditioned methods will be obtained by similarly preconditioning the intact global problem. Thus, 
the following equation  
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 T Ts sKu f L K Lu L f= ⇔ =  (1) 

will be preconditioned with the first displacement estimate of a FETI method. In eq. (1), K , u , and f  repre-
sent the global stiffness matrix, displacement and force vectors, respectively, while 

 

(1)

( )s

s

n

K
K

K

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

   ,   

(1)

( )s

s

n

u
u

u

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

   and   

(1)

( )s

s

n

f
f

f

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

  (2) 

are the matrix block-diagonal assemblage of the correponding quantities of subdomains   1,...,  ss n=  and L  is a 
Boolean restriction matrix, such that su Lu= . Using the original FETI formulation, usually refered to as “one-
level FETI” or  “FETI-1”, the following preconditioner for (1) is derived (this equation is obtained following an 
analysis almost identical to [4, section 6]): 

 
11 T s

p pA L A L
−− =  (3) 

where: 
1 Ts sA H K H

− +

=    ,    
TT T 1( ) sH I B QG G QG R−= −     and    sG BR=  (4) 

Here, sR  and sK
+

 are the block-diagonal assemblage of subdomain zero energy modes and generalized in-
verses of subdomain stiffness matrices, respectively, B  is a mapping matrix such that null( ) range( )B L= , Q  is 
a symmetric positive definite matrix used in the FETI-1 coarse projector (see for instance [6]), while pL  and pB  
are scaled variants of L  and B  (see the expressions gathered from various DDM papers in [4]). Similar ideas 
lead to the corresponding preconditioners that are derived from other FETI variants. Comparing the lumped 
preconditioned FETI-1 method with the method of this section, it is noted that the present method has a signifi-
cantly higher computational cost, because it operates on the full displacement vector u  of the structure and also 
needs multiplications with the full stiffness matrices of the subdomains. In order to diminish its cost, this algo-
rithm will be transformed into a more economical version, by respresenting its primal variables with dual vari-
ables. 

3 AUXILIARY EQUATIONS LEADING TO THE CHANGE OF VARIABLES OF THE 
ALGORITHM 

In order to perform the transformation of variables, we need to prove some relations of the introduced matri-
ces. First, the L  and B  matrices satisfy the (some of the most complete studies on these equations can be found 
in [3, 7]: 
 range( ) null( )L B=      and     range( ) null( )p pL B=  (5) 

 T 2 T( )p pL L L L=      and     T 2 T( )p pB B B B=  (6) 

 T
pL L I=     and    T T

p pL L B B I+ =  (7) 

H  is a projector satisfying 

 
Ts 0R H =    ,    T 0HB QG =    ,   2H H=    and    TH L L=  (8) 

The stiffness matrices satisfy the relations: 
 0s sK R =    and   s sHK K=  (9) 
and the property: There is a matrix Y  such that: 

 s s sK K I R Y
+

= +  (10) 
Using eqs. (8) - (10), we obtain:  

( )1 T T T T T T            s s s s s s s sA K H K HK H K K H I R Y H H R Y H
− + +

= = = + = + =   (11) 

Using eqs. (5), (7), (8) and (11), we obtain the following equations: 

 
1T T T Ts s

p p pL A K L L H L L L I
−

= = =    ,    
1 T 0s sBA K L BH L BL
−

= = =  (12) 
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1 T T T T

T T T T T

 ( )s s s s
p p p p

s s s s s s
p p p p p

KA L K L L A L L K I B B A L

L K A L L K B BA L I L K B BA L

− −

− − −

− = = − =

− = −
 (13) 

 
( )1 1

1 1 1

T T T T T T

T T T T T T T T

s s s s
p p

s s s s s s
p p

L K LL A B L K I B B A B

L K A B L K B BA B L K B BA B

− −

− − −

= −

= − = −
 (14) 

In addition, using eqs. (7) and (8): 

 
T

T

( )

( )

T T
p p p

T T
p p p

HB B H H I L L H HH HL L H

H HL L H I L L HB B

= − = −

= − = − =
 (15) 

 
1 T T T T T T Ts s

p p pA K B BH H B BH B BH
−

= =    and    
1T T T T T T 0s s

p p p pL A K B BH L B BH
−

= =  (16) 

Also, using eqs. (5) and (7), it follows from eq. (16): 

 
1 T T T T T T T T T T( )s s

p p p pBA K B BH BB BH B I LL H BH BLL H BH
−

= = − = − =  (17) 

and using eqs. (7), (16): 

 
( )1 1

1 1 1

T T T T T T T T

T T T T T T T T T T T

s s s s
p p p p p p

s s s s s s
p p p p p p p p

L A L L K B BH L A I B B K B BH

L A K B BH L A B B K B BH L A B B K B BH

− −

− − −

= −

= − = −
 (18) 

4 FINAL FORM OF THE ALGORITHM 

In this section, it will be shown that if the initial solution vector of the PCG algorithm applied for the solu-
tion of eq. (1) , with the preconditioner of eq. (3), is set equal to (In the following of this section we use the no-
tation and steps of Algorithm 1): 
  0 1u A f−=  (19) 
then there exist suitable vectors (denoted below with the subscript “1”), such that the following variables of the 
PCG can be written in the forms ( 0,1,...k = ): 

 
1T T

1
k s k

pz L A B z
−

= −    ,    
1T T

1
k s k

pp L A B p
−

= −    ,    T T
1

k s k
pr L K B r=    and    T T

1
k s k

pq L K B q=  (20) 

Eqs. (20) allow expressing the PCG vectors, which have the size of the total number of degrees of freedom 
(d.o.f.), with respect to vectors whose size is equal to the row size of matrix B  (which in turn is equal to the 
number of Lagrange multipliers used in dual DDM). They thus allow reducing the cost of the algorithm. Before 
proceeding with the proof, we will study how the linear combinations and dot products performed by the PCG 
algorithm are transformed due to eqs. (20).  

The linear combinations of the PCG vectors are simply transformed to linear combinations of Lagrange mul-
tiplier vectors. For instance: using eq. (20) the PCG residual becomes: 

 
1 1 1 T T 1 1 T T 1

1 1

T T 1 1 1 1 1 1 1
1 1 1 1 1( )

k k k k s k k s k
p p

s k k k k k k k
p

r r q L K B r L K B q

L K B r q r r q

η η

η η

− − − − − −

− − − − − − −

= − = −

= − ⇒ = −
 (21) 

In order to discuss the transformation of the PCG dot products, we define vectors: 

 
1 T

2 1
k s kz BA B z

−

=    and    T
3 2
k s k

p pz B K B z=     ,    
1 T

2 1
k s kp BA B p

−

=    and    T
3 2
k s k

p pp B K B p=  (22) 

 T
2 1
k s k

p pr B K B r=     and     
1 T

3 2
k s kr BA B r

−

=    ,    T
2 1
k s k

p pq B K B q=     and     
1 T

3 2
k s kq BA B q

−

=  (23) 

Then for instance (using eqs. (7) and (20) ), the following dot product becomes: 

 

T T 1 T 1

T 1 T 1

T T T T
1 1 1 1

T T T
1 1 1 1

( )k k k s s k k s s k
p p p p

k s s k k s s k
p p p

p q p BA L L K B q p BA I B B K B q

p BA K B q p BA B B K B q

− −

− −

= − = − −

= − +
 (24) 
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Here, it is needed to make the following assumption, which will also be verified in the proof that follows: 
T

1  range( )kq BH∈ . Thus, there is a vector y such that T
1
kq BH y=  and the first term of eq. (24) becomes (using 

eq. (17) ): 

 
T 1 T 1 T TT T T T

1 1 1 1 1 1
k s s k k s s k k k

p pp BA K B q p BA K B BH y p BH y p q
− −

− = − = − = −  (25) 
For the second term, there are the following three choices (taking into account the assumptions (20) and the 
definitions (22) - (23) ): 

 
T 1 TT T

1 1 2 2
k s s k k k

p pp BA B B K B q p q
−

=  (26) 

or: 
T 1 TT T

1 1 1 3
k s s k k k

p pp BA B B K B q p q
−

=  (27) 

or: 
T 1 TT T

1 1 3 1
k s s k k k

p pp BA B B K B q p q
−

=  (28) 
Thus, using each of these choices and expression (25), the dot product (24) takes the following three expres-
sions: 

 
T T T

2 2 1 1
k k k k k kp q p q p q= −  (29) 

or: 
T T T T

1 1 1 3 1 3 1( )k k k k k k k k kp q p q p q p q q= − + = −  (30) 

or: 
T T T T T

1 1 3 1 3 1 1( )k k k k k k k k kp q p q p q p p q= − + = −  (31) 

where it is noted that options (30) and (31) are more cost effective than option (29). Like dot product 
Tk kp q  

which was used here as an example, all dot products of the PCG can be expressed in the form of dot products of 
Lagrange multiplier vectors, like in eqs. (29) - (31).  

We are now ready to proceed to the proof of eqs. (20), proving also that there are vectors y such that 
T

1
kq BH y=  and T

1
kr BH y=  and obtaining the transformed algorithm with respect to Lagrange multiplier vec-

tors. We simply follow the steps of Algorithm 1. Thus, from eq. (19) it follows (using eq. (13) ): 

 
1 10 0 1 T T T T( )s s s s

p p p pr f Au f AA f f I L K B BA L f L K B BA L f
− −−= − = − = − − =  (32) 

and: 
10 T

1 ( )s s
p pr BA L f BH K HL f

− +

= =  (33) 

Computing the residual 0r  from the above equations, we get: 

 
T0 TT

0 T T 0 0 T 0
1 1 10

( ) 0
b

b

s s s
pbs bb ib b bbb

p ps s s
i b ib ii ib

Br K K L KL
r L K B r r B r

r K K KI
⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤

= ⇒ = =⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

 (34) 

where subscripts b  and i  restrict the matrices to interface or internat d.o.f. of the subdomains, respectively. In 
eq. (34) it is worth noting that the residual vanishes in internal d.o.f. of the subdomains, when these d.o.f. are not 
adjucent to interface d.o.f., which is also observed in the lumped preconditioned FETI methods. Futhermore: 

• Initialize 

0 0r b Ku= −    ,    0 1 0z A r−=    ,    0 0p z=    ,   0 0q Kp=    ,   
T

T

0 0
0

0 0

p r
p q

η =  

• Iterate 1,2,...k =  until convergence 

1 1 1k k k ku u pη− − −= +     ,    1 1 1k k k kr r qη− − −= −    ,   1k kz A r−=  
T

T

1

0

k ik
k k i

i i
i

z qp z p
p q

−

=

= −∑    ,   k kq Kp=     ,    
T

T

k k
k

k k

p r
p q

η =  

Algorithm 1. The PCG algorithm for solving system Ku f=  preconditioned 

with 1A−  (full reorthogonalization) 
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T T

0 T 0 0 T T 0
2 1 1 1

0 0
b b

b b

s s
p ps sbb ib

p p p bb ps s
ib ii

B BK K
r B K B r r B K B r

K K
⎡ ⎤ ⎡ ⎤⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

 (35) 

where it is worth noting that matrix T T
b b

s
p bb pB K B  is identical to the lumped preconditioner of FETI-1. Then, using 

eq. (18) it follows that there is a y  such that (here s
py K HL f

+

=  from eq. (33) ) 

 

1 1

1 1 1

0 1 0 T T T 0 T T T T
1

T T T T T T T 0 T T 0
1 2

s s s s
p p p p p p

s s s s s
p p p p p p p

z A r L A L L K B r L A L L K B BH y

L A B B K B BH y L A B B K B r L A B r

− −

− − −

−= = =

= − = − = −
 (36) 

and: 0 0
1 2z r=     and    

10 0 T 0
2 3 1( ) sz r BA B z

−

= =  (37) 
Then: 

 
0 0

0 0 1 1
0 0
2 2

p z
p z

p z
⎧ =

= ⇒ ⎨
=⎩

 (38) 

and using eq. (14): 

 
1 10 0 T T T 0 T T T 0 T T 0

1 1 2
s s s s s

p p pq Ap L K LL A B p L K B BA B p L K B p
− −

= = − = =  (39) 
Therefore: 

 
10 0 0 T 0 0 T

1 3 2 1 1( )  range( )sq z p BA B p q BH
−

= = = ⇒ ∈    and    0 0 T 0
2 3 1( ) s

p pq p B K B q= =  (40) 

Then (similar to eq. (31) and using the fact that both 0
1r , 0 T

1 range( )q BH∈ :  

 
T TT

T T T

0 0 00 0
0 3 1 1

0 0 0 0 0
3 1 1

( )
( )

p p rp r
p q p p q

η −
= =

−
 (41) 

Then: 
 1 1 1k k k kr r qη− − −= −     ,     1 1 1

1 1 1
k k k kr r qη− − −= −     and    1 1 1

2 2 2
k k k kr r qη− − −= −  (42) 

which also implies that if 1
1
kr − , 1 T

1  range( )kq BH− ∈  then T
1 range( )kr BH∈ . 

Continuing, like in eq. (36) we obtain (provided that T
1 range( )kr BH∈  ): 

 

1 1

1 1 1

1 T T T T T T T
1

T T T T T T T T T
1 2

k k s s k s s
p p p p p p

s s s s k s k
p p p p p p p

z A r L A L L K B r L A L L K B BH y

L A B B K B BH y L A B B K B r L A B r

− −

− − −

−= = =

= − = − = −
 (43) 

and: 1 2
k kz r=     and    

1 T
2 3 1( )k k s kz r BA B z

−

= =  (44) 
Then (in the case of full reorthogonalization): 

 
T

T

1

0

k ik
k k i

i i
i

z qp z p
p q

−

=

= −∑  (45) 

The dot product terms are written (using eq. (30) and assuming T
1 range( )kq BH∈  ):  

 
TT

T T
1 3 1

1 3 1

( )
( )

k i ik i

i i i i i

z q qz q
p q p q q

−
=

−
 (46) 

and we have: 

 
T

T

1

1 1 1
0

k ik
k k i

i i
i

z qp z p
p q

−

=

= −∑      and     
T

T

1

2 2 2
0

k ik
k k i

i i
i

z qp z p
p q

−

=

= −∑  (47) 

where the dot products are given by eq. (46). Then, like in eq. (39) (using eq. (22) ): 

 T T
2

k k s k
pq Ap L K B p= =    ,   

1 T
1 2 1
k k s kq p BA B p

−

= =    and  T
2 3 2( )k k s k

p pq p B K B p= =  (48) 
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which also shows that T
1  range( )kq BH∈ . Note that this concludes recursively the proof that 1

kr , 
T

1  range( )kq BH∈ , 0,1,...k =  
Finally, we have: 

 
T TT

T T T
3 1 1

3 1 1

( )
( )

k k kk k
k

k k k k k

p p rp r
p q p p q

η −
= =

−
 (49) 

In eq. (46), we use vector 3
iq  that has not been computed yet. This vector will be computed using eq. (42) 

that implies that: 
 ( )( )1 1 1 1 1 1

3 3 3 3 3 31k k k k k k k kr r q q r rη η− − − − − −= − ⇒ = −  (50) 

Hence, using the previous equations, the final form of the algorithm is obtained as is shown in Algorithm 2 (in 
the case of full reorthogonalization). It is worth noting that even though the formulation is primal, the final al-
grorithm is very similar to the algorithm of the FETI-1 method with the lumped preconditioner. In particular: 
• The matrices 

1 TsBA B
−

 and T T
b b

s
p bb pB K B  that are used during the iterations are equal to the FETI-1 matrix 

operator and lumped preconditioner, respectively. 
• The algorithm iterates on vectors of the size of the Lagrange multipliers. 
• The residual vanishes in internal d.o.f. of the subdomains, when these d.o.f. are not adjucent to the inter-

face, again as in FETI-1 with the lumped preconditioner. 
On the other hand, each iteration of the present algorithm requires more linear combinations of vectors than a 
dual algorithm. These operations become important in the case of reorthogonalization. In this case, the required 
dot products 

T

1 3 1( )k i iz q q− ,  0,..., 1i k= −  imply the same computational cost as in FETI-1, because at each itera-
tion 3 1

k kq q−  is computed and stored. However, compared to FETI-1, this algorithm requires twice as many lin-

• Initialize 

10 T s
p pu L A L f

−

=   ,   0 0u =    ,   
10

1
s

pr BA L f
−

=   ,   
T

0 T 0
1b

s
b bb

ps
ib

L K
r B r

K
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

0 0 T T 0
1 1 1b b

s
p bb pp z B K B r= =   ,   

10 0 0 0 T 0
1 2 3 2 1

sq p r z BA B z
−

= = = =  
T

0 T 0
1b

s
b bb

ps
ib

L K
q B q

K
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

   ,    0 0 T T 0
3 2 1b b

s
p bb pp q B K B q= =   ,   

T T

T T

0 0 0
0 3 1 1

0 0 0
3 1 1

( )
( )

p p r
p p q

η −
=

−
 

 

• Iterate 1,2,...k =  until convergence (  kr ε< ) 

1 1
1 1 1
k k k ku u pη − −= +     ,    1 1 1k k k kr r qη− − −= −     ,    1 1 1

1 1 1
k k k kr r qη− − −= −  

1 1 1
1 2 2 2
k k k k kz r r qη− − −= = −    ,   

1 T
3 2 1
k k s kr z BA B z

−

= =    ,   ( )( )1 1 1
3 3 31k k k kq r rη− − −= −  

T

T

1
1 3 1

1 1 1
0 1 3 1

( )
( )

k i ik
k k i

i i i
i

z q qp z p
p q q

−

=

−
= −

−
∑   ,   

T

T

1
1 3 1

1 2 2 2
0 1 3 1

( )
( )

k i ik
k k k i

i i i
i

z q qq p z p
p q q

−

=

−
= = −

−
∑  

T
T

2b

s
k kb bb

ps
ib

L K
q B p

K
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

   ,    T T
3 2 2b b

k k s k
p bb pp q B K B p= =    ,    

T T

T T
3 1 1

3 1 1

( )
( )

k k k
k

k k k

p p r
p p q

η −
=

−
 

• After convergence 
10 T T

1
k s k

pu u L A B u
−

= −  

Algorithm 2: The primal alternative of the FETI-1 method with the lumped  
preconditioner (full reorthogonalization) 
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ear combinations for computing the vectors 1
kp  and 2

kp , that represent the direction vectors kp . In total, in this 
algorithm reorthogonalization requires 50% more floating point operations than in FETI-1. In addition, while 
FETI-1 reorthogonalization requires storing two vectors per iteration, here it is required to store the three vectors 

1
kp , 2

kp  and 3 1
k kq q− , which implies 50% higher memory requirements for reorthogonalization in Algorithm 2. 

5 NUMERICAL RESULTS 

We have implemented the FETI-1 and FETI-DP methods with the lumped preconditioner and their primal al-
ternatives in our Matlab code and we consider the 3-D elasticity problem of Fig. 1. This cubic structure is com-
posed of five layers of two different materials and is discretized with 28 28 28× ×  8-node brick elements. Addi-
tionally, it is pinned at the four corners of its left surface. Various ratios A BE E  of the Young modulus and 

A Bρ ρ  of the density of the two materials are considered in the paper, while their Poisson ratio is set equal to 

A B 0.30ν ν= = . Two decompositions P1 and P2 of this heterogeneous model of 73,155  d.o.f. in 100 subdo-
mains, are considered (see [4] for details). 

Table 1 presents the iterations required by primal and dual formulations of the lumped preconditioned FETI-
1 method. The results show that like in the case of comparing dual and primal formulations of the Dirichlet pre-
conditioned FETI methods, the iterations of the two formulations of the lumped preconditioned FETI-1 methods 
are comparable. More precisely, it is noted that in the more ill-conditioned cases the primal method performs 
slightly less iterations (up to 11%) than the dual one. In fact, judging also from many other tests that we have 
performed comparing the two formulations of FETI-1 and FETI-DP with the lumped preconditioner, it appears 
that the difference between the number of iterations of primal and dual formulations in ill-conditioned problems 
is more pronounced in the case of the lumped preconditioner than in the case of the Dirichlet preconditioner. A 
probable explanation is that the lumped preconditioned methods lead by themselves to more ill-conditioned 
systems than the Dirichlet ones. 

On the other hand, bearing in mind that the primal formulation implies a 50% higher reorthogonalization 
cost, we conclude that statistically the primal formulation will be probably slower than the dual one in well-
conditioned problems and probably faster in ill-conditioned problems with relatively low reorthogonalization 
cost. In addition, in the case of the lumped preconditioner, our results do not show the increased robustness 
(measured in terms of the maximum achievable solution accuracy in ill-conditioned problems) of the primal 
formulation that has been seen in the case of the P-FETI formulations. A probable explanation of this observa-
tion is given by the increased operations required in each iteration of the primal algorithm as oposed to the dual 
one and also by the fact that due to setting the initial solution vector equal to eq. (19), the initial residual of the 
primal methods is equal to the initial residual of the dual methods (see the residual of eq. (32), which is equal to 
the initial residual of the FETI-1 method). Thus, contrary to the P-FETI formulations, the residuals of the primal 
formulations of the lumped preconditioned FETI methods begin from relatively high values, as in the dual for-
mulations. 

6 CONCLUSIONS 

 
Figure 1. A cubic structure composed of two materials 
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The roots of the presented in this paper work can be traced back to the paper [4]. This paper introduced the 

P-FETI methods, as the primal alternatives of the Dirichlet preconditioned FETI methods. Compared to the 
original FETI formulations, the P-FETI methods present the advantage of being more robust and faster in the 
solution of ill-conditioned problems. [4] also introduced an open question of the existence or not of a primal 
alternative for the lumped preconditioned FETI methods. In the last years it has become clear that the the 
lumped preconditioner leads to faster solutions, in the cases where a problem needs to be decomposed in a rela-
tively small number of subdomains. This case and also the case where the lumped precondtioner leads to less 
memory consumption (in large problems where memory consumption can be the main issue), appear to be the 
uses of the lumped preconditioner in modern DDM practice. 

Table 1. Number of iterations (Tolerance: 310− ) of the lumped Preconditioned FETI-1 method  
and its primal alternative for the solution of the example of Fig. 1 

 
The present work introduces the primal alternatives of the lumped preconditioned FETI methods. These new 

formulations do not appear to present the advantages of the P-FETI formulations, since they are slightly slower 
or faster than their dual counterparts depending on the problem and do not exhibit higher robustness properties 
than the dual methods. Their principal value lies in the fact that they add a new level of completion to the theory 
of the relations of primal and dual methods. The fact that a primal algorithm can be turned to an algorithm which 
uses dual operators and vectors appears to be new in DDM literature. It is also worth noting that the same trans-
formations used in this paper can be used in the P-FETI and the BDD methods in order to transform them into 
algorithms that operate on dual quantities. This and many other recent studies[3,7] show more and more that pri-
mal and dual formulations are closely connected. 
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Abstract. We analyze the global dynamics of a liquid crystalline sample when subjected to shear flow. The fluid 
is described by a simplified model derived through a closure from the rigid rod model. The analysis is based on 
the numerical computation of stable and unstable manifolds of both periodic and stationary solutions, and their 
interactions in parameter space. Several global bifurcations have been detected and the impact of the closure 
approximation on the global dynamics is discussed. 
 
 
1 INTRODUCTION 

Liquid crystal polymer solutions are known to exhibit complex and nonlinear rheological behavior when 
subjected to shear flows. Theoretical and experimental work has shown that, depending on shear rate, several 
stationary and oscillatory regimes (periodic and even chaotic) can been observed. When the rodlike molecules 
are treated as rigid rods, the sample is described by an orientational distribution function which obeys a Fokker-
Planck-type equation, also called the Smoluchowski equation[1]. As is now well known, the rigid rod model is 
capable of describing the behavior of liquid crystalline polymers in the nematic phase under moderate and large 
shear rates, i.e., when the effects of texture become negligible[2-4] . The predictions are, in fact, obtained under 
the assumption of homogeneous conditions, and thus the flow has to be strong enough to destroy the 
inhomogeneous structure typical of textured samples. Within this framework, the molecules are treated as rigid 
rods with infinite aspect ratios. The model predicts different regimes (stationary, periodic and chaotic) 
depending on both the shear rate and the intensity of the nematic field[5]. When the system is a strong nematic, 
that is, when the intensity of the nematic field is larger than a critical value, stationary flow aligning solutions 
are predicted at high shear rates, whereas at intermediate and low shear rates several different regimes are 
predicted, both stationary (log rolling and out of plane aligning) and periodic (kayaking, tumbling, wagging, out 
of plane oscillating). Recently, also chaotic dynamics have been discovered[5]. The rigid rod model was used as 
guidance in the experimental quest for oscillating solutions[6]. In that case, a nematic solution showed sustained 
oscillations under relatively large shear rates, that is, close to the flow-aligning regime. The evidence of 
sustained oscillations under “strong” flows justifies, at least in first approximation, the use of a monodomain 
description of the nematic phase, and as a consequence, the analysis of a homogeneous “simple” model can 
produce meaningful results.  Several simplified models have been derived from the Smoluchowski equation 
writing a continuum equation for the second moment of the distribution and adopting a closure approximation 
for higher order moments.  

We use as a model for a nematic polymer a closed equation capable of reproducing, at least qualitatively, the 
features of the rigid rod model. The constitutive equation considered here has been studied in great detail by 
Forest and Wang (2002). It is obtained from the rigid rod model for molecules with finite aspect ratio by 
applying a quadratic closure approximation. It is well known that the quadratic closure erases most of the rigid 
rod model predictions under constant shear flows when the molecules are considered of infinite aspect ratio, but, 
when this closure is applied to the model for rods with finite aspect ratio, the predictions one obtains are in good 
qualitative agreement with those obtained with the rigid rod model proposed in Doi, 1981 and formulated in 
terms of orientational distribution function for rods of infinite aspect ratio[1, 7-9]. Even complex and sensitive 
phenomena as the period doubling cascade leading to chaos are qualitatively reproduced. Critical values of shear 
rate at which transitions occur have been detected with nonlinear analysis of both closure and distributed models 
and a comparison between the predictions of different models has been performed with the detection of local 
bifurcations[7] .  

763



L. Russo, C. I. Siettos, and I. G. Kevrekidis. 
However, local analysis only provides partial information; we still need to understand global bifurcations 

which can occur, for example, when stable and unstable manifolds of stationary (or periodic) solutions interact. 
In this work we analyze some features of the global dynamics of a liquid crystalline sample when subjected to 
shear flow. The analysis is based on the computation of stable and unstable manifolds of both periodic and 
stationary solutions, and their interactions in parameter space, with the techniques developed in Johnson et al. 
(1997)[10]. It should be stressed that even though the true dynamics can be much more complex if one accounts 
for the full coupling between the order parameter and the flow field, we believe that the use of a simple model is 
sufficient to illustrate that global bifurcations might occur.  

2 THE MODEL 

2.1 The constitutive equation 
Rheological predictions of complex fluids are often based on the use of microscopic modeling 

techniques[1,11,12]. The molecules are usually treated as long rigid rods exhibiting phase transitions between 
highly oriented and isotropic states with changes of temperature and/or concentration. A simple model 
describing the dynamics of a single rigid-rod molecule orientational probability distribution function ψ(u) under 
shear is given by the celebrated Smoluchowski equation[1, 3]: 
 

](u) (u) [ ,( ) (u )
u u u u

VD
t kT

ψ ψ ψψ ψ ∂ ∂ ∂ ∂ ∂ = ⋅ + − ⋅  ∂ ∂ ∂ ∂ ∂  

uu &                                                      (1) 

 
where u is a unit vector describing the orientation of a rod, k is the Boltzmann's constant, T represents the 
absolute temperature, D is the average rotational diffusivity while V[ , ]ψ u  is the mean field nematic potential 
which in general is a functional of the distribution function relating the free energy associated with a molecule 
with orientation u interacting with its neighbors. The rate of change of the orientation,  due to the macroscopic 
flow reads

u&
[7, 13]: [ ]u u u : uuua= ⋅ + ⋅ −Ω D D& .       

The above equation generalizes the applicability of the Smoluchowski equation to molecules with 
different shapes, from rod to disc-like. This is controlled by the parameter  in the above expression given by a

2

2

1
1

ra
r
−=
+

1a ≈ −

; corresponds to the thin-rod limit, corresponds to spherical molecules, while 

correspond to the thin-disc limit. D and Ω are the tensors of the rate of strain and vorticity, given by 

1a = 0a =

( ) (1 1,
2 2

T= ∇ +∇ = ∇ −∇D v v Ω v v )T                    (2) 

where v is the macroscopic velocity of the flow. Here we use the simple Maier-Saupe potential given by[1]:  
3[ ] = ,
2

SV UkT−u uu :  where 1
3

= −uS u  is the tensor order parameter,I ( ) ( ) ( )dψ⋅ = ⋅∫ u u and U is the 

intensity of the nematic potential (which can be thought to be proportional to the concentration of the rods). 
The velocity of the macroscopic shear flow is given by , where the x-coordinate shows the flow 

direction, the y-coordinate the vorticity direction and the z-coordinate the velocity gradient direction; G is the 
nondimensional shear rate.  

( ,0,0Gz=v )

Approximate models for macroscopic quantities such as the tensor order parameters S are derived using 
various closure approximations[1,4]. The most common is the one obtained by writing the fourth moment of the 
distribution in terms of the lower second order moments as uuuu uu uu≈ . Multiplying Eq.(1) by uu and 
then averaging over the orientational distribution ψ we get the following evolution equation for S: 
 

( )1 1 26 : : 2
3 3 3

S S S I S S SS S SI S S D D S S D D S S Id aU U a a
dt

      = − − + ⋅ + + − ⋅ + ⋅ + + ⋅ + ⋅ − +            
Ω Ω 1:

3
   (3) 

where D and Ω now read: 
0 1 0 0 1 0

1 1G 1 0 0 ; G 1 0 0
2 2

0 0 0 0 0 0

  
  = = −  
  
  

D Ω






 

 
The above is a five-dimensional system of ordinary differential equations, since the tensor S has five 
independent components (S is a symmetric and traceless).  
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2.2 Symmetry properties of the model 

The 5-D system of equations exhibits some interesting equivariance properties. It is well known that 
dynamical systems with different symmetries can exhibit different bifurcating solutions[14]. To start with, we 
write Eq. (3) in the following form: 

 

( )d
dt

=S F S                  (4) 

Using as the reflection matrix, it is simple to verify that the F commutes with the compact Lie  
1 0 0
0 1 0
0 0 1

 
κ = 
 − 




 
group of symmetry { } 2, ZΓ = , that is: . This means that if S(t) is a solution of Eq.(4), then 
γS(t) is also a solution for all t and

κ ≅I ( ) ( )κ = κF S F S
γ∈Γ . Let’s characterize the set of points that have a given symmetry by the 

fixed-point subspace: ( ) { }: ,  S= ∀ γ∈ΓS SV∈Fix Γ = γ where V is the 5-dimensional state-space of traceless 
symmetric matrices. This linear subspace is flow-invariant, i.e., if an initial condition is taken on it, the orbit will 
remain on it for all times. 
An attractor, or in general an invariant set A of the system (4) is point-wise symmetric if 

( ) ( )t tγ =S S ,∀ , , t R∈ ( )S t A∈ γ∈Γ  (i.e., A belongs to ); A is set-wise symmetric with respect to Γ if ( )Fix Γ
A Aγ = , but ( )t ( )tγ ≠S S . When A doesn’t possess any symmetry, then different invariant sets ,  A A′ ′′  can be 

found satisfying A A′ ′′= γ . 
To this end we decompose S as follows:  

 

1 2

0 0 0
0 0 0

0 0 0

xx xy xz xx xy xz

xy yy yz xy yy yz

xz yz xz yz

S S S S S S
S S S S S S
S S S S

    
    = = + =    

    ∗ ∗    

S S +S

2

 

 
defined in the subspace V V , where V1 V= ⊕ 1 and V2 are mutually orthogonal subspaces of dimension 3 and 2 
respectively. The projection of Eq. (4) on these two subspaces leads to the following system of equations: 

( ) ( )

( ) (

1
1 1 1 21

2
2 2 12

,

,

d
dt

d
dt

= +

= +

S F S G S S

S F S G S S )2

               (5) 

The system (4) with S2=0 corresponds to the restriction of the system (3) on the invariant fixed-point subspace 
V1= .  ( )Fix Γ

3 RESULTS AND DISCUSSION 

3.1 The Bifurcation Diagram 

We start with a brief discussion of the different invariant sets of the system (4) and the local bifurcations that 
these sets encounter when the shear rate is varied. A 3-D construction of the bifurcation diagram reported also 
by Forest and Wang (2003) is shown in fig. 1. This was obtained for an aspect-ratio a=0.8 and U=6. The authors 
found that the 5-D macroscopic model with the quadratic Doi closure[1], for a finite aspect-ratio approximates 
the dynamics of the Smoluchowski equation for infinite aspect-ratio[5]. Here we chose to study the global 
dynamics of this particular closure model for the same parameters values aiming to give an insight of the global 
dynamics of the Smoluchowski equation. All the qualitative Smoluchowski equation solutions are predicted: 
flow-aligning, wagging, tumbling, kayaking1, kayaking2 and the period-doubling route to chaos. 
Starting from high shear rate (Pe=G/6>3.979) only one stationary solution exists: the flow-aligning. This is an 
“in-plane” solution as the major director, i.e., the eigenvector corresponding to the largest eigenvalue of the S 
tensor, lies in the (x, y)-plane of shear and so it is a symmetric solution belonging to the fixed-point invariant 
subspace. All five eigenvalues are negative so the flow-aligning solution branch is a stable one in the full space 
(see fig. 1). The stability of these stationary states as the Pe number is decreased from 3.979 to 0 is given in 
Table 1. 
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 Flow-aligning Logrolling-1 
 

Logrolling-2 

3.719<Pe<3.979 
 IN OUT  IN OUT  IN OUT 

ST 3 2 ST 2 0 ST 3 0 
UNST 0 0 UNST 1 2 UNST 0 2 

2.8199<Pe<3.719 
 IN OUT  IN OUT  IN OUT 

ST 3 1 ST 2 1 ST 3 0 
UNST 0 1 UNST 1 1 UNST 0 2 

0<Pe<2.8199 
 IN OUT  IN OUT  IN OUT 

ST 1 1 ST 2 1 ST 3 0 
UNST 2 1 UNST 1 1 UNST 0 2 

Table 1: Number of the eigenvectors IN and  OUT (orthogonal complement) of the invariant subspace of 
stationary states (ST is for eigenvectors corresponding to eigenvalues with a negative real part, while UNST is 
for eigenvectors corresponding to eigenvalues with positive real part). 
 

At Pe=3.979 two new branches of stationary states appear through a turning point. These stationary states 
are called “logrolling” because the major director is aligned with the vorticity axis. They are both unstable and 
symmetric with respect to the reflection matrix k and they belong to the invariant fixed-point subspace. We will 
refer to “logrolling-1” for the upper branch and “logrolling-2” for the lower one (see fig. 1). 
The logrolling-2 branch has 5 real eigenvalues with 3 stable eigenvectors on the invariant subspace and 2 
eigenvectors unstable and orthogonal to the invariant subspace. As Pe is decreased, two positive eigenvalues 
collide on the real axis and become complex. Logrolling-1 is unstable both in the invariant fixed-point subspace 
and the full space. In the invariant subspace two eigenvectors are stable and one is unstable while both the “out 
of plane” eigenvectors are unstable. At Pe=3.719 the flow-aligning solution branch loses stability through a 
pitchfork bifurcation. An infinite number of asymmetric stationary states, belonging to an “out of plane” circle, 
arise with this bifurcation. The set is represented in the right-up inset of fig.1 by a vertical branch, which ends 
up on the logrolling-1 branch. At this point one positive eigenvalue of logrolling-1 becomes negative and one 
unstable direction out of the subspace becomes stable. The stability of the stationary states on this “out-of plane” 
branch changes along the circle and is not related to the symmetry properties of the model. 
Instead, for a different closure model, this degenerate situation is related with some additional properties of the 
model given by (3)[15]. We note that this situation is not present in the full PDE model[5] and it is not structurally 
stable with respect to small perturbations of the parameter Pe.  We will comment on this in more detail in future 
work. On the circle of stationary solutions there is a Hopf bifurcation that gives birth to asymmetric periodic 
solutions called “kayaking-2”. 
Due to the model symmetry these periodic solutions come in pairs and they are symmetrically related by the 
reflection matrix κ. If S(t) is the periodic orbit of a kayaking-2 regime, the other asymmetric regime is given by 
κS(t). These regimes are characterized by a major director that rotates around a fixed axis lying between the 
shear-plane and the vorticity axis. When the Pe number is decreased down from Pe= 3.719, these asymmetric 
cycles undergo a cascade of period-doubling bifurcations (the first period doubling appears at Pe= 3.29) leading 
to a couple of asymmetric chaotic attractors. An orbit projection of these attractors is reported in fig. 2a for 
Pe=3.24.  
 
3.2 Global Bifurcations 

Further decrement of the parameter leads to a global bifurcation where suddenly a set-wise symmetric chaotic 
attractor appears (fig. 2b). This attractor was also observed in [7]. As discussed in the previous section, the set-
wise symmetry means that if A is the chaotic attractor, the invariance property refers to the set as a whole and 
guarantees that this set will never intersect with the fixed point invariant subspace. From a more physical point 
of view, this means that the major director rotates randomly around the vorticity axis, does not intersect the 
shear-plane and is never aligned with the vorticity axis. The bifurcation of a chaotic attractor, where a sudden 
discontinuous change is observed, is called crisis[16]. Three different type of crisis are described in [16]: in the 
first type, a chaotic attractor is suddenly destroyed as the parameter goes though its critical value; in the second 
one, the size of the chaotic attractor in phase space suddenly changes, while in the third type two or more chaotic 
attractors merge to one chaotic attractor slightly bigger in size compared to the union of the two asymmetric 
chaotic regimes. A discrete jump of the attractor size is apparent in fig. 2a, b.  The time series before the crisis 
are shown in fig. 3a, while the ones after the crisis, for different values of the bifurcation parameter, are given in 
fig. 3b-f. 
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Figure 1. The 3-D Bifurcation Diagram (Pe=G/6). Solid  lines correspond to stable stationary solutions, dotted lines to unstable ones. Limit cycles are represented as circles, 
squares and rhombs; empty ones correspond to unstable  solutions while filled ones to stable solutions. A 2-D projection of this diagram is reported in [7]. 
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 (a) (b)  (c) 
Figure 2. (a) A couple of asymmetric chaotic attractors at Pe=3.26, (b) at Pe=3.23 a global bifurcation appears 
leading to a set-wise symmetric chaotic attractor, (c) A homoclinic loop appearing at Pe= . * 3.2386715Pe ≈
 
It is apparent that time series after the crisis are characterized not only by the transition from “one” asymmetric 
chaos to “ the other” but also by an intermittent bursting that leads the orbit away from the phase space 
neighborhood of the pre-existing chaotic attractors. Close (but for Pe>Pe*) to the bifurcation point (fig. 3b) the 
orbit spends a long time in the neighborhood of one of the two pre-existing asymmetric attractors and switches 
after the intermittent bursting to the “other” chaotic attractor region. As the value of the bifurcation parameter is 
further decreased the intermittent bursting is more and more frequent until the ghost of the previous asymmetric 
chaotic attractors cannot be visually distinguished anymore (fig. 3f). 

 

(c)(a) (b)

23S
(d) (e) (f)

Figure 3. Time series close to the crisis appearing at . (a) Before the bifurcation point (at 
Pe=3.24) and (b), (c), (d), (e), (f) for smaller values of the Pe number.  

* 3.2386715Pe ≈

 
Another global bifurcation is encountered following the symmetric chaotic attractor for decreasing values of Pe 
numbers. Until Pe=2.8199, the flow-aligning solution branch does not encounter any stability change (see Table-
1). However at Pec=2.9233 two new limit cycles are born in a turning point  (see bifurcation diagram in fig. 1). 
This branch of limit cycles is called kayaking1 ant its stability changes through the turning point. These 
solutions do not belong to the invariant fixed-point subspace but they are spatio-temporally symmetric. Indeed, 
they respect the following invariance property: κ (( ) 2)/t t T= +S S . These kind of limit cycles are also called 
discrete travelling waves or “POMs” (ponies on a merry-go-round). The major director rotates symmetrically 
around the vorticity axis and it is an “out of plane” solution. An orbit projection of the stable kayaking-1 orbit is 
shown in fig.4a. The transition from kayanking1 to the chaotic attractor is marked by the turning point on the 
kayaking-1 branch. The time series showing the transition are illustrated in fig. 5. This resembles an 
intermittency mechanism[17].  For Pe > Pec  the system response consists of long in time almost regular 
oscillations (laminar phases) which are intermittently interrupted by shorter in time chaotic outbreaks (turbulent 
burst) , see fig. 4b. During the bursts, the trajectory moves far away from the vicinity of the pre-existing periodic 
orbit (fig. 5). It is also clear that as the bifurcation parameter increases, so does the frequency of the bursts. 
Three types of generic bifurcations, namely, cyclic-fold, subcritical Hopf bifurcation and subcritical period-
doubling bifurcations  underlie respectively type I, type II, and type III intermittency[17]. However, the loss of 
stability of a periodic orbit via one of these three local bifurcations is not sufficient for intermittency to occur.  
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 (a) (b) 
Figure 4. (a) A kayaking-1 limit cycle at Pe=2.92, (b) at the turning point of the kayaking1 branch a global 
bifurcation appears giving rise to a set-wise symmetric chaotic attractor (simulation at Pe=2.93). 
 

 

11S

Figure 5. Time series showing the transition from kayanking1 to the symmetric chaotic attractor. a) time series 
before the transition at Pe=2.92<Pec, (b)- (f) time series for increasing values of the Pe number past the critical 
value Pec.   
 
Attempting to explore  the global phase space structure we computed the invariant manifolds of the stationary 
states  close to this bifurcation (fig 6). The 2-dimensional unstable manifold of the logrolling2 stationary state is 
asymptotically attracted by the limit cycle for Pe<Pec (fig 6a) and by  the symmetric chaotic attractor for 
Pe>Pec) (fig. 6b), while at it becomes homoclinic. cPe Pe≈
 
 

(a) (b) 

Figure 6.  Invaraint manifolds of the stationary states invlolved in the intermittency global bifurcation. The 2-
dimendional unstable manifold of the logrolling2 stationary state is asymptotically attracted by (a) the limit cycle 
for Pe<Pec (b) the symmetric chaotic attractor for Pe>Pec, while for IPe Pe≈ it forms a 2-dimensional 
homoclinic loop. The blue dot corresponds to logrolling stationary state. 
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Abstract.  The quasi two dimensional turbulent flow over a surface mounted obstacle is studied as a numerical 
experiment by directly solving the transient Navier  Stokes equations with Galerkin finite elements. The 
Reynolds number defined with respect to the obstacle height is 1304. Energy and enstrophy spectra yield the 
dual cascade of two dimensional turbulence and the -1 power law decay of enstrophy. Other statistical 
characteristics of turbulence such as Eulerian autocorrelation coefficients, longitudinal and lateral coefficients 
are also computed. Finally, oscillation diagrams of computed velocity fluctuations yield the chaotic behavior of 
turbulence 
 
 
1 INTRODUCTION 

The turbulent flow over a surface mounted obstacle is a fundamental problem in fluid mechanics having a 
wide range of applications in all domains of engineering science, as recently reviewed by Fragos et al[3],[4]  
Although the flow has received a lot of attention in the engineering community, it is still an open ended problem 
partly due to its complicated geometry and partly due to the unresolved issues of the nature of turbulence. The 
term flow over a surface mounted obstacle is used ambiguously in the literature. In this work, it is examined the 
flow over a cubic or a prismatically shaped obstacle having a width that extends up to the walls of a wind tunnel, 
where the obstacle is placed. This case is a quasi two dimensional flow, that takes place in the two dimensional 
space, where any three dimensional effects are generated from the existence of walls or from turbulence. For this 
particular flow, there is some recent experimental work in the turbulent regime conducted by Acharya et al[1] and 
Larichkin and Yakovenko[9] for obstacles with rectangular cross section of aspect ratio 1:1. There are also 
attempts to study this flow computationally by Acharya et al[1], Hwang et al[7] who used k-ε  models with a finite 
difference method. In this work, the quasi two dimensional flow over a surface mounted obstacle is studied 
computationally solving the unsteady Navier Stokes equations in primitive variable formulation with standard 
Galerkin finite elements. This approach is used for the first time for this flow. The experimental set up and the 
process parameters of the work of Acharya et al[1] are taken for comparison with the numerical results of this 
work.     

 In this work, the issues of both quasi two dimensional turbulence and direct numerical simulation of 
turbulent flows are addressed in the study of two dimensional turbulent flow over a surface mounted obstacle 
with square cross section. In the following, the governing equations are presented along with the computational 
domain and the parameters of the flow. The issues of initial condition and inflow as well as outflow boundary 
condition are examined next, followed by the finite element formulation and the computational details. The 
results of this work are subsequently discussed and finally conclusions are drawn. 
 

 
2  GOVERNING EQUATIONS AND PROCESS PARAMETERS 

The computational domain for the turbulent flow over a surface mounted obstacle is shown in Figure 1. A 
Newtonian fluid of constant viscosity and density approaches with uniform u-velocity a wind tunnel of 
rectangular cross-section. At the entrance of the tunnel, the fluid is decelerated along the wall due to the no-slip 
boundary condition. The fluid continues its motion through the tunnel and hits the surface mounted obstacle, 
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which has a square cross section. The flow separates forming recirculation zones both upstream and downstream 
the obstacle. The fluid leaves the computational domain after a certain distance downstream. It is expected, that 
the flow phenomena are less  intense, as the fluid is distancing from the obstacle. 
       For a two dimensional isothermal turbulent flow of an incompressible Newtonian fluid, the dimensionless 
Navier Stokes equations are: 
 
                                                                                                                (1) 0=∇u

                                          upuu
t
u 2

Re
1
∇+−∇=∇+

∂
∂

                                                                                (2) 

 
 

       Equations (1) and (2) represent conservation of mass and momentum respectively. 
 The governing equations have been rendered dimensionless, by choosing the uniform approaching velocity of 
the fluid U0 as the characteristic velocity and the height of the obstacle h as the characteristic length. The 
characteristic or reference time tr  is then the ratio h/U0. In the governing equations, u = (u, v) is the velocity 
vector of the fluid with u and v its components in the x- and y- direction respectively, t is the time, p is the 
pressure and Re= U0h/ν is the Reynolds number with respect to the height of the obstacle, with v the kinematic 
viscosity of the fluid. The pressure p has been non-dimensionalized with term ρ U0

2, with ρ the density of the 
fluid. The time t has been non-dimensionalized with the characteristic time tr. The dimensions of the 
computational domain and the Reynolds number were chosen to match the parameters of a laboratory 
experiment conducted by Acharya et al [1]. According to their conditions, the height of the obstacle is h = 6.35 
mm and the approaching velocity of the fluid U0 = 3.225 m/s. Air was chosen as a working fluid with a 
kinematic viscosity ν = 1.57 10-5 m2/s and a density ρ  = 1.2 kg/m3. The Reynolds number is then 1304 with 
these values of process parameters. All other dimensions of the computational domain are depicted in Figure 1 
as functions of the height of the obstacle h.  

In order to solve the problem, appropriate boundary and initial conditions must be chosen, which are 
discussed in the next section.  
 
 
3    BOUNDARY AND INITIAL CONDITION 

The boundary conditions for this flow are depicted in Figure 1 and given in equations below: 
 

At the entrance : u=U0, v=0  
Top and bottom boundaries, upstream the wind tunnel : u=U0, v=0  
Top and bottom walls of wind tunnel : u=0, v=0  
Along walls of obstacle : u=0, v=0  
At the outflow : free boundary condition. 
 

      At the entrance a uniform undisturbed velocity profile is imposed, that defines the flow rate entering the 
wind tunnel. Upstream the wind tunnel, tow tank boundary conditions are imposed. Along the  walls of obstacle,  
no slip boundary conditions are imposed as well as  along the solid walls f the computational domain.  The 
concept of the free boundary condition is used for this flow problem at the outflow. 
For a thorough discussion of this concept the reader is recommended to check with Fragos et al[3,4]. In this work, 
the steady state solution of laminar flow at Re = 1 was chosen as the initial condition. This numerical solution 
has been validated with laboratory experimental data, as discussed by Fragos et al[3]. The streamlines for this 
flow are shown in Figure 2. By executing the computer program, the flow develops from its   initial laminar state 
to fully developed turbulence. Hence, this approach has the advantage that the transition from laminar to 
turbulent flow is also computed in addition to the study of turbulence. For a detailed discussion of initial and 
boundary conditions in turbulent flows, the reader should check the review article of Friedrich et al[5]. 
 

 
4  FINITE ELEMENT FORMULATION AND COMPUTATIONAL DETAILS 

The computational mesh used in this work consists of rectangular finite elements of different size with nine 
nodes each of them. Standard Galerkin finite elements are used to solve the governing equations along with the 
appropriate initial and boundary conditions. Velocities and pressure are approximated with quadratic and linear 
basis functions. The weighted residuals, after the application of  the divergence theorem, become: 
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 Equations (3) and (4) represent an algebraic system of nonlinear equations, which is solved with a Newton-
Raphson iterative scheme. Gauss elimination is used for the inversion of the Jacobian matrix.  All results that are 
presented in the next section are independent of time step and mesh resolution.  
 

5 RESULTS AND DISCUSSION  

5.1 Velocity fluctuations 
Oscillograms of u- and v- velocity fluctuations are shown in Figure 3 at position (x=50,y=5) of the flow 

domain. The result is a randomness in the oscillograms of the velocity fluctuations superimposed to the 
periodicity due to the steady generation of vortices. This randomness is exhibited in the acanonical variation of 
the minima and the maxima of the amplitude of the oscillations. The period of the oscillation is undisturbed 
though, as it should be, due to the nature of the flow at this Reynolds number. Additionally, randomness is also 
observed within each period of oscillation, where the pattern of the fluctuations is in each period different and 
acanonical as well. This difference in the pattern may not be obvious at a first glance, due to the dominant 
periodical nature of the signal. However, the randomness in the pattern exists and gives the message,  that 
turbulence develops as the flow is distancing from the obstacle. Figure 3 is reminiscent of the signals taken by 
many experimentalists over the last 80 years and shown in standard books of turbulence (Frish[6]), in order to 
invoke the intuition of the reader about the complicated nature of turbulent flow and justify the attitude of many 
workers in the field towards a statistical analysis of turbulence. 
      In this work, it is shown, that deterministic spatiotemporal chaos is predicted by directly solving the Navier 
Stokes equations. To the best of our knowledge, this  kind of oscillograms are shown for the first time from a 
computational analysis. So far, even in books dealing with chaos, chaotic behavior has been limited to the 
subject of solving equations, where the dependent variables are only a function of time. It should be also noted, 
that  this behavior of velocity fluctuations is representative of any other point in the flow domain. 
 
5.2 Energy and enstrophy spectra 

It is customary in turbulent research to study the energy and enstrophy spectra of the instantaneous values of 
velocities and vorticity. Especially the energy spectrum has been the subject of extensive experimental 
investigation and led to an empirical law, that has been verified by the deeply influential work of Kolmogoroff 
(Frish[6] Batchelor[2]and Kraichnan[8] extended these ideas to quasi two-dimensional turbulence. They found that 
the energy spectrum follows both the -5/3 power law of three dimensional turbulence (called inverse energy 
cascade in the terminology of quasi two dimensional turbulence) and a -3 power law, which has been attributed 
to a forward enstrophy cascade. Additionally, they studied the enstrophy cascade and they predicted a -1 power 
law for the dependency of enstrophy with respect to the frequency of the spectrum. 
     The energy spectra are shown in Figure 4. They have been calculated at the same points as the oscillograms 
of the velocity fluctuations in Figure 3. A specially developed computer code was used for this calculation based 
on  
 LabView, the commercial data processing computer software provided by the National Instruments 
Corporation. A common characteristic to the graphs in this Figure is the spike at 30 Hz, which is attributed to the 
periodical nature of the generation of vortices downstream the obstacle. This frequency corresponds to the 
period of oscillations in Figure 3, which is 16.7 dimensionless time units. The reference time h/U0 is 1.96 msec, 
so that in dimensions of time, the period of oscillations obtains the value 32.88 msec. Finally the inverse of the 
period is 30.4 Hz, which is the frequency of the spike. 

The entsrophy spectra for this flow are shown in Figure 5 at the same point as the energy spectra. The 
estrophy was calculated as one half of the square of  vorticity. The -1 power law in the decay of enstrophy 
covers one order of magnitude in the frequency range. The agreement of the results of the spectral   analysis of 
this work with theoretical results of quasi two dimensional turbulence confirm the accuracy of the numerical 
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predictions. 
 

5.3 Statistical properties of the flow. 
The autocorrelation function R(τ) at point (x=50,y=5) is shown in Figure 6. The dimensionless time 

difference t goes up to 150 time units.  R(τ) has been evaluated at each time step ∆t = 0.01 yielding 15000 points 
for the calculation of the curve in Figure 6. The autocorrelation function starts at 1, diminishes gradually, 
obtains negative values and finally tends to zero. This is a typically measured curve indicative of the randomness 
of the signal, which has already been observed in Figure 3.  

The longitudinal and lateral correlation functions at point (x=50,y0=4)are shown in Figure 7. The variation in 
the y- coordinate goes up to the upper wall of the wind tunnel of the computational domain (s. Figure 1). Both 
correlation functions start from 1 and gradually diminish. The function Ru(y) obtains appreciable negative values 
like R(τ) and finally both cross correlations become zero at the wall due to the no-slip boundary condition there. 
Although, all three correlation functions are unable to contribute to the understanding of the physics of 
turbulence, they provide an accurate test for the quality of the computational results. These functions simply 
examine whether events that take place spatially or temporally away from a fixed point in space or time correlate 
in an increasingly fading fashion, as it should actually be for a random process, according to common sense. The 
computational results of this work satisfy this requirement of statistical analysis and verify the chaotic behavior 
of the oscillograms of the velocity fluctuations shown in Figure 3. It should be noted, that the compatibility of 
the results in figures 4-7 with the oscillograms shown in Figure 3, verify the accuracy of the numerical results 
and exclude any possibility of numerical noise.   

6   CONCLUSIONS 
In this work, the quasi two dimensional turbulent flow over a surface mounted obstacle has been studied 

numerically with the aim to compute fundamental turbulent characteristics. 
      Oscillograms of the velocity fluctuations confirm the periodic nature of the flow and exhibit the chaotic 
behavior of turbulence. The analysis of energy spectra yield the double cascade, which is a characteristic of 
quasi two dimensional turbulent flow. The decay of enstrophy with respect to the frequency of the spectrum 
follows the -1 power law. The computation of the autocorrelation function along with the longitudinal and 
lateral correlation functions yield the expected result that events far from a fixed point in space or time correlate 
in a fading fashion. This statistical analysis of the velocity fluctuations verify the chaotic nature of the flow and 
confirm the randomness in the patterns of the computed oscillograms. 

The results of this work may be useful in two ways: on the one hand to colleagues who are engaged in the 
study of chaos that emerges from quasi two dimensional turbulence and on the other hand to colleagues who are 
engaged in the direct numerical simulation of turbulent flow and are interested in applying the alternative 
approach to initial and boundary conditions proposed here. Another challenge would be the use of the primitive 
variable formulation of the Navier Stokes equations in the study of flows with meteorological interest. 
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Figure 2.  Streamlines   of the laminar flow over a surface mounted obstacle at Reynolds number 1 with the 
respect to the obstacle height, chosen as the initial condition for this work.  
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Figure 3.  Oscillations of the fluctuations   of    u (a) and v (b)   velocity  components at point (x=50,y=5)                             
of the computational domain.  
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Figure 4.  Energy spectra of the kinetic energy of both velocity components at point (x=50,y=5)                           
of the computational domain.  
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Figure 5.  Enstrophy   spectra  at point (x=50,y=5)  of the computational domain.  
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Abstract. An efficient method of assessing buckling response of piles is developed. The exact stiffness matrix 
method is employed for the stability analysis of piles embedded in elastic media. Shear deformations are taken 
into account. A bi-parametric linear elastic soil model is adopted. The method applies to the most common types 
of piles (end-bearing, friction, tapered) in either uniform, or variable (not necessarily obeying a specific 
variation function) subsoil conditions, and all kinds of boundary conditions. The differential equation of the 
elastic line for an elemental length is derived in terms of the relevant displacements and rotations. Each element 
stiffness matrix is composed relating forces and displacements at the ends of the element. Once the global 
stiffness matrix is assembled, stability analysis is performed on the basis of the solution of a transcendental 
eigenvalue problem. The method of converging with certainty upon the critical buckling load is based on the 
Wittrick-Williams algorithm. The corresponding eigenvector is obtained using Gauss elimination and then 
performing a normal back substitution. 
 
1 INTRODUCTION 

Modern design practices in deep foundation engineering in conjunction with the extensive use of steel, high 
strength alloys and composite materials gradually point more attention at the instability problem of piled 
structures. Until recently, the vast amount of the published work on theoretical concepts of assessing pile 
capacity and behavior tended to ignore or treat as a minor sub-context the buckling problem. On the other hand, 
the work directly or indirectly related to the topic was focused on very specific and limited cases. The present 
work aims to present a consistent theoretical approach on the buckling problem of piles and develop a 
calculation method covering most of the cases that can be encountered in engineering practice. 

Although in buckling problems only the first (critical) buckling load is of practical importance and shear 
deformations become progressively more important in higher numbered buckling modes, modern construction 
materials are much more shear sensitive and shear deformations can be quite significant, even on the lowest 
critical buckling load. It has been shown by Banerjee and Williams[1] that the maximum error encountered by 
ignoring the effect of shear deflections can be as much as 10%-12%. 

The present paper gives the exact stiffness coefficients of a pile member which is embedded in a linearly 
elastic medium. It is assumed that the pile material is homogeneous, isotropic and elastic, the stresses remain 
within the elastic limits, and the displacements are infinitesimal, there are no initial imperfections or loading 
eccentricity and that the mass is uniformly distributed along the member. The force-displacement relationship of 
the surrounding medium is assumed to be linearly elastic and the Winkler soil model is adopted. From these 
member stiffnesses the overall stiffness matrix K can be assembled. Stability analysis can be performed on the 
basis of the solution of a transcendental eigenvalue problem. The buckling loads correspond to the values of P 
which satisfy the matrix equation K(P)D=0, where D is the vector of the amplitudes of the nodal displacements 
and P is the axial compressive load by which the datum member forces are scaled. In structural systems with a 
uniform distribution of mass, an infinite number of values for the axial force, P, satisfy the stability criterion set 
previously. In buckling problems only the first (critical) buckling load is of practical importance, but its 
determination may present a number of problems, as any trial and error method, which involves computing 
⏐K⏐and observing when it changes sign, may be proved not credible. In order to overcome all these problems, 
the Wittrick-Williams algorithm can be employed to converge with certainty upon the critical buckling load. The 
eigenvector that corresponds to the critical buckling condition can be obtained by determining the response of 
the pile to a small disturbance when K(P) is evaluated at P=Pcr. 

The buckling problem of piles can be performed on the same basis as the problem of buckling of axially 
loaded beams resting on elastic media. The classical treatise on the analysis of a finite beam resting on a Winkler 
medium is that of Hetenyi[2]. Since its publication, several alternative procedures have been advanced. Matrix 
methods have been employed by Iyengar[3], Mozingo[4], Frazer[5] and Bowles[6][7]. Timoshenko and Gere[8] treat 
the buckling problem taking into consideration the effects of shearing deformations through analytical and 
energy methods. Selvadurai[9] presents a series of solutions using the method of initial parameters, the method of 
superposition and the energy method. Poulos and Davies[10] have concluded their work on the buckling of piles 
by presenting solutions for different types of piles embedded in parameterized elastic media. Since then, 
numerous authors have treated very specific cases of axially loaded piles using various methods. An exhaustive 
reference to their works is beyond the scope of the present paper. 
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2 THEORY 
The differential equation of the elastic line for an elemental length, dx, is derived by applying the condition 

of equilibrium of the acting forces and moments, when transmission from a stable to an unstable configuration is 
taking place, in terms of the relevant displacements and rotations. Figure 1 shows a typical element of the pile 
undergoing in-plane buckling, subjected to a static axial load P (positive for compression) and embedded in an 
elastic medium with stiffnesses per unit length ky and kθ restraining, respectively, the lateral displacement v and 
the rotation ψ. The vertical and moment equilibria give: 
 

vk
dx
dQdxvkdQQQ yy ⋅=⇒=⋅⋅++− 0)(                                                      (1) 

 
and 
 

0)(
2

=⋅⋅−+−⋅⋅⋅++⋅+⋅ ψθ dxkdMMdxdxvkMdx
dx
dvPdxQ y                                    (2) 

 
where Q is the transverse force due to bending (see Figure 1), M is the bending moment, v is the lateral 
displacement and ψ is the angle of rotation due to bending. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Forces acting on a typical elemental length of the pile 
 
Simple bending theory gives: 
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where GAf ⋅⋅='φ  and f is the section shape factor, A is the cross section area, E is Young’s modulus, G is the 
modulus of rigidity (shear modulus) and I is the second moment of area. Eliminating Q, M and ψ from equations 
(1) – (4) yields the following fourth order differential equation: 
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Changing equation (5) to a non-dimensional form using the dimensionless variable
L
x

=ξ , where L is the 

length of the element and using the parameters, 
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This non-dimensional formulation is particularly convenient, since the effects of shear deformations are 

included if s2 takes its natural value, and they are omitted when s2 is set to zero. 
Equation (7) is a linear differential equation with constant coefficients and hence it can be solved exactly. Its 

solution may be expressed in the general form as: 
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Depending upon the values of b and c, the parameters θ and ϕ may be real, imaginary or complex. 

Therefore, any computing that is done on the basis of equation (8) must use a complex arithmetic routine. 
The Force-Displacement relationship, for a typical element, using the familiar matrix notation could be 

expressed as: 
 

{F}=[K]{D}                                                                        (11) 
 

where: {F}=[P1, Q1, M1, P2, Q2, M2]T and {D}=[u1, v1, ψ1, u2, v2, ψ2]T . Identifiers 1, 2 refer to the ends of the 
element. Axial deformations, u, produced by the axial forces, P, can be neglected, as they are relatively very 
small. This assumption does not affect the resulting buckling behaviour of a compressed member and it reduces 
considerably the requisite work without dissimulating any useful information regarding the buckling response. 
Hence, the Force-Displacement relationship, for a typical element, could be restated as follows:  
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Defining the sign convention in order to satisfy the compatibility requirements, the stiffness coefficients, kij, 
can be determined by the following expressions for v, ψ, Q, M, which are derived from equations (1) – (4) using 
the non-dimensional parameters p2, s2, ky

*, kθ*, and ξ introduced previously: 
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Using the derivatives of v (8) in equations (13), (14), (15), ψ, Q and M could be expressed in terms of the Bi 

coefficients in the following form: 
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For a pile element and the general boundary conditions at the ends 1, 2, using expressions (8) and (16), the 

vector of displacements {D} can be expressed in terms of the Bi (i=1…4) coefficients as: 
 

 {D}=[S]{B}                                       (25) 
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Similarly, using expressions (14) and (15), the general boundary conditions and the global sign convention at the 
ends 1, 2 of the element, the force vector {F} can be expressed as: 
 

  {F}=[S*]{B}                       (26) 
 

or analytically          
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As matrix [S] is not singular, it can be inverted and equation (25) yields: {B}=[S]-1{D}. Substituting in (26) 
gives: {F}=[S*][S]-1{D}. Hence, [K]=[S*][S]-1 and the coefficients kij are given by the following relationships: 
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( ) ( ) Ω⋅⋅−⋅⋅⋅⋅−⋅⋅⋅= /sinhsinh13 ϕαϕθαθαβαβθϕ ϕθθϕϕθk                                 (29) 
 

( ) ( ) Ω−⋅⋅−⋅⋅⋅= /coshcosh14 ϕθαβαβθϕ ϕθθϕk                                         (30) 
 

( ) ( ) Ω⋅⋅⋅−⋅⋅⋅⋅−= /coshsinhcoshsinh22 θϕαθϕθαϕδδ θϕϕθk                               (31) 
 

( ) ( ) Ω−⋅−⋅⋅⋅⋅= /coshcosh23 θϕδδααθϕ θϕθϕk                                         (32) 
 

( ) ( ) Ω⋅⋅−⋅⋅⋅−= /sinhsinh24 θαϕϕαθδδ ϕθϕθk                                          (33) 
 

( ) ( ) Ω⋅⋅⋅−⋅⋅⋅⋅⋅−⋅⋅⋅= /coshsinhcoshsinh33 ϕθαθθϕαϕαβαβθϕ θϕθϕϕθk                 (34) 
 

( ) ( ) ( )[ ] Ω⋅⋅+⋅⋅⋅⋅+⋅−⋅⋅+⋅⋅⋅= /sinhsinhcoshcosh1 22
34 ϕϕθθθϕϕθ αβϕαβθϕθϕθαβαβϕθk      (35) 

 
( ) ( ) Ω⋅⋅⋅−⋅⋅⋅⋅−= /coshsinhcoshsinh44 θϕαθϕθαφδδ θϕϕθk                              (36) 

 
where:                      ( ) ( )2222sinhsinhcoshcosh12 ϕθθϕ αϕαθθϕθϕααθϕ ⋅+⋅⋅⋅+⋅−⋅⋅⋅⋅⋅=Ω                     (37) 
 

Once the component element stiffness matrices have been established, they can be assembled into the global 
(structure) stiffness matrix. For line structures, as piles, where the element and the global axes coincide, the 
procedure is quite simple and straightforward. Once the global stiffness matrix is assembled, stability analysis 
can be performed on the basis of the solution of a transcendental eigenvalue problem. The method of converging 
with certainty upon the critical buckling load is based on the Wittrick-Williams[11] algorithm. This algorithm 
states that: 

 
{ }KsJJ += 0                                                                       (38) 

 
where J represents the number of the buckling loads of the structure exceeded by some trial value of the axial 
load, P*, J0 represents the number of buckling loads which would be still exceeded if constraints were imposed 
upon the structure so as to make all the nodal displacements, D, zero, and s{K} is the sign count of the matrix K. 
s{K} is equal to the number of negative elements of the leading diagonal of the upper (or lower) triangular 
matrix obtained from K, when P=P* by the Gaussian elimination procedure in the following form. The rows of 
K are taken pivotal in order and suitable multiples of each pivotal row are added to all following rows so as all 
the elements in the pivotal column, which are below the pivot, become zero. The computation of J0 is more 
complicated and it is dealt with at the following paragraph. It is quite straightforward then to assume that if J can 
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be established for any particular trial value of the axial compressive force, P*, it is easy to develop a procedure 
for converging upon any required buckling load to any required accuracy. 

As stated in the previous paragraph, where the Wittrick-Williams algorithm is presented, the number of the 
buckling loads exceeded by some trial value of the axial load, P*, can be determined by the sum of Jo and s{K}. 
Jo represents the number of buckling loads that would still be exceeded if constraints were imposed upon the 
structure so as to make all the nodal displacements, D, equal to zero. This action has the effect of isolating each 
individual structural element so that Jo can be calculated from the relationship: 
  

∑= mo JJ                                                                  (39) 
 
where Jm is the number of buckling loads of a component member, with its ends clamped, which have been 
exceeded by P*, and the summation extends all over the component members. This value cannot be determined 
directly, but a convenient procedure, based again on Wittrick-Williams algorithm, is followed: if each 
component member is treated as a structure, then the relationship: Jpp=Jm+s{K} is again valid. Jpp represents the 
buckling loads exceeded by the trial value P* if the member was pin supported, s{K} is the sign count of the -
pin supported- member stiffness matrix and Jm is the number of buckling loads exceeded by the trial value P* for 
the clamped-ended member which is the required value. In other words, for any of the component members, Jm 
can be calculated by the relationship: 
 

Jm = Jpp - s{K}                                                                    (40) 
 
Jpp for each component member can be determined by the following procedure. Assuming the member is simply 
supported, the boundary conditions are: 
 

v=M=0  i.e. 0==
ξ
ψ

d
dv  

 
Assuming solutions of the form: v=Csinaξ, where a=nπ, the boundary conditions are satisfied. Clearly, v=0 for 
ξ=0, ξ=1 (values of ξ at the end supports) as sin0=sinπ=0. Equations (1) and (4) yield: 
 

 ( )
'

11 22

φξ
ψ Q

d
dvps

L
−⋅−=                                           (41) 

 

vLk
d
dQ

y ⋅=
ξ

                                                                        (42) 

 
Differentiating equation (41) with respect to ξ and using equation (42), yields: 
 

( ) v
Lk

d
vdps

Ld
d y ⋅−⋅−=

'
11

2

2
22

φξξ
ψ                                                    (43) 

 

 which is satisfied for the boundary conditions by substituting for v (=Csinaξ) and for 2

2

ξd
vd  (=-Ca2sinaξ). 

Therefore, v=Csinaξ, is a solution for the general equation. Substituting v and the derivatives of v in the 
governing differential equation (7) yields: 
 

( ) ( )[ ]( ) ( )[ ] 0sin1sin1sin1 *2*222**22422 =−−−−+++− ξξξ θθ aCkskaCapskkspaCaps yy       (44) 
 

Solving for p yields: 
 

( ) ( )
( )[ ]*222

*2***224
2

1
1

θ

θθ

kasa
kskkksaa

p yy

−+

−−+−
=                                                     (45) 

 

Substituting for 
EI

PLp
2

2 =  and a=nπ it gives: 
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( ) ( )

( )[ ] ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−+

−−+−
=

*22222

*2***22244

2 1

1

θ

θθ

ππ

ππ

knsn

kskkksnn

L
EIP yy

n , n=1, 2, 3,……                           (46) 

 
Consequently, the first n critical buckling loads can be calculated for each pin ended component member. 

Hence, they can be stored and whenever a new trial load, P*, is applied, it becomes easy to check how many pin-
pin buckling loads have been exceeded for each member, determining the Jpp value. The sign count, s{K}, of a 
pin ended member, represents the number of the negative elements on the leading diagonal of the upper 
triangular matrix obtained from the pin ended member stiffness matrix (consequently of order 2x2) using Gauss-
elimination. Provided that the element stiffness matrix is already formulated, sign count, s{K}, can be easily 
determined. As soon as Jm is calculated for each component member, Jo can be obtained by the algebraic sum of 
all the Jm. 

The method for converging upon the critical (first) buckling load is based on the Wittrick-Williams 
algorithm and it utilises a bisection iterative procedure. A lower bound and an upper bound are taken as default, 
setting the initial limits where the Pcr lies in. For any trial value of the axial load, P*, J is determined and its 
value signifies whether the first (critical) buckling load has been exceeded by the trial load, i.e. if J equals zero, 
no buckling load have been passed, and if J takes any other value, J buckling loads have been passed. Thus, if J 
equals zero, P* is taken as a lower bound, PL= P*, and if J is greater than zero, P* becomes an upper bound, PU= 
P*. Once a new value for either PU or PL has been established, P* takes the value given by: P* = (PU + PL)/2 and 
the procedure continues with a new iteration until PU – PL ≤ CV. CV is a value given as data so as to define the 
required accuracy. The greatest advantages of this method are the high converging rate by minimising the 
number of the required iterations and the fact that the result is determined with a predefined accuracy. 

For axially, simply supported, compressed elements without lateral support along their length, a single half-
wave can always describe the mode shape in the critical buckling condition. This response can be predicted by 
all the employed analytical and approximate methods of analysis. However, for laterally supported compressed 
elements, as piles embedded in elastic media and different end support conditions, this mode shape no longer 
describes rigorously the critical buckling modal response. The method of retrieving the eigenvector that 
corresponds to the critical buckling condition is based on the fact that, since Pcr is only an approximation to the 
true critical buckling load, an approximation to the true eigenvector can be obtained by determining the response 
of the pile to a small disturbance when K(P) is evaluated at P=Pcr. Hence, the problem reduces to one of 
calculating the nodal displacement vector, D, from the established stiffness equation: K(P)D=F when P=Pcr and 
F is an appropriate vector of forces, which depicts the small forcing disturbance. D can be obtained by reducing 
K(Pcr) to the upper triangular matrix K∆(Pcr) using Gauss elimination, and then performing a normal back 
substitution. The resulting eigenvector is finally normalised by dividing throughout by the absolute value of the 
numerically largest element. The forcing vector should be such as to ensure that the required eigenvalue would 
be excited in every possible case. In order to maximise this possibility, the elements of the force vector, P, 
should be chosen all to be the same order of magnitude. By the procedure described to generate the eigenvector 
in a critical buckling condition, it is likely to obtain meaningless results like in cases when the modal 
displacements occur between nodes, i.e. D=0 or in cases where the information concerning the eigenvector are 
not sufficient to establish comprehensively the corresponding mode shape. In such cases, a simple solution is to 
redefine the nodal mesh, with sufficient extra nodes, and to re-run the problem. 
 
3 CONCLUSIONS 

This paper gives the exact stiffness coefficients for an axially compressed pile member embedded in an 
elastic medium taking into account shear deformations. It gives also the method for converging with certainty 
upon the critical buckling load and the critical mode shape. The method applies to all types of piles. Accounting 
for the variable parameters along the length of the pile in terms of the geometric and material properties as well 
as loading, boundary and subsoil conditions, an element discretisation is necessary in order to obtain an adequate 
model and consequently a sufficiently accurate and meaningful solution.  

The substantial difference between the employed exact stiffness matrix method, compared to the traditional 
finite element techniques, is that the numerical answers are “exact” because the “exact” differential equation of 
the elastic line of the buckled element is been solved instead of solutions based on an assumed deflected shape of 
the buckled element. The validity of the equations presented has been confirmed by comparing calculated 
buckling loads and the corresponding mode shapes with those obtained from analytical solutions, like those in 
reference [8]. Profoundly, any computational effort on the basis of the developed theory without the aid of a 
computer would be rather impossible. But the greatest advantage of the method is its applicability limits while its 
flexible and adaptable framework is able to accommodate or easily modified to accommodate individual needs 
concerning the multi-parametric nature of the problem. 
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Abstract. In this paper a boundary element method is developed for the general flexural-torsional buckling 
analysis of Euler Bernoulli beams of arbitrarily shaped cross section. The beam is subjected to a compressive 
centrally applied load together with arbitrarily transverse and torsional distributed loading, While its edges are 
restrained by the most general linear boundary conditions. The resulting boundary value problem, described by 
three coupled ordinary differential equations, is solved employing a boundary integral equation approach. 
Besides the effectiveness and accuracy of the developed method, a significant advantage is that the 
displacements as well as the stress resultants are computed at any cross-section of the beam using the respective 
integral representations as mathematical formulae. The general character of the proposed method is verified 
from the fact that all basic equations are formulated with respect to an arbitrary coordinate system, which is not 
restricted to the principal one. Several beams are analysed to illustrate the method and demonstrate its 
efficiency and wherever possible its accuracy. The range of applicability of the thin-tube theory is also 
investigated through examples with great practical interest.  

1 INTRODUCTION 

Elastic stability of beams is one of the most important criteria in the design of structures subjected to 
compressive loads. This beam buckling analysis becomes much more complicated in the case the cross section’s 
centroid does not coincide with its shear center (asymmetric beams), leading to the formulation of the flexural-
torsional buckling problem. The extensive use of the aforementioned structural elements necessitates a reliable 
and accurate analysis of the flexural-torsional buckling problem. 

The flexural-torsional buckling problem of thin-walled beams, based on the assumptions of the thin tube 
theory, has been studied by many researchers[1-5]. To the authors’ knowledge publications on the solution to the 
general problem of arbitrarily shaped cross sections do not exist. 

In this investigation, an integral equation technique is developed for the solution of the general flexural-
torsional buckling problem of beams of arbitrarily shaped cross-section. The beam is subjected to a compressive 
centrally applied load together with arbitrarily transverse and torsional distributed loading, while its edges are 
restrained by the most general linear boundary conditions. The solution method is based on the concept of the 
analog equation[6]. According to this method, the three coupled fourth order ordinary differential equations are 
replaced by three uncoupled ones subjected to fictitious load distributions under the same boundary conditions. 
The general character of the proposed method is verified from the fact that all basic equations are formulated 
with respect to an arbitrary coordinate system, which is not restricted to the principal one. Several beams are 
analysed to illustrate the method and demonstrate its efficiency and wherever possible its accuracy. The range of 
applicability of the thin-tube theory is also investigated through examples with great practical interest. 

2 STATEMENT OF THE PROBLEM 

Let us consider an initially straight Euler-Bernoulli beam of length l  (Fig.1), of constant arbitrary cross-
section of area A . The homogeneous isotropic and linearly elastic material of the beam cross-section occupies 
the region Ω  of the y,z  plane and is bounded by the jΓ ( )j 1,2,...,K=  boundary curves, which are piecewise 
smooth, i.e. they may have a finite number of corners. In Fig. 1a CYZ  and Syz  are coordinate systems (not 
necessarily principal) through the cross section’s centroid C  and shear center S , respectively. Moreover, Cy , 

Cz  are the coordinates of the centroid C  with respect to Syz  system of axes. The beam is subjected to a 
compressive load P , to the combined action of the arbitrarily distributed transverse loading ( )Y Yp p X= , 
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( )Z Zp p X=  acting in the Y  and Z  directions, respectively and to the arbitrarily distributed twisting moment 

( )x xm m x=  (Fig. 1b). 
 

C: Center of gravity 
S: Shear center 
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Figure 1. Prismatic element of an arbitrarily shaped constant cross section occupying region Ω  (a) subjected in 
bending, torsional and buckling loading (b). 

 
The boundary value problem of the beam under consideration subjected to the combined action of flexure, 
torsion and compression is described by the following three coupled ordinary differential equations 
 

 
4 4 2 2

Z YZ C Y4 4 2 2
d v d w d v dEI EI P z p
dx dx dx dx

θ 
+ + − =  

 
 (1) 

 
4 4 2 2

Y YZ C Z4 4 2 2
d w d v d w dEI EI P y p
dx dx dx dx

θ 
+ + + =  

 
 (2) 

 
4 2 2 2 2

S
S t C C x Z C Y C4 2 2 2 2

Id d d d v d wEC GI P z y m p y p z
Adx dx dx dx dx

θ θ θ 
− + − + = + −  

 
 (3) 

 
inside the beam, subjected to the following boundary conditions  
 

 ( )1 2 Y 3v x R ( x )α α α+ =      
( )

1 2 Z 3
dv x

M ( x )
dx

α α α+ =  (4a,b) 

 ( )1 2 Z 3w x R ( x )β β β+ =      
( )

1 2 Y 3
dw x

M ( x )
dx

β β β+ =  (5a,b) 

 ( )1 2 t 3x M ( x )γ θ γ γ+ =       
( )

1 2 b 3
d x

M ( x )
dx
θ

γ γ γ+ =  (6a,b) 

 
at the beam ends x 0,l= , where v v( x )= , w w( x )=  are the deflections of the shear center along y , z  axes, 
respectively; ( )xθ  is the angle of twist of the cross-section about the shear center S ; E  is the modulus of 
elasticity and YI , ZI , YZI  are the moments and the product of inertia with respect to the centroid C  and SI  is 
the polar moment of inertia with respect to the shear center S . Moreover, SC , tI  are the warping and torsion 
constants of the cross section, respectively given as[7] 
 

 ( )2P
S SC dΩ ϕ Ω= ∫  (7) 

 
P P

2 2 S S
tI y z y z d

z yΩ
ϕ ϕ

Ω
 ∂ ∂
 = + + −
 ∂ ∂ 

∫  (8) 

 



where P
S ( y,z )ϕ  is the primary warping function with respect to the shear center S  of the cross section of the 

beam (Fig. 1a). This function can be established by solving independently the Neumann problem 
 

 2 P
S 0ϕ∇ =          in Ω  (9) 

 
( )2P SS 1

n 2 s

ρϕ ∂∂
=

∂ ∂
          on jΓ  ( j 1,2,...,K= ) (10) 

 

where 2 2 2 2 2/ y / z∇ = ∂ ∂ + ∂ ∂  is the Laplace operator; 2 2
S y zρ = +  is the distance of a point on the 

boundary jΓ  from the shear center S ; / n∂ ∂  denotes the directional derivative normal to the boundary jΓ  and 

/ s∂ ∂  denotes differentiation with respect to its arc length s . 
In the boundary conditions (4), (5) YR , YM  and ZR , ZM  are the reactions and bending moments with 

respect to Y  and Z  axes, respectively, given as 
 

 
( ) ( ) ( )3 3

Y Z YZ3 3
dv x d v x d w x

R P EI EI
dx dx dx

= − − −  (11) 

 
( ) ( )2 2

Y Y YZ2 2
d w x d v x

M EI EI
dx dx

= − −  (12) 

 
( ) ( ) ( )3 3

Z Y YZ3 3
dw x d w x d v x

R P EI EI
dx dx dx

= − − −  (13) 

 
( ) ( )2 2

Z Z YZ2 2
d v x d w x

M EI EI
dx dx

= +  (14) 

 
while in eqns. (6) tM  and bM  are the torsional and warping moments, respectively, given as[7] 
 

 
( ) ( )3

t S t3
d x d x

M EC GI
dxdx

θ θ
= − +  (15) 

 
( )2

b S 2
d x

M EC
dx

θ
= −  (16) 

 

Finally, k k k k k k, , , , ,α α β β γ γ  ( k 1,2,3= ) are functions specified at the beam ends x 0,l= . Eqs. (4-6) describe 
the most general linear boundary conditions associated with the problem at hand and can include elastic support 
or restrain. It is apparent that all types of the conventional boundary conditions (clamped, simply supported, free 
or guided edge) can be derived form these equations by specifying appropriately these functions (e.g. for a 
clamped edge it is 1 1 1 1α β γ= = = , 1 1 1 1α β γ= = = , 2 32 3 2 3 2 3 2 3α α β β γ γ α α β β= = = = = = = = = =  

2 3 0γ γ= = ). 

3 INTEGRAL REPRESENTATIONS - NUMERICAL SOLUTION 

According to the precedent analysis, the flexural-torsional buckling problem of a beam reduces in 
establishing the displacement components ( )v x , ( )w x  and ( )xθ  having continuous derivatives up to the fourth 
order satisfying the coupled governing equations (1)-(3) inside the beam and the boundary conditions (4)-(6) at 
the beam ends x 0,l= .  

Eqns (1)-(3) are solved using the Analog Equation Method as it is developed for ordinary differential 
equations in[8]. This method is applied for the problem at hand as follows. Let ( )v x , ( )w x  and ( )xθ  be the 

sought solution of the boundary value problem described by eqns. (1)-(3) and (4)-(6). Setting as ( ) ( )1u x v x= , 

( ) ( )2u x w x= , ( ) ( )3u x xθ=  and differentiating these functions four times yields 
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 ( )
4

i
i4

d u
b x

dx
=    ( i 1,2,3 )=  (17) 

 
Eqns. (17) indicate that the solution of eqns. (1)-(3) can be established by solving eqns. (17) under the same 
boundary conditions (4)-(6), provided that the fictitious load distributions ( )ib x  ( i 1,2,3 )=  are first 
established. These distributions can be determined using BEM as follows. 

The solution of eqns (17) is given in integral form as[8] 
 

 ( )
l3 2* 2 * 3 *

l * * i i i
i i i0 3 2 2 3

0

d u d u dudu d u d uu x b u dx u u
dx dxdx dx dx dx

 
= − − + − 

  
∫  (18) 

 

where *u  is the fundamental solution given as 
 

 ( )3 2* 31u l 2 3
12

ρ ρ= + −  (19) 

 
with r / lρ = , r x ξ= − , x ,ξ  points of the beam, which is a particular singular solution of the equation 
 

 
4 *

4
d u ( x, )
dx

δ ξ=  (20) 

 
Employing eqn (19) the integral representation (18) can be written as 
 

 
l3 2

l i i i
i i 4 4 3 2 1 i0 3 2

0

d u d u du
u ( x ) b ( r )dx ( r ) ( r ) ( r ) ( r )u

dxdx dx
Λ Λ Λ Λ Λ

 
= − + + + 

  
∫  (21) 

 
where the kernels , j ( r ) ( j 1,2,3,4 )Λ =  are given as 
 

 1
1( r ) sgn
2

Λ ρ= −  2
1( r ) l(1 )
2

Λ ρ= − −  (22a,b) 

 2
3

1( r ) l ( 2 )sgn
4

Λ ρ ρ ρ= − −  ( )3 23
4

1( r ) l 2 3
12

Λ ρ ρ= + −  (22c,d) 

 
Notice that in eqn (21) for the line integral it is r x ξ= − , x ,ξ  points inside the beam, whereas for the rest 
terms it is r x q= − , x  inside the beam, q  at the beam ends 0 , l . 

Differentiating eqn (21) results in the integral representations of the derivatives of iu  as 
 

 
l3 2

li i i i
i 3 3 2 10 3 2

0

du ( x ) d u d u du
b ( r )dx ( r ) ( r ) ( r )

dx dxdx dx
Λ Λ Λ Λ

 
= − + + 

  
∫  (23a) 

 
l2 3 2

li i i
i 2 2 102 3 2

0

d u ( x ) d u d u
b ( r )dx ( r ) ( r )

dx dx dx
Λ Λ Λ

 
= − + 

  
∫  (23b) 

 
l3 3

li i
i 1 103 3

0

d u ( x ) d u
b ( r )dx ( r )

dx dx
Λ Λ

 
= −  

  
∫  

4
i

i4
d u ( x )

b ( x )
dz

=  (23c,d) 

 
The integral representations (21) and (23a), when applied for the beam ends ( 0,l ), together with the 

boundary conditions (4)-(6) are employed to express the unknown boundary quantities ( )iu q , ( )i xu , q , 

( )i xxu , q  and ( )i xxxu , q  ( q 0,l= ) in terms of ib . This is accomplished numerically as follows. 



The interval ( )0,l  is divided into N  equal elements (Fig. 2), on which ( )ib x  is assumed to vary according 
to certain law (constant, linear, parabolic etc). The constant element assumption is employed here as the 
numerical implementation becomes very simple and the obtained results are very good. 
 

 Nodal points 

2

x

1 N

l  

Figure 2. Discretization of the beam interval and distribution of the nodal points. 
 
Employing the aforementioned procedure for the coupled boundary conditions (4), (5) the following set of linear 
equations is obtained  
 

11 12 14 18 1

21 22 27 1 x

31 32 33 34 1 xx

42 43 44 1 xxx

53 55 56 58 2

63 66 67 2 x

31 32 33 34 2 xx

42 43 44 2 xxx

ˆ
ˆ ,
ˆ ,
ˆ ,

ˆ
ˆ ,
ˆ ,
ˆ ,

  
  
  
  
  

           
   

D D 0 D 0 0 0 D u
0 D D 0 0 0 D 0 u

E E E E 0 0 0 0 u
0 E E E 0 0 0 0 u
0 0 D 0 D D 0 D u
0 0 D 0 0 D D 0 u
0 0 0 0 E E E E u
0 0 0 0 0 E E E u

3

3

3

4
1 2

3

3

3

4

     
     
     
     
     
     = + +                                     

0α 0
0α 0
00 F
00 F

b b
0β 0
0β 0

F0 0
F0 0  (24) 

 
while for the boundary conditions (6) we have  
 

   =

311 12 14 3

22 23 3 x 3
3

331 32 33 34 3 xx

42 43 44 3 xxx 4

ˆ
ˆ ,
ˆ ,
ˆ ,

      
      

       +                           

γ 0E E 0 E u
00 E E 0 u γ

b
FE E E E u 0

0 E E E u F0

 (25) 

 
where 11D , 12D , 14D , 18D , 21D , 22D , 27D , 53D , 55D , 56D , 58D , 63D , 66D , 67D , 22E , 23E , 1 jE , 

( j 1,2,4= ) are 2 2×  known square matrices including the values of the functions j j j ja , a , ,β β  ( j 1,2= ) of 

eqns (4)-(6); 3α , 3α , 3β , 3β , 3γ , 3γ  are 2 1×  known column matrices including the boundary values of the 

functions 3 3 3 3 3 3a ,a , , , ,β β γ γ  of eqns (4)-(6); jkE , ( j 3,4= , k 1,2,3,4= ) are square 2 2×  known coefficient 

matrices resulting from the values of the kernels j ( r )Λ  ( j 1,2,3,4 )=  at the beam ends and jF  ( j 3,4 )=  are 
2 N×  rectangular known matrices originating from the integration of the kernels on the axis of the beam. 
Moreover, 
 

 ( ) ( ){ }T
i i iˆ u 0 u l=u  

( ) ( ) T
i i

i x
du 0 du l

ˆ ,
dx dx

  =  
  

u  (26a,b) 

 
( ) ( )

T2 2
i i

i xx 2 2
d u 0 d u l

ˆ ,
dx dx

  =  
  

u  
( ) ( )

T3 3
i i

i xxx 3 3
d u 0 d u l

ˆ ,
dx dx

  =  
  

u  (26c,d) 

 
are vectors including the two unknown boundary values of the respective boundary quantities and 

{ }Ti i i
i 1 2 Nb b ... b=b  ( i 1,2,3 )=  is the vector including the N  unknown nodal values of the fictitious load. 

Discretization of eqns (21), (23) and application to the N  collocation points yields 
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 ( )i 4 i 1 i 2 i x 3 i xx 4 i xxxˆ ˆ ˆ ˆ, , ,= − + + +u C b E u E u E u E u  (27a) 

 ( )i x 3 i 1 i x 2 i xx 3 i xxxˆ ˆ ˆ, , , ,= − + +u C b E u E u E u  (27b) 

 ( )i xx 2 i 1 i xx 2 i xxxˆ ˆ, , ,= − +u C b E u E u  i xxx 1 i 1 i xxxˆ, ,= −u C b E u   i xxxx i, =u b   (27c,d,e) 
 
where jC  ( j 1,2,3,4 )=  are N N×  known matrices; jE  ( )j 1,2,3,4=  are N 2×  also known matrices and iu , 

i x,u , i xx,u , i xxx,u , i xxxx,u  are vectors including the values of ( )iu x  and their derivatives at the N  nodal 
points. 

The above equations, after eliminating the boundary quantities employing eqns (24), (25), can be written as 
 
 i i i i= +u T b t  i x ix i ix, = +u T b t   i xx ixx i ixx, = +u T b t   (28a,b,c) 
 i xxx ixxx i ixxx, = +u T b t  i xxxx i, =u b  (28d,e) 
 
where iT , ixT , ixxT , ixxxT  are known N N×  matrices and it , ixt , ixxt , ixxxt  are known N 1×  matrices. It is 

worth here noting that for homogeneous boundary conditions ( 3 3 3 3 3 3 0α α β β γ γ= = = = = = ) it is 

i ix ixx ixxx= = = =t t t t 0 . 
In the conventional BEM, the load vectors ib  are known and eqns (28) are used to evaluate iu  and their 

derivatives at the N  nodal points. This, however, can not be done here since ib  are unknown. For this purpose, 
3N  additional equations are derived, which permit the establishment of ib . These equations result by applying 
eqns (1)-(3) to the N  collocation points, leading to the formulation of the following set of 3N  simultaneous 
equations 
 

 ( ) + =
1 Y 1xx C 3xx

2 Z 2xx C 3xx

3 x Z C Y C t 3xx S
C 1xx C 2xx 3xx

z
P P y

y z I
z y

A

 
 −   
    − +     

     + − +     − + +
 

b p t t
A B b p t t

b m p p GI t
t t t

 (29) 

 
In the above set of equations the matrices A  and B  are evaluated from the expressions 
 

 
Z YZ

YZ Y

S t 3xx

 
 =  
 − 

EI EI 0
A EI EI 0

0 0 EC GI T
 (30) 

 
1xx C 3xx

2xx C 3xx

S
C 1xx C 2xx 3xx

z
y
I

z y
A

 
 −
 

=  
 
 −
  

T 0 T
B 0 T T

T T T

 (31) 

 
where YEI , ZEI , YZEI , SEC , tGI  are N N×  diagonal matrices including the values of the YEI , ZEI , 

YZEI , SEC , tGI  quantities, respectively, at the N nodal points. Moreover, Yp , Zp  and xm  are vectors 
containing the values of the external loading at these points. 

Solving the linear system of eqns (29) for the fictitious load distributions 1b , 2b , 3b , the displacements and 
their derivatives in the interior of the beam are computed using eqns (28). 
 
Buckling equation 

In this case it is 3 3 3 3 3 3 0α α β β γ γ= = = = = =  (homogeneous boundary conditions) and 

X Y x= = =p p m 0 . Thus, eqn (29) becomes  
 

 ( )
1

2

3

P
 
 + = 
 
 

b
A B b 0

b
 (32) 



 
The condition that eqn (32) has a non-trivial solution yields the buckling equation 
 
 ( )det P 0+ =A B  (33) 

4 NUMERICAL EXAMPLES 

On the basis of the analytical and numerical procedures presented in the previous sections, a computer 
program has been written and representative examples have been studied to demonstrate the efficiency, wherever 
possible the accuracy and the range of applications of the developed method. 

For comparison reasons, a simply supported thin-walled beam of length l 1.0m=  ( 2
YEI 355.6kNm= , 

2
ZEI 1568.0kNm= , 2

YZEI 297.5kNm= , 4
sEC 1.6338kNm= , tGI 1.352kNm= , 5 2A 9.68 10 m−= × , 

8 4
SI 4.60 10 m−= × , 3

Cy 9.09 10 m−= − × , 3
Cz 10.43 10 m−= × ), as shown in Fig. 3, has been studied. In the 

case of a simply supported beam eqns. (1)-(3) are simplified to 
 

 ( )
2 2

Z YZ C2 2
d v d wEI EI P v z 0
dx dx

θ+ + − =  (34) 

 ( )
2 2

Y YZ C2 2
d w d vEI EI P w y 0
dx dx

θ+ + + =  (35) 

 
2

S
S t C C2

IdEC GI P z v y w 0
Adx

θ θ θ − + − + = 
 

 (36) 

  

Sy
C

z
Z

Y

 
Figure 3. Cross section of the thin-walled beam. 

 
and an analytical solution can be obtained by setting[9] 
 

 1
xv A sin

l
π

= ,            2
xw A sin

l
π

= ,            3
xA sin

l
πθ =  (37a,b,c) 

 
Inserting the above expressions and their derivatives into eqns. (34)-(36) the following homogeneous system 
with respect to 1A , 2A  and 3A  is obtained 
 

   =

2 2

Z YZ C2 2

12 2

YZ Y C 22 2
32

S
C C S t2

P EI EI Pz
l l

A 0
EI P EI Py A 0

l l A 0
I

Pz Py P EC GI
A l

π π

π π

π

 
− − − 

 
    
    − −             

 − − − 
  

 (38) 

 
For a non-trivial solution, the determinant of the above system must be equal to zero. Thus, a cubic equation 

is obtained, leading to three positive roots yP , zP , Pθ , from which the smallest one is of importance in 
engineering design. 

793



In Table 1 the computed buckling loads yP , zP , Pθ  for the aforementioned case are presented as compared 

with those obtained from the analytical solution, in which the bending stiffness YZEI  is excluded and included in 
turn. From the obtained results the influence of the inclusion of the product of inertia is remarkable leading to the 
conclusion that the aforementioned stiffness has to be taken into account. Moreover, the accuracy of the obtained 
results using the proposed method is also remarkable.  
 

 YZEI 0=  YZEI  included 
 analytical computed analytical computed 

yP  3.447 3.447 2.807 2.807 

zP  13.809 13.809 13.743 13.744 

Pθ  70.267 70.269 72.934 72.937 

Table 1 : Buckling load ( 310 kN× ) of the beam of example 1. 

5  CONCLUDING REMARKS 

The main conclusions that can be drawn from this investigation are 
a. The numerical technique presented in this investigation is well suited for computer aided analysis for 

homogeneous beams of arbitrary cross section, subjected to any linear boundary conditions and to an 
arbitrarily distributed or concentrated loading. 

b. Accurate results are obtained using a relatively small number of beam elements. 
c. The displacements as well as the stress resultants are computed at any cross-section of the beam using the 

respective integral representations as mathematical formulae. 
d. The general character of the proposed method is verified from the fact that all basic equations are formulated 

with respect to an arbitrary coordinate system, which is not restricted to the principal one. 
e. The developed procedure retains the advantages of a BEM solution over a pure domain discretization method 

since it requires only boundary discretization. 
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Abstract. In recent years, the finite element implementation of strain-gradient constitutive models has been the 
subject of several publications. Such models include strain-gradient elasticity, deformation type of strain-
gradient plasticity and gradient plasticity. The finite element strategies depend on the selection of the kinematic 
variables (which have to do with the solution approach) and with the continuity requirements (which have to do 
with the element type). It is the purpose of this work to investigate the issue of accuracy of the finite element 
models of strain-gradient elasticity. Special emphasis will be given to one dimensional problems. The results are 
expected to be useful in assessing singular stress fields around crack-tips and concentrated forces. 
 
 
 
1 INTRODUCTION 

In strain-gradient elasticity, microstructural lengths enter the constitutive equation through the elastic strain 
energy function which depends not only on the strain tensor but also on the gradients of the rotation and strain 
tensors. Amanatidou and Aravas (2002) presented a finite element (FE) implementation of linear elastic strain-
gradient constitutive models, using a mixed finite element formulation in which the displacements and the 
displacement gradients are used as independent unknowns and their relationships are enforced in an integral 
(weak) sense. The present work is based on the work of Amanatidou and Aravas in order to address the issue of 
accuracy of the related FE methodology. Two particular aspects are examined, namely the condition number of 
the stiffness matrix and the a posteriori element error estimate. Thus, the FE computations can be assessed and 
strategies for mesh refinements can be established in order to improve the accuracy and efficiency of the FE 
models of strain-gradient elasticity. The paper starts with the variational formulation of the Type I description of 
the problem, Mindlin (1964). The error estimate is local and is based on an energy norm and the super-
convergent patch recovery. A particular one-dimensional, 3-noded bar-element is worked-out explicitly, in order 
to investigate the effect of the excessive refinement on the stiffness condition number and the error distribution 
inside the mesh. 
 
 
2 A REVIEW OF STRAIN-GRADIENT ELASTICITY THEORIES 
2.1 Kinematic variables 

Let be the displacement field. The following quantities are defined: u

     ( ), , ,
1
2ij i j i j j iu u u straε = = + = in      (1) 

      (2) , , , , .ijk k ij jk i ki j ij k jiku second gradient of displacementκ ε ε ε κ= = + − = =

 
2.2 Constitutive equations 

The strain energy density W is 

( ),W W= .ε κ        (3)
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Mindlin (1964) refers to the description ( ),W W= ε κ  as “Type I”. 
Using the above form of the elastic strain energy density, one defines the following quantities: 

 ,ij ji
ij

Wσ σ
ε
∂

= =
∂

  ,ijk jik
ijk

Wµ µ
κ
∂

= =
∂

    (4) 

It is worthy of note that ijσ  and ijkµ  are introduced as “conjugate” quantities to ijε  and , and their 
relationship to “true” couple stress is not obvious.  

ijkκ

The “external forces” are of the form 

    ( ) ( ) ( ), ,i j ji kji k ji j p p j k kjiP n D D n n nσ µ Φ µ⎡ ⎤= − − − −⎣ ⎦     (5) 

   ,i k j jkiR n n µ=          (6) 

[[ ]],i j k kjiE n µ=         (7) 

where  is the “body double force” per unit volume. ijΦ

In the above expressions, the double brackets  indicate the jump in the value of the enclosed quantity across 

an edge Cα , ,  where s  is the unit vector tangent to l = s×n Cα  and ( )f f Df= ∇ −D n  or . , ,i i k kD f f f n n= − i

 
2.3 Boundary value problem 

The equilibrium equation and the appropriate boundary conditions for Type I formulation is as follows: 

 ( )ij , ,
0kji k ji ij

f inσ µ Φ− − + = .V      (8) 

where  is the “body force” per unit volume. if
The true stress  is related to σ σ  and µ  by the expressions 

(( ) , , , ( )
1
3ij ij ijk k jki k kij k ij)σ σ µ µ µ Φ= − + + −      (9) 

[ ] [ ] [ ],
4
3ij k ij k ijσ µ Φ= − −        (10) 

and the couple stress  is µ

4 .
3ij ikp jkpeµ µ=       (11) 

 
2.4 Variational formulation 

A given boundary value problem in strain-gradient elasticity can be formulated by the stationary condition 
0δΠ =  of the functional (see [1] for details) 

      (12) 

( )( ) ( ) ( )( ) ( ) ( )

( ) ( )

2 2
,, ,

P R E

i j ij ji

V V

t
i i i i i j ij i i j i ij k kji

V SC

W dV u dV

f u dV P u dS R n dS E u ds D u n dS
ααΓ Γ

Π α σ

α α

= + − +

− − − − + −

∫ ∫
∑∫ ∫ ∫ ∫ ∫

u α σ ε u ,κ α

αµ

where  ( ),ij i juε = ,  , ( ),ijk k i jκ α= ,ij i juα = , ijk
ijk

W∂µ
∂κ

= , 0iuδ =  on PS Γ−  and EC Cα α− ,  and 0k ikn δα =   on 

RS Γ− . The stationary condition 0δΠ =  implies the appropriate field equations and boundary conditions, the 

relationship ( )2
,ij kij kσ µ= −  in V  and t

j iD u ijα=  on . In the above functional the quantities S ( )2
ijσ  and k kjin µ  are 

Lagrange multipliers that enforce the corresponding constraints in V  and on . S
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The above functional can form the basis for a finite element solution, in which the nodal unknowns are ,  
and .  

u α
( )2σ

It should be mentioned that the numerical calculation of the true stresses and true couple stresses in a finite 
element solution is not trivial when the Type I formulation is used. In such a finite element approach one can 
calculate easily the stress like quantity, ( )2

,ij ij ij ij kij kσ σ σ σ µ= + = − , which is different from the true stress ijσ  in 
general.  In fact the true stress and the true couple stress are given using Eqs. (9)-(11) (for ). 0ijΦ =
We conclude this section with the statement of the weak form. Find 

1H∈u  satisfying  on  and  u = u uS αu = u  on uCα , 
1H∈α   satisfying  on ⋅α n = d PS Γ− , 

and  such that for all ( )2 2L∈σ * 1H∈u  satisfying  on  and *u = 0 uS uCα , for all * 1H∈α  satisfying  on  * ⋅α n = 0

PS Γ− , and for all  ,   (2)* * 2, L∈Tσ

 ( )(2) * * * * *
, ,

P E

t
ji ji i j ik i k i i i i i i

V S V C

u dV T u dS f u dV P u dS E u ds
ααΓ

σ σ+ + = + +∑∫ ∫ ∫ ∫ ∫ ,   (13) 

 ,    (14) ( )( )2 * * * *

R

t
ij ji kij kij ik ik i k ik

V S

dV T dS R n dS
Γ

σ α µ κ α α− + − =∫ ∫ ∫
 ( ) (2)*

, 0i j ij ji

V

u dα σ V− =∫ ,        (15) 

   ( ) *
, 0t t

i k ik ik

S

u T dSα− =∫ ,         (16) 

where 

 
( ),

ij
i j

W
u

σ ∂
=
∂

,  ij k kjiT n µ= ,  ijk
ijk

Wµ
κ
∂

=
∂

,    (17) 

with  , and ,  .     (18) ( ) ( )( ), , ijki jW W u κ= α ( ) ( ),ijk k i jκ α=α ( ),ijk k i jκ α∗ ∗=

 
As an example we consider the special case where 

 ( ) (
2

2
2ijk ipp jk jpp ik ijk kji kij

ijk

Wµ λ κ δ κ δ µ κ κ
κ
∂ )κ⎡ ⎤= = + + + +⎣ ⎦∂

  and  (19) 

2ij ij kk ijσ µε λε δ= +       (20) 

where λ  and µ  are the Lamé’s constants and  is the microstructure length. 
 
2.5 The one-dimensional case 

The static analysis of a gradient-elastic bar has been examined by Tsepoura et al (2002) and herein we give a 
brief  account of their results. The bar is assumed to be of length , cross section area L A , elastic modulus 

and microstructural length . Let  be the uniaxial displacement along longitudinal axis E ( )u x x  ( )0 x L≤ ≤ . 
In the absence of body forces, static equilibrium gives 

     2 0u u′′ ′′′′− =        (21) 

where the prime denotes differentiation with respect to x . Assuming , the solution of (21) is 1u H∈

( ) 1 2 3
x xu x c e c e c x c−= + + + 4       (22) 

where , , ,  are constants to be determined by appropriate boundary conditions. In the case under 
consideration 

1c 2c 3c 4c
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 ,   ( )0 0u = ( ) ( ) 0u L Lα ε′ = =      (23) 

and the generalized forces 

  ( ) ( ) ( )( )2
0AP L AE u L u L P′ ′′′= − =      (24) 

( ) ( ) ( )20 0 0AR AE u u⎡ ′′ 0⎤= +⎣ =⎦ .    (25) 

Conditions (23) and (24)-(25) give 

 ,  4 0c = ( )3 0c P AE= ,  
( )( )
( )

0 0
1 2 2cosh L

P AE
c c

ε −
= = .    (26) 

Note that if ( )0 0P AEε − , then  and the solution is the same as the classic one. The stress and the 
double stress are given by  

1 2 0c c= =

Euσ ′= , 2Euµ ′′=          (27) 

and the generalized tractions are 

P σ µ′= − ,   R µ= .     (28) 

Finite element analysis is performed for 0 0.4ε =  and , 0.6 ( )0 1P AE =  and 1 3L = . The results are shown 

in Fig. 1c and the relative error of  is ( )u L 30.877 10−× . 
 
 
3 THE FINITE ELEMENT MODEL (I3-8) 

The problem is solved by using a three-node isoparametric element shown in Figure 1a. The element of size 
 is of mixed type with independent isoparametric (Lagrange) interpolation of the displacement , its 

derivative  

h 1u

11 1,1uα =  and of ( )2
1 111,1σ µ= − . The total number of unknowns per element are , 

where  (3 displacements and 3 derivatives, one for every node) and  (at the edge nodes 
only). A three point Gauss integration is used (properly constrained, Fig. 1b) and the element has none zero 
eigenvalue, thus satisfying the patch test. Note that the necessary condition for convergence, , is 

also satisfied ([7], [8]). The stiffness matrix of the element, 

( )28 un n nα σ
= + +

3un nα= = ( )2 2n
σ

=

( )2un n nα σ
+ ≥

ek⎡ ⎤⎣ ⎦ , together with the element equilibrium 
equation is given by the following expression. 
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The resulting finite element requires only  continuity of , 0C iu ijα  and ( )2
ijσ . 

 
 

 
 

Figure 1a. 
 
 

 
 

Figure 1b. 
 
 

 
Figure 1c. 

 
 
 
 
4 STIFFNESS CONDITION NUMBER 

A sufficient condition for stability of the FEM analysis is the uniform boundedness of the Babuska-Brezzi 
(BB) constant from below, (e.g. Babuska and Narasimhan, 1977). Recent developments of apriori numerical 
estimates of the BB stability constant on an element level are based on the solution of the adjoin problem using 
the basis functions of the discrete trial space (e.g. Tsamasphyros and Markolefas, 2003). 
Essentially, the requirement is to have a small condition number for the overall stiffness matrix [ ]K . Since the 
stiffness matrix is symmetric, the condition number β  can be found from the relation 
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[ ] 1max maxi iK
β λ λ −K⎡ ⎤⎣ ⎦
=     (29) 

where [ ]max i K
λ  is the maximum of the absolute values of the eigenvalues of  [ ]K  and 1max i K

λ −⎡ ⎤⎣ ⎦
 is the 

maximum of the absolute values of the eigenvalues of 1K −⎡ ⎤⎣ ⎦ . Figure 2 shows the development of the condition 
number with the number of elements. We observe that as the number of elements increases (with uniform 
refinement), the condition number increases and the rate of increase depends on h  (the relative size of the 
element  with respect to the microstructural length ). It appears that the element size should not exceed the 
order of the microstructural length.  

h

 

 
Figure 2. 

 
 
 
5 ERROR ESTIMATE 

Starting from the expression of the variation of the internal energy 

( )int
ij ij ijk ijk

V

W dδ σ δε µ δκ= +∫ V      (30) 

we formulate an error estimate for each element, based on the super-convergent patch recovery established by 
Zienkiewich and Zhu (1992). The error estimate is based on an (a posteriori) energy norm, assuming that ijσ  and  

ijkµ are approximated very well at the integration points of the element. Assuming linear constitutive equations 

of the type [ ]µ =  and D κ [ ]σ = C ε ,  the error estimate for each element eΩ  is 

{ } { } { } { }
1 2

1 1

e

T Td d d de C d D
Ω

Ω− −
⎡ ⎤
⎢ ⎥⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦
∫ * * * *σ -σ σ -σ µ - µ µ - µ dΩ   (31) 

where dσ  and µ  are obtained from FEM, and d *σ  and  are second order polynomial interpolations of the 
computed values at the integration points. 

*µ

For the 1-D case, Eq. (31) becomes  
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( ) ( )
1 22 2* *

0 0

- -h hd d

e dx
E E

σ σ µ µ⎡ ⎤
⎢ ⎥= +
⎢ ⎥
⎢ ⎥⎣ ⎦
∫ ∫

2

dx     (32) 

where *σ  and *µ  are given by 

* 2
1 2 3

*
1 2 3

a a x a x

b b x b x

σ

µ

= + +

= + + 2
     (33) 

where  and 1 2 3a a a⎢ ⎥⎣ ⎦ 1 2 3b b b⎢ ⎥⎣ ⎦  are computed from 

{ } { }
{ } { }

1

1

a A c

b A d

−

−

⎡ ⎤= ⎣ ⎦
⎡ ⎤= ⎣ ⎦

        (34) 
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∑   (35) 

 
NINT=3 (the integration points). 
 
Obviously, the error estimate can be used for mesh refinement strategies, of particular use for cases of bodies 
with crack-tips and concentrated forces. 
Figure 3 shows the error distribution along bar for different (uniform) mesh densities. For the particular case, the 
largest error appears at the last element where non-linearity is stronger. Figure 3a shows the error distribution for 

3L=  and Figure 3b for 9L= . 

 
Figure 3a. 
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Figure 3b. 
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Abstract. This paper discusses several mathematical aspects of large transfinite elements that are capable of 
solving engineering problems. It is shown that Gordon-Coons interpolation, which is well-known in the theory 
of CAD surfaces, is also capable of constructing large isoparametric finite elements with boundary and/or 
internal nodes. Serendipity and Lagrangian type elements are distinguished members of this family. Moreover, it 
is possible to introduce any number of internal nodes not necessarily at the same normalized curvilinear 
coordinates with the boundary nodes. Although the same concept is applicable to both 2-D and 3-D Finite 
Element Method as well as 3-D Boundary Element Method, this paper reduces in investigating their 
performance in 2-D steady state and transient potential problems using the finite element method. The theory is 
sustained by steady state and transient thermal test cases.  
 
 
1 INTRODUCTION 

It is well known that early finite elements appeared in two basic formulations, i.e. Lagrangian and 
Sependipity interpolations. For a unit square uniformly meshed by m segments per side, the corresponding 
Lagrangian element requires (m+1)2 nodes as shown in Figure 1, while the serendipity one requires 4m nodes. 
For each case, the corresponding monomials in Pascal’s triangle are well defined[1]. According to Zienkiewicz[1, 

pp.155-159], besides the well-known bilinear and quadratic elements, cubic and quartic elements were originally 
derived by inspection. Ergatoudis et al.[2] derived the shape function for some Lagrangian and Serendipity 
elements. A systematic way of generating the ‘serendipity’ shape functions was first introduced by Zienkiewicz 
et al.[3] and a simpler formulation was reported by Taylor[4]. However, no general theory for Serendipity 
elements was produced. Dunne[5] showed that two-dimensional shape functions can be complete bivariate 
polynomials for the nth degree, if the number of element nodes equals to (n+1)(n+2)/2. Zlámal[6] has given a 
geometric method for the derivation of Serendipity type elements, which has been simplified by Ball[7]. In 
Lagrangian type quadrilateral elements the polynomial space contains all terms that correspond to a certain 
discretization, while in Serendipity type elements a lot of them are missing. In more detail, let us consider the 
above-mentioned (m+1)2 symmetrically placed nodes in a unit square (m segments per side), with the reference 
coordinates denoted by p and q as shown in Figure 1[8]. With respect to Pascal’s triangle, Lagrangian type 
elements include all terms piqj (i,j=0,1,…,m) and occupy a whole square area[2,p.156] (see also Figure 2) while 
Serendipity type elements include the edges ({1,p,…,pm}, {1,q,…,qm}) with a surplus of two (i.e., {1,p,…,pm}q, 
{1,q,…,qm}p)[1,p.160] and occupy the legs of a lamda (∧)-shape with length “m+1” as shown in Figure 3.  

q

p

Π1Π5Π2

Π6

p

Π1Π2

Π3 Π4 Π3 Π4Π7

Π8Π9

q q

p

Π1Π5Π2

Π7

Π3 Π4

Π12

Π11

m = 1 m = 2 m = 3

Π6

Π8

Π9 Π10

Π13Π14

Π15 Π16

( a ) ( b ) ( c )
 

Figure 1: Unit squares of typical low-degree finite elements of Lagrangian type: 
 (a) bilinear: m=1, (b) biquadratic: m=2 and (c) bicubic: m=3. 
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Figure 2 summarizes the most common Lagrangian and Serendipity type finite elements for m=1 (bilinear), 

m=2 (biquadratic) and m=3 (bicubic). The monomials included in the shape functions of quintic (20-node), 
septic (24-node) and still higher-order (4m-node) Serendipity type elements are given in Figure 3. The topic of 
arbitrary-noded elements has been also discussed first by Irons[9] and later by El-Zafrany[10] while the author has 
presented closed-form analytical expressions for the so-called Coons-Patch Macroelements (CPM)[11,12]. 
However, if someone is interested in deriving new elements like Serendipity ones plus some arbitrary interior 
nodes (less or more than those of the corresponding Lagrangian type element), not a general recipe seems to 
exist. A first approach has been attempted by Gordon and Hall[13] while the author[14] has recently successfully 
compared with both FEM and BEM for one internal node only.  

It is the aim of this paper to present a general theory for dealing with both boundary and internal nodes. 
Although the theory is general, due to lack of space, here it will be tested only on 2-D elliptic and parabolic 
potential problems.  

 
 Lagrange elements (◊-type)   Serendipity elements (Λ-type)  Unit square 
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Figure 2: Pascal triangles for several conventional finite elements (m=1: bilinear, m=2: biquadratic, m=3: 

bicubic). Left columns correspond to Lagrange elements while middle columns to Serendipity ones. 
The corresponding elements are shown in the right column. Black nodes correspond to both 
Serendipity and Lagrange elements while white nodes to only Lagrange ones. 
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Figure 3: Unit square of a Coons-patch macroelement with (m+1) nodes per side. 
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2 GORDON-COONS BIVARIATE INTERPOLATION 

Let us consider a two-dimensional function u(p,q), defined in a square domain Ω=(Π1Π2Π3Π4), with p and q 
denoting normalized coordinates (0≤p,q≤1), known at lines p=const. and q=const. These lines are (np+1) p-lines 
vertical to the p-axis at the points: [ ] 0 1, , ,

pnp p p⎡ ⎤= ⎣ ⎦p … , and (nq+1) q-lines vertical to the q-axis at the points: 

[ ] 0 1, , ,
qnq q q⎡ ⎤= ⎣ ⎦q … . Then, the following functions are assumed to be known: 

( ) ( ), , 0,1, , , , 0,1, ,i p j qu p q i n u p q j n= =… …     (1) 

Let us, further, define cardinal blending functions Ei(p) for i=0,1,…, np (δim=Kronecker’s delta):  
( )i m imE p δ=        (2) 

with pi, rsp., pm, being elements of  [p]. By analogy we define cardinal blending functions Ej(q) for j=0,1,…,nq.  
Based on Eq(1) and Eq(2), we construct the following unidirectional, or lofting, operators Ap(u) and Aq(u):  

( ) ( ) ( ) ( ) ( ) ( )
1 1

, , , .
p qn n

p i i q j j
i j

A u u p q E p A u u p q E q
= =

= ⋅ = ⋅∑ ∑    (3) 

and in the sequence a two-dimensional operator ( )pqA u , given by 

( ) ( ) ( ) ( ) ( )
1 1

,
p qn n

pq p q i j i j
i j

A u A A u u p q E p E q
= =

= = ⋅ ⋅∑∑     (4) 

Then, the two-dimensional Gordon-Coons function u(p,q) is interpolated by the following formula[13]: 
( ) ( ) ( ) ( ), p q pqu p q A u A u A u= + −      (5) 

If for the interpolation of Eq(5) the values of u vertical to the p-axis are not available, then the unidirectional 
operator Ap(u) equals to zero, as well as all the subsequent operators with the p-index. The same holds for the 
values of u vertical to the q-axis. Based on Eq(5), it is very easy to derive any of the well-known isoparametric 
elements. As an example, the case of a 5-node element (Figure A1) is examined in the Appendix A. In the 
context of this paper, it was found that both Serendipity and Lagrangian type elements belong to this family. The 
use of Lagrangian interpolation along the four sides of the patch =(Π1Π2Π3Π4) constitutes the Model-3 of this 
study. Alternatively, we can use cubic B-splines (Model-1) or piecewise-linear interpolation (Model-2). 
Moreover, the same procedure can be applied to arbitrary-nodded elements with any number of internal nodes.  

In all cases, Eq(5) leads to the well-known expression ( ) ( ) ( )
1

, , ,
eq

j j
i

u x y t N x y u t
=

=∑  while for the parabolic 

problem it holds that [ ] ( ){ } [ ] ( ){ } ( )C u t K u t f t+ =� , where qe denotes the total number of nodes. For any node 

apart from the corners, the global shape functions are products of univariate basis functions, B, and polynomial 
blending functions, E [11,12].  
 
3 APPLICATIONS 

In order to demonstrate the efficiency of the Gordon-Coons macroelements, three model problems with 
known analytical solution are presented. The first refers to a steady state Poisson problem, while the second two 
refer to parabolic (transient heat problems) in which the Crank-Nicolson (CN) formulation has been used for 
both the proposed CPM, the conventional FEM and the FDM, for the same number of boundary nodes.  
 
Problem 1: A square domain governed by Poisson’s equation 
The governing equation and the domain are given as: 
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⎟
⎠
⎞

⎜
⎝
⎛ ≤=⎟

⎠
⎞

⎜
⎝
⎛ ± ππ

2
10

2
1, xxu  and      ⎟

⎠
⎞

⎜
⎝
⎛ ≤=⎟

⎠
⎞

⎜
⎝
⎛± ππ

2
10,

2
1 yyu     (7) 

The theoretical solution is given by [8, p.85]:  

( ) ( )
( )

( )
( )

( ) .12cos
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18
4

,
1
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1
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2
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−⋅
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−
⋅

−
−

++−= ∑
∞

=

+

ππ
π    (8) 

Use of “bubble” functions. Due to the homogeneous Dirichlet boundary conditions, this problem is first solved 
using the above-mentioned blending (‘bubble”) functions, which for one central internal node, becomes a 2nd-
degree polynomial: E1(p,q)=pq(1-p)(1-q). As it can be noticed in Table 1, this solution is more accurate than that 
obtained using the second alternative: ( )2 , sin sinE p q p qπ π= , but none of them can be really accepted as a 

reliable approximate solution. As shown, by progressively increasing the number of (uniformly arranged) 
internal nodes from 1×1 (1 node) to 3×3 (9 nodes) and 5×5 (25 nodes), the solution dramatically improves.  
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Table 1: Calculated potential using “bubble” functions at the center of the domain (x=y=0). 

Error (in %) of the approximate CPM solution 
Number and arrangement of internal nodes 

 
EXACT SOLUTION 
(U) 

 
“Bubble” function 

1×1 3×3 5×5 
E1(p,q) = pq(1-p)(1-q) +6.0452 +0.0802 +0.0005 
E2(p,q) = sinπp sinπq +11.49 - - 

 
-1.454 

 
Introduction of homogeneous Neumann B.C.: Owing to symmetry only one-fourth of the region needs to be 
analysed (0≤x,y≤π/2). So, besides the Dirichlet boundary conditions along x=π/2 and y=π/2, the axes of 
symmetry are subject to Neumann ones ∂u/∂x=0 (x=0) and ∂u/∂y=0 (y=0). Each side of the square 
[0,π/2]×[0,π/2] is uniformly divided into m segments, with m varying so that it obtains the values m=2, 4 and 8, 
the last case shown in Figure 4(a). The usual linear blending functions, (1-p) and p, were chosen. The errors of 
the calculated potential, u, at the eight nodes along the line y=0, shown in Figure 4a, are given in Table 2. One 
can there notice that none of the three Coons-patch models (Models 1, Model-3) converges in a sufficient 
manner. It is also interesting that in the finest Coons-patch models (m=8) the error is around 7%, which is larger 
even from 6.5%, which was found in Table 2 using the bubble function E1(p,q). On the contrary, for m=2, 4 and 
8, the conventional FEM appears a mean average error of 5.28%, 1.24% and 0.30%, respectively[8].  

 
Table 2: Solution quality of the calculated variable, u, using one Coons macroelement and alternative interpolations along 

each side. Each side is uniformly divided into m=2,4 and 8 segments.  
ERRORS in % of the approximate CPM solution 

MODEL-1 
(Cubic B-splines) 

MODEL-2 
(Piecewise linear) 

MODEL-3 
(Lagrange polynomials) 

 
 

NODE 
m=2 m=4 m=8 m=2 m=4 m=8 m=2 m=4 m=8 

 
EXACT 

SOLUTION 
(U) 

1 -7.68 -7.16 -7.24 0.37 -5.38 -6.79 -8.59 -7.27 -7.31 -1.454 
2 −  -3.36 − − -3.02 − − -3.65 -1.435 
3 − 0.05 -0.36 − 1.20 0.04 − -0.34 -0.20 -1.376 
4 −  2.36 − − 2.69 − − 2.36 -1.276 
5 7.19 4.34 4.75 10.54 6.18 5.12 4.79 4.64 4.48 -1.132 
6 −  7.21 − − 7.50 − − 7.44 -0.938 
7 − 10.77 9.48 − 11.02 9.97 − 9.75 9.82 -0.690 
8 −  12.79 − − 12.64 − − 11.32 -0.379 
9 Given Given Given  0.000 
 
Changing the blending functions. Now, using again one macroelement only (Figure 4a), the blending 

functions along the x (equivalently, p)-direction were modified as ( )0 cos 2E p pπ=  and ( )1 1 cos 2E p pπ= − . Due 

to the symmetry, the same blending functions were chosen for the q-direction, too. The results are shown in the 
left part of Table 3 and one can notice a significant improvement in comparison with the linear blending 
functions.  
 
Table 3: Solution quality of the calculated variable, u, using one or two Coons-patch macroelements, alternative 
interpolations along each side (Model-1, Model-2 and Model-3) as well as alternative blending functions. Each external side 
is uniformly divided into eight segments.  

ERRORS in % of the approximate solution 
One macroelement 

(Cosine-like blending functions) 
Two-macroelements 

MODEL-2 
(Alternative blending functions) 

 
 

NODE 
(Fig.4a) 

MODEL-1 MODEL-2 MODEL-3 LINEAR COSINE-like 

 
EXACT 

SOLUTION 
 

(U) 
1 -0.83 -0.68 -0.86 -1.15 +0.10 -1.454 
2 -0.71 -0.55 -0.92 -1.27 -0.05 -1.435 
3 -0.49 -0.25 -0.36 -1.24 -0.55 -1.376 
4 -0.01 +0.23 +0.00 -0.80 -1.24 -1.276 
5 +0.62 +0.91 +0.39 +0.62 -1.70 -1.132 
6 +1.54 +1.80 +1.75 -5.22 +0.99 -0.938 
7 +2.56 +2.94 +2.81 -10.15 +2.64 -0.690 
8 +4.41 +4.38 +3.26 -14.50 +2.81 -0.379 
9 Given  0.000 

 
Domain decomposition. Finally, the influence of subdividing the domain was investigated. The square region 

was divided in two regions, occupied by two corresponding macroelements. The first macroelement is a square 
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of dimensions π/4×π/4 and it consists of 16 nodes. This element is defined by its corners Π1, Π2, Π3 and Π4, 
shown in the lower left corner of Figure 4b. The second macroelement is the L-shaped P1AP2P3BP4, with corner 
points P1, P2, P3 and P4 (in its corresponding unit square). Since the interface P3BP4 (≡Π2Π1Π4) is a complete 
side for the second macroelement while it spans two sides of the first one, the easiest interpolation is that of hat-
functions (Model-2). In this case, both the aforementioned linear and cosine-like blending functions have been 
tested. As it is clearly shown in the right part of Table 3, in both cases the errors significantly reduces but the 
most accurate solution is that obtained using the cosine-like blending function.  
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(π/2,π/2
)

x

y

(π/2,0)

(0,π/2)

x

y

One macroelement  (m = 8)

x
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Π3 Π4
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Π3 Π4

P1

P2

P3

P4

A

B

1 2 3 4 5 6 7 8 9
π / 2

( a ) ( b )

π / 2π / 2

π / 2

 
Figure 4: Test problem with homogeneous Dirichlet boundary conditions using (a) one and (b) two macroelements. 

 
Problem 2: Transient heat analysis - Sinusoidal initial condition on a square plate 
The problem is defined in a rectangular of dimensions 1.0×1.0. The boundary conditions are specified as 

( ) ( ) 0,1,0,0 == tutu       (9) 
subject to the initial condition (t=0):  

( ) 10sin0;, ≤≤= xxyxu π      (10) 
For this example, there is not any discontinuity between initial and boundary conditions at x=0,1, because in 
both cases the potential remains equal to zero.   

The analytical solution for this problem is easily shown to be 
( ) xetyxu t ππ sin;,

2−=       (11) 
and obviously behaves well for all values of x and t.   

Due to the symmetry, it is only necessary to work with one fourth of the domain shown in Figure 5, that is a 
square of dimensions ∆x × ∆y = 0.5 × 0.5 and modified boundary conditions as  

( ) ( ) ( ) ( ),0, ,0.5,
0, , 0 , 0.5, , 0

u x t u x tuu y t y t
x y y

∂ ∂∂
= = = =

∂ ∂ ∂
    (12) 

By choosing (∆x=0.1,∆t=0.005), Table 4 compares the CPM solution with the conventional FEM solution as 
well the Finite Difference Method (FDM). The latter was applied in three alternative formulations according to 
Reference [15,pp.635-638]. The first, FDM-1, is the Forward Time Centered Space (FTCS) method, a fully 
explicit scheme. The second, FDM-2, is a fully implicit or Backward time scheme. The third, FDM-3, is the 
well-known Crank-Nicholson method that consists of the mean average of FDM-1 and FDM-2 as shown in 
Table 5.  

It is noted that the macroelement solution using linear interpolants is identical with the conventional FE 
solution, probably due the fact that this particular problem is essentially one-dimensional. It is interesting that 
both FEM and FDM-3 based on the Crank-Nicholson differentiation scheme are of the same quality (0.42% 
versus 0.40%), while the proposed CPM based on B-splines (Model-1) interpolation is superior (only 0.06%).  
 
Table 4: Calculated temperature at time t=0.05 using several numerical techniques for Problem 2 (time step: ∆t=0.005)  

Coordinate X 0.1 0.2 0.3 0.4 0.5 
Exact 0.18865 0.35884 0.49390 0.58062 0.61050 

FEM (CN) 0.18787 0.35735 0.49185 0.57820 0.60795 
CPM 0.18843 0.35881 0.49301 0.58112 0.60989 

FDM-1 0.18709 0.35586 0.48980 0.57580 0.60543 
FDM-2 0.19163 0.36450 0.50169 0.58977 0.62012 
FDM-3 0.18940 0.36026 0.49586 0.58291 0.61291 

FEM: Finite Element Method using the Crank-Nicholson (CN) scheme 
CPM: Coons-Patch Macroelements (present methodology) 
FDM-1: Finite Difference Method using a fully explicit scheme 
FDM-2: Finite Difference Method using a fully implicit (backward time) scheme 
FDM-3: Finite Difference Method using the Crank-Nicholson (CN) scheme. 
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1.0

1.0

u(t)=0

q=0

x

y

Initial conditions:
u(x,y,0)=sinπx

(a) (b) (c)

0.5 0.5

 
Figure 5: Problem-2: Sinusoidal initial condition on a square plate 

                                              (a) Geometry, Boundary conditions and Initial conditions 
                                              (b) Coons macroelement using 20 boundary nodes 
                                              (c) Finite element mesh (37 nodes)  

 
Table 5: Mean average errors (in %) of the calculated temperature at nodal points along x-axis (Problem 2). 

FEM CPM (B-splines) FDM-1 FDM-2 FDM-3 
-0.42 -0.06 -0.83 +1.58 +0.40 

 
Problem 3: Transient heat analysis - Discontinuity at the boundary of a square plate 
As previously, we work with only one fourth of the domain, as shown in Figure 5, and this time the initial 
condition changes to 

( ) ( )5.00,5.0010, ≤≤≤≤= yxxu     (13) 
while the boundary conditions remain unaltered [u(0,t)=u(1,t)=0].  
The analytical solution is given by 

( ) ( )
( ) ( ) xne

n
tyxu tn

n
π

π
π 12sin

12
14;,

2212

0
+

+
= +−

∞

=
∑    (14) 

Obviously, there is a discontinuity between initial and boundary conditions in this problem, which is anticipated 
to lead to difficulties in obtaining an accurate numerical solution near to the end points. Results are presented in 
Tables 6 and 7 where both FEM and macroelement CPM solutions are compared with the FDM. As previously 
occurred, due to the one-dimensionality of this problem, the macroelement using piecewise-linear interpolants 
(Model-2) coincides with the conventional FEM solution. Again, the cubic B-splines (Model-1) lead to a 
numerical solution of better overall quality in comparison to the linear interpolants. The FDM-3 is slightly 
better.  
 
Table 6: Calculated temperature at time t=0.05 hr using several numerical techniques for Problem 3 (time step: 
∆t=0.005 hr)  

X (m) 0.1 0.2 0.3 0.4 0.5 
Exact 0.68269 0.95450 0.99730 0.99994 1.00000 
FEM 0.69150 0.98615 1.01070 0.99929 0.99930 
CPM 0.70017 0.95650 0.99879 1.00030 0.99843 

FDM-1 0.68703 0.94266 0.99329 0.99947 0.99994 
FDM-2 0.68129 0.93078 0.98831 0.99833 0.99959 
FDM-3 0.68433 0.93654 0.99078 0.99894 0.99980 

FEM: Finite Element Method using the Crank-Nicholson (CN) scheme 
CPM: Coons-Patch Macroelements (present methodology): Model-1 
FDM-1: Finite Difference Method using a fully explicit scheme 
FDM-2: Finite Difference Method using a fully implicit (backward time) scheme 
FDM-3: Finite Difference Method using the Crank-Nicholson (CN) scheme.  



Christopher G. Provatidis. 
Table 7: Mean average errors (in %) of the calculated temperature at nodal points along x-axis (Problem 3). 

FEM (CN) CPM (B-splines) FDM-1 FDM-2 FDM-3 (CN) 
+1.16 +0.56 -0.21 -0.76 -0.48 

CN: Crank-Nicholson 
FDM1: Finite Difference Method using a fully explicit scheme 
FDM2: Finite Difference Method using a fully implicit (backward time) scheme.  
FDM-3: Finite Difference Method using the Crank-Nicholson (CN) scheme.  

4    CONCLUSIONS 

The generalized Gordons-Coons interpolation, which has been extensively used for describing CAD surfaces 
in automotive industry, is also capable of developing macroelements that “sweep” the whole spectrum between 
the well-known Serendipity and Lagrangian type finite elements. Boundary-only macroelements have been 
previously called Coons Parch Macroelements (CPM) and this name has been also used here. Moreover, any 
number of internal nodes can be introduced, not necessarily related to the position of the boundary nodes. The 
functional space spanned by the proposed macroelements has been rigorously defined with respect to Pascal’s 
triangle. It has been shown that the weakness of classical Lagrangian elements due to numerical oscillations for 
a large number of nodes can be overcome by using piecewise-linear or cubic B-splines. Here, the performance 
of CPM was tested on a typical elliptic Poisson’s problem and two parabolic problems but is has been previously 
successfully applied in hyperbolic problems[12]. It was found that CPM is applicable to heat transient problems 
only when used in conjunction with consistent capacity (“mass”) matrix. The methodology can be extended to 
three-dimensional domains where two preliminary papers have recently appeared [16,17].  
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APPENDIX A: Application of Coons transfinite formula to derive the 5-node isoparametric element 

 Let us consider a five-node element as shown in Figure A1. The transfinite Coons interpolation becomes: 
 ( ) ( ) ( ) ( ), p q pqu p q A u A u A u= + −      (A1) 

D C

ΒA
p

q

r

s

E F

G

H

1 2

34
5

 
Figure A1: Five-node isoparametric element 

 
In Equation (A1), the three lofting operators are given by 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

0 1 2 1

0 1 2 1

0 0 1 0 1 1

0 1 1 2 0 1

1 2 1 0 1 2 1 2 1 2

0, 1 2, 1,

,0 ,1 2 ,1

0,0 1,0 1,1

0,1

p

q

pq

G I F

H E I

A u E p u q E p u q E p u q

A u E q u p E q u p E q u p

A u E p E q u E p E q u E p E q u

E p E q u E p E q u E p E q u

E p E q u E p E q u E p E q u

= + +

= + +

= + +

+ + +

+ + +

   (A2) 

where the blending functions are given as 
( ) ( )( ) ( ) ( ) ( ) ( )
( ) ( )( ) ( ) ( ) ( ) ( )

0 1 2 1

0 1 2 1

2 1 1 , 4 1 , 2 1

2 1 1 , 4 1 , 2 1

E p p p E p p p E p p p

E q q q E q q q E q q q

= − − = − = −

= − − = − = −
   (A3) 

We consider that along each side (AB, BD, CD and DA) u is interpolated using 1st degree Lagrange 
polynomials:  

( ) ( )0 11 ,L p p L p p= − =                (similarly for q)    (A4) 

as follows: 
( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( )

0 1 1 4

0 5 1

0 2 1 3

0 1 1 2

0 5 1

0 4 1 3

0,

1 2,

1,

,0

,1 2

,1

G I H

E I F

u q L q u L q u

u q E q u E q u E q u

u q L q u L q u

u p L p u L p u

u p E p u E p u E p u

u p L p u L p u

= +

= + +

= +

= +

= + +

= +

     (A5) 

By substituting Eq.(A5) into Eq(A2) and further into Eq(A1), one obtains: 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

1 0 0 0 0 0 0

2 1 0 1 0 1 0

3 1 1 1 1 1 1

4 0 1 0 1 0 1

5 1 2 1 2

, 0,0

1,0

1,1

0,1

1 2,1 2

u p q u L p E q E p L q E p E q

u L p E q E p L q E p E q

u L p E q E p L q E p E q

u L p E q E p L q E p E q

u E p E q

= ⋅ + −⎡ ⎤⎣ ⎦
+ ⋅ + −⎡ ⎤⎣ ⎦
+ ⋅ + −⎡ ⎤⎣ ⎦
+ ⋅ + −⎡ ⎤⎣ ⎦

⎡ ⎤+ ⋅ ⎣ ⎦

    (A6) 

Obviously, the quantities in the brackets denote the shape functions obtained through transfinite Coons 
interpolation. According to Bathe[18,p.200], the conventional shape functions are given by the intuitive formulas: 

( ) ( )( ) ( )( )

( ) ( )( ) ( )( )

( ) ( )( ) ( )( )

( ) ( )( ) ( )( )

( ) ( )( )

2 2
1 1 5

2 2
2 2 5

2 2
3 3 5

2 2
4 4 5

2 2
5 5

1 11 1, 1 1
4 4 4

1 11 1, 1 1
4 4 4

1 11 1, 1 1
4 4 4

1 11 1, 1 1
4 4 4
1, 1 1
4

r s
N r s h h r s

r s
N r s h h r s

r s
N r s h h r s

r s
N r s h h r s

N r s h r s

− −
= − = − − −

+ −
= − = − − −

+ +
= − = − − −

− +
= − = − − −

= = − −

    (A7) 

where h1, h2, h3 and h4 denote the shape functions of the 4-node (bilinear) element and h5 the “bubble” function 
¼(1-r2)(1-s2). Using the transformation ( )2 1, 2 1 1 , 1, 0 , 1r p s q r s p q= − = − − ≤ ≤ ≤ ≤ , it is trivial to prove that the 

shape functions derived in (A6) through transfinite Gordon-Coons interpolation coincide with those of the well-
known finite element (A7).  
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Abstract. This paper presents an overview of efforts at the Offshore Technology Research Center of The 
University of Texas at Austin toward development and validation of a computational procedure suitable for 
simulations of suction caisson behavior under axial and lateral loads considering the effects of installation into 
clayey soil by self weight and suction. The soil is treated as a two-phase medium: a water-filled porous solid.  
Nonlinear behavior of the solid phase (soil skeleton) is described by means of a bounding-surface plasticity 
model. Caisson-soil interaction is described by a frictional contact algorithm based on a slide-line formulation 
that allows large relative displacement between the caisson and the soil. In addition, a remeshing tool 
eliminates the need for a priori specification of the caisson penetration path. Specifically, as installation of the 
caisson progresses, the finite-element mesh is adjusted so that the nodes below the caisson tip remain along a 
straight line in the axial direction. A brief account of the computational procedure along with simulations of 
caisson installation, reconsolidation of the soil-skeleton and caisson pullout are provided. The computational 
results are compared with measurements from laboratory tests also conducted at the Offshore Technology 
Research Center. 
 
1 INTRODUCTION 

A suction caisson is a hollow cylinder capped at the top. It is allowed to penetrate the seafloor bottom 
sediments under its own weight, and then pushed to the required depth with differential pressure applied by 
pumping water out of the caisson interior. The use of suction caissons as foundations for deep-water offshore 
structures and anchors for mooring lines has been increasing in the last decade. Suction caissons are an attractive 
option with regard to providing anchorage for floating structures in deep water as they offer a number of 
advantages in that environment. They are easier to install than impact driven piles and can be used in water 
depths well beyond where pile driving becomes infeasible. Suction caissons have higher load capacities than 
drag embedment anchors and can be inserted reliably at pre-selected locations and depths with minimum 
disturbance to the seafloor environment and adjacent facilities31 (Sparrevik 2001). 

Better and reliable understanding of suction caisson behavior has been sought by means of field tests, 
laboratory tests, and numerical simulations. Extensive field tests on small-scale and full-scale caissons have 
been carried out to determine their installation characteristics and their axial and lateral load capacities19, 35, 34, 
e.g. Hogervorst (1980), Tjelta et al. (1986), and Tjelta (1995). Field tests are valuable in obtaining geotechnical 
information relevant in the design of future caissons, but they are expensive and time-consuming. On the other 
hand, laboratory testing of model suction caissons can be employed to investigate performance of the caissons 
under a variety of conditions. Geotechnical centrifuge tests on model suction caissons have been carried out to 
simulate the stress conditions and soil response at the field scale6, 29 (see Clukey et al. 1995, Randolph et al. 
1998). These are quite costly and remain subject to various limitations. Model suction caissons have been tested 
under 1-g and controlled laboratory conditions37, 32, 30, 13, 15, 38, 5 (Wang et al.  1977, Steensen-Bach 1992, Rao et 
al. 1997, El-Gharbawy and Olson 1999, El-Gharbawy et al. 1999, Whittle et al. 1998, Byrne and Houlsby 2002). 
The caissons studied were of aspect ratio (length-to-diameter ratio) in the range of 2-12 and were tested under 
various loading conditions. Laboratory tests on model suction caissons conducted by Wang et al. (1977) were 
focused on studying caisson efficiency and feasibility and identifying important parameters governing their 
performance37. The recent laboratory tests30, 13 (Rao et al. 1997, El-Gharbawy and Olson 1999) were focused on 
improving the design methodology. 

Studies of suction caisson behavior involving extensive axisymmetric and three-dimensional numerical 
simulations (Sukumaran et al. 1999, Erbrich and Tjelta 1999, El-Gharbawy and Olson 2000, Deng and Carter 
2002) have been carried out33, 16, 14, 12 to determine their capacity under different loading and drainage conditions. 
Sukumaran et al. (1999) and Erbrich and Tjelta (1999) used the commercial finite element code ABAQUS 
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(www.hks.com), El-Gharbawy and Olson (2000) used the commercial finite element code PLAXIS 
(http://www.plaxis.nl) developed for geotechnical computations, and Deng and Carter (2002) used the finite 
element software AFENA developed at the Center for Geotechnical Research at the University of Sydney 
(http://www.civil.usyd.edu.au/cgr). In all cases, the stress-strain behavior of the soil skeleton was represented by 
means of plasticity models such as the modified cam-clay model. The suction caisson was wished in place, with 
no attempt to simulate the installation process. Perfect interface bonding was assumed between the caisson and 
the surrounding soil skeleton. The initial state of stress in the soil skeleton was typically estimated12 in terms of 
the submerged unit weight and the lateral earth pressure coefficient at rest (Deng and Carter 2002). 

The computational procedure developed36, 22 in the course of the study (Vásquez 2000, Maniar 2004) 
reported herein simulates suction-caisson installation and estimates the axial and lateral capacities. An 
axisymmetric formulation was implemented in a computer code for analysis of installation and axial-pullout 
problems. On the other hand, a three-dimensional analysis formulation that utilizes the general-purpose finite-
element analysis code ABAQUS (http://www.hks.com) but imports the state of the state of the soil-caisson 
system from axisymmetric installation computations was used in lateral-pullout analysis. The soil is modeled 
with water-saturated porous solid finite elements and the caisson is discretized using (impermeable) solid finite 
elements. Nonlinear soil behavior is taken into account by means of a bounding-surface plasticity model. A 
frictional-contact algorithm based on a slide-line formulation is used in representing soil-caisson interface 
behavior. Various remeshing tools are developed to eliminate the need for a priori specification of the caisson 
penetration path and to avoid use of excessively distorted finite-elements along the caisson-soil interfaces. Using 
the formulation developed, numerical results are obtained from simulations of caisson installation, 
reconsolidation of the surrounding soil, and caisson pullout. The computed behavior is compared with 
measurements from laboratory tests24, 21, 7, 8 conducted at The University of Texas at Austin (Mecham 2001, 
Luke 2002, Coffman 2003, Coffman et al. 2004). 

2 GOVERNING EQUATIONS 

The behavior of the saturated, porous, clayey soil is described using a mixture theory2, 3, 1, 4, 27, 28 (Biot 1941, 
1955, Atkin and Craine 1976, Bowen 1976, Prevost 1980, 1981) that accounts for coupling between the soil-
skeleton deformation and the pore-fluid motion. The saturated soil is thus modeled as a two-phase medium 
composed of solid (soil skeleton) and pore-fluid (water) phases. 

Summarized below are the balance laws governing the interaction or coupling between the soil-skeleton 
deformation and the pore-fluid motion. The differential equations are expressed in terms of solid displacements, 
Darcy’s velocities, and the excess pore-fluid pressure. 
 
2.1 Conservation of Mass 

Assuming incompressibility and homogeneity of the soil particles that form the skeleton, the law of 
conservation of mass of the mixture can be expressed as: 

 

(1) 

 
where: VS is the velocity of the solid phase; VR is Darcy’s velocity, defined as the relative velocity of the fluid 
phase with respect to the solid phase multiplied by the porosity, nw; pw is the excess pore-fluid pressure, wλ  is 
the bulk modulus of the fluid, wγ  is the specific weight of the fluid, and z1 is the unit vector in the vertical 
direction. The spatial divergence and spatial gradient operators are denoted by div and grad, respectively. 
 
2.2 Conservation of Linear Momentum 

The total Cauchy stress tensor, σ, can be written as the sum of the effective stress tensor, σeff, and the excess 
pore-fluid pressure, pw, as: 

 
Iσσ weff p+=  (2) 

 
The conservation of linear momentum of the fluid phase can be written as: 
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where: ρw is the mass density of the fluid phase; aS is the acceleration of the solid phase; aR is the relative 
acceleration between the fluid and solid phases, and k is the permeability matrix of the soil skeleton. The 
conservation of linear momentum of the mixture can be written as: 

 

( )[ ] ( ) ( ) ( ) ( )σabab ++−+−+− weffR
w

S
wwwS pgraddivnn ρρρ 1 (4) 

 
where: ρS is the mass density of the solid phase, and b is the body force per unit volume of the solid phase. 

3 FINITE-ELEMENT DISCRETIZATION 

The axisymmetric discretization of soil-skeleton is accomplished with eight-node, quadratic, isoparametric, 
underintegrated finite elements for solid displacements, and Darcy’s velocities, with interpolation functions NS 
and NR, respectively. Spatially continuous discretization of excess pore-fluid pressure is applied using four-node 
bilinear finite elements with interpolation functions NP. 

Following standard variational arguments, the weak statements corresponding to the governing differential 
equations can be obtained:  
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The tangent stiffness matrix required for Newton iterations can be derived using consistent linearization of the 
weak statements. In Eq. 7, the first term is the virtual work of the surface traction due to total stresses, which, 
within the finite element framework, leads to the (consistent) definition of the equivalent total force. Similarly, 
the first term in Eq. 6 is the virtual work of the surface tractions due to excess pore-fluid pressure, giving rise to 
the equivalent excess pore-fluid force. Therefore, the virtual work of the surface tractions due to effective 
stresses, or the equivalent effective force, can be obtained as the difference between the former and the later. 
This way of extracting the forces due to effective traction is possible because of the way the governing equations 
are crafted and the fact that the interpolation functions adopted for the solid displacements and Darcy’s 
velocities are identical. The contact formulation described below makes use of this fact in order to estimate the 
equivalent frictional force as a function of the equivalent effective normal force. 

The caisson is represented using conventional, axisymmetric, solid finite elements: eight-node, quadratic, 
isoparametric elements for displacements. 

4 SOIL CONSTITUTIVE MODEL 

A bounding-surface plasticity model10, 9, 11, 20 for isotropic cohesive soils (Dafalias and Herrmann 1982, 
Dafalias 1986, Dafalias and Herrmann 1986, Kaliakin and Herrmann 1991) is used for the description of 
nonlinear clayey soil behavior in terms of strain and effective stress increments. The bounding surface is a 
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versatile concept for representation of clay behavior along arbitrary stress and strain paths. 

5 SOIL-CAISSON INTERFACES 

The interior and exterior soil-caisson interfaces are modeled with a contact algorithm based on a slide-line 
formulation17 (Hallquist et al. 1985), which allows for large relative displacements between the caisson and the 
soil. The slide-line formulation involves nodes on the soil side of the interface and surface elements on the 
caisson side. 

In the contact algorithm, penetration of soil nodes into the caisson is prevented with constraints imposed on 
the solid displacement, Darcy’s velocity, and the excess pore-fluid pressure using Lagrange multipliers. Friction 
between the soil and the caisson is assumed to obey the classical Coulomb law. “Stick” and “slip” conditions are 
distinguished on the basis of the level of interface frictional force in comparison with the Coulomb force, which 
is taken equal to the effective compressive (normal) force multiplied by the soil-caisson interface friction 
coefficient. Therefore, for a slave node that is in contact with a surface element, contact contributions arising 
from constraining solid displacement, Darcy’s velocity, and excess pore-fluid pressure and contribution from the 
frictional interface must be added in the tangent stiffness matrix during Newton iterations. 

The slide-line contact formulation is developed in terms of effective forces along the interface, which are 
integrals of the effective traction along the interface. By the arrangement of the governing differential equations 
and the corresponding weak statements, it is straightforward to extract these effective forces along the interface. 

6 POTENTIAL FLOW 

During installation of the caisson, by self-weight or suction, water flows out of the caisson interior through 
holes in the top cap. The size of the holes is considerably smaller than the interior cross section of the caisson. 
Therefore, water cannot flow freely and some change in pressure is expected in the interior of the caisson. To 
simulate this phenomenon, a potential flow formulation was used to estimate the pressure generated at the top of 
the interior soil during various stages of the simulation36 (Vásquez 2000). The potential flow formulation is 
developed on the basis of assumptions that the fluid is incompressible and inviscid and its flow is irrotational. 

7 REMESHING 

A remeshing tool was developed to eliminate the need for a priori specification of the caisson penetration 
path. As installation of the caisson progresses, the finite-element mesh is adjusted so that the line of nodes below 
the tip remains straight in the axial direction. By performing this adjustment, it is possible to eliminate 
overconfinement of the soil in the caisson interior, thus permitting calculation of the path of penetration in the 
soil domain23, 22 (Maniar and Tassoulas 2002, Maniar 2004). 

Another remeshing tool was developed to adjust the finite-element mesh along the caisson-soil interfaces. 
This tool is intended for eliminating distortion of the soil elements along the caisson-soil interfaces and is 
convenient in cases where a high coefficient of friction on the soil-caisson interfaces leads to significant finite-
element distortion. This second remeshing tool was not used in the simulations described below, as it turned out 
to be unnecessary for this case. 

Mapping of field variables from the current finite-element mesh to the adjusted one is carried out using least 
squares estimation and quadratic interpolation functions18 (Hinton and Campbell 1974) over the selected set of 
finite-elements along and below the caisson. 

8 SIMULATIONS 

Computations are carried out in a sequence that closely follows both laboratory and field tests. The sequence 
of steps is: a) preparation of the soil test bed starting with the original slurry, b) installation of the caisson by self 
weight and suction, c) reconsolidation of the soil; and d) pullout of the caisson under either drained or undrained 
conditions. For the first step, the initial state of the soil domain is obtained from the experimental data. For each 
of the remaining steps, the initial state of the soil domain is obtained from the end of the previous step. The 
formulation outlined above is applied to the analysis of model suction caissons installed and tested21, 7 at The 
University of Texas at Austin (Luke 2002, Coffman 2003). In this section, the computational results are 
presented and verified by comparison with the experimental data. 
 
8.1 Preparation of Soil Test Bed 

The soil test bed was formed by allowing slurry of kaolinite to consolidate under self-weight, resulting in 
normally consolidated clay. Details of the preparation and consolidation of the test bed26, 25 are presented 
elsewhere (Pedersen 2001, Olson et al. 2003). The consolidation of kaolinite slurry was simulated by analyzing 
a 24-in diameter kaolinite slurry cylinder with 61-in initial height (same as in the test) and frictional contact on 
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the lateral impermeable surface (container wall). The time required for consolidation was found to be about 6 
months, close to the seven-month period recorded in the laboratory, and the computed final slurry height at the 
axis of the soil cylinder was 44.6 in, close to a measurement of 43.4 in taken at about the same distance from the 
wall of the steel tank in which the test bed was prepared (Fig. 1). It is worth mentioning that the three-
dimensional (axisymmetric) soil state obtained at the end of the initial-consolidation simulation is critical for 
success in later computations of caisson response during installation and pullout because of the noticeably 
weaker soil obtained as a result of friction on the container wall22 (Maniar 2004). The more straightforward one-
dimensional consolidation simulation22 overestimates the soil strength in the vicinity of the axis by about 30% 
(Maniar 2004). 

 
Figure 1: Observed and computed consolidation curves for the kaolinite slurry. 

8.2 Self-Weight Installation 
In one of the modes of installation examined in the laboratory, the 4-in exterior-diameter model caisson 

penetrated 32 in under self-weight in about 200 sec. The simulation of self-weight installation was conducted in 
a similar manner. The computed and measured excess pore-water pressures, recorded at five locations, on 
interior and exterior wall surfaces of the model caisson during self-weight installation are plotted versus the 
position of the caisson tip in Fig. 2. Good agreement can be seen, especially at interior locations away from the 
caisson tip. The so-called “penetration path”22 (Maniar 2004), i.e., the undeformed surface (line in axisymmetric 
geometry) on which penetration occurs is shown in Fig. 3. It can be seen that, in the self-weight mode of 
installation, soil is displaced outwards. 

 
8.3 Suction Installation 

In the other mode of installation considered in the laboratory tests, the 4-in exterior-diameter model caisson 
penetrated 16 in under self-weight in about 69 sec and, subsequently, suction was applied resulting in additional 
16 in penetration in about 420 sec. The simulation of this self-weight-followed-by-suction installation, referred 
to as suction installation below for simplicity, was conducted in a similar manner. The computed and measured 
excess pore-fluid pressures are in very good at all interior locations and the exterior location away from the tip 
(O1) but substantial difference was found22 at the exterior location next to the tip (Maniar 2004). The plot of 
cumulative soil displaced during penetration22 shows (Maniar 2004) that, in this mode of installation, a small 
amount of soil is displaced outwards during the self-weight installation segment but, as expected, soil is drawn 
into the caisson interior during the suction segment. 

Figure 2: Computed and measured pore-water 
pressures during self-weight caisson installation. 

Figure 3: Self-weight penetration path (a) and 
cumulative volume of displaced soil (b).

 
8.4 Reconsolidation 

In the tests7 (Coffman 2003) and the simulations alike, the excess pore-water pressures generated during 
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caisson installation were reduced to negligible levels after about 96 hours of reconsolidation. The computed and 
measured pore-water pressure time histories are in good agreement as well22 (Maniar 2004). Fig. 4 depicts the 
distribution of radial stress after reconsolidation for the case of suction installation. It can be seen that the level 
of radial stress in the interior of the caisson is higher than in the exterior, especially in the vicinity of the tip. 
Furthermore, at a depth of about 16 in, where the installation mode was switched from self-weight to suction, 
there is notably higher radial stress in the caisson exterior, apparently resulting from soil having been “pushed” 
outwards. 

 
Figure 4: Radial stress distribution after reconsolidation following suction installation. 

 
8.5 Axial Pullout 

Starting from each of the two installations, by self-weight penetration (SWP) and suction (SUC), described 
above, axial-pullout simulations were conducted under a variety of conditions: vented (V) or closed (C) cap, 
rapid (R), slow (S), or drained (D) pullout (for explanation22 of these conditions, see Maniar 2004). Not all 
combinations of installations and conditions have been tested in the laboratory. Table 1 summarizes the 
computational results regarding axial capacity and the available experimental data along with the computed 
contributions to resistance from interior friction, exterior friction and suction. The agreement between 
computations and measurements is good with maximum difference of about 20%. It is worth noting that the 
simulations as well as the experiments indicate clearly that the capacity of suction caissons installed by self-
weight penetration is higher than by suction installation, regardless of pullout speed and independently of 
whether the cap is vented or closed. The increase in capacity of caissons installed by self-weight appears to be 
related to the higher soil strength reached in this mode of installation22 (Maniar 2004). 

Simulation Measured 
Capacity21 

(Luke 2002) 
(lb) 

Computed 
capacity 

(lb) 

Exterior 
friction 

(%) 

Interior 
friction 

(%) 

Total 
friction 

(%) 

Suction 
force 
(%) 

SWP-VR 24.0 20.4 52.2 37.4 89.6 - 
SWP-VS - 17.8 58.7 29.4 88.1 - 
SWP-VD - 18.5 53.8 34.8 88.6 - 
SWP-CR 28.0 23.4 42.1 7.0 49.1 41.9 
SUC-VR 19.2 18.2 40.1 48.3 88.4 - 
SUC-VS - 14.8 48.1 37.6 85.7 - 
SUC-VD 20.0 17.3 41.9 45.8 87.7 - 
SUC-CR 18.6 22.7 32.2 14.2 46.4 44.3 

  
Table 1: Computed and measured axial capacities (see Section on Axial Pullout for explanation of symbols). 

8.6 Lateral Pullout 
Abaqus (http://www.hks.com) was used for three-dimensional simulations of caissons subjected to lateral 

loads, horizontal, or, in general, inclined loads. The soil stresses and state parameters as computed from the 
installation analysis (self-weight or suction) conducted using the axisymmetric finite-element code developed in 
the course of this study were imported into Abaqus as initial conditions and, subsequently, the lateral-pullout 
computations were carried out22 (see Maniar 2004) for further details. Shown in Fig. 5 (a) are the computed and 
measured horizontal capacities, in the case of suction installation, considering different locations of the point of 
load application (pad eye). The agreement is excellent. Computations and measurements indicate that the 
horizontal capacity is highest for a pad eye located at about 2/3 of the installation depth. Self-weight installation 
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leads to a small increase in horizontal capacity, as can be seen in Fig. 5 (b). The interaction diagram provided in 
Fig. 6 shows the capacities computed for inclined loads applied at about the optimal (2/3-point) pad-eye 
location. 

 

 
(a)                          (b) 

Figure 5: Horizontal capacity: (a) computations and measurements, (b) effect of installation mode. 

 
Figure 6: Interaction diagram for inclined loads applied at the optimal pad-eye location 

9 CONCLUSIONS 

A computational procedure has been developed at the Offshore Technology Research Center for the analysis 
of suction-caisson behavior under both axial and lateral loads. The procedure has been used in simulations of 
tests conducted in the course of a concurrent OTRC project at The University of Texas at Austin on caisson 
models. Computational results and experimental data regarding all facets of the tests have been found to be in 
good agreement. Installation by self-weight and suction, soil reconsolidation, and axial, horizontal and inclined 
pullouts have been examined. 

Further work, currently underway, involves simulations of centrifuge tests of suction caissons and additional 
1-g tests on caisson models as well as documentation of the finite-element code that has been developed. 
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Abstract: The TRIC element is a simple but sophisticated three-node shear-deformable isotropic and composite 
facet shell element suitable for large-scale linear and nonlinear engineering computations of thin and 
moderately thick anisotropic plate and complex shell structures. The element formulation is based on the natural 
mode finite element method where the deformation or natural modes are separated from the rigid body modes. 
The element, compared to the conventional isoparametric finite element formulations, has substantial 
computational advantages such as analyticall expressions for the computation of the stiffness matrix, as well as 
locking-free properties [1,2]. The proposed improvement concerns the membrane behavior of TRIC which 
becomes predominant in the detailed simulation of steel structures. The proposed enhancement follows an 
optimal method in calculating the stiffness matrix regarding the rotational degrees of freedom and is based on 
an Assumed Natural Deviatoric Strain (ANDES) formulation [3]. The improved element exhibits excellent 
performance in shell problems with significant membrane stresses and unstructured meshes. 
 
 
1 INTRODUCTION 

An attempt to device a shell element with robustness, accuracy and efficiency has led to the derivation of the 
TRIC shell element[4,5], a simple but sophisticated triangular, shear-deformable facet shell element suitable for 
the analysis of thin and moderately thick isotropic as well as composite plate and shell structures. Its formulation 
is based on the natural mode finite element method[6], a method introduced by Argyris in the 1950s that separates 
the pure deformational modes -also called natural modes- from the rigid body movements of the element. The 
natural mode method in connection with the triangular shape of the element has substantial computational 
advantages compared to the conventional isoparametric finite element formulations. Appropriate treatment of the 
element kinematics eliminates automatically locking phenomena while all computations are performed 
analytically thus avoiding the expensive numerical computation of the stiffness matrix. Furthermore, the 
inclusion of the transverse shear deformations in the formulation of the TRIC shell element based on a first order 
shear-deformable beam theory is performed in a way that eliminates the shear locking effect in a physical 
manner. 

The standard TRIC element formulation can be decomposed in two different triangular elements. One 
responsible for the pure-bending behavior and one responsible for the membrane (plane stress) behavior. The 
element performance in plane stress problems is identical to the Constant Strain Triangle (CST)[12]. This element 
encounters great difficulties in determining the exact structural behavior, while it exhibits serious aspect ratio 
locking. 
 In the present study, we present an enhancement of the element’s membrane behaviour. The enhancement 
follows an optimal method in calculating the stiffness matrix regarding the rotational or drilling degrees of 
freedom (corner rotations normal to the plane of a shell element) and is based on an Assumed Natural Deviatoric 
Strain (ANDES) formulation[3,13]. The enhancement was implemented in two steps. First we improved the 
azimuth stiffness matrix in the natural system, using the drilling degrees of freedom deformation concept. The 
drilling degrees of freedom of TRIC were not involved in the derivation of the element's stiffness. These degrees 
of freedom were retained arbitrarily, solely for computational reasons. Secondly, further enhancement is 
achieved of the stiffness terms of the drilling degrees of freedom in the local Cartesian system following a 
constant-stress/hybrid method. 
 Test examples for membrane and shell problems will de demonstrated. The results will be evaluated with 
commercial finite element software. We will demonstrate that the proposed element exhibits excellent 
performance in shell problems with significant membrane stresses and unstructured meshes. 
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2 THE TRIC ELEMENT 

 The formulation of the TRIC shell element has been presented thoroughly in a number of  papers[1,4,5,10,11]. 
In the present paper, due to lack of space, only basic theory features of the element will be highlighted and only 
those features that are essential for the introduced improvement. 
 
2.1 Natural kinematics of the element  
 The key-point for the formulation of the TRIC shell element is the adoption of the so-called natural 
coordinate system which has the three axes parallel to the sides of the triangle (α, β, γ). Apart from the natural 
system (α, β, γ) there are also the local elemental coordinate system ( x', y', z' ) placed at the triangle's centroid, 
and the global cartesian coordinate system ( x, y, z ) where global equilibrium refers to. Finally, for each ply of 
the triangle, a material coordinate system (1, 2, 3) is defined with axis 1 being parallel to the direction of the 
fibers. The use of these different coordinate systems makes TRIC a suitable element in modeling a multilayer 
anisotropic shell structure that can degenerate, as a special case, to a sandwich or a single-layer configuration. 
 In the natural mode method the cartesian strains have been replaced by the total natural strains 

{ }T

t t t t=γ α β γγ γ γ . These strains are measured directly parallel to the triangle's sides, while by definition 

straining of one side leaves all other triangular sides unstrained. The total natural axial strains  are related to 
the three in-plane local cartesian strains 

tγ
΄γ  according to the expression 
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γ B γ  (1) 

 
2.2 Constitutive relations (The natural stress-strain matrix κct) 
 In the present paragraph no mention will be made for the transverse shear strains, as no modification has 
been made to them and they present no interest for the proposed improvement. 
 With respect to the material coordinate system we will define orthotropic properties such as Young’s 
moduli and Poisson’s ratios, for every layer k. Taking into consideration that in general all material properties are 
temperature dependent and for complete isotropy (ν12 = ν21 = ν , Ε1 = Ε2 = Ε) the equation becomes 

 

12

11 11

22 222
2

12 12kk k

σ γE vE 0
1 Eσ = vE E 0 γ , G =

1- v 2(1+v)
0 0 G(1- v )σ γ

⎧ ⎫ ⎧ ⎫⎡ ⎤
⎪ ⎪ ⎪ ⎪⎢ ⎥
⎨ ⎬ ⎨ ⎬⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥⎣ ⎦⎩ ⎭ ⎩ ⎭

κ

 (2) 

 In order to express the constitutive matrix in the natural system the following sequence of material 
transformations are initiated: Material system → Local system → Natural system 

 k -1 T -T
ct 12=

k
 ⎡ ⎤⎡ ⎤⎣ ⎦⎣ ⎦κ B A κ A B  (3) 

in which  is the transformation matrix that relates the material with the local system (its form is presented in 
[4]). In this work is a unit vector since the material is taken as isotropic and material and local coordinate 
systems are identical.  

A
A

 
2.3 Natural modes 

In principle, the natural stiffness of an element is only based on deformation and not on associated rigid 
body motions. Thus, to the triangular shell element TRIC correspond 6 × 3 = 18 nodal displacements but only 18 
- 6 = 12 independent straining modes can be denned in order to satisfy all kinematic compatibility conditions. 
The stiffness matrix Nk  corresponding to these deformations is of dimensions 12 × 12 and is denoted as the 
natural stiffness matrix. A simple congruent transformation leads to the full 18 × 18 cartesian stiffness matrix of 
the element. 

In order to generate these pure deformational modes, which are called natural modes, a projection of the 
nodal displacements and rotations as well as the corresponding forces and moments on the triangular edges takes 
place. A decomposition of the rotations and moments into symmetric and antisymmetric components is then 
initiated. From this process, the axial as well as the symmetric and antisymmetric modes of deformation are 
generated. Note that the antisymmetric modes comprise the antisymmetric bending and transverse shear 
deformations, a key-point for the shear-locking elimination[1]. 

The 6 rigid-body and 12 straining natural modes of the TRIC element, can be grouped in the vector: 
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N
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ρ ρ ρ ρ ρ ρ

γ γ γ ψ ψ ψ ψ ψ ψ ψ ψ ψ
 (4) 

where  and ρ  represent the rigid-body and straining modes, respectively. 0ρ Ν

 TRIC, as a shell element, can be regarded as a combination of a membrane and a plate element that is 
subjected to extension and flexure, respectively. Its membrane behavior is represented by six translational nodal 
degrees of freedom in the plane of the triangle, while its flexural behavior is described by nine degrees of 
freedom, one out-of-plane translation and two rotations for each node. The remaining three degrees of freedom, 
one for each node, are the drilling degrees of freedom that were implemented solely for computational reasons 
and they were treated separately from the other modes with no coupling terms between them. 
 
2.4 Natural stiffness matrix Nk  
 The components of the natural stiffness matrix are [1]: 

 

qc
(6 6)

N qh
(12 12) (3 3)

az
(3 3)

×

× ×

×

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

k 0 0

k 0 k 0

0 0 k

 (5) 

where:  are the axial and symmetrical bending stiffness terms,  are the anti-symmetrical bending and 
shear stiffness terms and  are the stiffness terms due to in-plane rotations (azimuth stiffness terms). The 
Derivation of and  was already presented in [1].  

qck qhk

azk

qck qhk
 
2.4.1 Azimuth stiffness matrix  (Initial formulation) azk

The drilling degrees of freedom are not involved in the derivation of the element's stiffness. However, these 
degrees of freedom are retained, solely for computational reasons. In the case of the TRIC element, the 
assignment of stiffness terms to the drilling degrees of freedom is done in a way that is consistent with the 
natural mode method. Three rotational springs with the same stiffness kZ are considered at the three vertices of 
the triangle and they are used to simulate the in-plane rotation about z΄ axis. The corresponding natural modes 

consist of a unit rotation about z΄ axis at each one of the three vertices { }T

az =q α β γψ ψ ψ . The azimuth 

stiffness matrix  is then calculated as: azk

 2 2 2
-6 2 2 2

az 2 2 2
- 2 - 2 - 2

1 -0.5 -0.5
1 1 1= -0.5 1 -0.5 , =10 ×   ,     ,   

-0.5 -0.5 1

h h h

z z
h h h

k k Ω max z k dz z k dz z k dz
l l l

⎡ ⎤ ⎧ ⎫⎪ ⎪⎢ ⎥
⎨ ⎬⎢ ⎥ ⎪ ⎪⎩ ⎭⎢ ⎥⎣ ⎦

∫ ∫ ∫k αα ββ γγ
α β γ

 (6) 

with  having an arbitrary but small enough value, compared to the rest of the stiffness terms, so that it will 
produce a negligible effect on the final equilibrium equations. In 

zk
(6) h is the thickness of the shell element, li (i = 

α, β, γ) are the lengths of the three sides of the element, Ω is the element area and kαα, kαα, kαα are the diagonal 
terms of κct. It should be noted that these modes are defined exclusively for computational reasons and this is the 
reason why the coupling terms (Eq. (5)) connecting these degrees of freedom with the rest of the modes are set 
equal to zero. 
 
2.5 Local cartesian stiffness matrix  k 
 The cartesian stiffness matrix k in the local coordinate system can be found using the following 
transformation 
 T

N N N(18 18) (18 12) (12 12) (12 18)× × × ×
=k α k α  (7) 

where Nα  is the matrix that relates the natural straining modes  to the cartesian nodal displacements Np p  

 [ ]TT

(1 18)
1, 2,3

i
u w iυ θ φ ψ

×
′ ′ ′ ′ ′ ′=p =  (8) 
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with ui, υi, wi being the three nodal translations and θi, φi, ψi the three nodal rotations of node i. The calculation 
of Nα  is done using strictly geometrical arguments and can be expressed analytically[4]. 
 
3 IMPROVEMENT OF THE MEMBRANE BEHAVIOR 

3.1 Drilling degrees of freedom 
 The drilling degrees of freedom are useful for compactly expressing the higher order behavior of the 
element. Their geometric interpretation is shown in Fig 1. 

 

total
zψ

zψ
06ρ

Figure 1. Decomposition of inplane motion into CST (linear displacement) and azimuthian. 
 

To extract the azimuth corner rotations { }z

T

α β γψ ψ ψ=ψ  from the total corner rotations , 

subtract the mean or CST rotation 

total
zψ

06ρ : 

 total
z z 0= - 6ρψ ψ  (9) 

where z = α, β, γ and 06 2 3 2 3= ( α 1 β γ α 1 β γ
1ρ x u + x u + x u y υ + y υ + y υ )

4Ω
+ . 

 
3.2 Azimuth stiffness matrix k  (modification)  az

 The modification of the azimuth stiffness matrix follows the work of Felippa and co workers and is based on 
an Assumed Natural Deviatoric Strain (ANDES) formulation [3,13]. 
 The modified azimuth stiffness matrix is given by 
 az ψ

(3 3) (3 3)

k

k=1,2,..,nl× ×

= ∑k k  (10) 

where  is the azimuth stiffness matrix in each layer (k) of the element in terms of the azimuth corner 

rotations  of 
ψ
kk

zψ (9). 

 To express k  compactly, the following matrices are introdused, which depend on nine free 
dimensionless parameters, β1 through β9  

ψ
k

 
1 2 3, ,
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3 l l l 3 l l l 3 l l l
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 (11) 

 Matrix Q  relates the natural strains , at elements corner i, to the azimuth corner rotations ψ . At a 

point of triangular coordinates {ζ1, ζ2, ζ3}, 
i tγ z

t = zγ Qψ , where 1 1 2 2 3 3= ζ ζ ζ+ +Q Q Q Q . Evaluate this at the 

midpoints 4 1 2 5 2 3 6 3( ) , ( ) , (1 1 1
2 2 2

= + = + = + 1)Q Q Q Q Q Q QQ Q . Finally:  

  (12) 
4 5

k T T T
ψ ct 4 ct 5 6 ct 6= ( + )h +k Q κ Q Q κ Q Q κ Q
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and k
az ψ0

3
4
β=k k , where β0 is an overall scaling coefficient. This coefficient could be absorbed into the β1 

through β9 but it is left separate, to simplify the incorporation of material behavior into (12). The factor ¾ comes 
from “historical grandfathering”[13,14] 
 The free dimensionless parameters βi are determined from a higher order patch test which tunes up the 
higher order stiffness of triangular elements[14]. Using such a patch test the optimal parameters are calculated as 
follows [13]: ,2

0 1 2 3 4 5 6 7 8
1β = (1 - 4 ν ) β = 1 , β = 2 , β = 1 , β = 0 , β = 1 , β = -1 , β = -1 , β = -1 , β = -2
2 9

. 

 Since for v = ½ the optimal β0 is 0, the azimuth stiffness would vanish and the element is rank deficient. To 
maintain stability β0 is set to a minimum value, for example β0 = max (½(1 − 4ν2), 0.01). 
 
3.3 Cartesian stiffness matrix k (modification) 
 So far we focused our attention on a more exact method for calculating the stiffness terms of azimuth 
modes in the natural system. What has not been evaluated yet, is the relation between the azimuth modes in the 
natural and in the local systems. Furthermore it should be noted that the coupling terms (5) connecting these 
degrees of freedom with the rest of the modes were set equal to zero. This means, that according to the previous 
theory of TRIC there is no tuning of the axial, symmetric bending, antisymmetric bending and shearing modes 
when the element is distorted in the z΄ direction. 
 We’ve discussed in §2.5 that the cartesian stiffness matrix k in the local coordinate system can be found 
using (7), and Nα  is the matrix that relates the natural straining modes  to the cartesian nodal displacements Np
p . Therefore Nα  is solely a function of the current geometry of the element and is devised based upon pure 
geometrical relations between  and Np p . So this matrix can be used to solve all the above mentioned 
geometrical problems. 
 
3.3.1 Relation between the azimuth modes in the natural and in the local system (1) 
 By applying (9) and 06ρ  to the three corners we assemble the transformation: 

 Z

1,2,3

α a a β β γ γ i

β a a β β γ γ i

γ a a β β γ γ i i

ψ x y 4Ω x y 0 x y 0 u
1ψ x y 0 x y 4Ω x y 0 υ

4Ω
ψ x y 0 x y 0 x y 4Ω ψ

=

′⎧ ⎫ ⎡ ⎤ ⎧ ⎫
⎪ ⎪ ⎢ ⎥ ⎪ ⎪′= =⎨ ⎬ ⎨ ⎬⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥ ′⎩ ⎭⎩ ⎭ ⎣ ⎦

ψ  (13) 

 In (13) we present only those elements of p  that have a relation with . All other degrees of freedom 
(

zψ
, ,i i iw θ φ  i=1,2,3) have columns equal to zero, in the above transformation matrix. This relationship was 

incorporated in the TRIC’s theory[4], but due to the arbitrary and small value of  and subsequently  its 
influence was negligible. 

Νk azk

 
3.3.2 Relation between the azimuth modes in the natural and in the local system (2) 
 One more modification remains related to the coupling terms in (5). According to TRIC’s theory[4] the 
natural axial straining modes tγ  are related only with the inplane local deformation degrees of freedom ( ,i ix y′ ′  
for i=1,2,3). These modes are also causing a distortion to the element angles. This distortion can be expressed as: 

 t

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

ta a b γ a b γ b b γ γ 1
b b

tβ β γ α β γ α γ γ α α 2 i

tγ γ α β γ α β α α β β 3

γ y y y x x x 2 y x y x ψ
a h a hγ y y y x x x 2 y x y x ψ
12 12

γ y y y x x x 2 y x y x ψ

′⎧ ⎫ ⎡ ⎤− − − ⎧ ⎫
⎪ ⎪ ⎢ ⎥ ⎪ ⎪′ ′= − − − ⇔ =⎨ ⎬ ⎨ ⎬⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥ ′− − − ⎩ ⎭⎩ ⎭ ⎣ ⎦

B γ LBψ  (14) 

where h is the elements height and B is from (1). L is the lumping matrix[14] which for a general three-
dimensional element expresses the relationship between the nodal forces  produced by constant-strain modes 

and an arbitrary constant-stress field ( ). Finally  is a variable which controls the amount of the 
element angle distortion. 

ct

c =t Lσc ba

 A short examination of  shows that, if it is set equal to zero we return to the previous theory, if it is set a 

lot greater than 1 the element will have very large rotational stiffness. The value of  is always in the range of 
1 thought 2 and is not sensitive to the choice of material properties. Its value depends only the elements 

ba

ba
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geometry and on the elements corners (3 different  for every corner). The average value  is 
recommended for general use in arbitrary grids[14]. 

ba ba 1,= 5

 Using (14) we get: 

 
11 12 13

b
21 22 23

31 32 33

LB LB LB
a h LB LB LB
12

LB LB LB

⎡ ⎤
⎢ ⎥= ⎢ ⎥
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LB  (15) 

3.3.3 Transformation matrix Nα  
 We are now in the position to construct matrix Nα  (7) which is partitioned as follows 

 

11 12 13
N N N

(6x6) (6x6) (6x6)
Ν 21 22 23

(12x18) N N N
(6x6) (6x6) (6x6)

=
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

α α α
α

α α α
 (16) 

 A typical submatrix of (16) is given by: 

 11
N

(6x6)

. . . . .
. . .
. . .=

. . . .

11
2 2

β β β β 21
2 2

γ γ γ γ 31

β β β β

LB
x l y l LB
-x l y l LB

-y l -x l

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. . . . . .

. . . . . .

α ⎥  (17) 

the others can be expressed similarly. 
 
4 NUMERICAL EXAMPLES 

 For the comparisons we used HKS ABAQUS v6.4 (S3R general purpose triangle shell element), MSC 
NASTRAN 2004 (CTRIA3 general purpose triangle shell element), MSC NASTRAN 2004 (CQUAD4 general 
purpose quadrilateral shell element) and standard TRIC and the improved TRIC elements. 
 
4.1 Cantilever under end moment (a) 
 The cantilever beam of Fig. 2 is subjected to an end moment M = 100. The modulus of elasticity is set to E 
= 768 and the exact tip deflection δtip = ML/(2EI) is 100. Regular meshes ranging from 32 × 2 to 2 × 2 are used. 
Each rectanglular mesh unit being composed of 2 equal triangles. For the TRIC elements, 2 isotropic layers with 
equal height were used for every triangle. The element aspect ratios (γ) vary from 1:1 through 16:1. The root 
clamping condition is imposed by setting 
  (18) 1 2 3 2 1 2 3u = u = u = 0, u = 0, y = y = y = 0
where 1, 2, 3 are the root nodes, numbered from the top. 
 Table 1 reports the computed tip deflections (y displacement at C) for several element types and five 
aspect ratios.  

 
Figure 2. Cantilever beam under end moment. A 8 × 2 mesh is shown. 

 
dy C 2x2 (γ = 16:1) 4x2 (γ = 8:1) 8x2 (γ = 4:1) 16x2 (γ = 2:1) 32x2 (γ = 2:1) 

NASTRAN (Quads) 94.12 96.92 98.31 98.35 98.36 
NASTRAN (Triangles) 1.28 4.81 15.80 36.70 54.01 
ABAQUS (Triangles) 1.28 4.84 15.84 36.62 54.29 

CST 1.28 4.84 15.84 36.62 54.29 
TRIC 1.28 4.84 15.84 36.62 54.29 

TRIC (improved) 101.32 101.19 100.96 100.54 100.08 
Felippa[13] 101.32 101.19 100.96 100.54 100.08 

Table 1. Computed tip deflections (y displacement at C) 
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4.2 Cantilever under end moment (b) 
 The cantilever beam of Fig. 3 is identical to example 4.1. Their only difference is that the total moment is 
applied by both concentrated moments and forces. Table 2 reports the computed tip deflections (y displacement 
at C) for several element types and five aspect ratios for example 4.2.  
 

 
Figure 3. Cantilever beam under end moment. A 8 × 2 mesh is shown. 

 
dy C 2x2 (γ = 16:1) 4x2 (γ = 8:1) 8x2 (γ = 4:1) 16x2 (γ = 2:1) 32x2 (γ = 2:1) 

NASTRAN (Quads) 94.67 97.44 98.16 98.33 98.37 
NASTRAN (Triangles) 1.25 4.82 15.83 36.62 54.31 

TRIC 0.64 2.42 7.92 18.31 27.15 
TRIC (improved) 101.32 101.22 101.0 100.58 100.07 

Felippa[13] 99.99 99.99 99.99 99.96 100.07 
Table 2. Computed tip deflections (y displacement at C) 

 
4.3 Single bay frame 
 The single bay model frame of Figure 4 consists of isotropic material, I shaped beams for both the columns 
and the beam. The beam web is perforated in two positions with elliptical holes. The geometry of these 
structures demands a more detailed simulation with shell finite elements, in order to capture the true deformation 
and stress patterns.  
 The structure is fully constrained in the bottom of the two columns and a concentrated force of magnitude 
50 along the x direction was applied at the center top node of the right column (Fig. 4). The columns height is 
220 and the beam length is 300. For the columns hw = 24 (web height), hf = 18 (flange height) and the thickness 
for both flange and web is 6. For the beam hw = 20 (web height), hf = 13 (flange height) and the thickness for 
both flange and web is 5. 
 In order to have a better view of the true structural behavior two different analysis were conducted with 
NASTRAN quadrilateral elements. The first one with 550 elements and 648 nodes and the resulting tip 
deflection was found 160.49, while the second was simulated with 1982 elements and 2168 nodes and its tip 
deflections was found 161.81.  
 Table 3 reports the computed tip deflections (x displacement at the node where the force was applied) for 
several element types and 6 different meshes. 
 

 
Figure 4. Single bay frame (433 nodes, 718 elemens). A better view of the joint and the 

hole is presented in the details. The visualization was made by FEMAP. (E = 28, ν = 0.2) 
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Nodes Elements ABAQUS 
(Triangles) 

NASTRAN 
(Triangles) TRIC TRIC 

(improved) 
253 408 45.40 49.63 49.09 146.03 
330 540 70.70 75.36 75.13 151.40 
363 598 72.60 76.90 76.79 153.67 
433 718 93.10 97.44 97.65 155.62 
658 1108 97.00 100.68 101.09 158.70 
1726 2970 119.00 120.09 121.40 160.11 

Table 3. Computed tip deflections (x displacement at the node where the force was applied) 
 
5 CONCLUSIONS 

 From the above examples a number of concluding remarks can de drawn regarding the TRIC element and 
the proposed improvement. The standard TRIC element is very stiff and incapable to compute the correct 
deformation, although finer meshes converge rather slowly, to the correct solution. The improved TRIC has 
substantial differences with its original version. It is able to compute the correct solution with coarse meshes as 
well as with distorted elements (aspect ratio 16:1). 
 The last example was a test bed for the behavior of the improved element in all kinds of modes 
(membrane, bending and shear). In this case the elements are of arbitrary aspect ratio and the mesh is quite 
distorted. The improved TRIC exhibits excellent performance. 
 In all the examples the improved TRIC exhibits fast convergence to the correct solution compared to other 
general purpose shell elements. Furthermore, the results obtained are very similar to those obtained with 
quadrilateral shell elements of commercial finate element programs.  
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Abstract. In the present work, various sources of excessive energy in quadrilateral and triangular bending 
finite elements are presented. Emphasis is placed upon geometric parameters that are inherently related to 
quadrilaterals and triangles and provide a measure for the distortion of aforesaid forms from the corresponding 
regular forms. Furthermore,  the effect of that distortion on the behavior of the element is investigated. An 
approach based on a modified version of the functional of Hu-Washizu is proposed for the development of 
bending elements that are less sensitive to element distortions. The methodology incorporates the rotations of 
the material lines and decomposes the shear strains into one part, which contains only shear modes and another 
part that contains flexural as well as shear modes. Appropriate selection of rotations, stresses, and strains leads 
to simple and reliable elemental formulations, which minimize excessive energy or, in case of triangles, are free 
of locking. The convergence of the formulation is investigated both analytically and numerically. Furthermore, 
extension of the proposed approach to elasto-plastic problems is straightforward. In this case, we assume 
piecewise constant approximations for stress and strain within subregions instead of linear approximations. 
Finally, results of numerical examples are presented. 
 
 
1 INTRODUCTION 
 

Low order triangular and quadrilateral elements are often preferred in structural mechanics. Despite the great 
variety of alternative schemes that have been proposed, a series of difficulties inherent in these elements exist 
(see, e.g., [1] to [5]). Besides the coupling between transverse shear and bending deformational modes that leads 
to excessive energy (locking), there is a coupling between torsion and twist bending mode that causes also 
locking and that can not be avoided by employing conventional approaches. 

In this paper, a modified version of the Hu-Washizu principle is employed that incorporates the rotations of 
the material lines, i.e., the in plane rotations of a surface at a distance from the midsurface and the rotations of 
the normal. The kinematical constraints are imposed via nonsymmetric Lagrange multipliers. In order to avoid 
coupling between flexural and transverse shear modes (and thus additional excessive energy), the shear strains 
are decomposed into one part, which contains only shear modes and another part, which contains flexural as 
well as shear modes. The proposed approach offers advantages: We obtain a weak formulation for the rotational 
equilibrium, which is more consistent than pointwise satisfaction of moment equilibrium. Furthermore, coupling 
between flexural and transverse shear is avoided. The principle provides a powerful basis for examining - 
eliminating additional sources of excessive energy and developing means to reduce it. Most important however 
is the fact that by incorporating the rotations of the normal and by obtaining the corresponding equations for 
moment equilibrium, different approximations for the shear stresses can be employed. As a result, the 
aforementioned coupling between torsion and twist bending modes that leads to locking is eliminated. We 
discuss the selection of the approximations for the various fields and justify the rationale for the choice of these 
approximations. In this respect, we utilize our previous experience with elemental formulations based on the Hu-
Washizu principle (see, e.g., [1] to [5]). Appropriate selection of the approximations for stresses and strains 
leads to simple and reliable elemental formulations, which minimize excessive energy or are free of locking. 
Furthermore, extension of the proposed approach to elasto-plastic problems is straightforward. In this case, we 
assume piecewise constant approximations for stress and strain within subregions instead of linear 
approximations. This provides a computationally efficient and consistent mechanism for stepwise progression of 
yielding and reduces significantly the computational effort required for the evaluation of the residual forces. The 

829



Elias A. Paraskevopoulos and Demosthenes G. Talaslidis 
convergence characteristics of the proposed formulation are investigated by examining the inf-sup condition and 
applying the patch test. Finally, results of numerical examples are presented. 

Due to space limitations only basic ideas are presented here; details can be found in [5] and in a forthcoming 
publication [6]. 

2 GEOMETRIC FEATURES 

Geometry, loading, stresses, etc. are referred to an arbitrary reference coordinate system θα (α=1, 2) of the 
surface, while θ3 is a special coordinate, the distance along the normal. A second, natural coordinate system (ξα, 
ξ3) is located in every quadrilateral (see Fig. 1). Ιn the subsequent sections, another coordinate system  ( )3,ξξ α  
is used with origin through the center of the quadrilateral and coordinate axes parallel to the directions of vectors 
ρi. The position vector r to an arbitrary point is given by the trilinear approximation: 

 
  .
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0 const 3

21
 21
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 2

1
 10 3

3 ˆ,,ˆ =+++=+=
ξξξξξξ
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Some of the results obtained in [5] concerning the differential geometry of the quadrilateral may be summarized 
as follows: In each element there is a parallelogram, which forms an intrinsic geometric feature of the 
quadrilateral (see the parallelogram ABCD illustrated in Fig. 1). The differential geometry of the quadrilateral 
approaches in the limit that of the aforementioned parallelogram. That parallelogram is a consistent 
approximation of the quadrilateral. The differential geometry of the quadrilateral is expressed in terms of two 
geometric quantities (α, β) that provide a measure for the departure of the quadrilateral form from the inherent 
parallelogram. The vector ρ12 of the bilinear term of Eq. (1) represents the departure of the quadrilateral from the 
shape of the intrinsic parallelogram ABCD; it can be expressed in terms of the constants α and β: 
 

 2 112 ρρρ αβ +=                   (2) 
 

In order to follow an approach similar to that presented for the quadrilateral and to use the same notations 
also for the triangle, we do not employ the usual area coordinates to describe the geometry, approximations, etc. 
but the coordinate system ξα shown in Fig. 2. In this case, the vector 0r assumes the form: 
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Note that by creating the mirror image of the triangle with respect to the side (B-C), we create a parallelogram. 
In this case, the coordinate system through the center ( )3,ξξ α  has axes parallel to the coordinate axes (ξα, ξ3) of 
the triangle. 

3 VARIATIONAL FORMULATION 

A modified version of the Hu-Washizu principle serves as starting point for the discretization. The modified 
potential incorporates the internal energy u0 (1γαβ,  0γα3)  (per unit initial surface) as a function of the flexural 1γαβ 
and transverse shear 0γα3  strains. Since states of strain and stress (e.g., constant states) are defined with respect to 
the reference coordinate system θα, all field variables are initially referred to this system. Furthermore, in 
keeping with Eq. (1) we introduce two displacement vectors 0V (ξ

1
 ξ

2
) and 1V (ξ

1
 ξ

2
),  which fully determine the 

position vector R of a particle after deformation: 
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Here, 0R denote the position vector to a point on the deformed reference surface and A3 the base vector tangent 
to the deformed ξ3 line. The vector 1V can also be expressed in terms of the rotation of the normal. 

To derive all field equations (including moment equilibrium) in discrete form, we also incorporate the in 
plane rotations Ω1

αβ of a surface at a distance from the midsurface and the rotations Ω0
α3 of the normal. In order 

to avoid coupling between flexural and transverse shear modes (and thus additional excessive energy), the 
kinematical constraints associated with the shear strains are decomposed into one part, which contains only 
shear modes and another part, which contains flexural as well as shear modes. Those constraints are imposed via 
Lagrange multipliers q’ α3

 and qα3, respectively. The proposed approach offers advantages: We obtain a weak 
formulation for the rotational equilibrium, which is more consistent than pointwise satisfaction. Furthermore, 
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coupling between flexural and transverse shear is avoided. The principle provides a powerful basis for 
examining and eliminating additional sources of excessive energy and developing means to reduce it. Most 
important however is the fact that by incorporating the rotations of the normal and by obtaining the 
corresponding equations for moment equilibrium, different approximations for the shear stresses can be 
employed. As a result, the aforementioned coupling between torsion and twist bending modes that leads to 
locking is eliminated. 

The kinematical constraints between strains, rotations Ωα
ij, and displacement gradients (qi • V,j), are imposed 

via nonsymmetric Lagrange multipliers (tensorial stress components): 
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The functional V is subject to variations of the displacements, strains (1γαβ, 0γα3), rotations Ωα

ij, and the 
nonsymmetric stresses (mαβ, q’ α3, qα3). 

4 DISCRETIZATION 

Following the isoparametric concept, the two displacement vectors αV (α=1, 2) of Eq. (4) assume the 
following form: 

 
211222110 ξξξξ ααααα VVVVV +++=                              (5) 

 
The underlined bilinear term is not present in case of the triangle. To gain insight into the work expended by 

the various stress and strain modes, it is useful to inquire as to the physical meaning of the displacement vector. 
Towards this aim, the displacement vector at a particle Q is expressed in terms of the deformational modes: 
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Thus, the displacement is expressed in terms of the rigid motions of the element, the five constant flexural 
)( 1

αβe , and transverse shear )( 0
3αe  strains at the center. Four additional modes are present, which correspond to 

the bilinear terms of the displacement: Two higher order flexural (Γ1
11, Γ1

22) modes; two additional modes cause 
transverse shear strain: one mode is warping of the middle surface (Γ1

33) and the other is associated with the 
linear rotation 1

12ω . Note that the latter rotation causes the surface ξ3 = const. to rotate rigidly, relative to the 
reference surface at ξ3

 = 0.  
In the following we justify the selection of the approximations for the tensorial stress components (for details 

see [5], [6]). Recall that the nonsymmetric stress components are defined with respect to the reference system θα. 
It can be shown that independence of affine transformations of the reference system can be achieved without 
increasing the number of stress parameters, if the approximations are formulated for stress components referred 
to a special coordinate system and then transformed to the original reference system by employing the usual 
tensor transformation law for contravariant components[4]. This special coordinate system should be independent 
of the element orientation with respect to the reference system, or with respect to a coordinate system resulting 
from an affine transformation of the reference system. Furthermore, this coordinate system should also be an 
inherent feature of the arbitrary quadrilateral. A coordinate system with the aforesaid properties is the coordinate 
system αξ  with axes parallel to the sides of the inherent parallelogram through the center of the 
quadrilateral/triangle. According to our previous experience, the following approximations of stresses are most 
suitable for parallelogram elements: 

 

2,1,)(~ 1
22

2
11 =++= lksss lklkklklkl ξδδξδδ                     (7) 

 
where 2112 ss ≠ . Approximation (7) is valid for components mαβ and q’ α3. For the shear components qα3 the 
following approximation is introduced: 

831



Elias A. Paraskevopoulos and Demosthenes G. Talaslidis 
 

1232321313 ~,~ ξξ qqqqqq −=+=                                                          (8) 
 
The form of (8) results from the requirement that the shear forces qα3 should produce no work upon 
combinations of flexural deformational modes[6]. The components mαβ and q’ α3 for the triangle are assumed 
constant, whereas the form of the approximations for the shear forces qα3 follows from the requirement of zero 
work upon the corresponding combinations of bending modes. 

For the approximation of the tensorial components of strain, a similar approach as that for the stress could be 
employed. However, in that case the transformation law for the covariant strain components requires evaluation 
of the inverse expression  ik ϑξ ∂∂ /  that can not be readily performed or may introduce complicated 
expressions. Therefore, we introduce approximations for the tensorial strain components εij that are referred to 
the directions of the reference system. These assumptions must ensure that the element properties remain 
invariant in case of an affine transformation of our reference system. An approximation that preserves invariance 
assumes the following form: 

 
)( 2112

22110 εεξεξεεε =++= ijijijij            (9) 
 
These assumptions contain 15 strain parameters though our displacement approximation allows only 9 
independent deformational modes. For this reason, additional conditions must be employed in order to reduce 
the number of independent parameters. Since appropriate approximations of strain that avoid shear locking in 
the case of a parallelogram are well known (see, e.g., [1] to [6]), we employ again as a starting point the intrinsic 
parallelogram. The keys to our strain approximation were: (i) the identification of the constant and higher-order 
deformational terms of the displacement approximation, (ii) the realization that the higher-order terms reappear 
in different strain components, and (iii) our approximations of the strains need not retain the higher-order terms 
in two different strain components; they are needed only to inhibit a mode. Suppressing such terms in one, or the 
other component, serves to reduce the internal energy and improve convergence. Thus, according to our 
previous experience, the following approximations are introduced for the strain components klε  of the 
parallelogram in the directions of the coordinate axes αξ : 

 

2112
1

22
2

11 ),2,1,()(~ εεξδδξδδεεε ==++= lklklk
klklkl                  (10) 

 
 
Note these assumptions contain only 9 independent parameters. As next step, we express the 15 parameters 

k
ijε  of the approximations (9) by the 9 parameters of assumptions (10). Towards this aim, we equate the work 

done by the stress components ijs  and strains ijε  upon the parallelogram with the work expended by the same 

stress components, ijs , upon the strains /
ijε . The latter strains are referred to the directions of the parallelogram 

sides but are obtained from the strain components klε  using the transformation law for covariant tensor 
components: 

 

klj

l

i

k

ijij
ij

s
ij

ij

s

ddAsddAs
pp

ε
ξ
θ

ξ
θεξξεξξε

∂
∂

∂
∂=′′= ∫∫∫∫ 2121             (11) 

 
For the quadrilateral as well as the triangle, the rotations Ω1

αβ are approximated by constants. The rotation of 
the normal Ω0

α3 is assumed constant within the triangular element whereas the corresponding rotation for the 
quadrilateral takes a form similar to that of Eq. (8). 

4 DERIVATION OF STIFFNESS MATRIX 

With the stress and strain approximations previously presented, functional (4) assumes the form: 
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Furthermore, variation of Ω0

α3 yields the equations of moment equilibrium: 
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In general, the constants α and β are nonzero. It follows from the last terms of Eq. (12) that there is a 

coupling between higher order and constant deformational modes. This coupling contributes to an increase in 
locking since the constant strain modes also expend work upon the constant stress modes. This locking is due to 
the presence of the geometrical constants α and β. Since the values of these constants increase with increasing 
departure from the shape of the parallelogram (or rectangle), there is a gradual increase in the amount of locking 
due to the shape distortion of the quadrilateral. Unfortunately, these terms can not be omitted, if the element is to 
pass the classical patch test. Note that, in the limit, the constants α and β approach zero and, therefore, this kind 
of locking disappears. Furthermore, there is no "parallelogram locking" since the aforesaid terms vanish due to 
α=β=0 and the usual shear locking is prevented by using the Hu-Washizu principle and appropriate assumptions 
for stresses and strains. By analytically performing the integrations and varying the independent variables, the 
corresponding stiffness matrices for the bending plate quadrilateral and triangle are obtained. 

The approximations employed preserve invariance under affine transformations, minimize excessive energy, 
and lead to an element formulation that is characterized by simplicity and reliability 

In case of  an elastoplastic analysis, the continuous, linear functions are replaced by the Heaviside function. 
As a result, the strains and stresses have piecewise constant approximations within subregions (Figs. 3 and 4). 
This provides a consistent mechanism for describing progressive yielding through the element and leads to a 
significant reduction of computational cost. Furthermore, reevaluation of the stiffness matrix at successive 
increments requires no additional integrations over the elemental area. Also, evaluation of residual/internal 
forces is simple. Consequently, the correction of imbalances is readily achieved via the incremental-iterative 
process 

4 CONVERGENCE CHARACTERISTICS 

In order to investigate the convergence characteristics of the proposed elemental formulation, we follow 
Strang's[7] convergence criterium: ``Stability and consistency imply convergence.'' The convergence 
characteristics of the proposed formulation are investigated by examining the inf-sup condition and applying the 
patch test. Employing the ``Rayleigh nesting theorem,'' we determine the lowest eigenvalue of each individual 
element instead to determine the lowest eigenvalue of the entire system. Furthermore, to show that the inf-sup 
condition is satisfied, we also apply the singular-value decomposition. Due to space limitations, we do not 
present details of the investigations; instead the reader is referred to [5] and [6]. 

10 NUMERICAL EXAMPLES 

The sensitivity of the formulation to distortions of the element geometry is tested using two elements to 
discretize the beam under bending depicted in Fig. 5 (E=1500, ν=0.25, thickness t=1). The left edge of the 
arrangement is clamped and at the opposite side two vertical loads of magnitude 1 are applied. The distortion 
parameter e is a measure for the departure of the trapezoidal form from that of the rectangle. By employing this 
test, the sensitivity of the formulation to mesh distortions should be investigated. Furthermore, this test should 
demonstrate the amount of increase of the excessive energy as the element geometry departures from that of the 
rectangle, i.e., as the parameter e increases. Note that the proposed as well as most of the alternative 
formulations eliminate shear locking in the case of a rectangle. Therefore, the results presented here are referred 
to the results obtained for the rectangle, i.e., the results shown in Fig. 6 denote the ratios of the displacements 
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obtained for various values of the distortion parameter (e ≠ 0) to the corresponding displacement of the rectangle 
(e = 0). 

The skew cantilever plate (L=100, t=4, E=100, ν=0.3) depicted in Figure 7 has one clamped side and is 
subjected to a uniformly distributed transverse load p=1. For a 4x4 and 8x8 mesh and for angles β=30º and 
β=70º, the ratio of the exact solution to the result (using quadrilaterals) obtained for the vertical displacement at 
Β is given in Table 1. Results for the triangles are presented in [6]. 

11 CONCLUSIONS 

A modified version of the Hu-Washizu principle is employed that incorporates the rotations of the material 
lines, i.e., the in plane rotations of a surface at a distance from the midsurface and the rotations of the normal. 
The kinematical constraints are imposed via nonsymmetric Lagrange multipliers. In order to avoid coupling 
between flexural and transverse shear modes (and thus additional excessive energy), the shear strains are 
decomposed into one part, which contains only shear modes and another part, which contains flexural as well as 
shear modes. The proposed approach offers a series of advantages: We obtain a weak formulation for the 
rotational equilibrium, which is more consistent than pointwise satisfaction. Furthermore, coupling between 
flexural and transverse shear is avoided. The principle provides a powerful basis for examining - eliminating 
additional sources of excessive energy and developing means to reduce it. Most important however is the fact 
that by incorporating the rotations of the normal and by obtaining the corresponding equation for moment 
equilibrium, different approximations for the shear stresses can be employed. As a result, the aforementioned 
coupling between torsion and twist bending modes that leads to locking is eliminated.  

We discuss the selection of the approximations for the various fields and justify the rationale for the choice 
of these approximations. Appropriate selection of the approximations for stresses and strains leads to simple and 
reliable elemental formulations, which minimize excessive energy or are free of locking. Furthermore, extension 
of the proposed approach to elasto-plastic problems is straightforward. In this case, we may assume piecewise 
constant approximations for stress and strain within subregions instead of linear approximations. This provides a 
computationally efficient and consistent mechanism for stepwise progression of yielding and reduces 
significantly the computational effort required for the evaluation of the residual forces. The convergence 
characteristics of the proposed formulation are investigated by examining the inf-sup condition and applying the 
patch test. Finally, results of numerical examples are presented. 
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Angle β 4x4 mesh 8x8 mesh exact 
β = 30º 2113,77 2556,03 2440,63 
β = 70º 17063,88 16247,77 16315,63 

 
Table 1:  Skew cantilever plate: Displacement at B 
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Figure 1. Geometric features of the quadrilateral 
 
 
 

                             

1

2

(0,0)
r2

r3

(0,1)

(1,0)

r1

(a) (b)

A
B

C

1

2

(0,0)

(0,1)

(1,0)A B

C

 
 

Figure 2. Geometric features of the triangle 
 
 

-

+

-
+

(a)

(b)

1

2

11

2

1

H( )î
2

H( )î
1

1111

22

1

11P

1

1P

1

P

1

P

2

22
33

11P

1P

P
P

2

22
33

2

2
2

2

11P

1P

P
P

2

22
3

3
3

3

3

11P

1P

P

P

2

22

33

P

4

4

4

4

1111

22

1
2

3
4

 
 

 
Figure 3. Quadrilateral element: Piecewise constant approximation 
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Figure 4. Triangular element: Piecewise constant approximation 
 

 
 

 
 
       Figure 5. Mesh distortion test (Bending)             Figure 6. Distortion test: Influence of distortion on results 
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Figure 7. Skew cantilever plate 
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Abstract. The methodology presented in [1] is extended to geometrically nonlinear problems, to problems with 
nearly incompressible materials, and to J2  plastic flow-problems. A rigorous continuum mechanics basis to the 
corotational framework is provided and a corotational kinematical model for geometrically nonlinear analysis 
is developed. In the nearly incompressible case, sources of excessive energy for volumetric as well as deviatoric 
deformational states are examined and conclusions are drawn concerning the optimal choice of approximations 
for the field variables. A modified version of the Hu-Washizu principle is employed that incorporates part of the 
plain strain conditions. In case of J2 plasticity, the current formulation incorporates an important modification 
that leads to further simplifications: The continuous, linear functions employed for the approximations are 
replaced by the Heaviside function. Finally, results of numerical examples and comparisons with other 
formulations are presented. 
 

1 INTRODUCTION 
 

In a recent paper[1], reasons for the appearance of excessive energy are examined and a methodology is 
presented, which minimizes excessive energy and yields simple and effective elements that are less sensitive to 
distortions of the element shape. The purpose of this contribution is to extend the approach presented in [1] to 
geometrically nonlinear problems based on a corotational formulation, to problems with nearly incompressible 
materials, and to J2 plastic flow-problems. Towards this aim, a rigorous continuum mechanics basis to the 
corotational framework is provided and a corotational kinematical model for geometrically nonlinear analysis is 
developed. In case of nearly incompressible materials, conclusions are drawn concerning the optimal choice of 
approximations for the field variables by examining sources of excessive energy for volumetric and deviatoric 
deformational states. A modified version of the Hu-Washizu principle is employed that utilizes the orthogonality 
between deviatoric and volumetric terms and incorporates part of the plain strain conditions. In deriving the 
weak form of the governing equations for the J2 plasticity problem, attention is focused on a straightforward 
extension of the linear problem without explicit reference to additional postulates. In case of J2 plasticity, the 
current formulation incorporates an important modification that leads to further simplifications: The continuous, 
linear functions employed for the approximations are replaced by the Heaviside function. Finally, results of 
numerical examples and comparisons with other formulations are presented.  

In this paper, a consistently derived corotational formulation is presented that avoids ad hoc techniques, 
unjustified assumptions, and problems inherent in alternative formulations. The concept of decomposition of 
motion for a finite region emanates from that for an infinitesimal region. The modified principle of Hu-Washizu 
employed here depends on the position, the engineering strains and associated symmetric and antisymmetric 
stresses, but also incorporates the rotation of the base vectors. Approximation of this rotation at every point by 
the same physical rotation yields a series of advantages. Furthermore, differentiation of the variational principle 
leads to a consistent symmetric tangent stiffness matrix. For the approximation of stress and strain we follow the 
rationale and the procedure presented in [1]. The approximations employed preserve invariance under affine 
transformations, minimize excessive energy, and lead to an element formulation that is characterized by 
simplicity and reliability. Furthermore, reevaluation of the stiffness matrix at successive increments requires no 
additional integrations over the elemental area. Also, evaluation of residual/internal forces is simple. 
Consequently, the correction of imbalances is readily achieved via the incremental-iterative process.  

A further objective of the present paper addresses to the reliable treatment of nearly incompressible behavior 
that characterizes a series of materials (e.g., rubber or rubber-like materials) in linear stress analysis or in the 
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nonlinear regime (e.g., plastic behavior of von Mises elastic-plastic materials). In those cases, low order 
elements show poor performance, which may be attributed to shortcomings of the formulation and sources of 
superfluous energy. This part of the paper aims to examine sources of excessive energy in case of volumetric as 
well as deviatoric deformations of nearly incompressible materials. The results of those investigations serve to 
develop a methodology for identifying and eliminating sources of excessive energy and to select appropriate 
approximations for the various field variables. Again, the generalized principle of Hu-Washizu serves as a basis 
for the discretization. However, departing from the usual pointwise satisfaction of all plane strain conditions, the 
constraint concerning vanishing of the transverse deformation is taken into account in weak form, whereas 
vanishing of the transverse shear strain is satisfied pointwise. Such an approach allows the use of concepts 
presented in [1] and proves most useful in minimizing excessive energy and in leading to simple elemental 
formulations. Furthermore, utilizing the orthogonality between volumetric and deviatoric parts, the functional is 
transformed to a form that offers advantages with regard to the optimal choice of stress and strain 
approximations and yields the most appropriate relations between discrete strain parameters and displacement 
modes. Departing from common practice, we prove analytically that the patch test is satisfied. The test is also 
applied numerically to a patch of elements under different loading conditions.  

The last part of the present study deals with the extension of the formulation to the analysis of plane strain 
problems assuming a J2 flow theory with linear isotropic/kinematic hardening. In deriving the weak form of the 
governing equations, attention is focused on a straightforward extension of the linear problem without reference 
to additional postulates. Furthermore, to avoid problems related to the nonconservative character of the 
formulation, we follow the original approach suggested by Lagrange for handling auxiliary conditions. The 
methodology employed in the previous sections serves as a basis for the approximation of the displacement, total 
strain, stress deviator, elastic pressure, and volumetric strain in case of J2 plasticity. However, the current 
formulation incorporates an important modification that leads to further simplifications: The continuous, linear 
functions are now replaced by the Heaviside function. As a result, the strains and stresses have piecewise 
constant approximations within subregions. This provides a consistent mechanism for describing progressive 
yielding through the element and leads to a significant reduction of computational cost. Arguments for the 
choice of the plastic strain approximations are given and the assumptions concerning the plastic strain deviators 
as well as the consistency or plastic parameter are presented.  

Finally, results of numerical examples and comparisons with other formulations are presented. Due to space 
limitations only the essential concepts and results are presented here; additional details can be found in [1] and 
[2]. 

2 GEOMETRIC FEATURES 

Some of the results obtained in [1] concerning the differential geometry of the quadrilateral may be 
summarized as follows: In each element there is a parallelogram, which forms an intrinsic geometric feature of 
the quadrilateral (see the parallelogram ABCD illustrated in Fig. 1a). The differential geometry of the 
quadrilateral approaches in the limit that of the aforementioned parallelogram. That parallelogram is a consistent 
approximation of the quadrilateral. The differential geometry of the quadrilateral is expressed in terms of two 
geometric quantities (α, β) that provide a measure for the departure of the quadrilateral form from the inherent 
parallelogram. 

3 COROTATIONAL FORMULATION 
Three coordinate systems are introduced in order to describe the motion of the element (see Fig. 2): (i) A 

fixed, global reference coordinate system (Xα) as a common reference basis for the computations. (ii) A 
convected, global reference coordinate system (θα). All governing equations are expressed in terms of field 
variables referred to this system. (iii) Finally, a convected, local (natural) coordinate system (ξα) located within 
the element. The motion of a continuous medium in the neighborhood of a particle can be decomposed into a 
rigid motion followed by a deformation (or vice-versa)[3]. The concept of decomposition of motion, which 
applies to an infinitesimal region can also be applied to a finite region. In particular, the motion of a finite region 
can be conceived as a finite rigid rotation followed by a small relative deformation (see Fig. 3).  

As a starting point for the discretization, a modified version of the Hu-Washizu principle is employed. The 
principle is dependent on the position R, the engineering strains hαβ, and associated tensorial stress components 
tαβ but also on the rotation of base vectors .Variation with respect to the field variables yields: /

βq
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From the last term of Eq. (1), two alternative conditions of rotational equilibrium associated with the rigid 
rotation are obtained. The modified principle employed here and the incorporation of the rotation of vectors 

as independent variable lead to a consistent, variationally derived corotational formulation, which avoids 
problems inherent in alternative approaches. Furthermore, the proposed principle serves to eliminate sources of 
excessive energy. A consistent tangent stiffness matrix is obtained by differentiating (1). By rearranging terms, 
the following consistent linearization is obtained: 

/
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The position vector of a particle before and after deformation, r and R, respectively, are approximated by 
bilinear polynomials. Contrary to other alternative corotational formulations, we do not split the total 
displacement Vtot into relative displacements due to deformation and displacements due to rigid body motion. 
Instead, we use in relationship (1) the vector R,α. Such an approach is computationally more efficient and leads 
to reduced computational effort. In order to satisfy consistency of the formulation and to be able to describe a 
constant rigid rotation, vectors at every particle within the element are assumed to be rotated with the same 
physical rotation. Since in the limit we approach the center of the element  it is more natural to take the rotation 
associated with the center of the element instead of the rotation of the continuum theory that changes at each 
point.  

αg′

To obtain appropriate approximations for the tensorial stress components tαβ referred to the convected 
reference system, the procedure presented in [1] can be followed. The stress components αβt in directions of the 
coordinate axes ξα are approximated by: 

2,1,)(
~ 1

22
2

11 =++= lkttt lklkklklkl ξδδξδδ       (3) 

The antisymmetric part of the stress is obtained from the weak form of the rotational equilibrium. For the 
approximation of the engineering strains we also follow the procedure in [1], Subsection 4.3. Those 
approximations preserve invariance under affine transformations and minimize excessive energy. 

By inserting the aforesaid approximations into the variational principle (1), enforcing rotational equilibrium, 
and performing the integrations analytically, the surface integral in (1) yields a consistent tangent stiffness 
matrix. Reevaluation of the stiffness matrix at successive increments of deformation (and load) requires no 

839



Elias A. Paraskevopoulos and Demosthenes G. Talaslidis 
additional integrations over the elemental area. In this respect, the element is simpler than alternative 
comparable formulations. Also, evaluation of residual/internal forces is simple and requires no numerical 
integrations. Consequently, the correction of imbalances is readily achieved via the incremental-iterative 
process. Furthermore, invariance of the element formulation is preserved, excessive energy is minimized, and 
the element formulation is characterized by simplicity and reliability. The reader is referred to the remarks in 
Section 5 of Ref. [1] concerning elimination of excessive energy and coupling between constant and higher 
mo s in the case of an arbitrary quadrilateral. 

mponents itself. The 
pro

 between volumetric and deviatoric parts, the modified Hu-Washizu principle employed 
here assumes the form: 

 

de
 
4 NEAR INCOMPRESSIBILITY 
As a first step, reasons for the appearance of excessive energy are investigated. The results of those 

investigations serve to develop a methodology for the selection of appropriate approximations for the various 
field variables and to justify the rationale for choosing these approximations. The conclusions drawn here 
concern sources of excessive energy in the case of volumetric as well as deviatoric deformations under plane 
strain conditions. Notice that many earlier publications confine the investigations mainly to volumetric 
deformations and consider only rectangular elements. For the case of isochoric deformations it is shown[2] that 
the volumetric strain should have a constant distribution over the element and the approximation for the 
dilatational part should avoid coupling between constant and higher order modes. Following concepts which 
have been proved successful in deriving elemental approximations[3], we conclude in case of a deviatoric 
deformation that coupling, and thus excessive energy, appears not only between the deviatoric parts associated 
with the in plane bending and shear strains but also between the in plane bending strain co

posed approach circumvents the aforementioned flaws and minimizes excessive energy. 
Again, the generalized principle of Hu-Washizu serves as a basis for the discretization. However, departing 

from the usual pointwise implementation of the plane strain conditions, ε33=εα3=0, the constraint ε33=0 is taken 
into account in weak form, whereas εα3=0 is satisfied pointwise. The motivation for such an approach is 
presented in [2]. Subdividing the strain energy into deviatoric and dilatational parts and considering the 
orthogonality conditions
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al patch test. Finally, the test is applied numerically to a patch of elements 
under different loading conditions . 

 

al approach suggested by Lagrange for handling auxiliary conditions[5]. The weak 
rmulation takes the form: 

 
 

Here, εv, εij , ηij, and  σij denote the volumetric strain, the components of the total, deviatoric strains, and 
deviatoric stresses, respectively. For the approximation of the strain and stress components (total and 
deviatoric), we follow to some extend the methodology presented in [1] and the results and conclusions of the 
previous sections. It should be noted that the approximation for the deviatoric stress σ33 is not independent from 
that of the other components. The proposed approach leads to simple stiffness matrices, which are derived in 

sistent and straightforward manner without recourse to intermediate procedures or computational schemes.  
The convergence properties of the formulation are investigated by examining stability and consistency. 

Departing from common practice, we prove analytically[2] that the patch test is satisfied. Furthermore, it is 
concluded that terms, which may-in case of an arbitrary quadrilateral-cause some excessive energy can not be 
omitted, if we want to pass the classic

[2]

5 J2 PLASTICITY 

In deriving the weak formulation, we focus attention on a straightforward extension of the linear problem 
without explicit reference to additional postulates or principles. Furthermore, to avoid problems related to the 
nonconservative character of the formulation and the existence of a functional and to keep the derivation 
general, we follow the origin
fo
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The methodology employed in the previous sections[1],[2] serves as a basis for the approximation of the 

displacement, total strain, stress deviator, elastic pressure, and volumetric strain in case of J2 plasticity. 
However, the current formulation incorporates an important modification that leads to further simplifications: 
The continuous, linear functions are now replaced by the Heaviside function H(ξα) (see Fig. 4). As a result, the 
strains and stresses have piecewise constant approximations within subregions. This provides a consistent 
mechanism for describing progressive yielding through the element and leads to a significant reduction of 
computational cost. Arguments for the choice of approximations for the plastic strain are given; they are 
approximated by different values within each subdomain. The hardening parameters and the plastic parameter 
are also approximated by constants within each subregion. 

  

6 NUMERICAL EXAMPLES 

The first numerical example presents a geometrically nonlinear analysis of the cantilever beam (Elasticity 
Modulus =120000) depicted in Fig. 5. Results for various element formulations and for mesh subdivisions are 
shown in Table 1 for the horizontal and vertical components of the displacement (mean value between upper and 
lower displacement) at the free end of the beam. For comparison reasons, results obtained using ten beam 
elements (denoted as ``Beam'' in Table 1) are also given. For the regular meshes shown in Figs. 5a,b the results 
are compared with those obtained for 4-node and 9-node elements that employ enhanced gradient displacement 
modes[6]. The 4-node (9-node) element [denoted as QR4/I4 (QR9/I9)] uses bilinear (biquadratic) shape functions 
for the interpolation of displacements and rotations. The corresponding elements without incompatible modes 
are denoted as QR4 and QR9. Results (indicated as ``distorted'') are also presented for the distorted mesh 
illustrated in Fig. 5c. As expected the element exhibits a performance that is less sensitive to distortions of the 
element shape. Notice that the proposed formulation does not employ incompatible modes or additional degrees 
of freedom, such as rotations, but is based solely on bilinear approximations for the nodal displacements.  

The swept panel with uniformly distributed load along the right side (known as Cook's membrane problem) 
of Fig. 6 has been analyzed assuming an elasticity modulus of E=250 and a Poisson's ratio of ν=0.49999995. 
Results (horizontal and vertical displacement at A) for various meshes and various element formulations are 
shown in Table 2. Elemental formulations including ``incompatible modes''[7] and elements employing enhanced 
strain fields[8] yield similar results. Those results are shown in the column entitled ``Enhanced.'' The columns 
furnished with the caption ``B-bar'' contain results obtained by the B-bar method[9].  

The swept panel of Fig. 6 with uniformly distributed load (resultant force: F=1.00) along the right side has 
also been analyzed assuming J2 flow theory with linear isotropic/kinematic hardening. The values of the material 
constants are Elasticity modulus (E=70), Poisson's ratio ν=1/3), yield stress σΥ=0.243), isotropic (K=0.015) and 
kinematic hardening modulus (H=0.135). Results (horizontal and vertical displacement at top corner) for various 
meshes and element formulations  are shown in Table 3. With respect to the local integration of the constitutive 
equations, a return-mapping algorithm in combination with a backward-Euler scheme has been employed[4]. For 
the global system of equations, a modified Newton-Raphson method has been used. 
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7 CONCLUSIONS 

A consistently derived corotational formulation is presented that avoids ad hoc techniques and unjustified 
assumptions. The modified principle of Hu-Washizu employed here depends on the position, the engineering 
strains and associated symmetric and antisymmetric stresses but also incorporates the rotation of the base 
vectors. The variationally consistent corotational formulation thus derived avoids problems inherent in 
alternative formulation. Furthermore, by approximating this rotation at every point by the same physical 
rotation, a series of advantages emerges: (i) Consistency of the formulation and thus convergence of the discrete 
equations to their differential counterparts is satisfied. (ii) The proposed assumption is the simplest possible and 
leads to simple elemental formulations. (iii) Considering the behavior of the element in the limit, the proposed 
assumption for the rotation appears more natural then alternative choices. For the approximation of stress and 
strain we follow the rationale and the procedure presented in [1]. Those approximations preserve invariance 
under affine transformations and minimize excessive energy. The element formulation is characterized by 
simplicity and reliability and the proposed approach leads to symmetric stiffness matrices.  

The second part of the paper focuses on the treatment of nearly incompressibility. Towards this goal, sources 
of excessive energy in case of volumetric as well as deviatoric deformations of nearly incompressible materials 
are examined. A modified version of the Hu-Washizu principle is employed as a basis for the discretization. 
Departing from the usual pointwise satisfaction of all plane strain conditions, the constraint concerning 
vanishing of the transverse deformation is taken into account in weak form, whereas vanishing of transverse 
shear is satisfied pointwise. The convergence properties of the formulation are investigated by examining 
stability and consistency. Departing from common practice, satisfaction of the patch test is proved analytically. 
Furthermore, it is concluded that terms, which may-in case of an arbitrary quadrilateral-cause some excessive 
energy can not be omitted, if we want to pass the classical patch test. The test is also applied numerically to a 
patch of elements under different loading conditions.  

The third part of the present study deals with the extension of the formulation to the analysis of plane 
strain problems assuming a J2 flow theory with linear isotropic/kinematic hardening. To avoid problems related 
to the nonconservative character of the formulation, we follow the original approach suggested by Lagrange for 
handling auxiliary conditions. The approach employed in the previous sections serves as a basis for the 
approximations of the displacement, total strain, stress deviator, elastic pressure, and volumetric strain in the 
present case. However, the current formulation incorporates an important modification that leads to further 
simplifications: The continuous, linear functions for the approximations are now replaced by the Heaviside 
function. This provides a consistent mechanism for describing progressive yielding through the element and 
leads to a significant reduction of computational cost.  
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Element  
Formulation 

Mesh 
 NxN 

Horizontal 
Displacement 

Vertical  
Displacement 

QR4 10x1 -0.388 0.722 
QR4/I4 10x1 -0.555 0.819 

QR9 10x1 -0.558 0.822 
QR9/I4 10x1 -0.559 0.822 

Proposed 5x1 -0.441 0.800 
Proposed 10x1 -0.534 0.811 
Proposed 10x1(distorted) -0.511 0.780 

Beam 10 elements -0.555 0.811 
 

Table 1: In plane bending of a beam: Displacements at the free end (N: elements per side) 
 
 

Reference: 
NxN 

Proposed 
 horizontal             vertical    

Enhanced 
 horizontal             vertical    

B-bar 
 horizontal             vertical      

4x4 -3.0943 7.2675 -2.8918 6.8192 -2.665 6.3627 
10x10 -3.2346 7.3409 -3.1662 7.2277 -3.1229 7.1641 
16x16 -3.2352 7.3620 -3.19998 7.3015 -3.1923 7.2836 

 
Table 2: Cook’s membrane problem: Nearly incompressible material (ν=0.49999995)  

 
 

Reference: 
NxN 

Proposed 
 horizontal             vertical    

Enhanced 
 horizontal             vertical    

B-bar 
 horizontal             vertical      

4x4 -1.135 1.500 -0.836 1.108 -0.447 0.631 
10x10 -1.464 1.942 -1.657 2.178 -0.867 1.164 
16x16 -1.569 2.070 -1.697 2.234 -1.139 1.506 

 
Table 3:  Cook’s membrane problem: J2 plastic flow  
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Figure 1. Geometric features of the quadrilateral   Figure 2. Corotational formulation 
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Figure 3. Rotation followed by deformation   Figure 4. Piecewise constant approximations 
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Abstract. This paper discusses the construction of “large” quadrilateral and triangular finite elements (C-
elements) based on the interpolation method of S.A. Coons. It is shown how triangular elements can be 
constructed from quadrilateral elements through the degeneration of a selected boundary to one point. The C-
elements can be advantageously used for the approximation of high order solutions, as well as for the 
approximation of singularity or near-singularity type solutions of second order differential equations. Two 
numerical examples from the solution of the Laplace equation in a quadrilateral and a triangular domain, 
demonstrate the good performance of the proposed C- elements. 
 
 
1 INTRODUCTION 

The development of “large” elements aiming at the reduction of mesh generation workload, DOF-number 
and CPU-time, has been always of high interest in the area of computational mechanics.  

 “Large” elements with global approximation characteristics were introduced in the past by Jirousek and 
associates[11,12] and by Brebbia and Dominguez[13] on the basis to Trefftz’s method. However, the above 
“boundary elements” require the knowledge of the fundamental solution of the PDE to be solved, which 
encounters a number of non-trivial problems. For this reason, “large” finite elements are still of interest. 

 Historically, it was Irons[1] who generalized the idea of arbitrary nodded finite elements with global 
interpolation characteristics. But also blending function methods based on ideas put forward by Coons[2] have 
been used to produce large finite elements: for example Gordon[3], Gordon and Hall[4], Zafrany and Cookson[5], 
Kanarachos and associates[6,7] and Provatidis and Kanarachos[8].  

The present paper is based on the “generalized” formulation of Coons interpolation, as presented originally 
by Kanarachos and associates[9,10] and deals with quadrilateral and triangular C-elements. The reason for 
introducing triangular C-elements is their ability to fit to triangular domains, corners and other geometrical 
irregularities and to satisfactorily approximate singular or near singular type solutions of PDEs.  

In the following, it is shown how triangular C-elements can be constructed following reference [10] and 
numerical results for the solution of Laplace equation in rectangular and triangular solution domains are 
presented.  

 

2 PROPERTIES OF THE C-ELEMENTS 

2.1 Quadrilateral C-elements 
The “generalized” transfinite interpolation is characterized by an impressive flexibility, as it allows the use of 

Lagrange or Hermite-type polynomials, splines, (periodical) trigonometric base functions, or even exponential 
functions.  

Thus, it is easy to interpolate closed-form surfaces such as a helical surface (u: trigonometric, v=arbitrary), a 
sphere (u, v: trigonometric), etc. Also axis-symmetric surfaces, such as a part from a torus or the circular fillet 
between two coaxial cylinders with different diameters, with the lofting directed circumferentially, can be 
approximated by the generalized Coons interpolation[9]. 

Applying now the two-dimensional bivariate interpolation,  
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a boundary nodded C-element can be constructed (Figure 1).  
 
 

 
 

Figure 1. C-element with nodes appearing only at the boundary 

 
The geometrical similarity of the above C-element to a boundary type element is obvious, as all DOF’s 

appear at the element’s boundaries. However, the mathematical properties of the C-element are different from 
the properties of a boundary element as it has been proved that they satisfy the Euler-Lagrange PDE and their 
performance may be improved by the introduction of “inner” nodes (DOF’s) and higher order interpolation 
functions[10]. 

The introduction of inner DOF’s demands in many cases the construction of “artificial” nodes (e.g. nodes 5, 
6, 7 and 8 in Figure 2):  
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Figure 2. C-element with DOF’s at the points 1, 2, 3, 4 (4-noded) and an inner DOF at point 9 

The example of Figure 2 allows the introduction a quadratic interpolation function, e.g. in v-direction: 
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2
1( 2

8
2

9
2

5 vvFvvFvvFvF +−+−++−=+  (3)

 
which leads to the generation of the interpolating function ),( vuF+ : 
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The new function ),( vuF+  has the following properties: 
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At  u=v=1/2 equation 5 yields: 
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meaning, that  if 4/)( 859 FFF += , the Laplace equation 0=+ ++ vvuu FF  is fulfilled at the point u=v=1/2. 
Therefore, the introduction of inner DOF’s and associated artificial nodes increases the performance C-elements.  

 
2.2 Triangular C-elements 

The finite element approximation of singular or near singular type of solutions is a well-researched field with 
many implementations in engineering practice, especially in the traditional field of structural analysis where 
singularities mostly arise from geometry features (e.g. sharp corners, stiffeners, etc.) or from boundary 
conditions (e.g. concentrated loads). The solutions characteristically have high local (i.e. in the vicinity of the 
singularities) gradients, which have to be properly resolved by numerical approximation. 
 

 

Figure 3. Mapping of the Euclidean space into Ω (u,v) 

Based on references [9] and [10], let us first construct high order triangular C-elements, assuming that an 
arbitrary shaped triangle in the x-y Euclidean space is mapped in a “unit” triangle in Ω (coordinates (u,v)). The 
triangle is characterized by the boundary curves xi (i=2,3, 4), while u,v represent arbitrary curvilinear 
coordinates within an Euclidean  x, y–space: 
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The triangle is mapped in Ω using the bivariate interpolation: 
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In the case of a boundary nodded C-element (Figure 3), the discrete DOF’s along the boundaries 2,3 and 4 

are interpolated by Lagrange, Splines or other interpolating functions: 
 

)(  )(  ),( 432 uFuFvF  (9)
 
Then, F(u,v) is given by the bivariate interpolation: 
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])1[( )()1()()(),( 432 CB FvFvuvuFvuFuvFvuF ⋅+⋅−⋅−⋅+−⋅+⋅=  (10)
The same holds also for C-elements with inner nodes. Assuming, that “n” inner and boundary nodes (DOF’s) 

are placed at uk=constant stations, a Lagrange polynomial nL(v) is used to interpolate the n F-values at each uk: 
 

)(vLk
n  (11)

 
Then, the unknown function F can be interpolated using equation 12: 
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while blending function )(uEk fulfils the cardinality conditions (equation 13): 

 
jkforuEjkforuE jkjk ≠===     0)(      ,    1)(  (13)

3  NUMERICAL SOLUTION OF THE LAPLACE EQUATION  

At the subsections 3.1 and 3.2 that follow, rectangular and triangular C-elements are used to solve two 
problems governed by the Laplace equation[14,15]. As it is shown from the numerical results the performance of 
the C-elements is too good, especially when inner nodes are added to them. 

 
3.1 Rectangular domain 

 

Figure 4. Rectangular adiabatic plate 

The first model problem refers to a thin rectangular plate free of heat sources, insulated at the top and bottom 
surfaces with dimensions L=2a=6 and b=12 (Figure 4). The analytical solution is given as: 
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with Τm=100oC. The above exact solution is a very steep exponential function along the y-axis of symmetry. 
Due to the symmetry of the problem with respect to the y-axis, only the half of the domain is to be analyzed.  

According to reference [15] the problem was analyzed using FEM (77 nodes), BEM (32 nodes) and CP-
macroelements (32 nodes) and the same non-uniform mesh on the boundary, adapted to the solution. Instead of 
the linear blending functions used firstly for the construction of the Coons elements, a second option with linear 
blending functions in y-direction and sinusoidal ones in x-direction, presented in equation 15, were proposed.  
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As it can be seen from Table 1 the use of the sinusoidal blending functions reduce the numerical error 
because they approximate accurately the sinusoidal boundary condition on the top of the plate. 

These choices are very interesting but they demand, in a matter, the knowledge of the exact solution. This is 
the reason why in the present work the problem is solved by the help of a ‘‘Large’’ rectangular Coons element 
(28 nodes) with inner nodes which are necessary for the improvement of the results, as it was analytically shown 
at section 2, uniformly distributed to the element as it is presented in Figure 4. 

 

y Exact Solution Errors in % 

  FEM  
77 nodes 

BEM  
32 nodes 

CP-element 
32 nodes 

Coons -element 
28 nodes 

12.00 100.0000 data data data data 

11.781 89.1661 0.09 0.32 -0.024 -0.08 

11.345 70.9666 0.32 0.40 -0.004 -0.13 

10.691 50.3888 0.75 0.49 0.047 -0.02 

9.818 31.9013 1.51 0.68 0.093 0.12 

8.727 18.0172 2.73 1.04 0.172 -0.17 

7.418  9.0759 4.59 1.77 0.363 -0.90 

5.891  4.0731 7.29 3.25 0.692 0.41 

4.145  1.6148 10.91 6.30 1.237 3.28 

2.182  0.5258 14.97 12.95 2.073 -11.60 

0 0 data data data data 

Mean average absolute error (%) at the points: x=11.781, 

11.345, 10.691 και 9.818 0.6675 0.4725 0.051 0.0875 

Table 1. Comparison of the four different approximation results 

Despite the uniform distribution of the nodes, the accuracy of the proposed solution is very satisfactory. As it 
can be seen from Figure 5 the approximated numerical solution is identical with the analytical, without the need 
of the use of an adapted to the solution mesh or ‘‘special’’ blending functions. 

0 2 4 6 8 10 12
0

20

40

60

80

100

120
exact solution
numerical solution

 

Figure 5. Approximation of the exact solution using a 28 node Coons element 

 

849



Vasilis M. Dimitriou, Dimitris V. Koulocheris, and Andreas E. Kanarachos. 
3.2 Triangular domain 
 

 

Figure 6. Laplace equation 

In the following the model case of the Laplace equation (Figure 6), with the exact solution: 
 

)1()1(6),( 4422 yxyxyxFexact −+−+=  (16)
 

will be investigated[14]. The model problem addresses a triangular solution area ABC with the A, B, C-node 
coordinates (x,y)= (0,0), (0,1), (1,1) and the boundary conditions: 

 
C1: )1(6),1(  ),1()0,( 424 yyyFxxF −+=−=       C2: 0=β  (17)

 
Introducing equation 18:  
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the finite element formulation results in (e=element area): 
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The exact solution along AC is equal to: 
 

)1(26),( 44 xxxxF −+=  (20)
 
For the numerical solution, one triangular C-element with n=n2=n3=n4 is used. As it can be seen from the 

results presented at Figure 7, although acceptable, are characterized by a lack of improvement of the accuracy of 
the numerical solution when n is increasing. This behavior of the numerical solution can be explained by the 
help of Figure 8, which shows the exact F-values at the boundaries 2, 3 and 4.  Although F is satisfactorily 
approximated at the boundaries by the Lagrange polynomials of rank n-1, Coons’s linear blending cannot 
approximate satisfactorily F in the whole solution domain. In fact, the real blending at a station x=const is 
according to equation 16 a polynomial of rank 3 equal to 4

2
2

10 yayaa ++ . 
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Figure 7. Problem solution for n=3, 5 and 7 

 

Figure 8. Boundary curves corresponding to the exact F 

As it was mentioned in the previous paragraph, an improvement of the numerical performance can therefore 
be achieved by the introduction of inner nodes.  
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Figure 9. Problem solution: (a) n3=n4=4, n2=3 and 2 inner nodes and (b) n3=n4=5, n2=3 and 3 inner nodes 

The numerical results presented at Figure 9 configure that the insertion of inner nodes at the C-elements 
improves their performance, especially for the solution of the Laplace equation, as it was mentioned before. 

4 CONCLUSIONS 

In this paper it is shown how “large” high order rectangular and triangular finite elements (C-elements) can 
be constructed, based on the interpolation method developed by S.A. Coons. The triangular elements can be 
advantageously used for global approximation of the solution in regions with sharp corners and other 
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geometrical irregularities and for the approximation of singularity or near-singularity type solutions of PDEs. 
Numerical results for the Laplace equation sustain the expected performance of the proposed C-elements and 
show no tendency to numerical inaccuracies, which could be feared from using high order Lagrange 
interpolating polynomials. The insertion of inner nodes to the proposed C-elements improves dramatically their 
performance which is proved analytically and experimentally by the application of the method in two Laplace 
model case problems. Their performance is that good that as the numerical results show there is no need for an 
adaptive mesh.  
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Abstract. A mixed formulation with two main variables, based on the Ciarlet-Raviart technique, with 0C  
continuity shape functions is employed for the solution of some types of biharmonic equations in 1-D. The 
continuous and discrete Babuška-Brezzi inf-sup conditions are established. The formulation is numerically tested 
for both the h- and p- extensions. The model problems involve the standard biharmonic equation, with variable 
bending stiffness (with both regular and irregular exact solutions), as well as, a more general biharmonic 
equation with lower order term, constant coefficients and complicated boundary conditions (with smooth exact 
solution), resulting from a gradient elasticity problem. The standard, quasi-optimal finite element error rates of 
convergence are numerically confirmed in all cases. The basic conclusion of the numerical experimentation is 
that the p-extension provides much better accuracy than the h-extension, for both main variables. For the 
irregular exact solution, the observed rate of convergence corresponding to the second variable (displacements) 
is always higher than the error rate for the first variable (bending moment). The latter may be theoretically 
explained via the particular structure of the bilinear functionals of the given formulation. 

1. INTRODUCTION 
A mixed formulation with 0C  continuity conforming finite element basis functions is employed for the 

solution of some types of one dimensional biharmonic equations. The formulation is theoretically analyzed and 
numerically tested against both the uniform h- and p- extensions of the finite element method, with equal 
interpolation order for both main variables. 

The conforming finite element discretizations of the standard Galerkin formulations (G-F) for the biharmonic 
equations demand 1C  continuity shape functions [1,2]. In general, however, it is difficult to satisfy the 1C  
continuity conditions for shape functions in multi-dimensional problems. One way to circumvent the difficulty of 

1C  continuity is to use non-conforming elements, like the DKT (Discrete Kirchhoff Triangle) element [2,chVI,§5]. 
Another way is to employ mixed formulations, in order to reduce the regularity requirements in the bilinear 
functionals [1-3]. The most commonly used techniques employ the components of the gradient of displacement 
( u∇ ), as independent variables (usually referred to as: rotations, θ ), while the Kirchhoff constraint u θ∇ =  is 
enforced via Lagrange multipliers or penalty terms [2,chVI,§5,§6], [3]. 

Another possibility is to introduce the second order derivatives of the displacement as new independent 
variables. The original technique (Ciarlet-Raviart method) is analyzed in [1,ch.7]. Various modifications of this 
method can be found in the literature. For example, the Herrmann-Miyoshi (H-M) method [4,sect.4] employs as 
auxiliary variables all the second order derivatives of the displacement. The method developed in [5] constitutes 
a generalization of the previous H-M technique, for biharmonic equations with variable coefficients. The new 
variables in [5] are the components of the bending moment tensor. 

In the current work we attempt a comparison between the h- and p- extensions (with Legendre polynomial 
based hierarchical shape functions [6 - 8]), for some types of 1-D biharmonic equations. More specifically, the one 
dimensional analogue of the mixed technique of [5] is employed. Furthermore, a more general biharmonic 
equation is considered, resulting from a gradient elasticity formulation [9]. The complex boundary conditions give 
rise to modifications on the standard structure of the bilinear forms of the mixed formulation. Note that, 

                                                 
1 This work was conducted within the framework of the EPEAEK program “Pythagoras II”. The Project is co-funded by the 
European Social Fund (75%) and National Resources (25%). 
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biharmonic equations with analogous (Robin type) boundary conditions are common in the formulation of 
boundary value problems within the framework of various gradient elasticity theories in many dimensions [10-13]. 

Besides the validation of the theoretical analysis of this work, one of the goals of the numerical 
experimentation is to provide a basis for the application of the p-extension, in conjunction with mixed, 0C  
continuity, conforming formulations, in relevant multi-dimensional problems. It is also noted that the bulk of the 
numerical experience with Ciarlet-Raviart type formulations in 2-D is based on h-extension discretization 
schemes [5,14-16]. 

It is finally noteworthy that, for the specific mixed formulations, the pollution error of the displacement 
variable (that is, the difference between the finite element solution and the optimal projection, measured in the 
solution space 1H  norm) is bounded by lower order norms of the error of the new variable w . This result 
explains the observed higher order convergence rate of the displacement for the problems with irregular exact 
solution. 

The structure of the work is as follows. Section 2 introduces the nomenclature and the definition of the model 
problems. The exact weak forms and the continuous Babuška – Brezzi conditions [17,18] are described in section 3. 
Section 4 contains the mixed finite element approximations and the verification of the respective discrete 
Babuška – Brezzi conditions. The numerical experimentation is given in Section 5. Finally, section 6 contains a 
closing discussion and future research directions. 

2. NOMENCLATURE AND DEFINITION OF THE MODEL PROBLEMS 
The standard notation for Sobolev spaces and norms is employed [1,2,6]. Let ( , )b cΩ = , with boundary 

{ },b c∂Ω = . Let EΓ ⊂ ∂Ω  and NΓ ⊂ ∂Ω , such that N EΓ ∪Γ = ∂Ω . The strong form of the model problem is: 

Find ( )ru H∈ Ω  , 3r ≥ , such that, 

 Su f=  (1) 

where S  is a fourth order linear differential operator and f  is a known forcing function. 
The function u  satisfies essential boundary conditions on EΓ  and natural (or Robin) boundary conditions on 

NΓ . We denote by 
r

w , r∈ℜ , the rH  norm of the (real valued) function w , defined on Ω . The Sobolev 

spaces ( )rH Ω , ( )0
rH Ω , r∈ℜ , ( )L∞ Ω  and ( )0C∞ Ω , have the usual definitions [1,2], while ( )1

0, E
H Γ Ω  is the 

subspace of functions ( )1w H∈ Ω , such that 0w =  on EΓ  (in the sense of trace). 
Two different types of strong forms are considered: 

 a) Standard beam bending with variable bending stiffness: 

 ( ( ) '') ''   in  (0,1),    (0) '(0) (1) '(1) 0J x u f u u u u= Ω = = = = =  (2) 

where ( ) 0J x >  is the variable bending stiffness of the beam. 
 b) Gradient elastic bar in tension [9]:  

 2 '''' ''   in  (0,1)fg u u f
AE

− = = Ω =  (3) 

where AE  and 2g  are real constants. The following boundary conditions are considered: 

 
}

}
0

2 2

(0) 0,   '(1) essential conditions

( '(1) '''(1)) ,   ( '(0) ''(0)) (0) 0 Robin conditions

= =

− = + = =

u u

AE u g u P AE lu g u R

ε
 (4) 

where l , 0,P ε  are given constants. It is noteworthy that 20 l g< <  (in order to get a positive definite strain 
energy functional [9]). Moreover, P  is the standard axial force, while R  is the so-called double force [9-13]. 

3. MIXED FORMULATIONS - EXACT WEAK FORMS AND CONTINUOUS BABUSKA-BREZZI 
CONDITIONS 

A new variable is introduced as follows, 

 : ''w Gu=  (5) 
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where : ( )G J x=  for (2) and 2:G g=  for (3). 
Using (5), (2) and appropriate test functions for both w  and u , we get the following weak formulation: 

Formulation 3.1: Find 1( )w H∈ Ω  and 1
0 ( )u H∈ Ω , such that, 

 

1 1 1

0 0

1 1 1
00 0

' ' 0, ( )

' ' ( ) , ( )

wr dx r u dx r H
G

w s dx f x sdx s H

+ = ∀ ∈ Ω

= − ∀ ∈ Ω

∫ ∫

∫ ∫
 (6) 

The respective formulation in 2-D may be stated as follows [1,4]: Find 1( )w H∈ Ω  and 1
0 ( )u H∈ Ω , such that, 

 

1 1 1

0 0

1 1 1
00 0

.  0, ( )

.  ( )  , ( )

wr d r u d r H
G

w s d f x s d s H

Ω+ ∇ ∇ Ω = ∀ ∈ Ω

∇ ∇ Ω = − Ω ∀ ∈ Ω

∫ ∫

∫ ∫
 (7) 

For the problem of gradient elastic bar in tension (3) the following weak formulation is derived: 
Formulation 3.2: Find 1( )w H∈ Ω  and 1

0, ( )
E

u H Γ∈ Ω , such that, 

 

1 1 1
00 0

1 1 1 1
0,0 0 0

(0) (0) ' ' ( ), ( )

' ' ' ' ( ) (1), ( )
E

wr w rdx r u dx r L r H
G l

Pw s dx u s dx f x sdx s s H
AE

ε

Γ

− + = ∀ ∈ Ω

− = − − ∀ ∈ Ω

∫ ∫

∫ ∫ ∫
 (8) 

Note that the given Robin boundary conditions (4) introduce the boundary relations 

0'(1) ,= −
Pw

AE
ε (0)'(0) = − wu

l
, which are used in the formation of (8). 

We observe that both (6) and (8) are special cases of the well known constraint mixed formulation [2,18]: 
Formulation 3.3: Find ( , ) ( x )w u U Q∈ , such that 

 
( ,  ) ( , ) ( ),
( , ) ( , ) ( ),

A w r B r u y r r U
B w s C u s g s s Q

+ = ∀ ∈
− = ∀ ∈

 (9) 

where ,U Q  are infinite dimensional Hilbert spaces, endowed with inner products (*,*)U , (*,*)Q  and 

associated norms *
U

, *
Q

 respectively. 

The necessary and sufficient conditions for the well posedness of (9), for all admissible forcing functions, are 
the well known continuous Babuška-Brezzi (ΒΒ) conditions [2,17,18], associated with (*,*)A  and (*,*)B . 
Definition 3.4: There exist strictly positive constants ω  and β  such that:  

 
0 00 00 00 0

( , ) ( , )inf sup inf sup 0
w U r Ur U w UU U U Uw rr w

A w r A w r
w r w r

ω
∈ ∈∈ ∈
≠ ≠≠ ≠

= = >  (10) 

 
0 0

( , )inf sup 0
s Q w Us U Qw

B w s
w s

β
∈ ∈
≠ ≠

= >  (11) 

where { }0 : :  ( , ) 0  , U r U B r s s Q= ∈ = ∀ ∈  is the so-called (continuous) kernel. 
For (6) and (8), the second BB condition (11) may be easily verified, as follows: 

 

1 1 2

0 0 1
2

0 0 01 1 1 1 10

' ' ' '
inf sup inf inf
s Q s Q s Qw Us s sw

w s dx s s dx s
w s s s s

β
∈ ∈ ∈∈
≠ ≠ ≠≠

= ≥ =∫ ∫  (12) 

where 1( )U H= Ω  and 1
0, ( )

E
Q H UΓ= Ω ⊂ . 
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However, the seminorm 
1

*  is equivalent to the norm 
1

*  on 1
0, ( )

E
Q H Γ= Ω , hence 0Cβ ≥ > , where C  is a 

constant [1,2]. The above argument may be easily extended into multi-dimensional problems. The other BB 
condition (10) is not as trivial as the above (it is not valid in many dimensions, see also section 6). The first step 
is to define precisely the continuous kernel. For the given one dimensional formulations there follows,  

 
1 1

0 00 0
( , ) 0 ,     ' ' 0,   ( )  '' 0,   ( )∞ ∞= ∀ ∈ ⇒ = ∀ ∈ Ω ⇒ = ∀ ∈ Ω∫ ∫B r s s Q r s dx s C r sdx s C  (13) 

Therefore, based on the theory of distributions [1,2], the general form of 0r U∈  is as follows,  

 2 1r C C x= +  (14) 

where 1 2,C C  are arbitrary real constants. 
It can be easily seen that for the gradient elasticity formulation 3.2, 1 0C = , i.e., the continuous kernel 

contains only constant functions. We note that 0U  is finite dimensional. First we consider formulation 3.1. 
Theorem 3.5: Assume that ( )J L∞∈ Ω . Then, the continuous BB condition (10) is valid for the formulation 3.1. 
Proof:  
 It follows that, 

 
1 1 21 2

00
( , )A r r J r dx J r−−

∞
= ≥∫  (15) 

It is well known that in a finite dimensional space all norms are equivalent. Thus, 
0 1mr C r≥ , 0 r U∀ ∈ , 

for some positive constant mC  which depends only on the dimension of 0U . Thus, from (15),  

 1 22
01

( , ) ,  mA r r C J r r U−

∞
≥ ∀ ∈  (16) 

Based on relation (16), it follows that (10) is valid, with ω ≥ 12 0mC J −

∞
>  and the proof is completed  .. 

 Now we examine formulation 3.2. 
Theorem 3.6: Assume that 20 l g< < . Then the continuous BB condition (10) is valid for the formulation 3.2. 
Proof:  

 
0 00 0

1 2 2 1

0

1 10 00 (0) (0)
0

(0)( , )inf sup inf sup
r U r Uw U w UU Ur rw w r

w

g wrdx w lA w r
w r w r

ω
− −

∈ ∈∈ ∈
≠ ≠≠ =−

≠

+
= ≥ ∫  (17) 

The test functions are now the following: ( ) , ( )r x c w x c= = − , where c  is an arbitrary real constant. Simple 
algebra results in inequality (18). Based on the hypothesis, the proof is completed  .. 

 2

1 1( ) 0
l g

ω ≥ − >  (18) 

It is interesting to mention that the mixed formulation 3.2 is well posed in general, if 2l g≠ . This can be 

easily deduced by selecting appropriately the sign of the product ( ) ( )r x w x . Then it follows: 2

1 1 0
l g

ω ≥ − > . 

4. FINITE ELEMENT APPROXIMATIONS WITH 0C  CONTINUITY AND DISCRETE BABUŠKA-
BREZZI CONDITIONS FOR THE H- AND P- EXTENSIONS 

Let dU U⊂  and dQ Q⊂  be finite dimensional spaces, composed of piecewise polynomials ( 0C  continuity 
basis functions). The general formulation is stated as follows. 
Formulation 4.1: Find ( , ) ( x )d d d dw u U Q∈ , such that 

 
( ,  ) ( , ) ( ),
( , ) ( , ) ( ),

d d d d d d d

d d d d d d d

A w r B r u y r r U
B w s C u s g s s Q

+ = ∀ ∈

− = ∀ ∈
 (19) 
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The parameter ‘d’ in (19) denotes the level of refinement. We consider the two well known types of 
refinement: a) The (quasi-uniform) h-extension, where the polynomial degree p of the shape functions is kept 
fixed and the accuracy increases by reducing the sizes of the elements ( d hU U≡  and d hQ Q≡ ). b) The p-
extension, where the finite element mesh is kept fixed and the number of degrees of freedom increases, by 
adding higher order polynomials, usually in a hierarchical fashion ( d pU U≡  and d pQ Q≡ ). 

The discrete inf-sup conditions refer to the finite dimensional subspaces. 
Definition 4.2: There exist strictly positive constants δ  and ζ  such that:  

 
0 0 00 00

( , ) ( , )inf sup 0,   inf sup 0
∈ ∈∈ ∈

≠≠ ≠≠

= ≥ > = ≥ >
d d d dd d d d

dd dd

d d d d
d d

d d d dw U s Qr U r U
sU U U Qw rr

A w r B r s
w r r s

δ δ ζ ζ  (20) 

where { }0 : :  ( , ) 0  , d d d d d d dU r U B r s s Q= ∈ = ∀ ∈  is the discrete kernel [2,18]. 
The most interesting consequence of the discrete BB conditions is that (20) secures the solvability and quasi-

optimal convergence of the approximation method. The latter is generally expressed as follows,  

 ( inf inf )
d d d d

d d d d

U Q U Qr U s Q
w w u u C w r u s

∈ ∈
− + − ≤ − + −  (21) 

where ( , )w u  is the exact solution of (9) and C  is a constant  
For the given formulations 3.1 and 3.2 the second inf-sup condition (20) is always valid (see proof of the 

continuous condition (12)). For the first inf-sup condition (20), the discrete kernel contains d dr U∈  such that, 

 
1

0
1 1

( , ) 0  ( ) '( ) ' 0 ( ) '' [( ) ' ] 0,    
el

e

N N
d d d d d d d d d d

i
e i

B r s r s dx r s dx J r s s Q
= =Ω

= ⇒ = ⇒ − + = ∀ ∈∑ ∑∫ ∫  (22) 

where elN  is the total number of elements, eΩ  is the domain of the typical 1-D element and [ ]d
iJ v  denotes 

the jump of the function dv  at the free node i  (which is not subject to essential conditions), 1, 2,..,i N= . First 
we consider the case of h-extension with 1p = . Then from (22), there follows, 

 
1

[( ) ' ] 0,    
N

h h h h
i

i

J r s s Q
=

= ∀ ∈∑  (23) 

By taking sequentially ( )h
is xφ= , where iφ  is the nodal (piecewise linear) basis function associated with a 

free node i , we get [( ) '] 0=h
iJ r . Then it follows that the function ( )hr x  should be linear over the whole 

problem domain. Hence, for 1p =  the discrete kernels are the same as the continuous ones. Now we consider 
the case 1p > . By selecting sequentially ds  to be the higher order internal shape functions (bubble modes [6]) in 
each element separately, from (22) we get, 

 ( ) '' 0
e

d dr s dx
Ω

=∫  (24) 

However, if dr  has higher order than 1, then we can always select some ds  such that (24) is violated. 
Therefore 0

d dr U∈  is still linear in each element. But then, by the same argument as previously, we get 
[( ) '] 0d

iJ r =  for every free node i . Hence, the discrete kernel contains only globally linear functions, see (14). 
Therefore, the first discrete inf-sup condition (20) follows directly from the respective continuous condition. 

Inequality (21) secures convergence for all possible exact solutions, however in some cases may be too 
conservative for some of the variables [2,18]. The next theorem confirms this observation for the displacement 
variable of the formulation 3.1. For generality purposes we focus on the respective 2-D formulation, see (7). 
Theorem 4.3: The pollution error for the displacement approximation of the formulation 3.1, is bounded by the 
lower order norm 

1

dw w
−

− , defined on the dual space of the solution space 1
0, ( )

E
Q H Γ= Ω . 

Proof:  
From the first equation of group (7) and the first respective discrete equation of group (19) we get,  
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 ( ) . ( ) 0,
d d

d d d dw w r d r u u d r U
GΩ Ω

−
Ω+ ∇ ∇ − Ω = ∀ ∈∫ ∫  (25) 

The optimal projection du dQ∈  for the displacement variable may be defined as follows,  

 . ( ) 0,d d d ds u u d s Q
Ω

∇ ∇ − Ω = ∀ ∈∫  (26) 

From (25) and (26) then easily follows that, 

 ( ) . ( ) 0,
d d

d d d d dw w s d s u u d s Q
GΩ Ω

−
Ω+ ∇ ∇ − Ω = ∀ ∈∫ ∫  (27) 

Dividing by the semi-norm 
1

ds , taking supremum over dQ  and noting that ( )d d du u Q− ∈ , we get, 

 
1

1

( )

sup
d d

d d

d d
d

s Q

w w s d
G

u u
s

Ω

∈

−
Ω

− ≤
∫

 (28) 

Using the positiveness and boundedness of 1G− , the inclusion dQ Q⊂ = 1
0, ( )

E
H Γ Ω , as well as the 

equivalency of the norms 
1

*  and 
1

* , we finally deduce,  

 
1

1

( )
sup

d

d d

s Q

w w sd
u u C

s
Ω

∈

− Ω

− ≤
∫

 (29) 

The right hand side of (29) is the lower order norm 
1

dw w
−

− , defined on the dual space of 1
0, ( )

E
Q H Γ= Ω   .. 

Standard application of the well known Aubin-Nitsche duality argument [1,2], shows that the rate of 
convergence with respect to lower order norms is generally greater than the rate with respect to the solution 
space norm 

1
* . In fact, depending on the regularity of the solution of the respective auxiliary (dual) problem 

[1,2], the rate improvement for 
1

dw w
−

−  may be (at most) 2 orders. The latter conforms to the numerical results 

regarding the model problems with irregular solutions, see section 5. 

5. COMPUTATIONAL RESULTS 
For the verification of the above theoretical results, a FORTRAN program was assembled. The results of the 

code are, among others, the relative error in the H1 seminorm for u and w. The following log – log figures show 
the comparison between h- and p- extensions for the relative error for both variables. The horizontal axe shows 
the total number of degrees of freedom, including the hierarchical ones while the vertical axe shows the relative 
error in the Η1 seminorm . Standard Gauss integration scheme is employed, except for the irregular force vector 
terms, for which exact integration is performed. Generally, the mixed method converges fast and achieves very 
low error levels, except for the variable w in the singular problems. However, in all cases the mixed finite 
element solutions are very close to the optimal projections. Moreover, the p- extension is much more efficient 
than the h-, in the sense of both accuracy and convergence rate, versus the number of degrees of freedom.  

For the problem of simple bending of a clamped ends bar, two model displacement fields (solutions) are 
used. The first solution (IEX 152) is a smooth displacement field equal to ( ) ( ) ( )1u x x x sin xπ= −  using variable 

elastic properties ( )( )xJ x e= . It is clear, that the h- extension has an algebraic asymptotic convergence rate 
whereas the p- extension converges exponentially, as it is theoretically anticipated [6-8], see figure 1.  

The second solution (IEX 1541) is an irregular displacement field with a singular force vector and variable 
elastic properties ( )( )xJ x e= . The displacement field has the form ( ) ( )2Ou x xλ+=  and the force vector 

( ) ( )λ-2Of x x= . The results of IEX 1541 for λ=0.85 are displayed in figure 2. The observed convergence rates 

are also of the anticipated form. More specifically, the asymptotic rates for the h- extension are ( )min , 0.5p λ −  

for variable w and ( )min , 1.5p λ +  for the variable u [6-8]. Note that the observed rate of convergence for the 
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variable u is two orders higher than that of w, which is theoretically confirmed by theorem 4.3. It should be also 
mentioned, that the theoretical rates for the p- extension are two times the ones of the h- extension.  

The results for the problem of the gradient elastic bar in tension (IEX 160), are displayed in figure 3. The 
theoretical convergence rates, which are the same as those for IEX 152, are also observed in the current 
numerical implementation. 

Comparison of 
h- and p- Extensions

ΙΕΧ 152
var. u

1.E-12

1.E-11

1.E-10

1.E-09

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1 10 100 1000 10000

Total Number of Degrees of Freedom

Ex
ac

t R
el

at
iv

e 
Er

ro
r i

n 
H

1 
Se

m
iN

or
m

 (%
)

h - p=1
h - p=2
h - p=3
p - Net=8
p - Net=16
p - Net=32

Comparison of 
h- and p- Extensions

ΙΕΧ 152
var. w

1.E-12

1.E-11

1.E-10

1.E-09

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1 10 100 1000 10000

Total Number of Degrees of Freedom

Ex
ac

t R
el

at
iv

e 
Er

ro
r i

n 
H

1 
Se

m
iN

or
m

 (%
)

h - p=1
h - p=2
h - p=3
p - Net=8
p - Net=16
p - Net=32

 
figure 1 : Comparison of the error of h and p extensions for both variables u and w (solution IEX 152,Clamped Ends Bar) 
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figure 2 : Comparison of the error of h and p extensions for both variables u and w (solution IEX 1541, λ = 0.85) 
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figure 3 : Comparison of the error of h and p extensions for both variables u and w (solution IEX 160, Gradient Elasticity) 

6. CLOSING DISCUSSION AND FUTURE RESEARCH DIRECTIONS 
Theoretical analysis of mixed 0C  continuity, conforming finite element formulations, based on the Ciarlet-

Raviart method, has been performed for some types of one-dimensional biharmonic boundary value problems. 
The interpolation order is the same for both main variables. Numerical experimentations based on the h- and p- 
extensions confirm the quasi-optimality of the method. The standard asymptotic rates of convergence of the 
finite element error are generally observed. In terms of the quality of approximation, the performance of the p-
extension is much higher than that of the h-extension. 

The basic goal of the numerical results is to provide a basis for the application of similar mixed formulations, 
with p-extension, 0C  continuity, conforming approximations, in relevant multi-dimensional problems. However, 
as previously noted, the direct extension of Ciarlet-Raviart method based techniques in multi-dimensional 
problems presents a basic difficulty in terms of theoretical analysis. The continuous kernel is infinite 
dimensional. Moreover, it is easy to see that the respective BB conditions (10), (20) are not valid [4,5]. The a 
priori error analysis of such mixed methods employs further assumptions regarding the regularity of the 

Net = Number 
of Elements

Net = Number 
of Elements

Net = Number 
of Elements

Net = Number 
of Elements

Net = Number 
of Elements

Net = Number 
of Elements

859



G. I. Tsamasphyros, S. Markolefas and D. A. Tsouvalas 

respective exact solutions [1,4,5]. A more general technique is used in [4], where the continuous formulation 3.3 is 
modified, by enlarging the solution space for u  and reducing the solution space for w . In principle one could 
employ similar techniques to prove the convergence of the p-extension in many dimensions. 

Another way to go about is to use various patch test techniques [19,13], to validate the respective multi-
dimensional formulations. Moreover, approximations of the numerical behaviour of the BB constants, under 
certain types of refinements can be employed [18,20]. This can be helpful in conjunction with the standard error 
estimate (21), which is always valid, to check the convergence of the current refinement process. 

The solution process employed in this work, to solve the discrete system of equations resulting from (19), 
was the standard Gauss-elimination with pivoting (direct solver). However, due to the nature of the equations, 
other more sophisticated techniques may be explored [14-16]. The latter is necessary in large scale problems. It is 
finally mentioned that, other important research directions are related to a posteriori error estimation [21] and 
adaptive techniques[22], in connection with the mixed formulations employed in the current work. The adaptive 
techniques are of vital importance in large scale problems, where it is necessary to achieve the desired accuracy 
with as few degrees of freedom as possible. 
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Abstract. The purpose of this paper is to propose a new quandrature formula for integrals with nearby 
singularities. In  the Boundary Element Method, the integrands of nearby singular boundary integrals vary 
drastically with the distances between the field and the source point. Especially field variables and their 
derivatives at a field point near a boundary cannot be computed accurately . In the present paper a quadrature 
formulas for  isolated singularities near to the integration interval, based on Langrange interpolatory 
polynomials, is obtained. Quadrature formulas for regular integrals with conjugate poles are also derived. 
Numerical examples are given and the proposed quadrature rules present the expected polynomial accuracy. 
 
1 INTRODUCTION 

In the Boundary element method [1-4] if the distance the source point and the nearest field point is 
small, the integrand takes abruptly a great value. The difficulties arised from the fact that the integrands of  
integrals along the boundary vary rapidly with the distance when the field point approaches the source point. 
This strong gradient of the integrand creates difficulties in the accuracy of the standard quadrature formulas. In 
fact using standard quadrature procedures, which neglect this pathological behaviour of the integrand leads to a 
computational error which increases as the source point approaches the boundary: this is the so-called boundary 
layer effect.  If the distance  is very small this error is very important and surprisingly is much more important 
as the number of integration points increase. We say that these integrals present “a nearby singularity” or a 
quasi-singularity. 
 Strong, weak or nearby singularities are treated in two ways. The first, which is dominated by the 
Sladek’s work [5], try to avoid singularities by regularizing the integral and the integral equations.  In  the  same  
lines  are  procedures  trying  to  avoid  singularities [6,7]. Some of these methods concern strong singularities 
but they may be expanded easily to nearby singularities. The other way to proceed with these integrals is based 
on quadrature rules for each of these integrals. We can distinguish procedures based on transformation which 
remedy the singularities [8-9] and on procedures based on general quadrature rules [10-15] (special quadratures 
rules). In general, there is a prejudice concerning the last procedure. Many authors claim that special quadrature 
rules  are very complicated and not very efficient. Nothing is so wrong. The truth is that special quadrature rules 
are able to give the exact result with only few integration points. On the other hand, the determination of the 
weights and the integration points, is, in general, a simple procedure.  
 The general form of an integral with nearby and strong singularities can be put in the following form 
 

                                                        ( ) ( ) ( )
( )∫−=

1

1
dt

t
ttwI

ω
ϕϕ                                                                   (1) 
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                      ( ) ( )   
1 iiiii

ixyytt εω +=−Π=
=

,                                                                             (2)                              

 
 
 
 

863



  
 

G. Tsamasphyros and E.E. Theotokoglou 
_________________________________________________________________________________________________________________                             
where iε  is small or zero and ix  is on [-1,1] or very close to this interval and ( )tw  the weight function which 

is fixed positive and integrable on [ ]11,− , given by  
 
                                          ( ) ( ) ( ) ,,, 111 −>+−= βαβα tttw                                                      (3) 
 

The previous form (3) concerns not only line integrals but also surface integrals if the later can be 
reduced to one-dimensional integrals and then the form (3) can be applied. Obviously any integral with respect 
the arc length s  of a part of the boundary or of the whole boundary can be transformed to an integral along 
( )11,− . 

In the present study, we have expanded the known Gauss-integration rules as to confront the above 
problem where many strong or weak singularities can coexist. For the sake of generality we have considered the 
most general case by supposing that, for some reasons, we need to evaluate the unknown function at some 
preassigned nodes.. A “no-Gauss”, quadrature formula has been proposed. This quadrature formula is produced 
from a simple Lagrange interpolation ( )tϕ .  
 Based on the proposed rule, we have also constructed modified quadrature formulas, for regular 

integrals with conjugate poles 
( ) ( )dt

ct
ttw

∫− +
1

1 22
ϕ

 ( )1<<c . 

The obtained modified quadrature formulas is successfully tested in numerical examples, where it is 
proved the necessity of using the modified rule when the pole of the regular integral Cauchy-type integrals, are 
very close to the integration interval. 
 
2 NO-GAUSS QUADRATURE FORMULA 
 

Let us give some necessary definitions: 
 We denote by D  a simply connected domain containing ( )11,−  in its interior. 

 We denote by ( )zϕ  the analytic continuation of ( )tϕ  into D . 
 Let C a simple contour inside D , presenting angular points at 1−  and 1 with angles α  and β  

respectively. These angular points are due to the behaviour of ( )zϕ . 

 Let { }n
jjt

1=
, { }m

kkz 1=  two sets of points inside D , belonging or not to the integration interval. These 

points will be used as interpolation points, i.e. 
 
                                            ( ) ( ) ( )mnjjmnj +== + ,...,,; 21τϕτϕ                                                (4a) 
 
where ( )zmn+ϕ  is a complex polynomial of degree ( )1−+mn  that interpolates ( )zϕ  at the points 
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   We suppose that kz are preassigned, whereas jt can be selected arbitrarily. 
We denote by 
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Using the interpolation formula (4), and taking into consideration Lagrange procedure [16,17], we have 
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or in more compact form 
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and 
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Multiplying both sides of (7) by ( ) ( )ttw ω  and integrating on [ ]11,− , we get 
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is the quadrature formula, 
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are the weights of the quadrature formula, and 
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is the error 

Taking into consideration that 
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relations (11), (12) can be written as: 
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is the weight of the standard interpolatory quadrature formula for regular integrals, and 
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is the associated (to ( )tnπ ) function, with 
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 At this point we may have that:  
 

( )tnπ  is the orthogonal polynomial with respect to ( )tW  (no-Gauss formula) 
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3        INTEGRALS WITH NEARBY POLES 
 
 It is suppored that:  

i.  There are not preassigned nodes, i.e. , ( ) 1=Ω t . 

ii. The weight is of the form, ( ) ( ) ( )βα tttw +−= 11 . 
iii. The integration points are the roots of the corresponding orthogonal polynomial i.e. the Jacobi 

polynomial ( ) ( )tPn
βα , , and 
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or the roots of the orthogonal polynomial ( )( )tpn
βα ,  with respect to the weight ( ) ( )ttw ω . 
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It is considered the regular integrals  
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with conjugate poles at  ic± , where 1<<c . 
  Using  formulas (10) and (14), we have 
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and the modified weights jΛ , are given by 
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Three differed kinds of polynomials have been considered:    

 
a. Legendre polynomials ( )( )1=tw  

 
Using formula (25), we have 
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where jλ , kλ  and jt , kt  ( )nkj ,...,,, 21=  being the weights and the integration points respectively, of the 
classical Gauss-Legendre formula [18] arising from the classical Gauss-Jacobi quadrature formula 
( )0== βa ,and nP (t) being  the Legendre polynomial of the second kind . 
 

b. Chebyshev polynomials of the first kind ( ) ( )( )212 −
−= ttw 1  

 
If the weight ( )tw  is of the form 
 

                                                               ( ) ( ) ,2121 −
−= ttw  

 

867



  
 

G. Tsamasphyros and E.E. Theotokoglou 
_________________________________________________________________________________________________________________ 
we denote by ( )tTn  and ( )tUn 1−  the Chebyshev Polynomials of the first and second kind respectively [16,17], 

which are orthogonal with respect the weights ( ) ( ) 2121 −
−= ttw  and  ( ) ( ) 2

121 ttw −=  respectively.  
 
     From (25) we get:                                                                                                                                      
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c. Chebyshev polynomials of the second kind ( ) ( )( )2121 ttw −=  
 

Taking into consideration (25), it is obtained:  
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4 NUMERICAL APPLICATIONS 
 
 The proposed quadrature formula has been applied to two test functions, in order to have the 
opportunity to compare the proposed rule with the classical Gauss formula in the case that 01.0=c . 
 Test function (i), is the evaluation of the integral  
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( ) 1435593140101 ..; ≅ϕ
Cf

I  

 
n  

Classical Gauss-Chebyshev 
Quadrature rule of the first kind 

Modified weight (27) 
 

2 3.140965 314.143559 
3 10474.767670 314.143559 
4 12.558836 314.143559 

 
 

Table  1 : Differences between the classical Gauss-Chebyshev Quadrature formula of the first kind, and the 
modified weight (27) 
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 In Table 1, we have the values obtained by using the classical Gauss-Chebyshev quadrature formula of 
the first kind [18] and the modified weight quadrature where the integration points are determined from (28). It is 
observed that the “classical” Gauss-Chebyshev rule is impossible to approximate the correct result for a few 
integration points whereas the modified gives very good results for 1=n .  

 
Test function (ii), is the evaluation of the integral 
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1 22
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( ) 0333803110101 ..; ≅ϕ

Cs
I  

 
n  

Classical Gauss-Chebyshev 
Quadrature rule of the second kind 

Modified weight (29) 
 

1 15707.963270 311.033380 
2 6.280673 311.033380 
3 7855.552116 311.033380 

 
Table  2 : Differences between the classical Gauss-Chebyshev Quadrature formula  

of the second kind, and the modified weight (29) 
 
 
The integration points of the modified weight Gauss Chebyshev quadrature formula of the second kind (29), are 
determined from relations (30). From Table 2, it is observed that the modified weight Gauss-Chebyshev 
quadrature formula gives very good results for 1=n . 
 
  
5    CONCLUSIONS  
 
 In our study a “no-Gauss” quadrature formulas has been proposed. Based on this rule, quadratures 

formulas that ensure the exact calculation of integrals of the form, 
( ) ( )dt

ct
ttw

∫− +
1

1 22
ϕ

 ( )1<<c  and, where ( )tϕ  is 

a regular function, are resulted. These integrals are appeared in a lot of problems in mathematical physics and in 
engineering.  
 The proposed, quadrature formulas is derived from a Langrangian interpolatory procedure, where 
integration points are not taken at the poles ic±  ( )1<<c . This formulas is called “no-Gauss” formulas 
because it results in a modification of the weights relative to the classical Gauss weights. The “no-Gauss” 
formulas has the advantage, that it may be used for the solution of integral equations. The disadvantage of this 
formula, is that  a computation effort is needed in order to construct the modified weights. 
 The proposed modified formula is very effective in the case that the regular integrals, is given by (23), 
where ( )tϕ  is a holomorphic function in the complex z -plane or in the worst case a function with removable 
singularities at 1± . The modified formulas have been arised with a procedure based on preassigned nodes, that 
is similar with the technique for the production of Lobatto or Radau formulas. With our analysis we have proved 
in very simply way, a quadrature formula applied to regular and also to singular integrals with nearby 
singularities. 

The proposed quadrature formulas may also be used in three-dimensional problems in the case that the 
surface integrals can be evaluated by repeated one-dimensional integrations. 
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Abstract. This paper investigates the performance of several radial basis functions (RBFs) for the eigenvalue 
extraction of 2-D structures using the dual reciprocity boundary element method. The traditional conical RBF, 
high-order, thin plate splines, multiquadratics and Gaussian (exponential) RBFs are investigated. Moreover, a 
new functional set based on Pascal’s triangle, which was previously applied on low-order serendipity elements, 
is extended and proposed as an alternative basis. In this paper the numerical investigation restricts to a simple 
square domain and, therefore, further research needs to be conducted on more complex shapes.  
 
1 INTRODUCTION 

The pioneering work of Nardini and Brebbia[1] opened new horizons in the Boundary Element Method 
(BEM) and particularly in dynamic analysis of structures. Before that work, the BEM eigenvalue extraction was 
a non-algebraic problem that required the graph of the determinant and the numerical determination of its roots. 
In 1982 the goal was to derive a mass matrix [M] that could be combined with the static ([H] and [G]) influence 
matrices[2], thus leading to an algebraic eigenvalue problem. Later, the method was successfully applied to 3-D 
solid structures [3], plate bending[4], heat transfer transient analysis[5], acoustics[6] and so on.  

The DR/BEM uses global basis functions, called radial basis functions (RBF), to approximate the inertia 
(generally time-dependent) terms of the partial differential equation to be solved. Usually, the RBFs are closed-
form polynomials, logarithms or exponentials, of which dual functions are available. As a result, the mass matrix 
can be transformed to a boundary integral, usually expressed in terms of [H] and [G]. However, the conical RBF 
in DR/BEM has some flaws. In acoustics, the sum of the elements in mass matrix is calculated smaller than the 
real one but the convergence is rather good [7]. In elasticity, the relevant sum was found to be again smaller than 
the real surface times the mass density, deviating between 4.3% and 1.7% [8]. Despite this shortcoming, it is 
accepted that, in general, the DR/BEM behaves well [9-12].  

The purpose of this paper is to compare the several RBFs, to investigate their performance, and report on 
some shortcomings in eigenvalue extraction of 2-D elastic structures. Apart from well-known RBFs (conical, 
high-order, Gaussian, thin plate splines and multiquadratics), a blending-function interpolation will be tested.  

2 GENERAL THEORY 
2.1 DR/BEM formulation 
In the absence of body forces, the stress equilibrium becomes:  , 0ij j iuσ ρ− =             (1) 

The reciprocity Betti-Maxwell principle, which correlates two independent states, i.e. the actual ( ), ,i ij iu pσ  and 

the virtual ( )* * *, ,i ij iu pσ , is written as follows: 

( ) ( )* ** *
, ,i ij j i ij j i i i iu u d u p u p dσ σ

Ω Γ

− Ω = − Γ∫ ∫     (2) 

The state ( )* * *, ,i ij iu pσ  is chosen so that to fulfill the static part of the elastodynamical partial differential 
equation (1), and concretely to correspond to a concentrated unit load, that is 

( )*
, 0kij j kiσ δ+ ∆ − =x y       (3) 

where kiδ  denotes Kronecker’s delta and ∆ is Dirac function, which fulfils the relationships: 

( )
( )

0 for

1d
Ω

∆ − = ≠

∆ − Ω =∫

x y x y

x y       (4) 

The solution of Eq(3) is denoted by *
kiu , and the corresponding tractions by *

kip . Taking into consideration Eq(3) 
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and (4), Eq(2) leads to 

* * *
,ij j ki ki i ki i ki iu d c u u p d p u dσ

Ω Γ Γ

Ω = − + Γ − Γ∫ ∫ ∫     (5) 

that is known as integral equation in elastostatics. By substituting ,ij jσ  from Eq(1), assuming a constant mass 
density ρ, Eq(5) becomes  

* * *
i ki ki i ki i ki iu u d c u u p d p u dρ

Ω Γ Γ

Ω = − + Γ − Γ∫ ∫ ∫     (6) 

Following the general DR/BEM concept[1], we assume that the inertial terms are approximated by  
( ) ( ) ( ), j j

i iu t a t f=y y       (7) 
where Einstein’s convention is understood on the repeated index j=1 to m (it denotes summation over j).  
 
Therefore, the corresponding accelerations will be: 

( ) ( ) ( ), j j
i iu t a t f=y y       (8) 

and, consequently, the domain integral in Eq.(6) becomes: 
* * *j j j j

i ki i ki l li kiu u d a f u d a f u dδ
Ω Ω Ω

Ω = Ω = Ω∫ ∫ ∫     (9) 

The domain integral in Eq(9) transforms to the boundary, if a particular solution of a static problem is found, 
that is a solution of the partial differential equation 

lim, 0j
m li fσ δ+ =       (10) 

The solution of Eq(10) is a displacement field denoting by j
liψ , and the corresponding traction by j

liη . Using the 
transformation of Eq(5), the domain integral in Eq(9) reduces to a corresponding boundary one, as follows 

* * * *
lim,

j j j j j
li ki m ki ki li ki li ki lif u d u d c u d p dδ σ ψ η ψ

Ω ΑΩ Γ Γ

Ω = − Ω = − Γ + Γ∫ ∫ ∫ ∫    (11) 

By substituting Eq(11) into Eq(9) and recasting Eq(6), one obtains: 
* * * * 0j j j j

ki i ki i ki i ki li ki li ki li lc u p u d u p d c p d u d aρ ψ ψ η
Γ Γ Γ Γ

⎛ ⎞+ Γ − Γ + + Γ − Γ =⎜ ⎟
⎝ ⎠∫ ∫ ∫ ∫    (12) 

The above equation is a boundary integral formulation from which one can derive a numerical solution using a 
proper procedure.  

2.2 Matrix formulation 

By assuming a certain interpolation of both displacement and tractions (e.g., linear or quadratic elements), 
Eq(12) becomes: 

 ˆ ⋅ + ⋅ = ⋅M α H u G p      (13) 
where H and G are the conventional static matrices, ,u p  the displacement and traction, respectively, and also: 

( )ˆ ρ= ⋅ ⋅ − ⋅M G η H ψ      (14) 
Using the relationship between nodal displacements u  and coefficients α  through a matrix F:  

=u Fα        (15) 
and pre-multiplying both members of equation (13) by the inverse of matrix G (assuming a smooth boundary), it 
becomes 

( ) ( ) ( )t t t+ =M u K u p      (16) 
where 

1 1ˆ− −=M G M F       (17) 
1−=K G H       (18) 

For the purpose of this paper, we use a suitable matrix L, well-known from the BEM/FEM coupling 
procedures[13, p.274], which achieves to transform the time-dependent tractions p(t) into boundary nodal forces f(t) 
as follows  

f(t) = L p(t)      (19) 
By left-multiplying both sides of Eq(16) by the matrix L and then considering Eq(19),  the latter becomes:  

( )t+ =M u K u f      (20) 
where 

,= =M LM K LK      (21) 
Therefore, the DR/BEM leads finally to a matrix formulation similar to that of the FEM. Numerical experience, 
using equations (20,21) in static and dynamic problems with subregions, has been previously reported[7]. It 
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should become clear that the matrices M and K in Eq(13) are nonsymmetric but, nevertheless, most of the usual 
FEM procedures such as eigenvalue search, modal analysis and time-integration can be performed.  

3. Radial Basis Functions (RBFs) 

3.1 Conical functions 
Nardini and Brebbia[1] proposed the functional set ( )jf y , briefly ( )f r  with ( ),jr r A= y , for the 
approximation of inertial forces. Due to its dependency on the radial distance r between the source and field 
point, it was named conical:   ( )f r C r= −      (22) 
where C is a “suitably chosen constant” [1]. Unfortunately, the meaning of the suitable choice is not that clear. A 
specialized textbook[2] from the same group gives advantage to the global function f=1+r, while in a recent 
communication the originator claims that the constant C is not given by the user but  “…it is found as a part of 
the solution to the problem”[14]. It is also remarkable that other authors[3] have proposed to choose C as the 
maximum distance between any two nodal points along the boundary. Also, from the relevant open literature it 
is not clear if C is globally defined, or if it obtains different values for a given couple of field and source points.   

3.2 Gaussian functions 
Yamada and Wrobel[15] have proposed the use of RBFs appearing an exponential decay as follows:  
( ) ( )2 2expf r r c= − , where c is a positive constant       (23) 

3.3 High-degree radial functions 
Wendland[16] proposed the following base functions: 

Second-degree function: 

2
2 1 ,

1
0, otherwise

R R dRf d
d +

⎧⎛ ⎞− <⎪⎛ ⎞ ⎜ ⎟= − = ⎨⎝ ⎠⎜ ⎟
⎝ ⎠ ⎪

⎩

      (24) 

Fifth-degree function: 
4

1 1 4R Rf
d d+

⎛ ⎞ ⎛ ⎞= − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

       (25) 

Eighth-degree function: 
6 2

1 3 18 35R R Rf
d d d+

⎡ ⎤⎛ ⎞ ⎛ ⎞= − + +⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎣ ⎦

      (26) 

Eleventh-degree function: 
8 2 3

1 1 8 25 32R R R Rf
d d d d+

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − + + +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

    (27) 

In equations (24)-(27), the variable d denotes the radius of compact support. In this paper, d was chosen to be 
equal to the diagonal (maximum distance between any two points) of the rectangular cavity tested. In other 
words, these high-degree basis functions were positive within the entire domain. 

3.4 Thin Plate Splines (TPS) 
Goldberg and Chen[17] proposed the following base functions: 2 lnf r r=     (28) 

3.5 Multiquadratics (MQ) 
Goldberg et al.[18] proposed the following base functions: 2 2f c r= +     (29) 

3.6 Polynomial expansion 

Provatidis[6] has proposed a bivariate expansion in the form: ( ) ( )
0 0

, ;
m n

i j
ij

i j
u x y t a t x y

= =
= ∑∑ ,  

 (30) 
In case of a rectangular domain a×b uniformly discretized into m×n segments, the proposed basis functions 
consist of {1,x,y,xy}, {x2,x3,…,xm}, {y2,y3,…,yn} as well as {x2,x3,…,xm}y and {y2,y3,…,yn}x, which corresponds 
to the sides of Pascal’s triangle with a surplus of two terms. This selection is related to both the serendipity type 
elements and Coons’ bivariate interpolation, which is well known in CAD theory of surface representation[19].  

4. NUMERICAL EXAMPLES 

The first example refers to in-plane vibrations of a square (a=6.0 m). The material constants are: E/ρ=104, 
ν=0·2. The problem was solved using different boundary discretizations of quadratic type (ELQUABE)[13] as 
shown in Figure 1. Comparison is performed with a fine FEM mesh using 24 subdivisions per side that is totally 
625 nodes and 576 quadrilateral finite elements (“exact” solution denoted by the dotted line).  
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a

Nb = 8 Nb = 12

Nb = 16 Nb = 20

Nb = 24

 
Figure 1: A clamped square of dimensions 6 m×6 m using several BEM and FEM discretizations  

 
With respect to the conical RBF, a BEM model of Nb=24 boundary nodes (12 elements) was tested. It can be 
noticed in Figure 2 that the quality of the first two calculated eigenvalues highly depends on the chosen constant 
C. It is remarkable that for C≅5, the DR/BEM solution leads to unacceptable large values and in this case it is 
noted that intensively complex eigenvalues appear. Not a clear “overall optimum” value of C seems to exist. The 
most critical values are shown in Table 1. The diagonal of the square is about d=8.49m. 
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Figure 2: Influence of the constant “C” [Eq(22)] in the accuracy of the (a) first and (b) second calculated 

eigenvalues in the square shown in Fig.1, for Nb=24 boundary nodes (Fig.1, bottom left). Results are 
compared with the “exact” solution obtained from a fine FEM model. 

Table 1: Influence of the constant “C” on the quality of the first two calculated eigenvalues 

Errors (in %) of calculated eigenvalues Constant   “ C ” 
Eq(22) 

Active basis function (f) 
1st eigenvalue 2nd eigenvalue 

0.00 r +0.06 +8.56 
-1.00 1+r +0.28 +8.01 
8.49 8.49-r -7.68 +0.41 
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With respect to the first eigenvalue, the most accurate value was obtained for C=0 while for negative values 

of C the first eigenvalue is rather underestimated. Obviously, for C=-1 the conical basis function becomes f=-1-
r, but essentially, it is f=1+r; in this case the relative errors were small but not the best ones. The choice f=d-
r=8.49-r[3], corresponding to the third symbol ♦ after the lowest singular point shown in Figure 2, was the best 
one for the second calculated eigenvalue but not for the first one. To have a better idea about the DR/BEM 
solution quality, it is noted that for the same boundary discretization using 4-node finite elements (Figure 1: 
bottom right), the corresponding relative error for the first and the second eigenvalues were found to be +1.73% 
and +0.48%, respectively. Therefore, there are C-values that partially achieve a better DR/BEM solution than 
FEM.  

The singularity reflected to the first two eigenvalues will be now investigated in terms of the equivalent mass 
matrix described by Eq(21). As shown in Figure 3, the total equivalent mass was calculated different than the 
exact value that is twice the area of the square times the mass density, which is 72·0 kg. The maximum deviation 
from the real value was again found for C≅5. At C=-1, 0 and 8.49, in terms of the total mass the error was found 
equal to –4.5%, -5.4% and 8.6%, respectively.  
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Figure 3: Dependence of equivalent total mass on the constant “C” [Eq(22)].  

 
In the sequence, we investigate the performance of other RBFs. In Figure 4, a comparison is performed with 

respect to the first eigenvalue, for all the above-mentioned DR/BEM schemes as well as with conventional four-
node bilinear FEM (49 nodes, as shown in Figure 1: bottom right). In order to have a common reference, 
wherever a compact support appears (conical, Gaussian, Wendland, MQ) it was chosen equal to the diagonal of 
the square. It is also clarified that in this comparison, the TPS has been implemented only in its simplest 
formulation described by Eq(28); in other words, without adding the {1,x,y} terms.  
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Figure 4: Comparison of the accuracy achieved for the calculation of the first eigenvalue. 
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The general impression is that conical (1st degree) and Wendland (2nd degree) are very close each other and 
significantly underestimate the first eigenvalue, while the accuracy increases in accordance to the degree of 
Wendland’s RBF. The Gaussian RBF is rather good and of the same quality are the proposed (Pascal) 
polynomials.  

A similar comparison with respect to the second eigenvalue is presented in Figure 5. It can be noticed that 
the Gaussian RBF underestimates, Wendland’s RBF of 11th degree significantly overestimates this eigenvalue 
while the proposed (Pascal) polynomial scheme is again adequately accurate.  
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Figure 5: Comparison of the accuracy achieved for the calculation of the second eigenvalue. 

 
A similar comparison with respect to the third eigenvalue is presented in Figure 6. It can be noticed that the 

Gaussian RBF is good, Wendland’s RBF of 11th has a certain deviation while the proposed (Pascal) polynomial 
scheme is again adequately accurate.  
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Figure 6: Comparison of the accuracy achieved for the calculation of the third eigenvalue. 

 
Finally, a similar comparison with respect to the fourth eigenvalue is presented in Figure 7. It can be noticed 

that in this case all methods appear a certain error. The conical and the second degree RBF are characterized by 
the maximum error, the Gaussian is rather good, Wendland’s RBF of 11th degree is not again a very good choice 
while the proposed (Pascal) polynomial scheme is very similar to the FEM solution (again, for the same number 
of 24 boundary nodes).  

To come to an end, the last matter we investigated is the convergence behaviour of the several RBFs. For the 
discretizations shown in Figure 1, the convergence of the first eigenvalue is shown in Figure 8, where the 
proposed (Pascal-based) polynomial set shows an excellent convergence.  
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Figure 7: Comparison of the accuracy achieved for the calculation of the fourth eigenvalue. 
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Figure 8: Convergence quality for the first eigenvalue using several RBFs. 

 
5. DISCUSSION & CONCLUSIONS 

While the conical RBF is influenced by the choice of the constant “C”, the same does not seem to occur for 
the Gaussian, while slight variations were noticed in MultiQuadratics. As high-degree RBFs were tested only 
with the radius of support equal to the diagonal of the square, the influence of their support cannot be 
commented.  

From the above analysis it becomes obvious that none of the RBFs can be considered to be the overall best 
choice. The conical RBF has the weakness that it can become dramatically instable when the constant C is 
chosen about 60% of the diagonal and it also overestimates the higher eigenvalues. Concerning Wendland’s 
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RBF, unfortunately, the accuracy does not monotonically increase with the polynomial degree. Although it is not 
possible to propose guidelines from a single example of a square structure, it seems that the Gaussian RBF 
works well. Finally, the overall behaviour of the proposed (Pascal) polynomial functional set is encouraging.  

The idea behind the proposed Pascal monomials is closely related to Coons’ (blending-function) 
interpolation, which was previously applied for the mathematical representation of CAD surfaces in the three-
dimensional space. In the position of 3-D surfaces we can think of eigenmodes, which should be accurately 
approximated by any of the existing or proposed RBFs. It has been also proven that the monomials participating 
in Coons’ interpolation are the same with those involved in high-order serendipity elements[20]. In case of 
existing unrestrained nodes along two vertical sides of a rectangular structure, there is sufficient information to 
approximate a mode in terms of only boundary data. However, in case of a fully fixed boundary, the use of 
internal nodes is obligatory (for all RBFs), but the proposed polynomial scheme is again applicable on the basis 
of Gordon-Coons (transfinite) interpolation[21].  
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Abstract. High accurate composite grids method on graduated polygons is constructed. O(h6) order of 
accuracy, for the number of nodes O(h-² ln h-¹)  is obtained by using a 9-point scheme on the polar and on the 
square grids, as well as constructing the sixth order matching operator connecting the subsystems. This estimate 
being obtained for requirements on the functions given in the boundary conditions which cannot be essentially 
lowered in Ck,λ . Finally, we illustrate the high accuracy of the method in solving the problem in L-shaped 
polygon with a corner singularity, and the well known Motz problem which has a boundary singularity due to 
an abrupt change in the type of boundary conditions. 
 
 
1 INTRODUCTION 

It is known that the use of classical finite difference or finite element methods to solve the elliptic boundary 
value problems with singularities becomes ineffective. To solve this problem, different modifications are given 
by many authors[1],[2],[3],[4],[5],[6] . One of the effective modifications of a finite-difference method for a nonsmooth 
solutions of elliptic problems is the method of composite grids. This modification with an accuracy O(h²) in 
solving the Laplace's equation was proposed and justified in[7],[8], and developed up to O(h4)[9]. 

    In this paper the sixth order accurate composite grids method on graduated polygons is constructed. High, 
order O(h6), accuracy is obtained by using 9-point scheme on exponentially compressed polar grids (on sectors, 
around the vertices of re-entrant angles), and on square grids (on the finite number of rectangles, which cover 
the given polygonal domain together with the chosen sectors), as well as by using the sixth order matching 
operator constructed in[10] to connect the subsystems. Moreover, the requirements on the functions given in the 
boundary conditions cannot be essentially lowered in Ck,λ. The system of difference equations obtained separates 
into a fixed number of subsystems each of which is adequate for the simplest difference equations on a 
rectangle, and may be solved by the alternating method of Schwarz.  

2 BOUNDARY VALUE PROBLEM AND FINITE DIFFERENCE EQUATIONS 

         Let G be an open
1

N

j
j

γ γ
=

=∪  simply connected polygon with sides parallel to x and y axis, let γj, 

j=1(1)N, be its sides, including the ends, enumerated counterclockwise (γ0≡γN, γ1≡γN+1; 
1

N

j
j

γ γ
=

=∪ is the boundary 

of G, αjπ, 0<αj≤2, be the interior angle formed by its sides γj-1 and γj, Aj=γj-1∩γj be the vertex of the j-th angle; 
rj,θj be a polar system of coordinates with pole in Aj and the angle θj taken counterclockwise from the side γj, νj 
be a parameter taking the values 0 or 1, and ν j=1- jν . 

    We consider the boundary value problem 
 (1)0 on ,   on ,  1(1) ,j j n j j j j ju G u u j Nν ν ν ϕ ν ψ γ∆ = + = + =  (1) 

 where ∆≡∂²/∂x²+∂²/∂y², (1)
nu is the derivative along the inner normal, jϕ  and ψj are given functions of the 

arc length  s taken along γ, and  
 6, ( ),  0< <1, 1 j N,j j j j jC λν ϕ ν ψ γ λ+ ∈ ≤ ≤  (2) 

879



Mehmet Bozer 

 1 21  ... ,N Nν ν ν≤ + + + ≤   (3) 
 at the vertices Aj, (s=sj ) for αj=1/2 the conjugation conditions 

 2 1 1(2 ) (2 ) (2 ) (2 )
11 1 1( 1) ( ),q q q q q

jj j j j j j j
τ τ τ τ τ τδ δ δ δ δ δν ϕ ν ψ ν ϕ ν ψ− − −+ + + + + +

−− − −+ = − +  (4) 

 except may be for q=3, for τ=3, where τ=νj-1+2νj; δω =1 when ω=0; δω=0, when ω≠0, q=0,1,...Q, Q=[(6-δτ-1-
δτ-2)/2]-δτ, are satisfied. At the vertices Aj with αj≠1/2 no compatibility conditions are required to hold for the 
boundary functions, in particular, the values of 1jϕ −  and jϕ at Aj might be different. 

    Let oN  be the set of j, (1≤j≤N), for which αj≠1/2 or αj=1/2 but conjugation condition (4) not satisfied. In 
the neighborhood for each vertex Aj, j E∈  we construct two fixed sectors Tj =Tj(rj0) and 

* * *
0( ),  0j j j j jT T r r r= < <  for which * *

l kT T =∅∩ , l k≠ , o,l k N∈  and  also 
* * * *\ ,  where G \ ( )j j j j E jG T T T G T∈= =∩ ∪ . 

    Let Πk⊂G∗, k=1(1)M, (M<∞) be certain fixed open rectangles with sides a1k and a2k parallel to x and y 
axis, with a1k/a2k rational and  o

*
1( ) ( )M

k k jj N
G T= ∈
= ∪ Π ∪ ∪ . We will assume that any point P∈G∩ηk, where 

ηk is the boundary of the rectangle Πk, 1≤k≤M, (P∈G∩υj, υj is the boundary of the sector Tj∈ oN ) falls inside at 

least one of the figures Πk(p)  , 1≤k(p))≤M, or Tj(p) , j(p)∈ oN  depending on P, where at the distance from P to 
G∩ηk(P) or to G∩υj(P) is not less than some constant ν0>0 independent of P. The quantity ν0 is called a depth of 
gluing of the figures  Πk,  1≤k≤M; Tj, j∈ oN . 

    We introduce the parameter h>0 and define a square grid on Πk, 1≤k≤M, with maximum possible step 
hk≤min{h,min{a1k,a2k,ν0}/6}, and such that the boundary ηk lies entirely on the grid lines. Let h

kΠ  be the set of 

grids on Πk, 0
h
kη  be the set of grids on G∩ηk, 1

h
kη be the set of remainder grids on ηk, and let 

0 1

h h h h
k k k kη ηΠ = Π ∪ ∪ . We construct on each closed sector Tj, j∈ oN , the polar grids of rays with maximum 

angular step βj≤min{αjπ/6,h/rj0}, where γj-1 and γj are situated on the extreme rays, and of circumferences of 
circles with centers at Aj and radii rjq=rj0exp{-q βj}, q=0,1,...Nj, 

 
( ){ }

1 1
0 0

0*
1

(6 ) ln11 max 5, ln ,
min 1,1/ 1

j j j
j j

j j j j j

r h
N N

r
ε σ β

β α ν ν

− −

−

⎡ ⎤⎧ ⎫+⎪ ⎪⎢ ⎥= + −⎨ ⎬⎢ ⎥+ −⎪ ⎪⎢ ⎥⎩ ⎭⎣ ⎦

 (5) 

  where ɛ₀>0, Nj0≥0 are arbitrary fixed numbers, [ ]- indicates the integer part, σj=1 when (νj-1}+νj(2αj-
νj-1-νj)=0; σj=0  when  (νj-1+νj)(2αj-νj-1-νj)≠0. 

    From (5) it follows that for any h, rjNj<
*
jr , j oN∈ . Let 0

h
jν ( 2

h
jν ) be the set of nodes of the j-th polar grids 

on the circle with radius rj0(rjNj), 1
h
jν  be the set of remainder grids on jν , Tjh be the set of nodes of the j-th polar 

grids on Tj \ 2
h
jν  and 

h
jT = h

jT h h h
j0 j1 j2ν ν ν∪ ∪ ∪ . 

    Let B,Bm, and
.
B  are the finite difference operators, defined on 1,  h h

k k mη γΠ ∩ , and  1 1( )h
k m mη γ γ +∩ ∩  

by the formulas (5.5), (5.11), and (5.13)  from[11], respectively. We define ε qh( qϕ ,ψq)≡Eqh(0, qϕ ,ψq), and 
.
ε qh( qϕ , 1qϕ + ,ψq,ψq+1)≡

.
E qh(0, qϕ , 1qϕ + ,ψq,ψq+1) by applying the formulas (5.12) and (5.14) in[11] respectively. 

We transform each polar grid h
jT  to a square grid with step βj by applying new variables xj′=ln rj, yj′=θj, j∈ oN . 

So, all operators B, Bm,
.
B m,ε mh and 

.
ε mh will be defined on the obtained square grids for the function 

v(xj′,yj′)≡u(exj′,yj′), and consequently for the function u(rj,θj) on the polar grids h
jT  , j oN∈ . 

    Let { } { }j j1 1
=  and =

N N

j j
ϕ ϕ ψ ψ

= =
, where jϕ , and ψj are given functions in (1). On the set 

( ) ( )1 0 0
h M h h

k k j E jω η ν= ∈= ∪ ∪ ∪ we introduce the linear matching operator S6. The value of S6(uh,ϕ ,ψ) at the 

point P∈ωh is defined linearly in terms of the values of the function uh at nodes of the grid constructed on the 
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rectangle Πk(P) ∋ P or on the sector Tν(P) ∋ P part f the boundary ηk(P) or υν(P) which belongs to G of which is the 
maximum distance away from P, and in terms of the assigned values of ϕ  or ψ at a fixed number of points or in 
terms of the values of the derivatives ϕ (m), m=0,1,...,5 (or ψ(q), q=0,1,...,4). The pattern of the operator S6 is 
located in a neighborhood O(h) of the point P, its norm in the uniform metric for ϕ ≡0, ψ≡0 is not greater than 
one, and 

                                                     u-S6(u,ϕ ,ψ)=O(h6) 

 uniformly on ωh. An operator S6 with these properties for a square grid ( )
h
k PΠ  was constructed in[10] (for the 

Dirichlet problem see[7]). If P∈ ( )PTν ∩ωh then we use the variables '
( )Pxν =ln rν(P), 

'
( )Pyν = θν(P) to transform 

( )P

h
T ν  to a square grid with step βν(P) and the point P to some point P′. We choose all necessary nodes with 
respect to P′, and calculate corresponding coefficients to design S6 on the obtained square grid. Since the 

transformation is invertible and βj≤h/rj0, j oN∈ , it follows that the operator S6 is constructed on ( )P

h
T ν , and it is a 

sixth order matching operator in a polar grids also. 
    Consider the following system O(h²lnh-¹) of finite difference equations which has a unique solution for all 

h≤ν0, where ν0 is the depth of gluing, 
 ( )h h

k k1 m 1 on ,  ( , ) on \ ,
k

mh h h m h mh m m m mu Bu u B u A Aν ε ϕ ψ η γ += Π = + ∩ ∪  (6) 

 ( )
. .

h
1 1 1 k1 1, ,  on ,   1, 2,..., ,  0 1km m mhh h m m m m mu B u A k M m Nν ν ε ϕ ϕ ψ ψ η+ + + += ∩ = ≤ ≤ −  (7) 

 ( )6 , ,  on ,    on ,h h
h h h h ju S u u Bu Tϕ ψ ω= =  (8) 

 h
j1( , ) on , 1, ,

jh hu B u j jτ τ τβ τ τ τ τν ε ϕ ρ ψ ν γ τ= + ∩ = −  (9) 

 
( )( ) ( )

o

* * * *
1 11 1 1 1

2

/ ,  

 on , ,

j j j jh j j j j j j j j j j j j j h

h
j

u B u

j N

ν ν θ ϕ α π θ ϕ α π ν ν ϕ ν ν ϕ ν ν

ν

− −− − − −= + − + +

∈
 (10) 

where *
µϕ  being the value ϕ µ at the point on γµ distant from Aj by the distance rjNj, and ρτ being the distance 

from Aj to the present grid on γτ. 
 

3 ERROR ANALYSIS 

   Let v be the solution of problem (1)-(4) when G≡Π={(x,y):0<x<a, 0<y<b}, where a/b being rational, and 
vh is the solution of corresponding finite difference problem, i.e., of system (6),(7). 

    Everywhere below we will denote constants which are independent of h by c,c0,c1,... . 
 
Lemma1. The estimation  6

0max h hv v c h
Π

− ≤  holds true. 

    Lemma 1 is proved in the same way as Theorem 1.1 of[8], except that instead of the function (1.14) of[8] we 
need to take the function 

 

 { }
(6) (6)

1 1 1 6
2 ( ) ( )

( , ) ( 1) Im ( ) ln( )
6!

j j j jj
j j j

s s
u x y z z z z

ϕ ϕ
π

+ + +⎡ ⎤+⎣ ⎦= − − − , 

 
 (making the corresponding changes), where z=x+iy, zj=xj+iyj, is the complex coordinate of  the vertex 

γj∩γj+1. 
 
Remark1. The obtained estimation in Lemma 1 is true for the corresponding problems in sectorial domains, 

i.e., the 9-point analogy of  Theorem 2.1 in[8]. 
 
Theorem1. Let the conditions (2)-(4) satisfied. Then for h≤ν0, where ν0 is the depth of gluing, the inequality 
 6max -

h h
G

u u ch≤  (11) 

 holds true, where u is the bounded solution of problem (1), uh is the solution of system (6)-(10), 
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o1( ) ( )
h h hm

k jk j N
G T= ∈

= ∪ Π ∪ ∪ . 

Remark2. When 6,0 ( )jj j j jCν ϕ ν ψ γ+ ∈ , then the function v(x,y) in Lemma1 may not belong to C6,0(Π) 

(see[11],[13]). Consequently, by analogy[14], it can be shown that the requirement (2) in Theorem1 can not be 
lowered in Ck,λ. 

 
Remark3. A parallelism of the sides of graduated polygon G to the x and y axis is assumed only for 

simplicity of presentation. The method and results can be extended also to arbitrary polygonal domains, by 
special arrangement some of rectangles Πk, k=1(1)M, around the sides γj, j=1(1)N. 

    System (6)-(10) is solved by the alternating method of Schwarz. Suppose we have a zero approximation to 
uh. For each k in succession, 1≤k≤M, having calculated uh on 0

h
kη  by formula (8), we solve system (6) and (7). 

Further, in a similar way, having calculated uh on 0
h
jν  by (8), we solve (9) and (10) successively for every 

j oN∈ . The next iteration is similar. 
 

Theorem2. System (6)-(10) may be solved by the alternating method of Schwarz with arbitrary precision ε 
in the uniform metric with the number of iterations O(lnε-¹), independent of h, by solving the standard difference 
equations of Laplace on rectangular domains at each iteration. 

     
4    NUMERICAL EXAMPLES 
To test the high accuracy of the composite grids method, we have computed numerical examples. In 

Example1, the polygon G is L-shaped, and the exact solution has the corner singularity at the vertex A1 with the 
interior angle απ=3π/2. The comparisons are made between the exact and the approximate solutions. In 
Example2, the exact solution has singularity at the vertex A1, with the interior angle απ=π, caused by abrupt 
changes in the type of boundary conditions, and because of boundary conditions on the sides for y≥0 the exact 
solution is unknown and comparisons are made with the best results obtained in the literature. 

 
Example 1. Let G is the L-shaped, and is defined as follows 
 
 1{( , ) : -1 1,   -1 1} \G x y x y G= < < < <  
where  G1={(x,y):0≤x≤1,-1≤y≤0}. Let γ be the boundary of  G. We consider the following problem: 

 
 0  on  ,  

 ( , )  on  ,
u G

u v r θ γ
∆ =
=
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                                             Figure 1. The L-shaped domain with angle singularity 
 



Mehmet Bozer 
where  

 ( )
2
3 2v r, cos

3
r θθ =  

is the exact solution of this problem. 
 
                                 
        
 
 
 
 
 
                                    
 

 
 

Table1: The maximum error between the composite grids solution uh 
and the exact solution u of the problem in Example 1 for different h 

 
Example 2 Let G ={(x,y):-1<x<1,0<y<1}, and γ is its boundary. We consider the following problem: 

 

-    0  in  ,
0  on  0,  -1 0,
500  on  1,  0 1,

u G
u y x
u x y

∆ =
= = ≤ ≤
= = ≤ ≤

 

                                                 
u
n
∂
∂

 = 0  on the other boundary segments of γ. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                 
 
 
 
 
 

                                                           Figure 2.  The Motz problem   

h-1 
 max

hh h
G

u vε = −  

16 1.12D-9 

32 1.86D-11 
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   The Motz problem as a benchmark in many approaches for the singular problems is used (see[1],[2],[5]  and 

references therein). An extremely accurate result is obtained in[15], for which piecewise expansions into 
particular solutions are used to approximate the boundary conditions in a least square sense. To obtain a high 
accurate results (for instance, the maximum error on x=1 is 5.47E-9) by this boundary method a large number 
(34) of particular solutions are needed and this may reduce serious difficulties due to illconditioning of the 
associated least-squares matrices (the condition number is 3.97E+07). To decrease the condition number (down 
to 3617) in[15] the given domain is subdivided into three subdomains, and for each of them different numbers of 
particular solutions are used, but the best combination of these numbers gives only E-06 accuracy. Lucas and 
Oh[16], for the solution of the Motz problem, the method of auxiliary mapping (MAM) in the context of the h-p 
version of the finite element method is used, and the best result (maximum error is 2.22E-08) is obtained, with 
an optimal mesh refinement and p=10. Comparisons in[16] were made with the extremely accurate results 
obtained in[15].  

   The following results in Table 2 are obtained for the Motz problem by comparing composite grids solution 
uh to the extremely accurate solution v from[15] after correction of the 31-th coefficient (dividing by 10), in the 
expansion of approximate solution, discovered by Lucas and Oh[16]. 

 

 

 

    Table 2: The maximum error between composite grids solution uh                                                                        
and extremely accurate solution v[10] of the Motz problem for different h 

 
5    CONCLUDING REMARKS 
       The comparisons in Tables 1 and 2 show that the accuracy of the composite grids method in solving the 
problem in Example1 is higher than the problem in Example2. This happens because, in the Motz problem (the 
exact solution unknown) the comparisons are made with the results obtained in[15] (see also[16] , p.337).  
      The high order composite grids method for the solution of Laplace’s boundary value problem on graduated 
polygons is constructed and justified. O(h6) order of accuracy for the absolute error in maximum norm is 
obtained by constructing the sixth order matching operator connecting the subsystems of 9-point approximations 
on the polar and square grids. Numerical examples show the high accuracy of the proposed modification, and 
the possibility of effective realization of the obtained system of finite difference equations by using the discrete 
Fourier solution on rectangle with square grids for each Schwarz’s iteration.  
      The parallelism of the sides of graduated polygon G to x and y axis is assumed only for simplicity of 
presentation. 
      The method and the results carry over to multiply connected graduated polygons without change.    

h-1 
 max

hh h
G

u vε = −  

16 7.97D-7 

32 2.21D-8 
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Abstract. A high accurate approximate solution is obtained to the mixed boundary-value problem for the 
Laplace equation on a rectangle, known as the cracked beam problem by the one-single block method with the 
use of analytic continuation. Furthermore, to compute the stress intensity factor a simple and high accurate 
formula is given. Comparisons with other results have been carried out. 
 
1 INTRODUCTION 

The cracked beam problem is the one of which the solution has a singularity at a boundary caused by the 
abrupt changes in the type of boundary conditions For this reason the problem has become a classical test for 
approximate methods for solving boundary value problems with singularities. We single out such three 
important papers[4],[5],[12] . Using the asymptotic behavior of the solution Fix et al.[4], included some of the lower 
order singular functions of the asymptotic expansion in their space of trial functions for the finite element 
method. They found that their method was efficient and moderately accurate. The local solution  

(2 1) / 2

1

2 1( , ) cos
2

i
i

i

iu r rθ α θ
∞

−

=

⎡ − ⎤⎛ ⎞= ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∑                  (1) 

  
is used by Wigley[12]. He obtained accurate estimates for the leading singular coefficients with an inherently 
iterative approach. He first generated an approximate numerical solution using finite differences and then 
estimated the first singular coefficient from this solution. Next, he modified the original problem by subtracting 
out the first singular term and again generated an approximate numerical solution to this modified problem, 
which he used to estimate the second singular coefficient, and so on. Olson et al.[5] used the ordinary finite 
element method, one-and two-zone blending singular basis functions method (BSBFM) and the integrated 
singular basis function method (ISBFM) which does not require high- order integration and the singular 
functions are defined over the entire domain.  The solution of the cracked beam problem confirmed that both 
(BSBFM) and (ISBFM) yield improved results compared to the ordinary element method moreover both the 
estimate of the leading coefficients and the solution to the problem with the (ISBFM) are more accurate than 
(BSBFM). 
      An exponentially convergent block method (BM) to solve boundary-value problems for the Laplace equation 
on an arbitrary polygon was proposed and justified in[6],[7]. In the (BM), the approximate solution is an 
approximation of the integral representation of the harmonic function in a fixed number of blocks (sectors, 
semicircles and circles) covering the given domain. Some problems for the Lapace equation involving 
singularities were solved by the one-block version of BM in[8]-[9]. A block method without analytical 
continuation was applied in[10] , where the torsion problem was solved for L-profile, including the case of infinite 
flanges, with the use of four interacting blocks that lie within the L-section. The rate of convergence of the 
approximate solution  of the BM is higher than the results obtained in above mentioned approaches. 
        In this paper the BM for the problem of torsion of a cracked beam with a square cross section (see [4] ) is 
solved by the one-single block method with the use of analytic continuation. The accuracy of the resulting 
solution is close to the accuracy of computer representation of numbers, where the computations are carried in 
extended precision. The system of algebraic equations arising in the case of one block is stable as the number of 
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unknowns n increases and has a simple structure that solving it does not require complete storage of its entire 
matrix in a computer. The simplest version of iterative methods (Gauss-Seidel), convergent as a geometric 
progression with a common ratio independent of n  can be applied to find its solution. Furthermore, to compute 
the stress intensity factor a simple and high accurate formula is given. The comparison with the other above 
mentioned results are presented. 
     In[1]-[3]   the BM  to design a combined method for the solution of more general boundary value problems 
with singularities is used. 

2 CRACKED BEAM PROBLEM 

 Let 

 ( ){ , : 0.5 0.5,  0 0.5},G x y x y= − < < < <  (2) 

  and  γ be its boundary (Figure 1). We consider the following problem 

 

in

on

on
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Figure 1.  Cracked beam problem. 

In the original problem, 1v∆ = − and  0v =  along 0.5y = , where 2 2 2 2/ / .x y∆ = ∂ ∂ + ∂ ∂  By using the 

transformation 2 / 2u v y= +  we obtain the above boundary  value problem. 

Let 0γ  be the line segment [ 0.5,0]−  of the x-axis. 1γ  be the line segment (0,0.5)  of the x-axis. and 

2γ  be its right side belonging to the line 0.5x =  with the end points included. 3γ  and 4γ  are the line 

segments 0.5y =  and 0.5x = −  respectively,  Problem (3) is known to have a unique solution u  that is 

continuous on the closed rectangle G and infinitely differentiable everywhere on the closed rectangle G  except 
the point (0,0) , where according to (1)  it has the asymptotic form  
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 ( )1/ 2 3/ 2cos / 2 ( )u Br O rθ= + , (4) 

 
with a constant 0B > . We use the polar coordinates r and  θ   defined as follows: 

 2 2 ,       / 2 arctan( / )r x y x yθ π= + = −  (5) 

The derivatives of u  are singular at (0,0) , and the leading parts of the singularities are equal to the 
corresponding derivatives of the first term on the right-hand side of  (4). 

 

3 APPROXIMATING THE SOLUTION OF THE CRACKED BEAM PROBLEM BY THE BLOCK 
METHOD 

Let us continue the solution u  beyond the rectangleG . First, define the even continuation across the  
line 0.5x = , next define the even continuation across the line 0.5x = − . Finally, define an odd continuation 
across the line 0.5y =  by the formula 

 ( , ) 0.25 ( ,1 ),     -0.5 0.5,u x y u x y y= − − < <  (6) 
The continued function u is harmonic on the semicircle 

 0 0{( , ) : 0 ,   0 },       0.5 1,T r r r rθ θ π= < < < < < <  (7) 

and is continuous on its closure T . The semicircle contains the rectangle (2). Define 

 ( , ) ( cos , sin ),U r u r rθ θ θ=  (8) 
semicircle (7) is a sector with the angle at the vertex equal to π . The function u vanishes on one of the radii of 
this sector, namely on the segment 0[ ,0]r−  of the x-axis. The normal derivative /u n∂ ∂  vanishes on the other 

radius (except for the point (0,0) ). Consequently by Theorem 3.1 from[7] , the harmonic function  u defined on 
the semicircular block T G⊃  can be represented as  

 0 0
0

1( , ) ( , ) ( , , ) ,u x y U r R r d
π

η θ η η
π

= ∫  (9) 

where r  and θ  are related to x and y by (5), 

 ( )
1

1 1 2
2

0
0 0 0

1, , ( 1) , , ( 1) ,
4 2

rR r R
r

ηα ββ

β α

θθ η βπ
+

= =

⎡ ⎤
⎛ ⎞⎢ ⎥= − + −⎜ ⎟⎢ ⎥⎝ ⎠⎢ ⎥⎣ ⎦

∑ ∑  (10) 

and  

 
2

2

1( , , ) ,
1 2 cos( )

rR r
r r

θ η
θ η
−

=
− − +

 (11) 

is the kernel of the Poisson integral on the unit circle. 
 Consider the n  points 0 ( 1, 2,..., )kP m n=  uniformly distributed over the arc of the semicircle (7) 
with the orthogonal coordinates 

  

 0 0
0 0

( 1/ 2) ( 1/ 2)cos ,       sin .k k
k kx r y r

n n
π π− −

= =  (12) 
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Figure 2. Points uniformly distributed over the arc of the semicircle.  

 
These points lie outside the rectangle (2) (see Figure 2). Let us associate each point 0

kP  with the point kP  

inside the rectangle G  having the orthogonal coordinates, 

 
( )

0 0

0 0 0 0

,                                 0.5,

1 / ,          0.5,

k k

k

k k k k

x x
x

x x x x

⎧ ≤⎪= ⎨
− >⎪⎩

 (13) 

 
0 0

0 0

,                                 0.5,

1 ,                            0.5.
k k

k
k k

y y
y

y y

⎧ ≤⎪= ⎨
− >⎪⎩

 (14) 

If, 0 0min{ , } 1/ 2,k kx y ≥ then kP  is symmetric to 0
kP  with respect to the vertex of G  closest to 0

kP .  

Otherwise, kP  is symmetric to 0
kP  with respect to the vertex of G  closest to 0

kP . The points kP  lie on the arcs 
of the circles represented by dashed lines in the Figure 2.  

Considering equations (6), and (7), and the evenness of the function u  with respect to the lines 0.5x =  
and 0.5x = − we write  

 

 0 0( , ) ( , ),        1, 2,..., ,k k k k k ku x y u x y k nτ σ= + =  (15) 
 

 
0 0

0 0

0.25,         0.5, 1,         0.5,
   

0               0.5, 1               0.5,
k k

k k
k k

y y

y y
τ σ

⎧ ⎧> − >⎪ ⎪= =⎨ ⎨
≤ ≤⎪ ⎪⎩ ⎩

 (16) 

By (9) and (15) we have  

 0 0
0 0

0

( , ) ( , ) ( , , ) ,k
k k k k ku x y U r R r d

πστ η θ η η
π

= + ∫  (17) 

where kr  and kθ  are the polar coordinates of ,kP G T∈ ⊂  and 0 0( , )k ku x y  is the value of u at the point 
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kP located at the boundary of ( 1, 2,..., ).T k n=  
Let 

 ( 1/ 2) / .m m nη π= −  (18) 
 The integral on the right-hand side of (17)  is approximated by a rectangle quadrature with equally spaced 
nodes 0 ( 1, 2,..., ).kP m n= We replace the unknown 0 0

0( , ) ( , )m m mU r u x yη =  with their desired approximate 

values at the nodes, mu  and substitute 0 0( , )k ku x y with ku  on the left-hand side of (17). Equating the left-and 
right-hand sides obtained in this way, we arrive at the following linear system with respect to the unknown 

ku (see [11]) 

 0
1

( , , ),      1, 2,..., .
n

k
k k m k k m

m
u u R r k n

n
στ θ η

=

= + =∑  (19) 

Using (10) and (11) the system (19) is transformed as 

 
1 1

1 0 0

( 1) ,       1, 2,...,
( 1) ( 1)

n
k

k k k m
m k k m k m

du u k n
g a c b s

β
β α

β α

τ σ
= = =

= + − =
− − − −∑ ∑ ∑  (20) 

where kτ  and kσ  are defined by (16) and  2cos( / 2),        2sin( / 2),m m m mc sη η= =  and  

 

1/ 2 1/ 2

0

0 0 0

1 /cos ,      sin    1 ,    ,
2 2 4

k k k k k k
k k k k

r r r r ra b g d
r r r n

θ θ⎛ ⎞ ⎛ ⎞ −
= = = + =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

where ( , )k kr θ  is the polar coordinate of kP . Linear system (20) has a simple structure and does not require the 

complete storage of its entire matrix in a computer. Only the arrays 1{ , } ,  n
m m mc s =   1{ , , , , , }n

k k k k k k ka b g d τ σ =   
are computed and stored beforehand. 

 Denote by    ( 1, 2,..., )kNu k n=  the approximate solution to solve the system (20) obtained after Nth 
Gauss-Seidel iteration from the zero initial approximation. Consider again representation (9) of the function u  

of the sector (7). Let ( , )x y  be an arbitrary point in the closed rectangle G  and r  and θ  be its polar 
coordinates. Replacing the integral on the right-hand side of (9) with the rectangle quadrature and substituting 
each unknown value 0( , )kU r η  with the component kNu  of the approximate solution to system (20) at each 

0
kP  we obtain the approximate solution ( , )n

Nu x y  to the boundary  value problem (3) corresponding to the Nth 
iteration  

 0
1

1( , ) ( , , ),
n

n
N kN k

k
u x y u R r

n
θ η

=

= ∑  (21) 

where 0R  is the kernel defined by (10) and  ( 1/ 2) / .k k nη π= −  

  A FORMULA FOR THE STRESS INTENSITY FACTOR 

From an engineering standpoint the most interesting quantity is not the values of stress function v  but rather 
the stress intensity factor which is  the coefficient B  of the leading term in the asymptotic expression (4) for the 
solution u  to the boundary  value problem (3). 

 On the basis of (4),  we have 

 0 1/ 2
0

lim .r
uB

r θ
→+

=

=  

This gives the following  approximation of the coefficient B : 
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 0
0 1/ 2

1 10

( ,0, )1 2lim cos .
2

n n
n k k
N r kN kN

k k

R rB u u
n r n r

η η
→+

= =

= =∑ ∑  (22) 

 
 

5 NUMERICAL RESULTS 

 
A numerical algorithm based on the Block Method is implemented using extended precision. The linear 

system of equations when  0 0.90r =  is solved by Gauss-Seidel method with a zero initial approximation.  
Iteration is controlled by the parameter 

 1

1 50

1max 0.5 ,0.5 0.125 ,
49

n
N Nj

juε
≤ ≤

−⎛ ⎞= − + −⎜ ⎟
⎝ ⎠

 (23) 

which is the maximum magnitude of the deviation of approximate solution (21)  to the boundary value problem 
(3) from a given boundary value taken over 50 equally spaced  points located on the line 0.5y =  of the 

rectangle. At any N , the approximate solution n
Nu satisfies the boundary condition set in  (3) on the bottom 

side of the rectangle both the left and on the right of the point (0,0) . Iteration is terminated at the minimal 
5N ≥  that satisfies the condition  

 1 1
10.999 ,N Nε ε −≥  (24) 

After the iterations are terminated, the second control parameter 

 2

1 40 1 40
max max ( 0.5, , max (0.5, ) ,

80 80N p q

p qF Fε
≤ ≤ ≤ ≤

⎧ ⎫= −⎨ ⎬
⎩ ⎭

 (25) 

is computed, where  

 
( , )( , )

n
Nu x yF x y

x
∂

=
∂

. 

The quantity defined by (25) is the maximum deviation from zero of the normal derivative of the approximated 
solution over 80 equally spaced points on the left and right sides of the rectangle G   
n  N

 
1

(0, )
4

nvN  11 1,
24 4

nvN
−⎛ ⎞

⎜ ⎟
⎝ ⎠

 11 1,
24 4

nvN
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

20 6 0.027427 0.03287 0.07084 
40 8 0.02742789 0.03287788 0.0708435 
60 10 0.0027427895 0.032877886 0.070843513 
80 12 0.027427895505 0.032877886397 0.07084351322 

100 14 0.02742789550524 0.03287788639764 0.0708435132220 
120 16 0.0274278955052476 0.0328778863976421 0.070843513222074 
160 19 0.0274278955052476912 0.0328778863976422216 0.0708435132220747256 
200 18 0.0274278955052476912 0.0328778863976422215 0.0708435132220747256 

 
Table 1: Solution of cracked beam problem at specific points by (BM)  

Table 1 lists the present value n (number of points over the arc of the semicircle, iteration numbers ,N  and 

the corresponding values of the stress function 2 / 2v u y= −  obtained at three points when 0 0.90r = is 

taken. Table 2 gives the stress intensity factor n
NB  and the two control parameters 1

Nε , 2
Nε  with respect to n .  

   In the values of n
Nv  and n

NB  the coinciding   decimals grows almost linearly with n, the iteration number 
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N also grows linearly, the control parameters 1
Nε , 2

Nε , shows the exponential convergence of the BM. This 

conclusion is not valid for 160n > because the decimal precision available on the computer becomes 
insufficient. Here it does not sufficient to increase n   to 200 to obtain   n

Nv  and n
NB  more than 19 decimals the 

number of decimal places used in a computer must be increased. 
 

n  n
NB  1

Nε  2
Nε  

20 0.19111 52.115 10−×  
43.601 10−×  

40 0.1911186 83.389 10−×  
72.549 10−×  

60 0.1911186319 102.755 10−×  
91.997 10−×  

80 0.191118631971 122.651 10−×  
111.889 10−×  

100 0.191118631971867 142.799 10−×  
131.973 10−×  

120 0.191118631971872045 163.105 10−×  
152.171 10−×  

160 0.191118631971872089 193.184 10−×  
183.652 10−×  

200 0.191118631971872089 193.049 10−×  
183.381 10−×  

Table 2: The control parameters 1
Nε  and 2

Nε and the approximate value n
NB  

 
( , )x y  OFE BSBFM ISBFM Fix et al.  Wigley 

10,
24

⎛ ⎞
⎜ ⎟
⎝ ⎠

 
0.026192 0.027431 0.027429 0.027425 0.027428 

11 1,
24 4
−⎛ ⎞

⎜ ⎟
⎝ ⎠

 
0.032847 0.032878 0.032879 0.032877 0.032878 

11 1,
24 4

⎛ ⎞
⎜ ⎟
⎝ ⎠

 
0.070657 0.070844 0.070844 0.070844 0.070844 

B    0.191119 0.1917 0.19112 
 

Table 3: The solution to the cracked beam problem from the literature 

6   CONCLUSION 

    The rate of convergence of the approximate solution obtained hear is higher (they converge exponentially 
with respect to the number of quadrature nodes) than the results obtained in the above mentioned approaches. 
Furthermore, to compute the stress intensity factor a simple and high accurate formula is given. Therefore, the 
obtained extremely accurate results can be used to test the other approaches for the singular problems, also. 
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Abstract. A new BEM approach is presented for the plane elastostatic problem for inhomogeneous anisotropic  
bodies. The incapability of establishing the fundamental solution for equations with variable coefficients is overcome 
by using the known fundamental solution of the Poisson equation to derive the necessary boundary integral 
equations. This formulation introduces two additional unknown field functions, which physically represent the two 
components of a fictitious body force. They are determined from two supplementary domain integral equations. The 
latter are converted to boundary ones by employing a meshless technique based on global approximation by radial 
basis functions series. Thus, the presented method maintains the pure boundary character of the BEM. The obtained 
numerical results demonstrate the effectiveness and accuracy of the method. 

1. INTRODUCTION 

The inhomogeneity and anisotropy in plane elastic bodies results from the position dependent material constants. 
The response of such bodies leads to boundary value problems for partial differential equations with variable 
coefficients. The conventional BEM can be employed only if the respective fundamental solution is known or can be 
established. This, however, is out of question for differential equations with variable coefficients. Though the 
problem is of great interest, very few solutions can be found in the literature. Most of them deal with specific 
variation laws of the material constants. A more general solution has been reported by Clements et al. [1], where we 
refer for additional literature. The herein presented method uses the known fundamental solution of the Poisson 
equation to establish the necessary boundary integral equations. This new formulation, based on the concept of the 
analog equation [2], introduces two additional unknown field functions, which physically represent the two 
components of a fictitious body force. They are determined by employing a meshless technique based on global 
approximation by radial basis functions series of multiquandric type. Then the displacements and the stresses are 
evaluated from their integral representations based on the known fundamental solution. Thus, the presented method 
maintains the pure boundary character of the BEM, since the discretization into elements and the integrations are 
limited only to the boundary. Example problems are studied. The obtained numerical results demonstrate the 
effectiveness and accuracy of the method. A significant advantage of the proposed method is that the same computer 
program is utilized to obtain numerical results regardless the specific form of the governing differential operator. 

2. STATEMENT OF THE PROBLEM 

Consider an inhomogeneous anisotropic elastic plane body with unit thickness, occupying the two-dimensional in 
general multiply connected region Ω  with boundary Γ . Its material constants are position dependent. The stress 
displacement relations are 

 ( ) k
ij ijkl

l

uc
x

σ ∂
=

∂
x  (1) 
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where , , , (1, 2)i j k l = , ( , )x y=x , with ku  denotes the displacement and ( )ijklc x  the elastic parameters.  
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Figure 1. Domain Ω  and Boundary 
0

K
ii=

Γ = Γ∪  

The equilibrium equations for plane stress  in the xy  plane are  

 0k
ijkl i

j l

uc q
x x
⎛ ⎞∂∂

+ =⎜ ⎟∂ ∂⎝ ⎠
 (2) 

in which  ( =1,2)iq i  are the body force components. The summation convention (summing from 1 to 2) is used for 
repeated Latin suffices. 
The above equations are subjected to the boundary conditions 

 u u= � ,    ν ν= �                 on uΓ  (3a) 

 x xt t= � ,  y yt t= �                on tΓ  (3b) 

where u� , ν� , xt� , yt�  represent prescribed quantities along the boundary; ,x yt t are the boundary tractions per unit 
thickness defined as 

 ( ) k
i ij j jijkl

l

ut n c n
x

σ ∂= =
∂

x  (4) 

where ( , )x yn n=n denotes the outward pointing normal to the boundary Γ . 
For all points the coefficients ( )ijklc x  are required to satisfy the usual symmetry conditions 
 ( ) ( ) ( ) ( )ijkl ijlk jikl klijc c c c= = =x x x x  (5) 
This limits the number of the coefficients to 6, i.e. 11 12 16 22 26 66,  ,  ,  ,  ,  C C C C C C . Moreover, the coefficients ensure 
the requirement that the system of partial differential equations (2) is elliptic throughout Ω . 

3. SOLUTION PROCEDURE 

Let ( , ),   ( , )u u x y v v x y= =  be the sought solution of equations (2). These functions are twice differentiable in 
Ω .Thus, if the Laplacian operator is applied to them, we have 
 

 2 ( , ) ( =1,2)i iu b x y i∇ =  (6) 
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where 1 2,   u u u v= =   
Equations (6), which henceforth will be referred to as the analog equations of the problem at hand, indicate that the 
solution of equations (2) could be established by solving these Poisson equations under the boundary conditions (3a) 
and (3b), if the fictitious sources ( , ) ( =1,2)ib x y i  were known. The fictitious sources are established using BEM, bi 
are approximated by 

 ( )

1
= a

M
i

i j j
j

b f
=
∑  (7) 

where ( )j jf f r=  are M approximation radial basis functions and ( )i
ja  are 2M coefficients to be determined. Note 

that | |jP jr r P P= = −  is the distance between the collocation point :{ , }j j jP x y  and the point :{ , }P x y ∈Ω∪Γ  (see 

Fig. 1). We look for a solution in the form p
i iu u+ where iu is the homogeneous solution and p

iu  a particular one. 
The particular solution is obtained as 
 

 ( )

1
ˆ= a

M
p i
i j j

j
u u

=
∑  (8) 

where ˆ ˆ ˆ( )= ( , )j j jP ju u r u x y=  is a particular solution of 

 2 ˆ j ju f∇ =  (9) 

Thus, writing the solution of the homogeneous equations (6) in integral form, we have 

 
*

* ( )
( ) [ ( ) ( ) ( ) ]Pqi

i Pq i q
u rucu P u r q u q ds

n nΓ

∂∂
= − −

∂ ∂∫  (10) 

where | |Pqr q P= −  is the distance between the field point :{ , }P x y ∈Ω∪Γ  and source point :{ , }q ξ η which varies 
during the integration.  
Moreover 

 * 1( ) ln( )
2Pq Pqu r r
π

=  (11) 

is the fundamental solution of the Laplace equation and 

 
*( ) 1 cos

2
Pq

Pq

u r
n r

ϕ
π

∂
=

∂
 (12) 

is its normal derivative with respect to point q∈Γ ; ,Pqrϕ = n( . Finally 1, / 2 ,0c α π=  depending on whether 
P∈Ω , p∈Γ , P∉Ω∪Γ , respectively; α is the angle between the tangents to the boundary at point P. For points 
where the boundary is smooth it is 1/ 2c = .  
 
For points P inside Ω ( 1)c = the solution of equations (6) on the basis of equations (8) and (10), is written as 

 
*

* ( )

1

( )
ˆ( ) [ ( ) ( ) ( ) ] a ( )

MPq ii
i Pq i q j j Pq

j

u ruu P u r q u q ds u r
n n =

Γ

∂∂
= − − + ∑

∂ ∂∫  (13) 

 
Using the BEM with N  constant boundary elements equations (10) yields 
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 0
n
∂− =
∂

Hu G u  (14) 

in which H  and G  are known matrices originating from the integration of kernels of the integral equations on the 
boundary; their dimensions are, 2 2N N×  and 2 2N N× , respectively; 1 2 1 2{ }T

N Nu u ν ν ν=u " "u , 
1 2 1 2{ }N N Tu u u

n n n n n n n
ν ν ν∂ ∂ ∂ ∂ ∂ ∂ ∂=

∂ ∂ ∂ ∂ ∂ ∂ ∂
" "u  are vectors including the 2N  nodal values of the boundary displacements 

and normal derivatives of the homogenous solution. 

(Ω)
C

Boundary nodes
Total N Interior nodes

Total M

 

Figure 2. Boundary discretization and domain nodal points 

Application of equations (13) at the M  interior collocating points jx  in Ω  ( 1)c =  (see Fig. 2) yields 

  
n
∂= + −
∂
uu Ba Hu G

�� ��  (15) 

where 1 2 1 2{ }T
N Nu u u ν ν ν=� � � �� � �" "u  includes the values of the displacements at the internal collocation points. The 

hat designates quantities referring to the internal collocation points. We differentiate now equations (13) to obtain the 
first and second derivatives of the displacements at the internal collocation points. Thus, using the same 
discretization we obtain 

 ,x x x x
n
∂= + −
∂
uu B a H u G

�� ��  (16a) 

 , y y y y
n
∂= + −
∂
uu B a H u G

�� ��   (16b) 

 ,xx xx xx xx
n
∂= + −
∂
uu B a H u G

�� ��  (16c) 

 ,xy xy xy xy
n
∂= + −
∂
uu B a H u G

�� ��  (16d) 

 , yy yy yy yy
n
∂= + −
∂
uu B a H u G

�� ��  (16e) 

where B
�

, , , , , , ,x x x yy yy yyB H G B H G
� �� � � �
…  are known matrices originating again from the integration of kernels of the 

integral equations; , , , , , ,x y yyu u u…  are the vectors including the derivative of u�  and 
(1) (1) (1) (2) (2) (2)
1 2 1 2{ }T

M Ma a a a a a=a " " is the vector including the 2M  unknown coefficients. 
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Finally, applying equations (2) at the M  internal collocation points and using equations (16) we obtain the following 
set of 2M  equations. 

 
n
∂+ + =
∂
uAa u D FC  (17) 

Equations (17) and (14) constitute a set of 2 2N M+  simultaneous equations for 4 2N M+  unknowns, i.e. , ,
n
∂
∂
uu a . 

The additional required 2N  equations will result from the boundary conditions. Before writing these equations 
certain manipulations are necessary to express the boundary tractions ,x yt t  prescribed on tΓ  by equations (4). Thus 
we may write 

 ( ) cos( ) cos( )k k k
i ij j j jijkl ijkl

l

u u ut x n c n c n
x n t

σ ∂ ∂ ∂⎡ ⎤= = = +⎢ ⎥⎣ ⎦∂ ∂ ∂
l lx xn, t,  (18) 

The tangential derivatives ,tu , ,tν  can be expressed in terms of the boundary displacements using numerical 
differentiation. Thus, the boundary conditions on tΓ  will have the form 

 1 2 3 4
n
∂+ + =
∂
ua u a a aa  (19) 

while on uΓ  

 1 2 3 4
n
∂+ + =
∂
uu ab b b b  (20) 

Equations (19) and (20) may be combined as 

 1 2 3 4
n
∂+ + =
∂
uA u A A Aa  (21) 

where 

 11 1
⎡ ⎤= ⎣ ⎦
aA b ,  22 2

⎡ ⎤= ⎣ ⎦
aA b ,   33 3

⎡ ⎤= ⎣ ⎦
aA b  (22) 

Once the quantities , ,
n
∂
∂
uu a  are established the displacements and their derivatives are evaluated using equations 

(15) and (16). For points x  not coinciding with the internal collocation points the displacements are evaluated from 
the discretized counterparts of equations (13). 

4. NUMERICAL RESULTS 

On the basis of the analytical and numerical procedures developed in previous section, a computer program in 
FORTRAN has been written to obtain numerical results for the considered problem. Certain example problems have 
been studied. The obtained numerical results validate the effectiveness and accuracy of the developed method for 
solving this type of problems. Radial basis functions of multiquadric type were employed to obtain the numerical 
results (see Appendix). 
Example 1. Square plane body 
A square plane body, : 0.5 , 0.5x yΩ − ≤ ≤ , of uniform unit thickness with variable modulus of elasticity subjected to 
prescribed boundary displacements, tractions and body forces has been analyzed. The employed data are 

110000 30(1 )E x= + + , 1 /E E κ= , 2E E κ= , 1 0.3ν = , 2 1ν κν= , 2,κ =  12 1(1 )
2
EG ν κ= + , 
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1.4(110030 30 )18.2926 2 10.976 2 0.365(110030 30 ) 2
2 0.6 2x

xq y x x +
= − − − + −

+
, 

1.4 1.4 1.4(110030 30 )30 0.365(110030 30 ) 2
2 0.6 2 2 0.6 2y

x y xq x+ +
= − − − +

+ +   
 The body was subjected to the prescribed boundary conditions. The obtained numerical results are presented in 
Table 1 as compared with those from the exact solution. 

1 10.5 0.05, 0.1825(110030 30 ) 2 1.2195(110030 30 ) 2yu x t x x x= − + = + − +��  on  0.5y=−  
2

2 20.5 0.2 , 0.5 0.05u y y v y= + = +� �  on  0.5x=  

3 30.5 0.05, 0.1825(110030 30 ) 2 1.2195(110030 30 ) 2yu x t x x x= + = + + +��  on  0.5y=  
2

4 40.5 0.2 , 0.5 0.05u y y v y= − + = − +� �  on  0.5x=−  
 

Table 1: Computed interior displacements in a square body 

u  v  
 
x  

 
y  Present Exact Present Exact 

-0.375 0.375 -0.113 -0.113 -0.112 -0.113 

-0.25 0.375 -0.065 -0.066 -0.081 -0.081 

-0.125 0.375 -0.019 -0.019 -0.044 -0.044 

0. 0.375 0.028 0.028 0 0 

0.125 0.375 0.075 0.075 0.049 0.05 

0.25 0.375 0.121 0.122 0.106 0.106 

0.375 0.375 0.169 0.169 0.169 0.169 

 

Example 2. Deformation of a layered anisotropic elastic slab 
In this example a  layered slab in frictionless contact with a rigid base along one side under compression along the 
whole side BC is considered. The material consists of 10 homogeneous anisotropic layers which lie in the intervals 
0.1 0.1( 1)n y n≤ ≤ +   for  0,1, 2,....,9n =  
The constant elastic modulus in each of these layers are given by 

1 2 126.14[1 sin(0.1 )],  1.64[1 sin(0.1 )],  5.96[1 sin(0.1 )],  1.64[1 sin(0.1 )]c n c n c n c nε π ε π ε π ε π= + = + = + = +  
 for  0,1, 2,....,9n =  with ε  a small parameter. The boundary conditions for this problem are (see Fig. 3)  

0, 0xt v= =� �    on DA 
0, 0x yt t= =� �      on AB and CD 

ˆ0,x yt t P= = −� �    on BC 
It is possible to obtain an analytical solution to this problem by taking displacements in each homogeneous layer in 
the form ,     n n n nu a x b v c y d= + = +  for  0.1 0.1( 1)n y n≤ ≤ +  and  0,1, 2,....,9n =  where , , ,n n n na b c d  are constants. 
Imposing continuity conditions on the displacements and tractions at each of interfaces 0.1,0.2,...,0.9y =  together 
with the boundary conditions at the boundaries AB, BC, CD and DA leads to 40 linear algebraic equations which 
may be solved for the 40 unknowns 0 0 0 0 1 1 1 1 9 9 9 9, , , , , , , ,...., , , ,a b c d a b c d a b c d . Equations of displacements then 
provides the displacements at all points of the layered slab. 
Results of some selected points and selected values of  ε  are given in Tables 2 and 3 . 
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Figure 3. Deformation of a layered slab 

 
 

Table 2: Displacement v for the layered slab 

Position 0.1ε =  0.2ε =  0.3ε =  
( , )y x  BEM Analytical BEM Analytical BEM Analytical 
(0.25,0.5) -0.042 -0.042 -0.040 -0.041 -0.038 -0.041 
(0.45,0.5) -0.076 -0.075 -0.071 -0.072 -0.068 -0.069 
(0.65,0.5) -0.110 -0.107 -0.103 -0.101 -0.097 -0.097 
(0.85,0.5) -0.143 -0.140 -0.134 -0.132 -0.127 -0.125 

 
Table 3 : Stresses yσ  for the layered slab 

Position 0.1ε =  0.2ε =  0.3ε =  
( , )y x  BEM Analytical BEM Analytical BEM Analytical 
(0.25,0.5) -1.030 -1.0 -1.058 -1.0 -1.085 -1.0 
(0.45,0.5) -1.028 -1.0 -1.053 -1.0 -1.077 -1.0 
(0.65,0.5) -1.022 -1.0 -1.042 -1.0 -1.060 -1.0 
(0.85,0.5) -1.012 -1.0 -1.022 -1.0 -1.031 -1.0 
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APPENDIX A 

A.1. Derivatives of the kernel functions 
The derivatives of the distance 

 { } { }2 2( ) ( ) , , ,r x y x yξ η ξ η= − + − ∈Ω ∈Γ  (A.1) 

are evaluated from the following relations [3] 

B(l,0) 

A(0,0) 

C(l,l) 

D(0,l) 

P̂
y

x 
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 ,x y
x yr r r r

r rξ η
ξ η− −

= − = − = − = −  

 

 
2 2

, ,y x yx
xx yy xy

r r rr
r r r

r r r
= = = −  

 
 ( ), ( )n x x y y t x y y xr r n r n r r n r n= − + = − − +  (A.2) 

nξ , nη are directional cosines of the outward normal vector to the boundary at point{ },ξ η .  
Using equations (A.2) the derivatives of the fundamental solution may be expressed as 

 * *1 1,
2 2

yx
x y

rr
u u

r rπ π
= =  

 
2 2

* * * *
2 2

1 1, ,
2

y x x y
xx yy xx xy

r r r r
u u u u

r rπ π
−

= = − = −  

 
2 2

*
3

( ) 21 y x n x y t
nxx

r r r r r r
u

rπ
− +

= −  * *
nyy nxxu u= −  

2 2
*

3

( ) 21 y x t x y n
nxy

r r r r r r
u

rπ
− +

= −  (A.3) 

 
A.2. Derivatives of the function ˆ ju  
For the approximation radial basis functions of multiquadric type yields after integration equations (9)  

 
3

2 2 2 2 2 2 21ˆ ln( ) ( 4 )
3 9j
cu c r c c r c r c= − + + + + +  where 2 2( ) ( )j jr x x y y= − + −  (A.4) 

Differentiating  equations (A4) gives 

 
3

2 2
, 2 2 2 2

1ˆ ( 2 ( )
3

j x j
cu r c x x

r c r c c
= + − −

+ + +
 

3
2 2

, 2 2 2 2

1ˆ ( 2 ( )
3

j y j
cu r c y y

r c r c c
= + − −

+ + +
 

 

 
2 2 3

2 3 2 2
, 2 2 3 / 2 2 2 2 2 2 2 2

1 2 1ˆ ( ) 2
3( ) ( ) 3

j xx j
r c c cu r c x x r c

r c r c c r c r c c

⎡ ⎤ ⎛ ⎞+ +
= + − + + −⎢ ⎥ ⎜ ⎟⎜ ⎟+ ⎢ ⎥+ + + + +⎝ ⎠⎣ ⎦

 

 

 
2 2 3

2 3 2 2
, 2 2 3 / 2 2 2 2 2 2 2 2

1 2 1ˆ ( ) 2
3( ) ( ) 3

j yy j
r c c cu r c y y r c

r c r c c r c r c c

⎡ ⎤ ⎛ ⎞+ +
= + − + + −⎢ ⎥ ⎜ ⎟⎜ ⎟+ ⎢ ⎥+ + + + +⎝ ⎠⎣ ⎦

 

 

 
2 2

2 3
, 2 2 3 / 2 2 2 2

1 2ˆ ( )( )
3( ) ( )

j xy j j
r c cu r c x x y y

r c r c c

⎡ ⎤+ +
= + − −⎢ ⎥

+ ⎢ ⎥+ +⎣ ⎦
 (A.5) 

It can be readily proved that 

 , ,0 0
ˆ ˆlim 0, lim 0j x j yr r
u u

→ →
= =  , , ,0 0 0

lim , lim , lim 0
2 2j xx j yy j xyr r r

c cu u u
→ → →

= = =  
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Abstract. A BEM based meshless variational method is presented for the solution of second order elliptic 
partial differential equation with variable coefficients on domains of arbitrary shape, which may be multiply 
connected. Using the concept of the analog equation, the original equation is converted into a Poisson equation 
under a fictitious source, which is approximated with radial basis function series of multiquadric (MQ) type. 
The integral representation of the solution of the substitute equation yields shape functions, which satisfy both 
essential and natural boundary conditions. The functional that yields the considered PDE as the associated 
Euler-Lagrange equation is constructed. The minimization of this functional yields not only the Ritz  coefficients 
but also permits the evaluation of optimal values for the shape parameters, which may be different for each 
collocation point of the multiquadrics as well as optimal position of the interior collocation points. Since the 
arising domain integrals are converted to boundary line integrals, the method is boundary-only and, therefore, 
it maintains all the advantages of the pure BEM. Example problems are studied, which demonstrate the 
efficiency and the great accuracy of the developed method. 
 
 
1 INTRODUCTION 

One the most useful approximate methods for solving differential equations stemming from variational 
principles is the Ritz method [1]. In this method the solution of the differential equations is approximated by the 
finite series 

 
1

( )
n

n i i
i

u a ψ
=

= ∑ x ,    : ( , )x yx  (1) 

where ( )iψ x  are known functions satisfying the essential (kinematic) boundary conditions, and ia  coefficients 
to be determined from the minimization of the functional, whose the associated Euler-Lagrange equation is the 
PDE to be solved. The coefficients thus determined are referred to as the Ritz coefficients and the functions 
( )iψ x  as shape functions or Ritz coordinates. It can be shown that for n → ∞  in this process the sequence 
{ }nu  converges in energy to the exact solution provided that the set of ( )iψ x  is complete [2]. When n  is small, 
we can still reach very good approximations to the exact solution if a judicious selection of ( )iψ x  is made. It is 
apparent that the application of the Ritz method requires beforehand: (a) The existence of a functional that yields 
the considered PDE, (b) The possibility to select shape functions satisfying the kinematic boundary conditions 

For differential equations of mathematical physics resulting from variational principles, the first requirement 
is satisfied. For non-Euler functional classes of PDE’s, either extremal variational principles can be constructed 
[3] or recourse to the Galerkin principle can be made [2]. The second requirement appears as the most important 
because construction of admissible shape function is a very difficult problem. Such functions have been 
constructed for domains of simple geometry such as rectangles, circles, triangles, and ellipses. However, no 
method for constructing systematically admissible shape functions for domains of irregular shape has been 
reported in the literature. Therefore, the applicability of the Ritz method has been limited. Actually, the FEM 
overcomes this major shortcoming by constructing admissible functions at element level at the great cost of 
domain discretization and the discontinuity complications. 
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In this paper a method is presented for constructing admissible shape functions for domains of arbitrary 

shape, which satisfy not only the kinematic but also the natural boundary conditions. Without restricting its 
generality, the method is demonstrated for the complete second order elliptic PDE with variable coefficients. 
The proposed method is based on the concept of the analog equation [4,5], which converts the original equation 
to a Poisson equation with a fictitious unknown source. The integral representation of the solution of the 
substitute equation yields admissible shape functions, which satisfy both essential and natural boundary 
conditions. Hence we may refer to this new method as the generalized Ritz method. The unknown source is 
represented by a radial basis functions series, whose coefficients constitute the Ritz coefficients. Radial basis 
functions of MQ type are employed in this investigation. The accuracy of the solution depends on a shape 
parameter of the MQ’s and the position of the domain collocation points. Therefore, extended research is 
ongoing to optimize these parameters [6]. Nevertheless, all these quantities are chosen rather arbitrarily or 
empirically. A major advantage of the presented method is that it permits the establishment of optimum values 
for the shape parameters of the MQ’s as well as for position of the collocation points, because these quantities 
can be included in the design parameters of the optimization problem. Moreover, the domain integral of the 
functional that must be evaluated during the minimization process is converted into a boundary integral. Thus, 
no domain discretization is required and the method becomes boundary-only maintaining thus all the advantages 
of the BEM. The obtained numerical results demonstrate the effectiveness and accuracy of the method and bring 
the Ritz method again into the arena. 

2 PROBLEM STATEMENT 

We consider the partial differential equation 

 , 2 , , , , ( )xx xy yy x yAu Bu Cu Du Eu Fu g+ + + + + = x   in ∈ Ωx  (2) 

subject to the boundary conditions 

 
( ) ( )

( ),

, , ( ),

a

n t b

u

u u u

α

κ γ

= ∈ Γ

+ ⋅ + ⋅ = ∈ Γ

x x

m n m t x x
   (3a,b) 

where a bΓ = Γ ∪ Γ  is the boundary of Ω , which may be multiply-connected; ( )u u= x  is the unknown field 
function; , , ,A B F…  position dependent coefficients satisfying the ellipticity condition 2 0B AC− <  and 

( ) ( )x y x yAn Bn Bn Cn= + + +m i j  is a vector in the direction of the connormal on the boundary; n  and t  are 
the normal and the tangential unit vectors on the boundary. Finally, ( )κ x , ( )α x , ( )γ x  are functions specified 
on Γ . In writing the boundary condition (3b) the identity ( ) ( ), ,n tu u u∇ ⋅ = ⋅ + ⋅m m n m t  has been employed, 
for reasons explained later. A direct BEM solution for the problem at hand is out of question, because, except 
for special cases, the fundamental solution can not be established. For this purpose we construct the functional 

 ( )2 2 2 21 1
( ) , 2 , , ,

2 2x x y yJ u Au Bu u Cu Fu gu d u u dsκ γ
Ω Γ

   = + + − + Ω+ −      ∫ ∫  (4) 

We can readily show that the condition ( ) 0J uδ =  yields the boundary value (2), (3) provided that 

 , ,x yA B D+ = ,         , ,x yB C E+ =  (5a,b) 

Therefore, the solution of Eqn (2) under the boundary conditions (3a,b) make ( ) minJ u = . 
The boundary value problem (2), (3) under the conditions (5) for suitable meaning of the coefficients occurs 

in many physical problems such as thermostatic, elastostatic, electrostatic and seepage problems, where the 
involved media exhibit heterogeneous anisotropic properties. 

3 THE ANALOG EQUATION SOLUTION 

Let ( )u u= x  be the sought solution to Eqn (2). If the Laplace operator is applied to it, we have 
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 2 ( )u b∇ = x  (6) 
where ( )b x  represents an unknown fictitious source. Eqn (6) indicates that the solution of Eqn (2) could be 
established by solving this equation under the boundary conditions (3), if the ( )b x  is first established. For this 
purpose we write the solution of Eqn (6) in integral form [6]. 

 ( ) ( )u u bd u q q u dsε ∗ ∗ ∗

Ω Γ
= Ω− −∫ ∫x     ∈ Ω ∪ Γx  (7) 

in which ,nq u= ; /2u nr π∗ = A  is the fundamental solution to Eqn (6) and ,nq u∗ ∗=  its derivative normal to 
the boundary with r = − xξ  ∈ Ω∪ Γx  and ∈ Γξ ; ε  is a constant ( 1ε =  if ∈ Ωx , /2ε α π=  
if ∈ Γx and 0ε =  if ∉ Ω∪ Γx ; α  is the interior angle between the tangents of boundary at point x ). Note that 
it is 1/2ε =  for points where the boundary is smooth. 

The domain integral in Eqn (7) is converting the to boundary line integral by setting 

 
1

M

j j
j

b fα
=

= ∑  (8) 

where ( )j jf f r= , jr = −x x , is a set of radial basis approximating functions; jx are collocations points in Ω  

and jα  coefficients to be determined. Using the Green’s reciprocal identity [6] we have 

 

{ }
1

1

ˆ ˆ ˆ

M

j j
j

M

j j j j
j

u bd a u f d

a u u q q u dsε

∗ ∗

Ω Ω
=

∗ ∗

Γ=

Ω = Ω

 = + − 

∑∫ ∫

∑ ∫
 (9) 

in which ˆ ( )ju x  is a particular solution of the equation 

 2
ĵ ju f∇ =         1,2,...,j M=  (10) 

We can get rid off the tangential derivative ,tu  in Eqn (3b) applying one of the following methods: (i) Using 
the integral representation of the tangential derivative on the boundary [6], (ii) Introducing ,nq u=  from (3b) 
into (7) and integrating by parts along the boundary to eliminate ,tu . This is always feasible because it 
( ) 0⋅ ≠m n  as a result of  the ellipticity condition, (iii) Approximating the derivative numerically using the 
nodal values of u  on the discretized boundary. The last method is the computationally simplest and it is used in 
this investigation. On the base of the aforementioned it is convenient to combine the boundary conditions (3a,b) 
and write them in the form 

 1 2 3u qβ β β+ =  (11) 

where iβ  are known quantities. 

4 NUMERICAL IMPLEMENTATION 

4.1 The admissible functions 
The BEM with constant elements is used to approximate the boundary integrals in Eqn (7). In this case it is 

α π= , hence 1/2ε =  on the elements. If N  is the number of the boundary nodal points (see Fig. 1), we 
obtain [6] 
 − + =Hu Gq Ka 0  (12) 
where a  is the vector of the M  coefficients ja ; u , q  are the vectors of the N  boundary nodal values of u  
and q , respectively, and 
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(Ω)

Γ 

Boundary nodes 
Total N 

Interior nodes 
Total M 

jkr

ikr

jir

j

i

k

 

 Figure 1: Boundary discretization and domain nodal points. 

 
1 1

1
ˆ ˆ ˆ
2

N N
i k k

ij j ik j ik j
k k

K u H u G q
= =

= − +∑ ∑� ,            ( )ik ik
k

G u r ds∗= ∫  (13a,b) 

 ( )ik ik
k

H q r ds∗= ∫� ,                      ( )ik ik ik
k

H q r ds δ∗= −∫ ,    (13c,d) 

in which 
k∫  indicates integration on the k  element and ˆ (̂ )i

j jiu u r= , ˆ (̂ )k
j jku u r= . Moreover, the boundary 

condition (11), when applied to the N  boundary nodal points, yields 

 1 2 3+ =u qβ β β  (14) 

where 1 2,β β  are known N N×  diagonal matrices and 3β  vector including the values of , 1,2, 3i iβ =  at the 

N  boundary nodal points. For points x  inside Ω , the discretized counterpart of Eqn (7) gives 

 
1 1 1

( )
M N N

j k k
j k k

j k k

u K a H u G q
= = =

= + −∑ ∑ ∑x x xx �  (15) 

Eqns (12) and (14) can be used to eliminate the boundary quantities ,u q  from Eqn (15). Thus we obtain 

 
1

( ) ( ) ( )
M

j j
j

u a S b
=

= +∑x x x  (16) 

For homogeneous boundary conditions it is ( ) 0b =x . Thus, we may set 

 ( ) ( )j jSψ =x x ,  0( ) ( )bψ =x x  (17) 

Apparently, the functions defined in Eqn (17) are admissible functions satisfying not only the kinematic 
boundary conditions but also the natural ones. More, specifically, ( )jψ x  satisfy homogeneous boundary 
conditions while 0( )ψ x  the given nonhomgeneous boundary conditions. The derivatives are of ( )jψ x  for points 
x  inside Ω  are obtained by direct differentiation of Eqn (7) and following similar numerical procedure to 
eliminate the boundary values. 

4.2 Evaluation of the Ritz Coefficients 

The coefficients ja  will be evaluated using expression (16) and minimizing the functional (4). The 
minimization procedure requires the numerical evaluation of ( )J u . Since the expression (16) satisfies the 
boundary conditions, both kinematic and natural, the boundary integral vanishes. In order to maintain the pure 
boundary character of the method, the domain integral in (4) is converted to line boundary integral using the 
following procedure. Let 
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 ( )2 2 21
( ) , 2 , , ,

2 x x y yR Au Bu u Cu Fu gu= + + − +x  (19) 

represent the integrand of the domain integral. We approximate it by 

 
1

( ) ( )
M

j j
j

R a f r
=
∑x �  (20) 

where ( )jf r  radial functions, not necessarily the same used in (8). Application of (19) at the collocation points 
yields 
 =a RΦ  (20) 
where 

 [ ( )]jif r=Φ ,     { ( )}iR x=R ,    ji i jr = −x x ,   , 1,2, ,i j M= …  (21) 

Thus the domain integral is written as 

 
1

( ) ( )
M

j j
j

R d a f r d
Ω Ω=

Ω Ω∑∫ ∫x �  (22) 

Subsequently, applying the Green’ reciprocal identity [6] 

 ( ) ( )2 2 , ,n nv u u v d vu uv ds
Ω Γ

∇ − ∇ Ω = −∫ ∫  (23) 

for 1v =  and ĵu u=  we obtain 

 
1

ˆ ˆ( ) ( )
k

N

j j j
k

f d q r ds q r ds
Ω Γ =

Ω = ∑∫ ∫ ∫x x� ,  k∈ Γx  (24) 

and the domain integral (22) can be written as 

 
1 1

ˆ ˆ( )
M N

T T
j jk

j k

R d a Q
Ω = =

Ω =∑∑∫ x 1 Q a�  (25) 

where ˆ ˆ ( )
k

jk j jkQ q r ds
Γ

= ∫  and {1 1 1}T =1 " . Finally, introducing the vector a  from Eqn (20) into (25) we 

obtain 

 1ˆ( ) TR d −

Ω
Ω∫ x 1 Q R� Φ  (26) 

Special care is taken to avoid possible ill-conditioning of the matrix Φ  [8] 

4.3 Minimization of the functional ( )J u  

The herein employed radial basis functions jf  are the multiquadrics (MQ’s), which are defined as 

 2 2
j jf r c= +  (27) 

where jc  are the shape parameters, in general different for each collocation point. The particular solution of 
Eqn (10) for jf  given by Eqn (27) is obtained as 

 
3

2 2 2 2 2 2 21
ˆ ( ) ( 4 )

3 9j j j j j j

c
u u c r c c r c r c= − + + + + +A  (28) 
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It is apparent that the functional ( )J u  depends on the following sets of parameters. 

(i)  The M  coefficients ja  
(ii) The M  shape parameters jc  of MQ’s. 
(iii) The 2M coordinates ,j jx y  of the collocation points. 

Therefore, we can search for the minimum using various levels of optimization depending on the design 
parameters that we wish to be involved in the optimization procedure. Although, the functional ( )J u  is 
quadratic with respect to ja , and their values could be established from the solution of a linear algebraic system 
[9], the inclusion however of jc  and ,j jx y  requires direct minimization methods for nonlinear objective 
functions. In this investigation the optimization problem is solved using the successive quadratic programming 
(SQP) with numerical evaluation of the gradient of the objective functions. The results have been improved 
using the Courant’s device, that is by minimizing the functional 

 ( ) [ ]22 2 21
( ) , 2 , , , ( )

2 x x y yJ u Au Bu u Cu Fu gu L u g d
Ω

 
= + + − + + − Ω 

  ∫  (29) 

where ( )L u  represents the differential operator of Eqn (2). This formulation minimizes also the residual 
( )L u g− , which implies also minimization of the error exactu u−  [10]. 

4 NUMERICAL RESULTS 

The thermal distribution in a plane body with inhomogeneous material properties and the irregular shape of 
Fig. 2 is studied. The thermal conductivity is taken to vary according to the law 

 2( , ) (2 2)k x y x y= + +  (30) 

The flux ,n nq ku= −  hence the normal derivative ,nu , is prescribed along the sides AB  and CD  as 

 
2

2

17 20 15
, ( , 0)

2(1 )n

x x
u x

x
+ −

= −
+

,         
2

2

45 46 32
, (0.5, )

(3 )n

y y
u y

y
− + +

=
+

 (31a,b) 

while the temperature u  is prescribed on the remaining part of the boundary as 

 
2 26 6 20 30

( , ) 100
2 2b

x y xy
u x y

x y
− + +

= +
+ +

 (31c,d) 
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 Figure 2: Irregularly shaped plane body. 
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The temperature ( , )u x y  will be obtained as a solution of the equation 

 ( ), , , , , , 0xx yy x x y yk u u k u k u+ + + = ,    in Ω  (32) 

subject to boundary conditions (31a,b,c,d). Apparently, the coefficients of Eqn (32) satisfy the conditions (5a,b) 
as well as the ellipticity condition. The exact solution is 

 
2 26 6 20 30

( , ) 100
2 2

x y xy
u x y

x y
− + +

= +
+ +

 (33) 

 
x  y  u  xq  yq  

0.25 111.365 
111.364 

40.113 
40.500 

25.407 
25.750 

0.3125 111.151 
111.147 

36.331 
36.687 

25.584 
27.836 

0.375 110.930 
110.924 

32.328 
32.625 

29.842 
29.968 

0.4375 110.700 
110.694 

28.100 
28.312 

32.131 
32.148 

0.500 110.464 
110.458 

23.628 
23.750 

34.431 
34.375 

0.5625 110.222 
110.217 

18.889 
18.937 

36.744 
36.648 

0.625 109.975 
109.970 

13.864 
13.875 

39.088 
38.968 

0.6875 109.722 
109.718 

8.553 
8.562 

41.485 
41.336 

0.750 109.464 
109.462 

2.966 
3.000 

43.941 
43.750 

0.8125 109.202 
109.200 

-2.869 
-2.812 

46.439 
46.210 

0.25 

0.875 108.936 
108.935 

-8.928 
-8.875 

48.934 
48.720 

Table 1. Results for temperature and derivatives ( 130N = , 83M = ) Upper value: 
computed; Lower value exact 
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The obtained results for the temperature and the fluxes ,x xq kT= − , ,y yq kT= −  are given in Table 1 as 

compared with the exact ones. Moreover, the relative error for the computed solution at the collocation points is 
shown in Fig. 3 as obtained for optimal c , and ja . The results have been obtained using 130N =  and 

29M =  and 83M = . It is apparent that a 29M =  collocation points yields accurate result. The RMS 
(Relative Mean Square) error is given in Table 2. 

 

M  RMS  ( )J u  ( )exactJ u  
29 68.139 10−×  56.776 56.962 

83 64.724 10−×  56.939 56.962 

Table 2. Relative Mean Square error RMS ( 130N = ) 

5 CONCLUSIONS 

A new variational method, to which we refer as generalized Ritz method, was presented for solving the general 
second order elliptic PDE on domains of arbitrary shape. The admissible functions are established using a BEM 
technique based on the concept of the analog equation. The main conclusions that can be drawn are: 
(a) A systematic procedure is developed to construct admissible functions for domains of arbitrary shape, which 

have continuous derivatives on the whole domain 
(b) Since the admissible functions satisfy not only the kinematic boundary conditions, as in the conventional 

Ritz method, but also the natural ones, the boundary integral term in the functional vanishes. 
(c). The domain integral of the functional is converted to a boundary line integral. Thus, the method becomes 

boundary-only and it maintains all the advantages of the pure BEM. 
(d) The error is minimized by including the shape parameters of the MQ’s and the position of the domain 

collocation points in the design variable in the minimization procedure. This procedure yields optimal MQ’s 
(e) Accurate numerical results are obtained not only for the solution but also for its derivatives. The accuracy is 

highly increased by including the residual of the equation in the functional. 
Generally, we can say that the presented method eliminates the drawbacks of the conventional Ritz method and 
makes it operative and efficient again for solution of physical problems described by 2nd order PDE’s. 
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Abstract. This work presents a direct time domain methodology for Fluid-Structure Interaction analysis 
between linearized fluids and rigid bodies.  To this end, a direct time domain Boundary Element formulation 
pertaining to 3-D wave propagation in acoustic media is developed.  The method is based on higher order B 
Spline fundamental solutions developed for scalar wave propagation in 3-D infinite media and uses higher 
order spatial discretization.  The method is used within the B Spline Impulse Response framework for the 
calculation of the time history of the response of the acoustic medium and the calculation of the hydrodynamic 
forces on the wetted surface of the fluid-structure interface.  The proposed B Spline BEM is stable as compared 
to the relevant Retarded Potential formulations reported in the literature.  Although the method is non-local in 
time, only a relatively small number of time steps are required in the B-Spline Response functions, making the 
method very efficient especially for prolonged external excitations.  Fluid Structure interaction models are 
proposed for the dynamics of rigid bodies submerged in, or floating on, semi-infinite fluid domains.  The 
applicability of the proposed models are also demonstrated in an application example. 
 
 
1 INTRODUCTION 

The physical model of a marine vessel traveling over open water is a typical multi-phase problem involving 
distinct media, such as solids and fluids, and their dynamic interaction.  Development of analytical and 
mathematical models for the representation of such dynamic coupled media draw expertise from such diverse 
areas as structural and fluid mechanics, wave propagation in fluids and solids, vibrations, hydrodynamics and 
structural dynamics.  Commonly used models consist of three interacting components, i.e., the vessel, the 
propulsion system, and the surrounding fluid medium, as shown in Figure 1.  As the propulsion system puts the 
vessel into motion, the latter interacts with the surrounding fluid medium that resists the motion, applying, thus, 

additional demands on the propulsion system.  Typically, a 
number of assumptions related to the behavior of the physical 
system lead to idealization of the physical problem and yield 
mathematical models that can be solved through analytical or 
computational procedures.  Analytical solutions are generally 
restricted to extremely simple geometries and adopt 
oversimplifying assumptions. Computational procedures, 
such as the Boundary Element Method (BEM) and the Finite 
Element Method (FEM), are better suited for the solution of 
such involved problems.  The FEM can be used for the 
modeling of the coupled fluid-vessel-propulsion media.  
However, treatment of infinite media requires the 
development of special FEM procedures[1].  Alternatively, the 

BEM can be used for the modeling of the fluid media because of its ability to implicitly satisfy the boundary 
condition at infinity[2], while the FEM models the remaining components of the system.  Coupling of the two 
methods is performed at the interface between the two domains[3-5].  Models for real time ship maneuvering 
simulation establish a relationship between the ship propulsion, the corresponding hydrodynamic forces and 
models of marine vessels.  Such models integrate the dynamic and kinetic models of the vessel with various 
hydrodynamic models for the fluid, and are reported in the literature[6-8].  Effective models of real time ship 
maneuvering simulation require fast and efficient models of the components of the system.  Kinetic and dynamic 
models of the vessel reported in the literature meet these criteria, in general.  However, FEM or BEM dynamic 

 

Ship 
♦Acceleration 
♦Forces 

 

Propulsion 
♦Force,  
♦Steering Angle Fluid 

♦Pressure 
♦Potential 

Figure 1 Typical Interacting Components of 
a Marine Vessel Model 
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models for the fluid typically require solution of large system of equations, limiting, thus, the ability to simulate 
the vessel motion in real time.  

The objective of the present work addresses the development of an efficient model for ship maneuvering 
simulation in real time.  The proposed model consists of a rigid vessel of arbitrary geometry, and the linearized 
fluid while the propulsion force is assumed as an external force to the system.  The propulsion force is 
considered as the net driving propeller force of the system required to accelerate the vessel.  This implies that 
hydrodynamic forces that develop due to constant velocity of the vessel are not accounted for; however, it is the 
focus of current research.  A direct time domain B-Spline BEM is proposed for the modeling of fluid media.  
The method is based on higher order B-Spline fundamental solutions developed for scalar wave propagation in 
3-D infinite media.  It is used within the B Spline Impulse Response framework [9,10] for the calculation of: (i) 
the time history of the response of the surface of the acoustic medium, (ii) the calculation of the hydrodynamic 
forces on the wetted surface of the vessel, and (iii) the development of a simplified model of a rigid vessel that 
calculates the hydrodynamic forces and moments at a reference point of the rigid vessel, due to an arbitrary 
applied acceleration.  

  The following sections describe briefly the proposed formulations and models and present a demonstration 
example. 

2 BEM FORMULATION 

2.1 Governing Equation and Integral Representation 
The differential governing equation for wave propagation through an inviscid, compressible acoustic medium 

of volume V is expressed as, 

( ) ( ) ( ) 01
2

2 =+−∇ t,ft,p
c

t,p xxx ��      (1) 

 
where, p is the pressure, x is the position vector, t represents time, f is the body source, 2∇  is the Laplacian 

operator, and c is the wave propagation velocity in the medium.  In view of the second derivative appearing in 
the governing Eq. (1), f(x,t) has to be at least twice continuously differentiable and vanishing for t<0.  In the 
proposed formulation, the body source is assumed to be a point source applied at x  with time varying intensity 
of a 4th order B Spline polynomial, i.e., 

 
( ) ( )tB)t,(f o

4xyx −δ=               (2) 
 

B Spline functions are piecewise smooth polynomials of degree k-1 with k-2 continuous derivatives and are 
defined based on a knot sequence ,...,,,n,k/tntn 210    =∆= .  They are expressed in a compact form in the 
normalized interval [ ]10,   as, 
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=τ= ∑
−

=          (3) 

 
where ( ) ttt n ∆−=τ  represents the normalized time, and αl,m are the polynomial coefficients associated to 

the term τm of polynomial l that defines the B-Spline[11].  B-Spline polynomials have the properties 
 

( ) ( ) [ ]knn
k
n

k
n t,tttB,ttB +∉=∀=∑ 0      1                    (4) 

 
2.2 Integral Representation and the B-Spline Fundamental Solutions 

Following well-established procedures[2], the governing equation can be expressed in a Boundary Integral 
Equation (BIE) form as, 

 
( ) ( ) ( )( ) ( )( )[ ]∫ −=

S

dStptTtqtGtpc ,,,,,,, xξxxξxξξ                      (5) 

 
where x and ξ are points in the domain or its boundary, the integration is over the boundary, S, of the 
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domain, and G and T are the associated fundamental solutions.  The field variables  )t,(p x  and ( ) ( )
n
xx

∂
∂

=
t,pt,q  

correspond to the pressure and its derivative in the direction of the outward normal, n, to the boundary, 
respectively.  The term ( )ξc  is known as the “jump term” and depends on the location of point ξ and the 
smoothness of the boundary in its neighbourhood.  The fundamental solutions G and T developed in this work 
are associated to the application of a point source at point x (source point) of B-Spline modulation, Eq. (2).  
They satisfy the continuity requirements of the governing equation and are expressed as, 
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            (6b) 

 
where GB and TB indicate the B-Spline fundamental solutions, ξx −=r  represents the distance between the 

source point, x, and a field point, ξ over the 3-D solution domain.  It can be shown that the fundamental 
solutions are singular only when the source point coincides with the receiver point at times Tt ∆<<0 . 
 
2.3 BEM and the B-Spline Impulse Response Function (BIRF) 

Following the procedures established in [11] Eq. [5] can be expressed in a discrete form in space and time on 
the boundary of the domain, at time instant, tN, as 

 

[ ]∑
+

=

+−+− −=
1

1

22

2
1 N

n

nNNnNNN pTqGp       (7) 

 
where superscripts indicate the time step at which quantities are evaluated at. The discrete form of Eq (4) 

implies that:  
(i) The surface S of the acoustic medium is discretized in a total of NE surface elements for a total of NN 

boundary nodes.  The present work implements higher order 3-D surface elements in an isoparametric 
formulation. 

(ii) The temporal discretization of the field variables is based on B-Spline function approximation schemes of 
the same order as the B-Spline fundamental solutions. Eq (7) is evaluated at time knot tN and the associated time  
knot sequence is 
 

22 1 0     
4

+=
∆

= N,,,,ntntn "      (8) 

 
(iii) B-Spline fundamental solutions of the 4th order, Eq. (6), are developed and adopted. 
(iv) The coefficient matrices GN and TN are of size NN x NN and represent the influence of a source 

boundary node on a receiver boundary node.  These matrices are evaluated based on integrals of the B-Spline 
fundamental solutions over the surface of each element for all boundary nodes.  Standard Gaussian quadrature is 
used for the non-singular integration of the kernels.  Singularities are also integrated numerically using triangle 
coordinates and a successive mapping technique.  In both cases, integrations are performed based on a 
subelement division approach[11].  Vectors p and q are of size NN x 1 and represent the value of the pressure and 
its normal derivative, respectively, at every boundary node due to a single B-Spline impulse excitation applied at 
a time step indicated by the superscript.   

Equations (7) indicate that a solution can be obtained for the B-Spline Impulse Response of the system.  To 
this end, a transient B-Spline impulse excitation, jq ,  of duration ∆t is applied in the direction of each degree of 
freedom, j, i.e., 

 
( ) NNjitBk

oj ,,1,,, …== dq                                (9) 

where d is defined as di= δij with δij being the Kronecker delta.  Eqs (7) are solved in a time marching 
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scheme for the nodal pressure, N
j

j
bp q = , as 
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 N
jb  represents the B-Spline Impulse Response Function (BIRF) at time step tN of all nodes of the system 

when node j is excited and N
jg  is the jth column of GN matrix.  These impulse responses can be collected in 

matrix form as 
 

( ) [ ]N
NN

N
j

NNN
Nt bbbbBB …… ,,,, 21==                     (11) 

 
The dimension of matrix B(tN)  is NN x NN , in general.  This matrix is a characteristic of the system and 

needs to be computed only once for the specific geometry of the free surface of the acoustic domain.  In the 
general case, the B-Spline impulse response is computed for all degrees of freedom of the problem and the 
impulse response matrix, BN, is square.  Once this characteristic response of the system is known, the system can 
be analyzed for any arbitrary transient excitation, f(t), as discussed in the following section. 

 
2.4 Response to Arbitrary Excitation 

Provided that the BIRF of the system is known, the transient scattered pressure field, p, at step N due to an 
arbitrary incident flux, q, can be computed as a mere superposition of the BIRFs as 
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and it has been assumed that 
 

 11 20 −+ −≅⇒= NNNN qqqq��              (15) 
 

The proposed approach is very efficient especially when multiple load cases of prolonged duration are 
considered, since the BIRF functions are independent of the external excitation and are typically of much shorter 
duration than the external excitation.  The proposed method has been validated and has shown superior accuracy 
and stability[12,13].  Mixed boundary value problems can also be addressed using the proposed methodology.  
However, it is beyond the scope of the present work and is currently work in progress. 

3 BIRF OF RIGID BODIES AND THE KINEMATIC INTERACTION MODEL 

The motion of a rigid body is represented by a reference point (RP) that has 3 translational and 3 rotational 
degrees of freedom, as shown in Figure 2.  In order to compute the BIRF of the rigid body it is assumed that the 

BIRF functions of its wetted surface, Eq. (11) have been calculated.  
Subsequently, unit acceleration, ( ) 6214

0 ,,j,i,tBˆ ijRP "=δ=a  with 
B-Spline time modulation is applied at each of the six degrees of 
freedom, j, one at a time.  The corresponding acceleration normal to a 
wetted surface node, k, can be computed based on the rigid body 
conditions, Tk

[14], as, 
 

( ) nn eaT kCGkw ˆâ
k

⋅=        (16) 
 

where, nek  is the unit outward vector normal to the wetted surface.  

The corresponding hydrodynamic forces, N
w

ˆ
nF , normal to the wetted 

surface at time step N can be computed as 
 

RP 

X 

Z 

Y 

Figure 2 Definition of Rigid Body 
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=

+−ρ−=
1

1

2                                            (17) 

where L is a pressure-to-force transformation matrix[14], ρ is the mass density of the fluid medium, and B is 
the BIRF of the wetted surface.  Subsequently, the vector N

RPb  of forces and moments at the reference point of 

the vessel due to RPâ can be computed as the resultant of all N
w

ˆ
nF  vectors and their corresponding moments 

 

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢
×= ∑∑

k

N
wk

k

N
w

N
RP nn FrFb ˆˆ                                       (18) 

 
Where rk is the position vector of node k with respect to RP and the summation indicates vectorial 

summation over all boundary nodes.  This response represents column j in the BIRF matrix, N,,n,n
RP "21=B , 

of the rigid body that corresponds to the degree of freedom, j, excited by the unit acceleration.  It is evident that 
the BIRF matrix of the rigid body is of size 6x6 and accounts for kinematic fluid-structure interaction effects. 

A kinematic hydrodynamic interaction model can de derived based on the BIRF functions, 
N,,n,n

RP "21=B , of the rigid body and are obtained in view of Eq. (12).  This model relates the arbitrary 
driving acceleration, RPa , applied at the RP, to the resultant of the hydrodynamic forces and moments, RPF , 
applied at CG as, 

 

n
RP

N

n

nN
RP

N
RP aBF ∑

+

=

+−=
1

1

2                                               (19) 

4 DYNAMIC MODEL FOR SHIP MANEUVERING 

The proposed dynamic model is a 3-D hydrodynamic fluid-structure interaction mathematical model that 
accounts for both inertia and kinematic interaction effects between a rigid ship and the surrounding water.  The 
model is based on the presented methodologies and the characteristic BIRF of rigid bodies floating on, or 
submerged in, fluid media.  The dynamic model is expressed in general as, 

 
RPnet maF =           (20) 

 
where m is the mass matrix in a FEM sense associated to the rigid body, and aRP is the acceleration vector 

applied at the RP of the rigid body.  The force vector Fnet represents the net forces applied at the RP of the vessel 
and accounts for generalized propulsion forces and moments, Fprop , and hydrodynamic effects, Fhyd, and is 
expressed as, 

  
hydpropnet FFF −=            (21) 

 
The driving force of the system is considered as the generalized propulsion force and is known either 

explicitly, or through existing propulsion models.  It should be noted that the propulsion forces are considered as 
the net driving propeller force of the system required to accelerate the vessel.  This implies that hydrodynamic 
forces that develop due to constant velocity of the vessel are not accounted for.  However, both the 
hydrodynamic forces, Fhyd and the acceleration of the vessel, RPa , are not known apriori.  Consequently, 
Equation (20) cannot be solved for the vessel accelerations.  In view of Equation (19), and provided that the 
BIRF of the rigid body is already computed, the following systems of Equations need to be solved: 

 
RPhydprop maFF =−            (22a) 

∑
+

=

+−=
1

1

2
N

n

nN
RP

n
RP

N
hyd aBF            (22b) 

 
The solution is obtained in a time marching scheme, implying that the time axis is discretized in a series of 

time steps i=1,2,…,N,…,M, where M is the total number of time steps that the solution is sought after.  In order 
to solve Equations (22a and b) both need to be written for time step N.  By separating known from unknown 
acceleration terms in Equation (22b), the latter is written as, 
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∑
+

=

+−+ ++=
1

3

2211
N

n

nN
RP

n
RP

N
RPRP

N
RPRP

N
hyd aBaBaBF     (23) 

 
where N

RPa  and 1+N
RPa  are the unknown accelerations at steps N, and N+1, respectively.  Following an 

assumption similar to Equation (15), the acceleration at the forward step is related to the acceleration at previous 
steps as, 

11 2 −+ += N
RP

N
RP

N
RP aaa       (24) 

 
Introducing Equation (24) into (23) and factoring the unknown acceleration N

RPa , the latter is expressed as, 
 

( ) N
hyd

N
RPhyd

N
RPRP

N

n

nN
RP

n
RP

N
RPRPRP

N
hyd HFamaBaBaBBF +=−++= −

+

=

+−∑ 11
1

3

2212              (25) 

 
( )212 RPRPhyd BBm +=  can be viewed as an equivalent hydrodynamic mass matrix and vector  

11
1

3

2 −
+

=

+− −= ∑ N
RPRP

N

n

nN
RP

n
RP

N
hyd aBaBHF  is an equivalent force vector representing the effects of the history of the 

hydrodynamic forces on the current step N and is always known.  Substituting Equation (25) into Equation 
(22a), the latter is expressed as, 

 
N
hyd

N
RPhyd

N
RP

N
prop HFammaF ++=              (26) 

 
Therefore Equations (22a) and (32b) are combined into a single system of Equations as, 
 

N
RP

N ~~ amF =              (27) 
 

where N
hyd

N
prop

N~ HFFF −=  and hydmmm +=~ .  The system of Equations (27) can be solved for the 
acceleration of the vessel in a time marching scheme using conventional solvers.   

If the coefficient matrix, m̂ , is diagonal, indicating that the degrees of freedom are uncoupled,   the proposed 
approach becomes very efficient.  For example, such a case is met when only the surge, sway and yaw modes are 
considered for a vessel with two vertical planes of symmetry and uniformly distributed mass lumped at the 
vessel’s center of gravity.  However, if a coupled system is considered the system of equations (27) is still of a 
small size (6 degrees of freedom) the solution of which can be performed in an efficient manner.  The direct 
coupling of Equations (32a) and (32b), as proposed herein, implies that the time step of the time marching 
procedure for solving Equation (37) should be the one used for the calculation of the BIRF function of the rigid 
vessel.  The effects of this restriction are currently under investigation and beyond the scope of the presented 
work. 

5 DEMONSTRATION EXAMPLE 

The wetted surface of a marine vessel is idealized for the purposes of this example as a rigid rectangular box 
of length L=500 ft, width (beam) B=50 ft and depth (draft) D=50 ft.  The mass of the vessel is m=10x106 lb and 
it is assumed lumped at a reference point, RP, located at the free surface level at the intersection of the two 
vertical planes of symmetry of the vessel. As shown in Figure 3.  The wave velocity of the water is taken as 
4,862 ft/s.  The water free surface and the wetted surface of the vessel are discretized into 8-node quadratic 
quadrilateral elements as shown in Figure 3a.  First, the BIRF of the wetted surface, equation (11) is calculated.  
To this end, a B-Spline impulse normal acceleration of duration ∆t=0.01 s is applied at each wetted surface node 
and the response of the system is calculated as indicated in Equation (10).   Subsequently, the BIRF of the 
reference point, BRP, pertaining to hydrodynamic forces and moments of the rigid vessel is computed as 
described in section 3.  Figure 3 shows the BIRF of the hydrodynamic forces in the longitudinal direction 
applied at the RP. The time history of the pressure distribution on the water free surface and the wetted surface 
of the vessel due to the this excitation are also computed based on Equation (12), where the arbitrary 
acceleration normal to the wetted surface nodes is computed by Equation (16).  Figure 4 shows the pressure 
distribution plotted normal to the surface of the domain at selected time steps.  The propagation and attenuation 
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of the pressure waves emanated at the bow and stern of the vessel is evident.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Subsequently, the effects of propulsion 
forces on the acceleration of the vessel are 
computed based on the procedures of section 
4.  A step impulse propulsion force of duration 
∆tp= 0.4 s, and amplitude Fpo= 100x106 lb is 
applied at the RP.  The force is applied at time 
t=0.0225 s in order to demonstrate that the 
condition of quiescent past is satisfied.  Figure 
5 shows the time history of the acceleration of 
the vessel due to the application of this load.  
The transient effects are evident.  Due to the 
small size of the proposed simplified vessel 
model, computation of the system response is 
performed at faster than real time.  Such 
models are ideally suited for real time 
simulation platforms like the VTB simulation 
software for analysis and virtual testing of 
integrated systems. 

 
 
 
 
 
 
 
 

 

6 CONCLUSIONS 

This work presented a direct time domain BEM for 3D scalar wave propagation.  The method is based on 

 Reference Point 
(a) Step 9 

(b) Step 11 

(c) Step 16 

(d) Step 35 

Figure 4 BIRF of Boundary due to Impulse 
Acceleration Applied at Reference 
Point in Longitudinal Direction 
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B-Spline fundamental solutions for the infinite space.  The concept of B-Spline Impulse response functions is 
introduced for transient Fluid-Structure Interaction analysis.  Simplified models for vessel maneuvering are 
introduced.  The proposed methods and models are accurate, efficient and stable.  The application example 
demonstrates the applicability of the method in real time simulation models of ship maneuvering. 
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Abstract. The Singular Function Boundary Integral Method (SFBIM) originally developed for Laplacian 
problems with boundary singularities is extended for solving two-dimensional fracture problems formulated as  
a biharmonic problem in terms of the Airy stress function. Our goal is the direct computation of the associated 
stress intensity factors, which appear as coefficients in the asymptotic expansion of the solution near the crack 
tip. In the SFBIM the leading terms of the asymptotic expansion are used to approximate the solution and to 
weight the governing biharmonic equation in the Galerkin sense. The discretized equations are reduced to 
boundary integrals by means of Green’s theorem and the Dirichlet boundary conditions are weakly enforced by 
means of Lagrange multipliers. The numerical results on a model problem show that the method converges 
extremely fast and yields accurate estimates of the leading stress intensity factors. 
 
 
1 INTRODUCTION 
 

The elastic field near the tip of a fracture in an elastic body is characterized by the stress intensity factors 
(SIFs).  These are the coefficients, αj, that appear in the asymptotic expansion of the Airy stress function u near 
the crack tip, which is of the general form 

1
( , ) ( )j

j j
j

u r r fβθ α θ
∞

=

= ∑ ,           (1) 

where (r, θ) denote polar coordinates centered at the crack tip.  The eigenvalues jβ ∈  and the corresponding 
eigenfunctions ( )jf θ  are known, whereas the SIFs are unknown, with the values depending on the global 
problem.  The first SIF, α1, plays a crucial role in the mathematical description of fracture, since  
 

12K πα= −              (2) 
is the opening mode SIF [1]. 
 

In the last few decades there has been a plethora of work aimed at reliably computing the SIFs.  The methods 
used include the finite element method (FEM) with post-processing [2–6], the FEM with local mesh refinement [7], 
enriched and generalized finite elements [8, 9], the method of fundamental solutions [10], as well as certain 
versions of the Trefftz method [11–14].  It should be noted that in most of the methods mentioned above, the SIFs 
are calculated as a post-solution operation, i.e. the solution u is approximated first and the SIFs are then 
calculated using the approximation to u.  If the calculation of the SIFs is the main goal of the computation, then 
it may be beneficial to use a method in which the SIFs are calculated directly.  The method of fundamental 
solutions, the Trefftz method and the SFBIM presented in this article fall in this category of “direct” methods. 
 

The objective of the present work is to extend the SFBIM to two-dimensional fracture problems.  The 
SFBIM was originally developed in [15] to solve Laplacian problems with boundary singularities aiming at 
resolving the convergence difficulties encountered with standard numerical methods in the vicinity of singular 
points.  In this method the solution is approximated by the leading terms of the local asymptotic solution 
expansion, which are also employed to weight the governing equation in the Galerkin sense.  Furthermore, the 
discretized equations are reduced to boundary integrals by means of the divergence theorem, and the Dirichlet 
boundary conditions are weakly enforced by means of Lagrange multipliers.  In addition to reducing the 
dimension of the problem by one, another important feature of the method is that the singular coefficients αj are 
calculated directly (i.e. no post-processing is required) together with the discrete Lagrange multipliers.  The 
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SFBIM has been applied to various problems with singularities, such as the Motz problem [16], the cracked-beam 
problem [17], and to Laplacian problems over L-shaped domains [18, 19], exhibiting fast convergence and yielding 
very accurate results, especially for the leading singular coefficients.  Since it yields direct estimates of the SIFs, 
the SFBIM appears to be an excellent candidate for solving fracture problems, which can be expressed as a 
biharmonic equation in terms of the Airy stress function.  To illustrate the extension of the method to such 
problems, we have chosen a two-dimensional fracture problem, originally studied by Schiff et al. [7]. 
 

2 THE MODEL PROBLEM AND THE ASYMPOTIC SOLUTION 

We consider here the model problem studied by Schiff et al. [7], which deals with a two-dimensional solid 
elastic plate containing a single edge crack, subjected to a uniform inplane load normal to the two edges parallel 
to the crack, while the remaining edges are stress free.  Using symmetry, the problem is formulated on  
Ω = (– 1, 1)× (0, 1) as a biharmonic equation for of the Airy stress function u(x, y) and is depicted graphically in 
Figure 1.  For simplicity the load in the original problem from [7] has been taken to be 1. 
 

 

Figure 1. The model fracture problem. 

The asymptotic expansion for u in the neighborhood of the singular point (0, 0) can be expressed in terms of an 
eigenfunction expansion of the form 

1 2
1

( , ) ( , ) ( , )j j
j j

j
u r c W r d W rθ θ θ

∞

=

⎡ ⎤= +⎣ ⎦∑ ,          (3) 

where (r, θ) are the polar coordinates centered at (0, 0) and cj, dj correspond to the even and odd SIFs, 
respectively.  Using this notation, we have α1 = d1 in (2).  In expansion (3) the two sets of the so-called singular 
functions , 1, 2j

kW k = are given by 
1 ( , ) , 1, 2jj

k k jW r f kµ θ µ+≡ = ,          (4) 
where 

( ) ( ) ( )1 , cos 1 cos 1 , , 1,2,...j j j jf j jθ µ µ θ µ θ µ= − − + = =   
       (5) 

and 

( ) ( ) ( )2

1 1, cos 1 cos 1 , , 1,2,...
1 2

j
j j j j

j

f j j
µ

θ µ µ θ µ θ µ
µ

−
= − − + = − =

+
       (6) 

We note that the singular functions , 1, 2j
kW k = satisfy the PDE as well as the boundary conditions on SA and SB. 

 

3 THE SINGULAR FUNCTION BOUNDARY INTEGRAL METHOD 

In the SFBIM the solution u is approximated by the leading terms of the asymptotic expansion.  By 
employing the first Nα terms in (3) the approximate solution u , is given by 
 

1 2
1 1

N N
i i

i i
i i

u c W d W
α α

= =

= +∑ ∑ ,           (7) 

where ic and id are the approximations to the SIFs.  Obviously, the total number of singular functions involved 
in the approximation is 2Nα.  It should be pointed out that the method is restricted to fracture problems with only 
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one crack for which the asymptotic solution is available.  Moreover, the proposed approximation (7) is valid 
only if the domain of the problem is a subset of the domain of convergence of the asymptotic solution.  
Otherwise, the 
domain may be partitioned into subdomains over which separate approximations obeying appropriate 
compatibility conditions along the interfaces could be used. 
 

By applying Galerkin’s principle, the governing equation is weighted by the singular functions, which yields 
the following set of discretized equations: 

 

4 0 , 1, 2,..., , 1, 2.i
kuW dV i N kαΩ

∇ = = =∫          (8) 

Next, applying Green’s theorem twice and taking into account that the singular functions satisfy the governing 
biharmonic equation, the above integrals are reduced to boundary ones: 
 

( ) ( ) ( )2 2
2 2 0 , 1,2,..., , 1, 2.

i i
k ki i

k k

W u Wu W u dS W u dS i N k
n n n n α

∂Ω ∂Ω

⎛ ⎞ ⎛ ⎞∂ ∇ ∂ ∇ ∂∂⎜ ⎟ ⎜ ⎟∇ − + −∇ = = =
⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
∫ ∫       (9) 

 

The Dirichlet boundary conditions are imposed by means of Lagrange multipliers.  In the case of Laplacian 
problems, the Lagrange multipliers replace the normal derivative /u n∂ ∂ .  In the case of biharmonic problems, 
another option is for the Lagrange multipliers to replace ( )2 /u n∂ ∇ ∂ .  In the current problem, Dirichlet 
boundary conditions appear along the three boundary parts of interest, i.e. SC , SD and SE , where the normal 
derivative of the solution is also specified.  Therefore, Lagrange multipliers have been chosen to replace 
( )2 /u n∂ ∇ ∂  at boundary parts SC, SD and SE.  These are partitioned into three-node elements and the 

corresponding Lagrange multipliers, denoted respectively by λC , λD and λE , are expanded in terms of quadratic 
basis functions jM : 
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( )2

1
on 

DN
j j

D D D
j

u
M S

y

λ

λ λ
=

∂ ∇
= =

∂ ∑          (11) 
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x
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∂ ∑ ,         (12) 

where ,
C D

N Nλ λ  and 
E

Nλ  are the numbers of the discrete Lagrange multipliers ,j j
C Dλ λ  and j

Eλ  along the 

corresponding boundaries.  The discrete Lagrange multipliers appear as additional unknowns in the problem.  
The required ,

C D
N Nλ λ , 

E
Nλ  additional equations are obtained by weighting the Dirichlet boundary conditions 

along SC, SD and SE by the quadratic basis functions iM  in the Galerkin sense.  The following linear system of 
2

C D E
N N N Nα λ λ λ+ + +  discretized equations is thus obtained: 

 

( ) ( ) ( ) ( )2 2
2 2
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i i i i
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⎛ ⎞ ⎛ ⎞∂ ∇ ∂ ∂ ∇ ∂
⎜ ⎟ ⎜ ⎟− −∇ + − −∇ +
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∫ ∫ ,     (13) 

 
 

2 , 1,..., ,
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C C

i i

S S
u M dy M dy i Nλ= =∫ ∫         (14) 

 
 

( )21 1 , 1,..., ,
2 D

D D

i i

S S
u M dx x M dx i Nλ

⎡ ⎤= + =⎢ ⎥⎣ ⎦∫ ∫        (15) 

 
 

0, 1,..., .
E

E

i

S
u M dy i Nλ− = =∫          (16) 

 

The above linear system can be written in block form as follows: 
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,

0 0 0
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0 0 0
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K D
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where 
1 1 1

1 1, ,..., , ,..., , ,..., , ,..., , ,..., ,C D E
T T TT N N N

N N C C C D D D E E Ec dX c c d d λ λ λ

α α
λ λ λ λ λ λ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤= Λ = Λ = Λ =⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦  

 

are the vectors of unknowns, and the entries in the coefficient matrix and right hand side can be read from 
equations (13) – (16).  It should be noted that the integrands in equations (13) – (16) are nonsingular and all 
integrations are carried out far from the boundaries causing the singularity.  Also, the stiffness matrix in (17) is 
symmetric but becomes singular if 2N Nλ α> , where 

C D E
N N N Nλ λ λ λ= + + . This last fact will be taken into 

consideration when choosing specific values for these parameters. 
 

4 NUMERICAL EXPERIMENTS 

In order to to implement the SFBIM, the boundary parts SC, SD and SE, i.e. the boundary parts away from the 
singularity, are subdivided into quadratic elements.  In particular, we use NC  elements for each of the 
boundaries SC and SE , and ND elements for boundary SD, which makes the total number of Lagrange multipliers 

2
C D E C D

N N N N N Nλ λ λ λ λ λ= + + = + , where 2 1
C CN Nλ = +  and 2 1D DN Nλ = + .  All integrals are calculated 

numerically by subdividing each quadratic element into 10 subintervals and using a 15 point Gauss-Legendre 
quadrature over each subinterval [18, 19].   
 

As mentioned above, the number of the singular functions NC should be greater than the number of Lagrange 
multipliers Nλ, because otherwise the stiffness matrix becomes ill-conditioned or singular.  On the other hand, 
large values of NC  should be avoided because the contributions of the high-order singular functions become 
either negligible (for r < 1) or very large (for r > 1) beyond the limits double precision can handle.  Since, at the 
moment, no a-priori way of choosing the “optimal” values for Nλ and NC exists, we have carried out systematic 
runs in order to study the effects the variation of these parameters would have on the numerical results. 
 

The effect of 2Nα on the leading SIFs can be observed in Tables 1 and 2 which show results obtained with  
Nλ = 39.  Initially, we observe fast convergence as 2Nα is increased, but at very high values of the latter (i.e. 
above 2Nα = 94) slow divergence is observed due to the inaccuracies introduced by the high-order singular 
functions.  Tables 3 and 4 show the effect of varying 

C D E
N N N Nλ λ λ λ= + + , when 2Nα = 94.  Again, fast 

convergence is observed initially but as Nλ approaches the value of 2Nα, the results start diverging slowly, which 
is attributed to the fact that the stiffness matrix becomes ill-conditioned.   
 

2Nα d1 d2 d3 d4 d5 d10 
70 2.12751291 – 1.03669169 0.0371710 0.1177493 – 0.1227288 – 0.01108 
80 2.12751343 – 1.03669221 0.0371701 0.1177510 – 0.1227319 – 0.01103 
88 2.12751347 – 1.03669218 0.0371701 0.1177511 – 0.1227313 – 0.01103 
90 2.12751342 – 1.03669217 0.0371701 0.1177510 – 0.1227316 – 0.01103 
92 2.12751342 – 1.03669217 0.0371701 0.1177509 – 0.1227316 – 0.01103 
94 2.12751343 – 1.03669217 0.0371702 0.1177509 – 0.1227315 – 0.01103 
96 2.12751343 – 1.03669217 0.0371702 0.1177509 – 0.1227314 – 0.01103 

100 2.12751343 – 1.03669219 0.0371702 0.1177509 – 0.1227315 – 0.01103 
110 2.12751347 – 1.03669237 0.0371705 0.1177508 – 0.1227315 – 0.01102 
120 2.12751343 – 1.03669229 0.0371705 0.1177508 – 0.1227314 – 0.01103 

Table 1 : Convergence of the leading odd SIFs di with 2Nα ; Νλ = 39. 

These computations suggest that the “optimal” values for the numbers of singular functions and Lagrange 
multipliers are 2Nα = 94 and Nλ = 39, respectively.  For higher values of 2Nα  (e.g., 2Nα = 120) satisfactory 
values of the SIFs are still obtained, but the quality of the global solution is not very good.  When comparing the 
performance of the method with that in the case of Laplacian problems [16–19], we note that convergence is slower 
in the case of the biharmonic equation, which is reasonable since the latter is more complicated than the Laplace 
equation.  If the smoothness of the calculated Lagrange multiplier functions is used as an indication of the 
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quality of the solution, then for the combination 2Nα = 94 and Nλ = 39, the calculated Lagrange multiplier 
functions along boundary parts SC, SD and SE are the smoothest possible (see Figure 2).  We note that for a 
slightly different value of Nλ the estimated values of the SIFs are essentially unaffected, while the calculated 
Lagrange multipliers exhibit oscillations. 
 

2Nα c1 c2 c3 c4 c5 c10 
70 0.16676222 0.0624426 – 0.1324729 – 0.0102230 0.1058502 0.004334 
80 0.16676181 0.0624440 – 0.1324747 – 0.0102203 0.1058466 0.004262 
88 0.16676181 0.0624439 – 0.1324746 – 0.0102211 0.1057471 0.004263 
90 0.16676182 0.0624439 – 0.1324745 – 0.0102208 0.1057474 0.004264 
92 0.16676184 0.0624439 – 0.1324745 – 0.0102208 0.1057474 0.004264 
94 0.16676184 0.0624439 – 0.1324745 – 0.0102209 0.1057472 0.004264 
96 0.16676184 0.0624439 – 0.1324745 – 0.0102208 0.1057471 0.004264 

100 0.16676184 0.0624439 – 0.1324745 – 0.0102207 0.1057470 0.004264 
110 0.16676179 0.0624441 – 0.1324753 – 0.0102196 0.1057450 0.004262 
120 0.16676181 0.0624440 – 0.1324751 – 0.0102200 0.1057457 0.004265 

Table 2 : Convergence of the leading even SIFs ci with 2Nα ; Νλ = 39. 

 
Nλ d1 d2 d3 d4 d5 d10 

7+13+7 2.12751309 – 1.03669185 0.0371707 0.1177516 – 0.1227324 – 0.01103 
7+17+7 2.12751334 – 1.03669214 0.0371702 0.1177509 – 0.1227318 – 0.01103 
7+21+7 2.12751338 – 1.03669217 0.0371702 0.1177507 – 0.1227319 – 0.01103 
7+23+7 2.12751343 – 1.03669217 0.0371702 0.1177510 – 0.1227314 – 0.01103 
7+25+7 2.12751343 – 1.03669217 0.0371702 0.1177509 – 0.1227315 – 0.01103 
7+27+7 2.12751342 – 1.03669217 0.0371702 0.1177509 – 0.1227315 – 0.01103 
7+29+7 2.12751347 – 1.03669213 0.0371703 0.1177513 – 0.1227309 – 0.01103 
7+31+7 2.12751346 – 1.03669213 0.0371703 0.1177513 – 0.1227310 – 0.01103 
7+33+7 2.12751335 – 1.03669221 0.0371701 0.1177506 – 0.1227324 – 0.01103 

Table 3 : Convergence of the leading odd SIFs di with Νλ ; 2Nα  = 94. 

 
2Nα c1 c2 c3 c4 c5 c10 

7+13+7 0.16676176 0.0624436 – 0.1324753 – 0.0102209 0.1058486 0.004267 
7+17+7 0.16676184 0.0624439 – 0.1324745 – 0.0102207 0.1058479 0.004264 
7+21+7 0.16676185 0.0624439 – 0.1324744 – 0.0102204 0.1057480 0.004266 
7+23+7 0.16676185 0.0624439 – 0.1324745 – 0.0102209 0.1057471 0.004264 
7+25+7 0.16676184 0.0624439 – 0.1324745 – 0.0102209 0.1057472 0.004264 
7+27+7 0.16676184 0.0624439 – 0.1324745 – 0.0102208 0.1057470 0.004263 
7+29+7 0.16676180 0.0624438 – 0.1324748 – 0.0102213 0.1057461 0.004263 
7+31+7 0.16676181 0.0624438 – 0.1324748 – 0.0102212 0.1057462 0.004262 
7+33+7 0.16676187 0.0624440 – 0.1324743 – 0.0102201 0.1057485 0.004262 

Table 4 : Convergence of the leading even SIFs ci with Νλ ; 2Nα  = 94. 

In Table 5 the converged values of coefficients di and ci , i = 1, …, 10 obtained with the SFBIM are compared 
with the most accurate values obtained by the collocation Trefftz method of Li et al. [14], who reported that the 
leading SIF d1 is converged up to the seventh significant digit.  The SFBIM appears to be more accurate as it 
achieves convergence up to the eighth significant digit.  Since Li et al. [14] do not provide information about the 
convergence of the other SIFs, in Table 5 we tabulate their computed values with one additional digit than the 
converged values of the SFBIM.  Nevertheless, there is excellent agreement between the results of the two 
methods.  Finally, Figures 3 and 4 show the surface plots of the approximate solution u  and its partial 
derivatives , ,x y xxu u u and yyu .  The effect of the singularity at (0, 0) is clearly visible in these profiles. 

 
 

 
 

923



Miltiades Elliotis, Georgios Georgiou and Christos Xenophontos. 
 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-14

-12

-10

-8

-6

-4

-2

0

2

4

y

λ C
Calculated Lagrange multipliers along SC, with 2N

α
=94

N
λ
=39

N
λ
=47

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-14

-12

-10

-8

-6

-4

-2

0

2

4

6

x

λ D

Calculated Lagrange multipliers along SD, with 2N
α
=94

N
λ
=39

N
λ
=47

 
 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

y

λ E

Calculated Lagrange multipliers along SE, with 2N
α
=94

N
λ
=39

N
λ
=47
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Figure 3.  Plot of the converged solution u . 
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Figure 4.  Plots of the first derivatives xu and yu  (top) and second derivatives xxu and yyu (bottom). 

 

5 CONCLUSIONS 

The singular function boundary integral method (SFBIM) has been developed for solving two-dimensional 
fracture problems in terms of the Airy stress function.  In this method the leading terms of the asymptotic 
solution are used to approximate the solution and thus the SIFs are calculated directly (i.e. no post-processing of 
the numerical solution is required).  The governing biharmonic equation is weighted by the singular functions in 
the Galerkin sense, and the discretized equations are then reduced to boundary integrals by means of a double 
application of the divergence theorem, which leads to a significant reduction in the computational cost.  Another 
attractive feature of the method is that integration is necessary only along boundary parts that are away from the 
crack tip.  The Dirichlet boundary conditions are weakly enforced by means of Lagrange multipliers which, 
depending on the type of the boundary conditions, may replace either /u n∂ ∂  or ( )2 /u n∂ ∇ ∂  in the integrands 

of the discretized equations.  The Lagrange multipliers are calculated together with the SIFs.  The SFBIM has 
been applied to a model problem proposed by Schiff et al. [7].  The numerical calculations showed that the 
method converges very fast with the number of singular functions and the number of Lagrange multipliers, and 
yields accurate estimates of the leading SIFs.  The value of the leading SIF, in particular, is converged up to 
eight significant digits.  Our results agree well with the values obtained by Li et al. [14] using the collocation 
Trefftz method. 
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Abstract. A singular function boundary integral method (SFBIM) is proposed for solving biharmonic problems 
with boundary singularities. The method is applied to the Newtonian stick-slip flow problem. The stream-
function is approximated by the leading terms of the local asymptotic solution expansion which are also used to 
weight the governing biharmonic equation in the Galerkin sense. By means of the divergence theorem the 
discretized equations are reduced to boundary integrals. The Dirichlet boundary conditions are weakly enforced 
by means of Lagrange multipliers, the values of which are calculated together with the singular coefficients. The 
method converges very fast with the number of singular functions and the number of Lagrange multipliers. 
Accurate estimates of the leading singular coefficients are obtained. Comparisons with the analytical solution 
and results obtained with other numerical methods are also made. 
 
 
1 INTRODUCTION 

In the past few decades, many different numerical methods have been proposed for the treatment of 
boundary singularities in plane elliptic boundary value problems, in order to improve the solution accuracy and 
resolve the convergence difficulties occurring in the vicinity of such singular points. These methods range from 
special mesh-refinement schemes to sophisticated techniques that incorporate, directly or indirectly, the form of 
the local asymptotic expansion, which is known in many occasions. An exhaustive survey of treatment of 
singularities in elliptic boundary value problems is provided in the recent articles by Li and Lu[13], by Dosiyev[2] 
and Shi et al.[20]. Knowledge of the coefficients appearing in the local solution expansion is often desired by 
many engineering applications. These coefficients, referred to as singular coefficients or generalized stress 
intensity factors[21], are calculated either directly[3-5] or by post-processing the numerical solution[1, 22].  

In the past few years, we have developed the Singular Function Boundary Integral Method (SFBIM) for 
Laplacian problems with boundary singularities[3,4,5,9,10], in which the unknown singular coefficients are 
calculated directly. The solution is approximated by the leading terms of the local asymptotic solution expansion 
which are also used to weight the governing equation in the Galerkin sense. With a double application of 
Green’s theorem, the discretized equations are reduced to boundary integrals over those parts of the boundary 
that do not involve the singular point. The Dirichlet boundary conditions are weakly enforced by means of 
Lagrange multipliers, which are calculated simultaneously with the singular coefficients. The method has been 
tested on standard Laplacian problems, yielding extremely accurate estimates of the leading singular coefficients 
and exhibiting exponential convergence with respect to the number of singular functions[3,4,5,9,10].  

The objective of the present paper is to extend the SFBIM to biharmonic problems with boundary 
singularities. For that purpose we have chosen to solve the Newtonian planar stick-slip problem, which is a 
benchmark Stokes flow problem used to test various numerical methods proposed in the literature for the 
solution of viscous and non-Newtonian flows, such as the extrudate-swell flow. This concerns the extrusion of a 
fluid from a slit or an axi-symmetric die into the atmosphere. Due to the relaxation of stresses, the fluid swells as 
it exits the die. Swelling is particularly pronounced in the case of elastic fluids, but it is also observed in the 
Newtonian case, provided that the Reynolds number is sufficiently low. The stick-slip problem is a special case 
of the extrudate-swell problem: in the limit of infinite surface tension, no swelling occurs and free surface 
becomes flat (in the case of slit die). A boundary inverse-square-root stress singularity appears at the exit of the 
die due to the sudden change of the boundary conditions from the wall to the flat free surface.  

Direct estimates of the leading singular coefficients in the case of the planar stick-slip problem have been 
reported by various researchers who employed a variety of numerical methods and techniques to incorporate the 
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leading terms of the local asymptotic solution (which is equivalent to subtracting the leading terms of the 
singularity). Kelmanson employed a direct modified boundary integral equation method (BIEM) incorporating a 
subtraction of the singular terms technique that accelerated the rate of convergence and reported estimates of the 
leading four coefficients[12]. Estimates for these coefficients have also been reported by Georgiou et al.[8] who 
solved the problem by using the integrated singular basis function method (ISBFM). In this method, the singular 
functions are directly subtracted from the original problem formulation which leads to a modified problem with 
the regular part of the solution and the singular coefficients as unknowns. The smooth problem is then solved 
using finite elements. The integrals involving singular contributions are reduced to boundary ones by means of a 
double integration by parts and the original essential boundary conditions are enforced by means of Lagrange 
multipliers. These two features are encountered also with the SFBIM that we propose in the present work.  

Georgiou et al.[7] developed a singular finite element method (SFEM), in which special elements 
incorporating the radial form of the local singularity expansion are employed in a small region around the 
singular point, in order to resolve the convergence difficulties and improve the accuracy of the global solution. 
They obtained more accurate results than those achieved with ordinary elements and calculated the leading 
singular coefficients by post-processing the finite element solution. A similar post-processing technique has 
been employed by Salamon et al.[19] who obtained accurate results near the singularity using high resolution 
finite elements, with quasi-orthogonal mesh generation and local, adaptive mesh refinement with irregular 
imbendded elements. Ngamaramvaranggul and Webster[14] developed a semi-implicit Taylor-Galerkin/pressure-
correction finite element method (STGFEM) for free surface flows and applied it to various Newtonian flows 
including the plane and axi-symmetric stick-slip and extrudate-swell problems. More recently, Normadin et 
al.[15] solved the Newtonian stick-slip problem using a finite element Galerkin technique associated with stream-
tube analysis. 
 
2 GOVERNING EQUATIONS AND ASYMPTOTIC SOLUTION 

The planar stick-slip problem is the idealization of the extrusion of a Newtonian fluid between parallel plates 
at infinite surface tension. The geometry of the flow is depicted in Figure 1. Due to symmetry, only the upper 
half of the flow domain is considered, i.e. boundary part SD denotes the plane of symmetry. Boundary parts SA 
and SB represent the wall and the flat free surface, respectively. The latter is flat in the limit of infinite surface 
tension. Finally, SC and SE are, respectively, the artificial inlet and outlet boundaries. 

In the creeping case, the flow is governed by the biharmonic equation  
 

,04 Ω=∇ inu      (1) 
 
where u is the stream-function defined by ux ≡ ∂u/∂y and uy ≡ - ∂u/∂x, ux and uy being the velocity components in 
the –x and –y directions, respectively. The boundary conditions of the flow and the domain Ω are also depicted 
in Figure 1. Along the wall SA there is no slip and no penetration (i.e. the two velocity components are zero). 
Along the free surface SB, both uy and the xy-stress component are zero which leads to ∆u = 0. The inflow and 
outflow planes are taken at a distance L before and after the die exit. This distance is assumed to be sufficiently 
large so that the flow corresponds to the fully developed Poiseuille flow at the inflow plane and to a plug (i.e. 
uniform) flow at the outflow plane. Finally, along the symmetry plane (boundary SD), the vertical velocity 
component and the shear stress are zero, i.e. the centerline is a slip surface. The stick-slip flow is characterized 
by the presence of a stress singularity at the exit caused by the sudden change in the boundary conditions, from 
no slip(stick) along the wall SA to full slip along the flat free surface SB. 
 

 
  Figure 1. The planar stick-slip problem in terms of the stream-function u 
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Note that the weak condition ∂(∆u)/∂x=0 along boundary SC can be replaced by the stronger Dirichlet 

condition u=y-1, which leads to a different formulation, since with the SFBIM, imposing Dirichlet conditions 
requires the introduction of (unknown) Lagrange multipliers. The asymptotic solution in the neighbourhood of 
the singularity can be expressed in terms of an eigen-function expansion of the form[8,12,18] : 
 

    ,),(,),(),(
1

1 Ω∈=∑
∞

=

+ θµθαθ µ rfrru j
j

j
j    (4) 

 
where (r,θ) are the polar co-ordinates centered at the singular point , µj, with j = 1,2,…, are the singularity 
powers arranged in ascending order, the functions f(θ,µj), represent the θ-dependence of the eigensolution, and 
αj are the unknown singular coefficients determined by the global flow. 

The functions 1 ( , )jj
jW r fµ θ µ+≡  are referred to as singular functions. The local solution (4) consists of 

even and odd solutions, the corresponding singular functions of which will be denoted by W1
j and W2

j, 
respectively. In the case of even solutions[18], we have 
 

     ,),(1
1

1 j
j frW j µθµ +=       (5) 

with 

   ,,2,1,
2
1,)1(cos)1(cos),(1 …=−=−−+= jjf jjjj µθµθµµθ  (6) 

 
whereas in the case of odd solutions we have 
 

     ,),(2
1

2 j
j frW j µθµ +=      (7) 

with 
  ,,2,1,1,)1(sin)1()1(sin)1(),(2 …=+=−+−+−= jjf jjjjjj µθµµθµµµθ  (8) 

 
Thus the first singular function is W1

1 = r3/2 [cos(3θ/2) - cos(θ/2)], which indicates that the velocity gradients and 
the stresses vary as the inverse square root of the radial distance from the singular point changes. 

In what follows we will be using the symbols αj and βj the singular coefficients corresponding to the even 
and odd singular functions, respectively. Thus, the local solution is written as follows: 
 

    .
1

2
1

1 ∑∑
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=
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j

j
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3 THE SINGULAR FUNCTION BOUNDARY INTEGRAL METHOD 

In the SFBIM[3,4,5] the solution of the problem (2)-(3) is approximated by the leading terms of the local 
asymptotic solution expansion (9). By employing the first N terms in both sums of (9) the approximate solution 
is 
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N

j

j
j WWu βα      (10) 
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where jα  and jβ are the approximations of the singular coefficients. Obviously, the total number of singular 

functions involved in the approximation (10) is 2N. By applying Galerkin’s principle, the governing equation is 
weighted by the singular functions used in the approximation of the solution. Hence, the following set of 
discretized equations is obtained: 
 

    .2,1,,,2,1,0 ===∫ Ω kNidVWu i
k "    (11) 

 

By applying Green’s theorem twice and taking into account that the singular functions Wk
i are biharmonic, 

the above volume integrals are reduced to boundary ones:  
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where ∂Ω = SA∪ SB∪ SC∪ SD∪ SE. The dimension of the problem is thus reduced by one, which leads to a 
considerable reduction of the computational cost. Since Wk

i satisfy exactly the boundary conditions along SA and 
SB, the above integral along these boundary segments, is identically zero. Therefore,  
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where S = SC∪ SD∪ SE.  In the SFBIM the Dirichlet boundary conditions are imposed by means of Lagrange 
multipliers which replace the normal derivative of the solution u. In the problem under study Dirichlet boundary 
conditions appear only along boundary parts SD and SE. Since along SE the normal derivative ∂u/∂x vanishes, 
Lagrange multipliers are chosen to replace ∂(∆u)/∂x in the boundary integrals of Eq. (13). Boundary parts SD and 
SE are partitioned into three-node elements and the corresponding Lagrange multipliers, denoted respectively by 
λD and λE, are expanded in terms of quadratic basis functions M j: 
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where Nλ  is the number of discrete Lagrange multipliers j
Dλ  and j

Eλ  along the corresponding boundaries. The 
nodal values of λD and λE are additional unknowns of the problem in study. Furthermore, the required additional 
equations (Nλ= D

Nλ +
E

Nλ ) are obtained by weighting the Dirichlet boundary conditions along SD and SE by the 

quadratic basis functions M j in the Galerkin sense. The following linear system of 2N+Nλ discretized equations 
is obtained: 
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The above linear system is not symmetric. It should be noted that the integrands in the above equations are 

non-singular and all integrations are carried out far from the boundaries causing the singularity. Note that the 
stiffness matrix is not symmetric and that it becomes singular if Nλ >2N. We should emphasize that we may also 
create three alternative formulations which are based on the choice of λC and λD  in terms of  ∂(∆u)/∂x and ∂u/∂x.  
 
4 NUMERICAL RESULTS 

Calculations have been carried out with all four formulations presented in Section 3. In order to implement 
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the SFBIM, the boundary parts SC, SD and SE (i.e. the boundary parts away from the singularity) are subdivided 
into quadratic elements. Specifically, we employ NE elements for each one of boundaries SE and SC and ND 
elements over boundary SD. The total number of Lagrange multipliers is Nλ=(2ND +1)+(2NE +1). The integrals 
are calculated numerically by subdividing each quadratic element into 10 subintervals and using a 15-point 
Gauss-Legendre quadrature over each subinterval[3]. Unless otherwise indicated, the semi-length L of the 
domain has been taken equal to 3.  

As already mentioned, the number of singular functions 2N should be much greater than the number of 
Lagrange multipliers Nλ, since otherwise the stiffness matrix is ill-conditioned or singular. On the other hand, 
large values of 2N should be avoided because the contributions of the high-order singular functions become 
either negligible or (for r < 1) or very large (for r > 1) beyond the limits double precision can handle.  

  

 2N       1α        2α        3α        4α        5α        10α  

  70 0.6909892 0.2645003  0.030364  -0.021405  -0.002845   0.00024 
  80 0.6909881 0.2645007  0.030376  -0.021407  -0.002900   0.00022 
  86 0.6909882 0.2645004  0.030374  -0.021405  -0.002892   0.00021 
  88 0.6909882 0.2645004  0.030374  -0.021404  -0.002891   0.00021 
  90 0.6909882 0.2645002  0.030375  -0.021403  -0.002895   0.00021 
  92 0.6909885 0.2645045  0.030371  -0.021436  -0.002875   0.00034 

 

Table 1. Convergence of the singular coefficients iα with 2N; Nλ=32 
 
 

 
2N 

       1β        2β        3β        4β        5β        10β  

  70 -0.0808635 -0.017115  0.001726  0.001231  -0.000282  -0.000001 
  80 -0.0808617 -0.017119      0.001720  0.001240  -0.000270  -0.000006 
  86 -0.0808619 -0.017119  0.001720  0.001238  -0.000271  -0.000005 
  88 -0.0808619 -0.017119  0.001720  0.001238  -0.000271  -0.000005 
  90 -0.0808617 -0.017119  0.001720  0.001238  -0.000270  -0.000005 
  92 -0.0808645 -0.017122  0.001729  0.001245  -0.000287  -0.000009 

 
Table 2. Convergence of the singular coefficients iβ with 2N; Nλ= 32 

 
Systematic runs have been carried out in order to study the effects of both N and Nλ , on the numerical 

results. The effect of 2N on the leading singular coefficients can be observed in Tables 1 and 2, which show 
results obtained with Nλ =32. Fast convergence is observed as 2N is increased and accurate estimates of the 
leading singular coefficients are obtained. However, at very high values of 2N (i.e. above 2N=88) slow 
divergence is observed due to the inaccuracies introduced by the high-order singular functions. 

The convergence of the method with the number of Lagrange multipliers is shown in Tables 3 and 4 in 
which the values of the leading singular coefficients, calculated with 2N=88 and various values of Nλ, are 
tabulated. Again, fast convergence is observed initially but as Nλ approaches the value of 2N, the results start 
diverging slowly, which is attributed to the fact that the stiffness matrix becomes ill-conditioned. Our 
computations showed that the optimal values are Nλ=32 and 2N=88. For higher values of 2N (e.g. 2N=120) 
satisfactory values of the singular coefficients are still obtained, but the quality of the global solution is not 
good.  
 

    Nλ       1α        2α        3α        4α        5α        10α  

  21+5 0.6909883 0.2645002  0.030374  -0.021403  -0.002890   0.00021 
  21+7 0.6909882 0.2645007  0.030375  -0.021407  -0.002893   0.00022 
  25+5 0.6909883 0.2645002  0.030373  -0.021403  -0.002888   0.00021 
  25+7  0.6909882 0.2645004  0.030374  -0.021404  -0.002891   0.00021 
  25+9 0.6909882 0.2645005  0.030375  -0.021405  -0.002895   0.00021 
  29+7 0.6909883 0.2645002  0.030374  -0.021403  -0.002892   0.00021 

 
Table 3. Convergence of the singular coefficients iα with Nλ; 2N=88 
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    Nλ          1β        2β        3β        4β        5β        10β  

  21+5 -0.0808618 -0.017118  0.001720  0.001237  -0.000271  -0.000005 
  21+7 -0.0808620 -0.017119      0.001721  0.001239  -0.000272  -0.000006 
  25+5 -0.0808619 -0.017118  0.001720  0.001237  -0.000271  -0.000005 
  25+7 -0.0808619 -0.017119  0.001720  0.001238  -0.000271  -0.000005 
  25+9 -0.0808618 -0.017119  0.001720  0.001239  -0.000271  -0.000006 
  29+7 -0.0808618 -0.017118  0.001720  0.001237  -0.000271  -0.000005 

 
Table 4. Convergence of the singular coefficients iβ with Nλ; 2N=88. 

 
An indication of the quality of the solution is given by the smoothness of the calculated Lagrange 

multipliers. For the optimal combination Nλ=32 and 2N=88, the calculated Lagrange multiplier function along 
boundary SD is smooth. As shown in Figure 2, for a slightly different value of Nλ (i.e. Nλ=36), the calculated 
Lagrange multiplier function exhibits oscillations, while the values of the singular coefficients are essentially the 
same. 
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Figure 2. Plot of Lagrange multiplier function along boundary SD; Nλ=32 (solid) and 36 (dashed); 2N=88. 
 
In Table 5, the values of α1, α2, α3 and β1 calculated with the SFBIM are compared with values obtained with 

other methods reported in literature. To our knowledge, there are no reports in the literature for the values of the 
higher order coefficients. The value 0.690988 for α1 agrees with the analytical solution up to the 6th significant 
digit. 

 
          Method      1α      2α      3α         1β  
Modified BIEM[17]  0.69108 0.26435 0.04962  -0.07990 
Singular FEM[7]  0.69173 0.27168 0.05013  
ISBFM[8] 0.69104 0.26140 -0.01263  
Modified MFS[11] 0.690984 0.274807 -0.022104  -0.043983 
J-integral method[23] 0.6910    
Spectral DDM[16] 0.69035 0.26404 0.03069  -0.08051 
High-resolution FEM[19] 0.69160 0.27183 0.05232  
Modified MFS[17] 0.69019    
SFBIM (present work) 0.690988 0.264500 0.03037  -0.080862 
Analytical solution[18] 0.6909883    

 

 
Table 5. Comparison of computed singular coefficients with the results of other methods 

 
In Figure 3, the pressure along the wall and the slip surface (y=1) is plotted. This is in good agreement with 

the results of Salamon et al.[19]. The pressure goes to infinity as the singularity is approached from the right, 
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while it remains finite for negative x. This discontinuity cannot be captured by standard numerical methods in 
which a continuous approximation is used for the pressure. 
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  Figure 3. Calculated pressure along y=1 (SFBIM with 2N=88 and Nλ=32) 
 
The effect of the length of the domain on the computations has also been studied. As expected, the values of 

singular coefficients change dramatically with L for small values of the latter, since the assumptions for fully 
developed and uniform flow along the inlet and the outlet planes, respectively, are not valid when the two planes 
are taken close to the die exit. This effect is illustrated in Figure 4, where the calculated values of α1, are plotted 
versus L. We observe that the value L=3 is sufficiently high to assure the validity of the imposed inlet and outlet 
boundary conditions. At higher values of L, the accuracy of the computed solutions starts deteriorating, due to 
the fact that the number of the corresponding Lagrange multipliers along SD is kept fixed, while the length of the 
boundary SD increases. As already noted, increasing the number of Lagrange multipliers along SD will not 
improve the accuracy, since it leads to ill-conditioning of the stiffness matrix. 
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  Figure 4. Convergence of 1α with the semi-length L of the domain (Nλ = 32). 
 
5 CONCLUSIONS 

The SFBIM has been developed for solving a biharmonic problem with a boundary singularity, i.e. the 
Newtonian planar stick-slip problem in terms of the stream-function. This method converges very fast with the 
number of singular functions and the number of Lagrange multipliers. Accurate estimates of the leading singular 
coefficients are obtained. In particular, the value 0.690988 for α1 agrees very well with the analytical solution 
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and is much more accurate than previously reported values. 
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Abstract: This paper is a generalization of the author’s previous paper where a set of polynomials ( )xnϕ  are 

constructed. These polynomials are orthogonal with respect to the weight ( ) ( )xRxw , 

( ) ( ) ( ) ( ) ( )⎟⎟
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⎞
⎜⎜
⎝

⎛
−=−= ∏

=

n

i
i
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, , where ( )xw  is a weight function, k  is an integer and  iy  

belongs or is very close to the integration interval. These polynomials are used to extract Gauss quadrature 
rules for the hypersingular integrals  

 ( ) ( ) ( )
( ) dx
xR

xfxwfI ∫−==
1

1
    

The process is exactly the same as the one used for the extraction of the classical Gauss formula for the Riemann 
integrals.  
 
1. INTRODUCTION 
It is well known, since 1969 [1], that one experiences serious difficulties when trying to numerically evaluate 
variables of interest (stresses or displacements) at a point inside a three or two dimensional body S  that is 
“close” to its boundary S∂ . In the sequel we limit ourselves in the particular case of two dimensional bodies.  
The source of the abovementioned difficulty is the fact that, the traction kernel (in the standard Singular Integral 
Equation Method) becomes “nearby singular” or in other words the traction Kernel has a “nearby singularity” 
( )rO 1  where r  is the distance between internal source point p “close” to S∂  and the nearest point Q  on 
S∂ . In the hypersingular Integral Equation Method the traction Kernel has a “nearby hypersingularity”. 

Obviously the displacement kernel in the same situations is “nearly weak singular” ( )nr0  or “nearly 

singular” ( )r10 . 
On the other hand, strong or nearby singularities appear not in the Kernel, but in the unknown distribution of 
displacements along S∂ , in the case of a concentrated force applied at a point p “close” to S∂  or on the 
boundary S∂ . These singularities can superimpose on the previous singularities of the Kernel. Therefore, in 
many cases more than one singularity coexists.  
The use of standard quadrature procedures leads to a computational error which increases as the distance r  
decreases: this is the so-called “boundary layer effect”. BEM researchers have proposed various numerical 
methods for accurately computing such nearly singular, singular or hypersingular integrals. 
Strong, weak or nearby singularities are treated in two ways. The first, which is dominated by the Sladek’s work 
[2-3] i.e., tried to avoid singularities by regularizing the integral and the integral equations. Procedures trying to 
avoid singularities [4-8] move in the same lines. Some of these methods concern strong singularities but they 
may be expanded easily to nearby singularities. The one way to proceed with these integrals is based on 
quadrature rules for such integrals. We can distinguish procedures based on transformation which remedy the 
singularities [9-12] and on general quadrature rules [13-21] (special quadratures rules). In general, there is a 
prejudice concerning the last procedure. Many authors claim that special quadrature rules are very complicated 
and not very efficient. Nothing could be more wrong. The true is that special quadrature rules are able to give the 
exact result with only few integration points. On the other hand, the determination of the weights and the 
integration points is, in general, a simple procedure.  
Mapping the integration interval of the boundary to the interval [ ]11,−  the general form of an integral with 
nearby and strong singularities can be put in the following form 
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( ) ( ) ( )
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1
dx

xR
xfxwI ϕ                                                                                                                       (1) 

with ( )xR  a polynomial of degree nk += : 
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n

i
i
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where k  is an integer iε  is small or zero and ix  is on [ ]11,−  or very close to this interval. Thus, the integrand 

has apart from the poles at t , poles at the points iy  which could or could not belong to the integration interval. 

The weight function, ( )tw , which is fixed positive and integrable on [ ]11,− , is given by 

 ( ) ( ) ( ) ,,, 111 −>+−= βαβα xxxw                                                                                              (3) 
The previous form (1) concerns not only line integrals but also surface integrals if the late can be reduced to one-
dimensional integrals and then the form (1) can be applied. 
Strong, weak and nearby singularities have already been confronted in the early ‘80s by our team [27-29]. More 
specifically, nearby singularities are confronted in two master theses [18, 19] in collaboration with the author 
and the results are incorporated in our codes for the solution of boundary integral equations. 
In the present study, we have expanded the known Gauss-integration rules as to confront the above problem 
where many strong or weak singularities can coexist. For the sake of generality we have considered the most 
general case by supposing that, for some reasons, we need to evaluate the function at some pre-assigned nodes. 
For question of generality pre-assigned nodes are considered to coincide with one or both ends of integration so 
Radau, Lobatto and Kronrod formulas [18, 20, 21] are derived. 
For the calculation of stresses defined by finite part integrals, integrals of the form (1) must be evaluated. In this 
paper we construct the polynomials ( )xnϕ  which are orthogonal with respect to the weight ( ) ( )xRxw . Using 
these polynomials it is very easy to construct a Gauss type quadrature formula for integrals of the form of the 
relation (1). The paper is a generalization of my previous papers [20,21]. 
Sometimes, it is very useful to include in the quadrature formula a number of ‘pre-assigned nodes’ [ ]mkkz 1= , i.e. 
nodes which are given beforehand. Obviously there are also nodes which are free and may be chosen by any 
criterion we may desire. A special case of quadrature with pre-assigned nodes is the Radau quadrature where 

1=m  and 1τ  coincides with either of the ends of the integration interval, or the Lobatto quadrature where 

2=m  and 2τ  coincide with the ends a  and b  of the integration interval, etc. In order to confront this 
problem we have generalized our proof and we have included an arbitrary number of pre-assigned nodes. 

 
2. SOME BASIC EQUATIONS 
Let 
 ( ) ...+′+= −1n

n
n

nn xkxkxπ                                                                                                                    (3) 
be a set of orthogonal polynomials [22] such that 
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Obviously then 
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These polynomials satisfy the three term recurrence formula 
 ( ) ( ) ( ) ( ) 011 >−+= −+ xxCxBxAx nnnnnn πππ                                                                               (6) 
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with 
 10 01 ==− ππ ,                                 (8) 

Definition 1. The functions ( )znψ , ,...,, 210=n  are defined cut along the real line from 1−  to 1 by [42] 



G. Tsamasphyros 
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1 1
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π
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The ‘associated functions’ ( )znψ  are continuous at ( )ba,  from the left and from the right, i.e. the boundary 
values  
 ( ) ( )iyximx n

y
yn ±=
>
→

± ψψ
0
0

 

exist. 
 The following relations across the real line ( )11,−  are easily established by Plemelj formulas: 
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Definition 2. The functions ( )xnψ , ,...,, 210=n  are defined in ( )11,−  by 
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From these definitions it is readily verified that the functions ( )znψ  satisfy the same recurrence relation (12) as 

( )xnπ : 

 ( ) ( ) ( ) ( ) 011 >−+= −+ nzCzBzAz nnnnnn ,ψψψ                                                                          (12) 

For 0=n  the recurrence formula is slightly different, i.e. it takes the form 
 ( ) ( ) ( ) 2000001 hAzBzAz −+= ψψ                                                                                               (13) 

we denote by { }m
jjz

1=
 a set of pre-assigned points and by ( )xω  the polynomial 
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j
jzxx

1
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and by 
 ( ) ( ) ( )xxwxW ω=                                (15) 
a composed weight function. 
 We propose now to find the polynomials ( )xnϕ  of degree n  in x  such that  
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for every polynomial ( )xps  of degree ns < . Taking 
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we have 
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From the last relation we obtain 
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 By expressing ( ) ( )[ ]xx nϕω  as a series of polynomials ( )xiπ  
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i
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and substituting in (21) we obtain. 
 ( ) ( ) ( ) ( )xdxdxx nnmnmnn −−++ ++= ππϕω ...                                                                                  (23) 

 Taking into consideration jz  are roots of ( )xω  we have 

 ( ) ( ) mjzdzd jmnmnjnn ,...,,;... 210 ==++ ++−− ππ                                                                   (24) 

937
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Taking into consideration the above relation and the orthogonal condition we can prove the following theorem.  
Theorem 1: The orthogonal polynomials ( )xnϕ  over [ ]ba,  with respect to ( ) ( )xRxW  are given by 
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Proof 
Taking into consideration (17) we shall prove the correctness of (25). 
As a first step we select as ( )xps  the following m  polynomials of degree ( )1−  
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k ,...,,, 211 =−=−                                                                                           (26) 

with 
 ( ) ( ) ( )jj yxxrxr −=                                                                                                                         (27) 

We put these polynomials in (17) and we substitute nϕ  by the relation (25), and we obtain.  
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Taking into consideration that the last line of the determinant in the right hand side coincides with the j -th line, 
the right hand side is equal to zero. 
Let now select ( )xps  as follows. 

 ( ) ( ) ( ) kqxrtxxp qk
q ≤−= −

− ,                          (29) 
We follow the previous procedure, and we obtain 
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The right hand of (18) is for the same reason is equal to zero. Finally ( )xmn+ϕ  must also have roots at the 

points jz , kj ,...,,21= , which is obviously satisfied. So the theorem is proven. 
Obviously this result can be generalized in order to obtain the corresponding orthogonal polynomials in the case 
where 

 ( ) ( )∏
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−=
n

i

k
i

iyxxr
1

                                                                                                                          (31) 

 
3. THE GENERALIZED QUADRATURE FORMULA 
Let us give some necessary definitions: 
We denote by D  a simply connected domain containing ( )11,−  in its interior. 

We denote by ( )zf  the analytic continuation of ( )tf  into D . 
Let C a simple contour inside D , presenting angular points at 1−  and 1 with angles α  and β  respectively. 

These angular points are due to the behavior of ( )zϕ . 

 Let { }n
jjt

1=
 the roots of ( )xnϕ . These roots belong or not to the integration interval. These points as 

well the pre-assigned points { }m
kkz 1=  will be used as interpolation points, i.e. 
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Using the interpolation formula (32), and taking into consideration Lagrange procedure, we have 
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or in more compact form 
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Multiplying both sides of (7) by ( ) ( )xRxw  and integrating on [ ]11,−  we get 
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is the quadrature formula, 
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are the weights of the quadrature formula, and 
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is the error 
Taking into consideration are 
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and using asymptotic expansion we can prove that ( ) 02 =+ fE mn  

From (27), we conclude that ( ) 0=+ ϕmnE  for every ( ) 1−+℘∈ mntf , where 12 −+℘ mn  is the class of 

polynomials of degree 1−+≤ mn . 
In the particular case where the pre-assigned nodes coincides with both ends of the integration interval i.e. 
( ) 12 −=Ω tt , the quadrature formula (39b) taking also into consideration Plemelj formula  becomes 
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                                                                    (50) 

where 1+Λ j  and 2+Λ j  can be obtained from relations (40) for 11 −=+jτ  and 12 =+jτ  respectively. If C  is 

smooth (contour C  without angular points) then 2122 == πβπα  and we found the most known form of 
Lobatto formula. Obviously the pre-assigned node could coincide with one of the ends, and then one of the first 
terms in (50) is equal to zero. The last formula goes with the name of Radau 
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Abstract. This paper presents examples on the use of computational mechanics in petroleum geomechanics for 
the solution of research and advanced practical problems. We present finite element solutions for the problems 
of wellbore stability, stability of multilateral junctions, sand prediction analysis and in situ stress determination. 
 
 
1 INTRODUCTION 

In the last two decades the petroleum industry has witnessed what can be called the ‘geomechanics 
revolution’. Geomechanics has become a regular consideration in oil field development from oil exploration to 
production. Evidence of the significance of geomechanics is drawn from field cases in the areas of drilling, 
production and reservoir management regarding the commercial value of geomechanics for the operator’s 
perspective. Within the service industry, geomechanics became the fastest growing commercial area for 
technical investment. Among the main drivers for the promotion and advances of petroleum geomechanics are 
the high rig daily rates in deep water ($500,000/day in the deep water in the Gulf of Mexico and in offshore 
West Africa), the drilling in harsh environments such as tectonic fields, salt-domes, high-pressure high-
temperature fields, and the drilling of more horizontal and extended reach wells spanned with multilateral 
junctions.  Environmental concern and restrictions for the disposal of contaminated cuttings and produced water 
promoted new applications for reinjection and hydraulic fracturing. The demand for higher hydrocarbon 
recovery, leading to extreme reservoir depletions, causes other problems such as surface subsidence and 
wellbore collapse, and opened a new area called ‘reservoir geomechanics’. Like in any other field, advances in 
the information technology such as software, visualization tools, and the internet have their share in the 
promotion of petroleum geomechanics. 

In this paper we will focus on the contribution of computational geomechanics in the solution of practical 
problems in petroleum engineering. We will demonstrate this contribution through solution of problems in major 
areas of petroleum geomechanics. In section 1 we will present how the finite element method is used for 
calculating the optimum mud density for drilling deviated wellbores. In section 2 we will extend the same 
analysis for examining the stability of multilateral junctions. In section 3 we will use a 3-D finite element model 
for determining the optimum wellbore pressure for sand-free production of hydrocarbons. For the solution of 
problems in petroleum geomechanics the knowledge of insitu stresses is needed as input parameters. We will 
show in section 4 examples of finite element analysis for the determination of insitu stresses near complex 
geological structures.  We recognize the work done and published in numerous papers on petroleum 
geomechanics by many researchers and practitioners over the last two decades. A good collection of such papers 
can be found in the EUROCK/SPE 1998 and SPE/ISRM 2002 proceedings and in the 2004 special issue of 
International Journal of Geomechanics on petroleum geomechanics. 

2 ELASTOPLASTIC FINITE ELEMENT ANALYSIS OF INCLINED WELLBORES   

Modern wells, with higher deviations and greater step-outs, are increasingly susceptible to wellbore 
instability problems. The development of extended reach and horizontal drilling in the last decades, followed 
recently by another drilling technique, the multilateral, makes the well trajectory more complex. Mud-pressure 
modelling for complex well trajectories required less conservative solutions. Two-dimensional plane strain 
solutions can be applied to analyse the stability of a wellbore when the wellbore axis is nearly parallel to the 
direction of one of the insitu stresses. For example, this is very often the case for a vertical or a horizontal 
wellbore. In the general case of an inclined hole, however, a more elaborate analysis is required, since the 
problem is 3D and all components of the stress tensor are involved. Nevertheless, the construction of 
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engineering models can be simplified and computational time can be reduced significantly by simplifying the 
geometry taking into account the following two points: 

(a) The analysis can be carried out in a local coordinate system, whose z-axis is parallel to the wellbore axis, 
the x-axis is chosen to be parallel to the lower most radial direction of the wellbore, and the y-axis is horizontal. 
Then, the insitu stresses in this local frame consist of three normal and three shear components. To model 
wellbores of different orientations, only the decomposition of the insitu stress field in the local frame needs to be 
changed. Thus, only one finite element mesh is required, with a change of the applied stresses according to 
wellbore orientation. The transformed insitu stresses are applied in the form of an initial stress condition. 

 (b) It is expected that there is no significant variation in the deformation of the cross-sections perpendicular 
to the wellbores axis caused by the insitu stresses. The differences in the deformation of the cross-sections along 
the z-axis are mainly due to the changes of the in plane geometries. The nodal displacements of the different 
cross-sections can be de-coupled resulting in local displacements independent of the position of the node along 
the wellbore axis. Thus, no significant variation of the displacement field, (ux, uy, uz), is expected parallel to the 
hole z-axis. 

These conditions can be easily implemented in a 2-D finite element code where the third equilibrium 
equation (i.e. in the z-direction) replaces the plane-strain condition. Thus, the solution-domain is a plane 
perpendicular to the hole axis with the three components of the displacement being the primary unknowns. This 
formulation allows out-of-plane warping of a thin layer without change of its thickness. To meet these 
requirements we developed a finite element code for elastoplastic rocks which can be used for mud-pressure 
design of a general inclined wellbore. The details of this implementation were presented for an in house 
developed code[1] and in an existing commercial code[2,3] . 

Inputs required by the model are the rock mechanical parameters and insitu stresses. The developed code was 
tested by carrying out optimum mud-pressure calculations for drilling a wellbore in an oil field offshore of East 
Canada. The model parameters are derived from triaxial test data performed on core samples. In cases where 
core data are not available, a default model can be used based on sonic data and calibration functions for 
calibrating the elastoplastic model. In the following we will present examples of mud density calculations in a 
silty shale in the overburden. 

The material parameters and functions for Mohr-Coulomb elastoplastic model are obtained from triaxial 
compression tests. The tested cores were recovered from different depths and correspond to different lithologies. 
In this study we used only the data for the lithology characterized as a silty shale tested perpendicular to the 
bedding planes. The elastic constants are approximately: E = 8833 MPa and ν= 0.073. The experimental data 
were fitted by the hyperbolic law: 
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where σe
o=41.25 MPa is the value of the effective stress at initial yield and the calibration constants are C1 = 

1.225 10-05/MPa and C2 = 1.96825 10-05/MPa. The angle of internal friction was found to be  φ= 27.23o. The data 
supported a non-associative flow rule with dilation angle  ψ = 0o . In practical applications failure in 
geomechanics is defined when the state of stress or the plastic strain reach a critical value which is usually 
derived from triaxial compression tests. 

The computations were carried out at the fixed depth of 8150 ft. At this depth the in situ effective stresses are 
approximately, Pp = 25.67 MPa, Sh = 18.8 MPa SH = 23.4 MPa and Sv = 37 MPa. Other parameters required by 
the FEM model are the wellbore orientation with respect to the insitu stress field. The wellbore is drilled with 
inclination i = 31o from vertical and azimuth a = 250o measured counter-clockwise from North. The maximum 
horizontal stress is acting along the East-West direction. The angle between SH and wellbore azimuth is 20o.  

Figure 1 shows the developed dimensionless hole-closure with decreasing mud-pressure. In the same graph 
we marked the level of mud-pressure for which failure takes place assuming (a) an elastic-brittle model and (b) 
an elastoplastic model. The elastic-brittle model predicts failure at pmud = 26 MPa whereas the elastoplastic 
model is less conservative predicting failure at pmud = 10.6 MPa. The hole is deformed like an ellipse with 
maximum hole closure at 90o from the breakout direction. In order to appreciate the warping of the inclined 
wellbore we plotted in Figure 2a the hole cross-section distorted with the amplified calculated displacement 
parallel to the hole axis, uz. Figure 2b shows the developed plastic strain. As already mentioned, failure is 
assumed to take place at pmud = 10.6 MPa when the plastic strain at the borehole wall reaches the critical value   
εp = 0.003.  
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Figure 1. Mud-pressure vs dimension-less hole closure 
                                                                                                  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. (a) Contours of the axial displacement showing hole warping and (b) contours of the plastic strain. 

 

3 STABILITY OF MULTILATERAL JUNCTION 

Drilling inclined wells through producing strata can greatly improve reservoir drainage and hydrocarbon 
recovery. The horizontal sections are accessed through multiple inclined wells drilled from a relatively small 
area in many or all directions, something that allows better exploitation of offshore platforms and land rigs that 
are under economic and environmental restrictions. Drilling inclined and horizontal wells, though, is more 
difficult and more expensive, due to wellbore instabilities. A particular area of concern is the integrity of the 
rock near a multilateral (M-L) junction. The junction is the region where a second wellbore (lateral) takes off 
from the main wellbore (parent).  In M-L levels 1 and 2 the rock at the junction is not supported mechanically 
with cemented casing, so the integrity of the rock around the area of two intersecting tubes becomes very 
important in terms of stability. 

A software tool was developed in Schlumberger for assessing the integrity of rock surrounding a multilateral 
junction. The tool was developed using finite element analysis and a graphical-user interface for providing the 
input data and visualizing the results. The build angle between the lateral hole and parent hole is usually small, 
so, the axis of the lateral is nearly close to the z-axis. Therefore, as explained in the section before, the analysis 
can be based on a generalized plane strain formulation that is carried out in cross-sections in succession, 
perpendicular to the parent-hole axis. The use of a 2D analysis is not valid in the area very close to the junction 
due to strain concentrations. However, the drilling tool will damage the rock in that area at the span off of the 

947



P. Papanastasiou and A. Zervos. 
lateral. Therefore, for practical reasons the analysis can be simplified into 2D with a good accuracy.  

The data are given through a graphical interface, shown in Figure 4 for a particular example. The data 
required to define the geometry are the radii of the holes, the inclination and azimuth of the parent hole, build 
angle between lateral and parent holes and the position of the lateral with respect to the lowest point on the 
parent hole. The rock parameters are defined by the elastic modulus and Poisson’s ratio, the friction angle and 
the rock strength (UCS). The input stresses in the model are the vertical stress and the two horizontal stresses, 
the reservoir pressure and the well pressure. The direction of the maximum horizontal stress with respect to 
North is also needed. 

Finally, a Biot constant is needed to define the relation between total and effective insitu stresses. The 
example presented here is based on elastic/brittle analysis carried out for testing the model by comparing its 
predictions with the experimental data from true triaxial tests performed on large blocks at Lille University[4]. 
For the rock samples it was determined from calibration tests that the elastic modulus is E=22500 MPa and the 
Poisson´s ratio is ν=0.2. The estimated Mohr-Coulomb parameters were 8.5 MPa for the cohesion and 28.5 
degrees for the friction angle. During testing, the three applied stresses on the sides of the blocks were increased 
equally. Failure around the holes in tests was observed after the applied isotropic stresses reached the value of 
27 MPa. Figure 5 shows that the model predicts maximum compressive stress around the junction area (Fig.5b). 

 
 

 
Figure 4. Graphical interface for the analysis of a multilateral junction 

 
The developed tool is useful to drilling engineers to decide in which formation, in which azimuth and which 

deviation to drill a stable lateral. The completion engineer can use the tool to decide, a) where to place a stable 
junction, e.g. in the reservoir or in the overburden, b) what level of M-L junction is needed (mechanically 
supported or not) and c) if the junction is drilled in the reservoir section, at which draw-down and depletion 
pressures it may become unstable. 
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Figure 5. Model predictions of maximum compressive stress at 27 MPa stresses at two different points along 
the junction 

4     SAND PREDICTION ANALYSIS 

A major problem of concern to the oil industry is sand production. Production of hydrocarbons at high flow-
rates induces formation failure and subsequent sand production. In order to understand the physical mechanisms 
involved in the sanding problem sanding experiments were carried out on thick-walled cylinders under loading 
and flow conditions[5] . It was found that in weakly consolidated rocks sanding takes place in two stages: a) the 
applied stresses fail the rock near the hole and b) if the flow rates are high enough, the loose sand grains are 
transported. The sand production experiments show clearly that stress induced shear failure occurs before sand 
production. During field production failure takes place mainly due to increase of effective stresses after 
depletion and secondary due to increase of draw-down pressure. Petroleum engineers need sanding predictor 
models that can be used in optimizing production rates from wells in formations that are mechanically weak and 
for which rock failure and production of solids (mainly sand) are common problems.  

Emphasis in sanding modelling was put on predicting and avoiding rock failure; If the conditions for rock 
failure are avoided no sanding is expected to occur. In the example below we will describe a sand prediction 
model based on a 3-D poroelastoplastic finite element analysis of a perforated wellbore. All the involved 
processes: wellbore drilling, casing and cementing, perforation creation, production and reservoir depletion can 
be simulated by the model. The criterion for sand production is based on predicting rock failure when the plastic 
strain, which is calculated from a steady state coupled stress analysis of production simulation, reaches a critical 
threshold. The model can provide directly the critical drawdown for avoiding rock failure near the perforations 
at different orientations. For this FE modelling, we used the commercial code Abaqus[6]; a similar model was 
also used in reference [7].   

In this example the computations were carried out at the reservoir depth of 3000 m. At this depth the pore 
pressure and the  total in situ stresses are approximately:  Pp = 30 MPa, Sh = 37.5 MPa, SH = 48 MPa and Sv = 60 
MPa. The rock parameters required by Mohr-Coulomb elastoplastic model were measured or estimated from 
core tests. For the elastic constants we assumed the following values: E = 5000 MPa, ν = 0.3.  For simplicity or 
sometimes constrained by the availability of triaxial rock deformation data, we assume an associated elastic-
perfectly plastic material behaviour. That means the dilation angle is equal to the friction angle  ψ = φ and that 
no hardening takes place with plastic deformation. Under these assumptions, we used the following plastic 
material parameters representative of a weak rock: φ = 30o, ψ = 30o, c = 3 MPa, where c is the rock cohesion. 
The equivalent uniaxial compressive strength is UCS = 10.4 MPa. A steady state poroelastoplastic stress 
analysis will be carried out to simulate the production of hydrocarbons from a perforated wellbore. This analysis 
requires the permeability of the formation k to be specified. Abaqus requires the effective permeability 
coefficient in m/sec which incorporates viscosity. In addition, the fluid density, ρf and fluid bulk modulus, Kf are 
explicitly required. Typical values for these data are: k = 2.539 10-5 m/sec, ρf = 786.58 Kg/m3, Kf = 861.85 MPa. 

The diameter of the wellbore is D=20 cm and the diameter of perforations is db = 2.5 cm near the base and db 
= 1.0 cm near the tip. The perforation penetrates 20 cm into the rock formation. Due to symmetry, we modelled 
only a quarter of the wellbore assuming also that there is no perforations interaction in the direction parallel to 
the wellbore. Figure 6 shows the finite element meshes (a) after drilling of the wellbore and (b) after completion 
of the perforations. Both processes were modeled by removal of the elements in each stage. Production of 
hydrocarbon from perforations is simulated by reducing the pressure in the perforation channels below the 
formation pressure in different production steps. After every decrease of production pressure a steady-state 
analysis is carried out to reach equilibrium stress conditions. Figure 7 shows the development of plastic strain on 
two perforations with 90o phasing, vs decreasing production pressure in the wellbore. The red line (bottom) 
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corresponds to the perforation which is parallel to the minimum insitu stress and the green line (top) corresponds 
to the perforation which is parallel to the maximum insitu stress. The results show that failure will take place 
first near the perforation which is parallel to the maximum insitu stress (green line). For these particular data, the 
maximum value of the plastic strain is approximately 13% on one perforation and 8% on the other perforation 
after their creation and before the start of the production. The maximum value increases to 24% on one 
perforation and to 21.5% on the other perforation when the production pressure in the wellbore drops to zero. 
The critical wellbore pressure for a sand free production is calculated as follows: If we assume that the critical 
plastic strain for rock failure is defined to be 18% (e.g from triaxial calibration tests) then the production 
pressure should be kept above 12 MPa for avoiding sanding (Figure 7). 
 

 

 
Figure 6.  (a) Finite element meshes (a) after wellbore drilling and (b) after perforation completion  
 
Figure 8a shows the contours of the plastic strain near the perforations. The maximum plastic strain occurs 
within one wellbore radius distance. Similar results are also shown by the flow rate distribution on the 
perforation faces (Figure 8b). The largest pressure gradients are near the tip of the perforations and the highest 
flow rates are calculated near the tip of the perforations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: The development of plastic strain at perforations with the decrease of wellbore pressure 
 
 

       
 
Figure 8.  (a) Contours of plastic strain for zero wellbore pressure; failure will take place near the red areas (b) 

Flow rates near the perforations; maximum flow rates are shown near the perforations tip. 
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5     INSITU STRESS DETERMINATION NEAR COMPLEX GEOLOGICAL STRUCTURES 

From the examples presented above it is made clear that the knowledge of the insitu stresses is needed in the 
geomechanical prediction models. Other applications in petroleum engineering where the knowledge of the 
insitu stresses is needed is in the design of Hydraulic Fracturing. The hydraulic fractures are aligned 
perpendicular to the minimum insitu stress and the hydraulic pressure needed for creating these fractures, called 
the net-pressure, must exceed the minimum insitu stress. Another area where the knowledge of the insitu stresses 
is required is in the Reservoir Geomechanics.  In this area the reservoir simulators are coupled with stress 
analysis to account for problems such as reservoir compaction and surface subsidence, casing collapse, fault 
activation and other. 

Engineers can get reasonable estimates of the insitu stresses in cases where the rock layers are nearly 
horizontal and are extended to large distances. In such cases, the vertical stress is determined from the 
overburden weight. For the determination of the horizontal stresses, which is less accurate, one has to assume 
that no lateral deformation has taken place and the rock was deformed according to a constitutive relation such 
as elasticity. 

In this section we present two examples where the finite element analysis was used to obtain an estimate of 
the insitu stresses near complex geological structures. In Figure 9a the analysis was carried out for determining 
the insitu stresses near a salt diapir in the N. Sea.  From the seismic data the problem was defined to be 
approximately axisymmetric.  For such analysis it is necessary to have measurements of the insitu stresses 
(usually the minimum insitu stress measured with hydraulic fracturing test) at some points in order to constrain 
the problem. By varying parameters related to rock properties, tectonic loads or boundary conditions the process 
attempts to match the predictions with the available measurements in some points in order to get good estimates 
of the insitu stresses elsewhere. The knowledge of the insitu stresses near a salt diapir is valuable for optimizing 
the position of the offshore platforms and for choosing the well trajectories (Figure 9a). 

Figure 9b shows the finite element mesh of a geomechanical model which was used for estimating the insitu 
stresses in a highly fractured reservoir and in the overburden. The model of figure 9b contains 20 major faults 
inserted as discontinuities. Other minor faults were ignored in the analysis. The faults may activate during 
reservoir depletion and production causing casing collapse and severe damage in the wells. With the assistance 
of such modelling different scenarios on how to develop an oil-field can be examined in order to minimize the 
problems that may be encountered later.  
 

 
 

                                 (a)                                                                     (b) 
Figure 9. Finite element calculations of the vertical insitu stress (a) near a salt diapir and (b) in a fractured 
reservoir 
 

For both problems static analyses were carried out. The elements used were linear strain triangles (6 nodes) 
for 2D, and tri-linear tetrahedra for 3D (4 nodes). The Constitutive laws used were elastoplastic Mohr-Coulomb 
for the salt diapir and the rock strata (2D and 3D). The material parameters came from a combination of 
logs/seismic surveys. The loading and boundary conditions varied examining different scenarios applying either 
the far-field insitu stresses at the far boundaries, or prescribing fixed displacements at the far boundaries to 
create the stress field. This was necessary, as there were very few points at which the model could be validated 
(using leak-off tests at 2-3 points for a whole region km x km in size). Also, the way the salt diapir was 
modelled varied. In some scenarios was modelled as a Mohr-Coulomb solid, in others it was left out and its 
influence substituted with a pressure as if it were a fluid  
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6     CONCLUSIONS 

Meeting unpredicted problems in petroleum geomechanics such as wellbore instability and sanding is almost 
inevitable, attributed mainly to the uncertainties on the values of dominant parameters mainly the insitu stresses 
and rock strength. Recently, this realization motivated the development of real time techniques for facing these 
problems. The main idea behind the new approach is to use real time measurements in drilling, to evaluate the 
drilling job and to update the design in order to resolve the encountered problems. In the heart of the design 
phase an accurate module for estimating the optimum mud-pressure is always needed. 

We presented a sand prediction model based on a 3-D poroelastoplastic finite element analysis of a 
perforated wellbore. All the involved processes – wellbore drilling, casing and cementing, perforation creation, 
production and reservoir depletion - were simulated by the model. The criterion for sand production was based 
on predicting rock failure when the plastic strain, which reaches a critical threshold. The model can provide 
directly the critical drawdown for avoiding rock failure near the perforations at different orientations. For 
weakly consolidated formations a constitutive model to account for a compactant and cohesion-weakening 
plasticity response is needed. The production from perforations involves the stability of small holes where the 
size of the hole (scale effect) is important[8]. Sanding in unconsolidated formations, the transport of sanding from 
the reservoir to surface facilities and the estimation of the volumes of the produced sand are still outstanding 
issues in petroleum engineering.  

Finally, a new area in petroleum engineering, called reservoir geomechanics has developed in the recent 
years. The reservoir simulators are coupled with stress analysis in order to give more accurate predictions and to 
account for problems such as reservoir compaction and surface subsidence, casing collapse, fault activation and 
other. In all these problems the knowledge of the insitu stresses is required. The finite element analysis can be 
combined with local measurements for obtaining the insitu stresses near complex geological structures. 
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Abstract. A computer-aided analysis is applied to the design of a chemical vapor deposition (CVD) reactor for 
tin oxide deposition. A three-dimensional computational fluid dynamics (CFD) model for the gas flow, mass and 
energy transfer in a multicomponent gas mixture is coupled to a heterogeneuous kinetic model for the film 
growth. A SIMPLE-type finite volume method is used on a non-orthogonal grid to solve the steady-state 
reaction-transport equations and obtain the growth rate profile across the wafer. The quantitative effects of 
various operating conditions on the CVD outcome are investigated through parameter continuation. Finally, an 
evolutionary algorithm is incorporated in the CFD/kinetic model to determine the optimal process parameters, 
under the objective of minimizing the non-uniformity of the growth rate across the wafer; preliminary 
optimization analysis results are reported.   
 
 
1 INTRODUCTION 

Chemical Vapor Deposition (CVD) has been an important technology in microelectronics industry for 
producing thin solid films on heated substrates (wafers). The essential mechanisms underlying CVD processes 
are chemical reactions in the gas phase and on surfaces, combined with mass, momentum and energy transport. 
The interactions of chemical and transport processes, which are determined by reactor design and process 
parameters, influence the quality of the deposited films.  

Due to the continuous reduction of the size of microelectronic components, improved CVD reactor designs 
are needed to meet the imposed requirements in the uniformity of the deposited films. The modifications of the 
reactor configurations and the manual control of the operating parameters are time consuming, considerably 
expensive and probably inefficient. Moreover, experimental data are usually available in a small range of 
operating conditions. On the other hand, mathematical modeling and computer simulation provide an excellent 
economic alternative to trial-and-error based experimental techniques. In addition, simulation models allow the 
evaluation of numerous reactor configurations and process parameters and finally the optimization of a CVD 
reactor in terms of high degree of spatial uniformity of the growth rate across the wafer.  

Among the different mathematical approaches used so far in CVD reactors design, the most common used 
are based on coupled transport/kinetic models, which are used to investigate the quantitative effects of various 
operating parameters to the properties of the deposited films[1-3]. In particular, parametric analysis of CVD 
reactors is performed by varying one process parameter at a time. Although significant conclusions can be 
obtained from each parameter continuation run, there will be no “global” solution to the design problem of the 
CVD reactor. Obviously, it would be more efficient to investigate the effect of more process parameters at a 
time on the CVD reactor performance. To improve the efficiency of the parametric analysis of a CVD reactor, 
an Evolutionary Algorithm (EA) is incorporated in a detailed Computational Fluid Dynamics (CFD) model for 
the gas flow, heat and mass transfer inside CVD reactors. Namely, the issue of the spatial uniformity of the 
growth rate across the wafer is defined as an optimization problem and an objective function is defined to serve 
the optimization procedure. This approach has been used previously in the optimization of various CVD 
systems[4-6]. For example, Grujicic and co-workers performed the optimization of carbon nanotubes fabrication 
coupling a genetic algorithm with a detailed CFD model[5].  

In this work, the efficiency of the particular design approach is investigated in a horizontal, cold-wall reactor 
where tin oxide (SnO2) thin films are grown on silicon wafers at atmospheric pressure conditions (APCVD). A 
previous combined experimental/computational analysis of the CVD reactor has resulted in the preliminary 
detection of the origins of the spatial variation of the growth rate across the wafer[7]. In the meantime, a new set 
of experimental data was obtained and an improved heterogeneous kinetic mechanism for tin oxide deposition 
was extracted. The improved kinetic model is incorporated in the CFD model and used in the simulations 
performed in this study.  
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2 REACTOR MODEL 

2.1 The case studied 
Tin oxide is deposited on silicon substrates through the following oxidation reaction:  
 

2224 Cl2SnOOSnCl +→+       (1) 
 
The horizontal cold-wall CVD reactor is sketched in Figure 1. A detailed description of the CVD reactor and 

the deposition procedure can be found elsewere[7].  
 

Figure 1. Schematic view of the CVD reactor 

 
The liquid precursor (SnCl4) is delivered from the bubbler to the reactor chamber using nitrogen as carrier 

gas. The reactant gases are injected through five different inlet holes in the reactor, which contains a silicon 
substrate placed on a graphite susceptor. The wafer is heated radiatively by lamp arrays, placed outside the 
quartz reactor, at a constant temperature. Finally, the reactant and the product gases leave the reactor through the 
outlet, which is fixed at atmospheric pressure. The exterior surfaces of the reactor are cooled with air fans. 
 
2.2 CFD Model 

Previous works have focused their attention on the development of three-dimensional simulation models of 
horizontal CVD reactors. The first of such studies were performed by Moffat and Jensen[8] for the simulation of 
horizontal epitaxial CVD reactors. Kleijn and Hoogendoorn[9] as well as Evans and Greif[10] have also developed 
three-dimensional CFD models of horizontal CVD reactors. They demonstrated the relative importance of 
convection and diffusion (ordinary and thermal) and found that three-dimensional models can accurately predict 
the experimental data under wide range of operating conditions.  

The governing equations summarized in this section have been implemented in the PHOENICS code. More 
complete description and capabilities can be found in reference[11]. The conservation equations for mass, 
momentum and heat transfer are applied to a three-dimensional reacting flow in a multicomponent gas mixture. 
The equations for fluid flow consist of the incompressible Navier-Stokes equations for a variable-density fluid 
and the continuity equation. The species mass balance equations are solved for Ng-1 gas-phase species. The 
multicomponent diffusion is modeled through the Stefan-Maxwell equations, and the thermal diffusion (Soret 
effect) is taken to affect the mass transport. The energy balance equation is solved for temperature.  

The boundary conditions include prescribed velocities, temperatures and species concentrations at each inlet 
hole. The operating pressure is specified at the outlet, where zero normal derivatives are assumed for all other 
variables. On the solid surfaces of the reactor, the gas velocity components are taken equal to zero and the flux 
of each chemical species, reactant or product, is calculated by the kinetic rate of the heterogeneous reactions. 

The transport and thermochemical properties of the individual gas species and the binary diffusion 
coefficients are estimated using the kinetic gas theory. Mixing rules are used for calculating the properties of the 
gas mixture in terms of pressure, temperature and composition. 

 
2.3 Kinetic Model 

The numerical simulation of SnO2 deposition from SnCl4/O2 mixtures requires a kinetic equation of the 
deposition rate, Rd. The oxidation reaction in equation (1) represents the global deposition process, which is 
complex and involves elementary steps, such as adsorption, surface reaction and desorption. To account for 
these elementary reactions, a “monorhoic” mechanism[12] is used, as an improved alternative to the Langmuir-
Hineshelwood type kinetics, previously employed in tin oxide CVD[7]. The “monorhoic” model of tin oxide 
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deposition consists of the heterogeneous reactions shown in Table 1. A species A(a) is adsorbed at a surface site, 
a species A(g) denotes a gas phase species and a species A(s) denotes a solid species. The symbol S denotes a 
free active surface site.  

 
RS1(k1) [ ] )a(Cl)a(SnClS2)g(SnCl 224 +→⋅+  
RS2(k2) )a(Cl)s(SnO)g(O)a(SnCl 2222 +→+  
RS3(k3) [ ]S)g(Cl)a(Cl 22 +→  

Table 1 : The “monorhoic” model of tin oxide CVD 

At equilibrium, the deposition rate of SnO2 is given by  
 

[ ])a(SnClPkR 2O2d 2
=      (2) 

 
In equation (2), k2 is the rate constant of the surface reaction RS2, 

2OP is the partial pressure of oxygen and 

[ ])a(SnCl2  is the surface concentartion of the adsorbed SnCl2 as a function of the total surface covered by it.  
The growth rate of SnO2 is calculated as:  
 

                                      dRfGR ⋅=         (3) 
 
The proper conversion from mol/m2s (deposition rate, Rd) to nm/min (growth rate, GR) is included in factor 

f, which is equal to ss
10 /M106 ρ⋅ . Ms and ρs are the molecular weight and the density of the deposited film, 

respectively.  

3 OPTIMIZATION METHOD 

The optimization study is performed using the optimization software EASY (Evolutionary Algorithms 
SYstem). EASY was developed and brought to market by the Lab. of Thermal Turbomachines of the National 
Technical University of Athens. A detailed description of the optimization software can be found in 
reference[13]. Here we briefly outline the optimization procedure of the CVD reactor.  EASY utilizes, keeps and 
evolves three population sets, namely the set of parents µS , that of offspring λS and the archival elite set eS ; 
subscripts denote the population size and, in general, λ≠µ . The population includes the single current optimum 
in the case of a single objective function. Thinning processes can optionally be utilized to control the number of 
individuals kept in eS . Computations with 1e >  are not only possible but often perform very well even in 
single-objective problems.   

Due to the high number of calls to the computationally expensive CFD code, surrogate evaluation models are 
employed. In particular, EASY trains local artificial neural networks using information collected during the 
previous generations[14]. In each new generation, all population members are approximately evaluated using the 
trained surrogate models and, then, only the most promising among them are re-evaluated using the exact and 
costly CFD code. The combined use of the local, low-cost approximate and the exact, computationally 
expensive CFD code leads to a considerable economy in the overall cost of the optimization study. 

To measure the non-uniformity of the growth rate across the wafer two different metrics are calculated as a 
post-processing step of the CFD simulation. The first metric is the non-uniformity, ∆G, defined through the 
maximum, minimum and average growth rate, i.e., by: 

 

RG
GRGRG minmax −=∆      (4) 

 
This is a ∞L norm and is usually reported in percent. The second metric is the L2 norm of the growth rate 

profile about its average and is used as the objective function: 
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In equation (5) Aw is the wafer area, GR(x,z) is the deposition rate profile over the wafer, and RG is the 
average growth rate, pre-calculated by integrating GR(x,z). P is the vector of the process parameters to be 
estimated, including, for example, gas inlet flow rate, temperature, etc.   

4 PARAMETER CONTINUATION RESULTS 

In this section the quantitative effects of various operating conditions on the quality of the deposited films 
are investigated through parameter continuation. The solution at base operating conditions is followed by the 
results of different parameter studies about the base point. Among the probable process variables influencing the 
tin oxide growth rate and its variation across the wafer, the study is restricted to three variables, namely purge 
nitrogen flow rate, oxygen flow rate and the deposition temperature.  

The system of the coupled nonlinear partial differential equations is solved on a non-orthogonal grid of 
49.140 nodes, which corresponds to nearly 400.000 unknowns. A Pentium IV/2.4GHz is used for each 
parameter continuation run, which consumed 2h CPU time to obtain a CVD reactor state.   

4.1 CFD/kinetic model predictions at base conditions 

The CFD/kinetic model is first solved at the base operating conditions for the process parameters 
summarized in Table 2.  

 
Parameter Description [units] Base value 

Fd Nitrogen purge flow rate [mL/min]1 400 
Fc Nitrogen carrier flow rate [mL/min]1 200 
Fo Oxygen flow rate [mL/min]1 150 
Tb Bubbler temperature [oC] 28.3 

Twafer Wafer temperature [oC] 470 
Tinlet Inlet temperature [oC] 60 
Twall Wall temperature [oC] 140 

1 values refer to standard conditions  

Table 2 : Base operating conditions considered for tin oxide CVD 

 
In Figure 2a and b are shown sample isotherms, at base operating conditions, in the transverse and axial 

direction, respectively. The distribution of the growth rate at base operating conditions, in the transverse and 
axial direction, are presented in Figure 3a and b, respectively. The simulation results predict a relatively high 
variation of the growth rate in both directions. The non-uniformity of the growth rate, ∆G, is calculated to be 
4.4%, which is above the desired value of 1-2%. In the transverse direction (Fig. 3a), the local minima of the 
growth rate are closely connected to the large temperature gradients. However, the uniformity of the growth rate 
is improved in the flow direction, namely, with increase of the distance from the leading edge of the wafer. In 
the axial direction, the growth rate decreases in the axial direction, as shown in Fig. 3b; again the growth rate 
distribution along the central axis of the reactor is different compared to the edges of the wafer. 

 
 

          (a)      (b) 

Figure 2. Temperature contours along the (a) transverse and (b) axial center line of the wafer.  
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Figure 3. Growth rate profile in (a) the transverse x-direction (at different distances from the leading edge of the 
wafer) and in (b) the axial z-direction (at different distances from the center line of the wafer). 

 

4.2 Purge Gas Flow Rate 

Parameter continuation on the purge gas flow rate, Fd, is performed and growth rate profiles are calculated 
for flow rates from 200 to 400 mL/min in steps of 40. As shown in Figure 4a and b, the decrease of the purge 
flow rate is followed by an increase of the growth rate, in both directions. It appears that the improved mixing of 
the reactants, caused by decrease in the purge flow rate, yields higher reactant concentrations and therefore 
higher growth rates. This is followed by an increase of the non-uniformity across the wafer, as depicted in 
Figure 5a.  

 

Figure 4. Growth rate profile at different values of purge gas flow rate, Fd (in steps of 40 mL/min) in the                  
(a) transverse and (b) axial direction along the center line of the wafer. 

 

Figure 5. Non-uniformity of the growth rate as a function of (a) purge gas flow rate (Fd), (b) oxygen flow rate 
(Fo) and (c) wafer temperature (Tw). The circular symbol denotes base conditions.  
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4.3 Oxygen Flow Rate 

Parameter continuation on the oxygen flow rate, Fo, is performed and growth rate profiles are calculated for 
flow rates from 130 to 210 mL/min in steps of 20. The results in Figure 6a and b show that the increase of the 
oxygen flow rate produces an increase of the growth rate in both directions. This trend is followed by a slight 
increase of the non-uniformity across the wafer, as shown in Figure 5b.   

 

Figure 6. Growth rate profile at different values of oxygen flow rate Fo (in steps of 20 mL/min) in the                 
(a) transverse and (b) axial direction along the center line of the wafer. 

 

4.4 Deposition Temperature 

Parameter continuation on the wafer temperature, Tw, is performed and growth rate profiles are calculated for 
temperatures from 410 to 490 oC in steps of 20. The results in Figure 7a and b indicate that any increase of the 
wafer temperature causes an increase of the growth rate in both directions. When the wafer temperature becomes 
higher (while the walls temperature is constant), the increase in thermal diffusion causes a significant removal of 
the reactants from the deposition surface towards the cold walls of the reactor. The non-uniformity of the growth 
rate is seen to be a relatively strong increasing function of the wafer temperature, as shown in Figure 5c.  

 

Figure 7. Growth rate profile at different values of wafer temperature Tw (in steps of 20 mL/min) in (a) the 
transverse and (b) axial direction along the center line of the wafer. 

 

5 OPTIMIZATION RESULTS 

The parameter studies presented in the previous section show that the non-uniformity of tin oxide growth 
rate is affected by the three parameters examined. The lowest value of the non-uniformity achieved by varying 
one parameter at a time was 2.36% (for Tw = 410oC). The results obtained in the parameter studies are re-plotted 
in Figure 8, in terms of the L2 norm of the growth rate variation about its average. This norm is used in two 
optimization runs. In both cases the parameters not being optimized are held at the base values (Table 1).  
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Figure 8. L2 norm of the variation of the growth rate as a function of purge gas flow rate (Fd), oxygen flow 
rate (Fo) and wafer temperature (Tw). 

 
 
The first run is a verification run, so that the result can be compared with the continuation runs. In this run, 

the two flow parameters are varied, namely the purge flow rate, Fd and the oxygen flow rate, Fo. As shown in 
Table 2, the result of the first optimization run is consistent with the results of the continuation runs, as read 
from curves Fd and Fo in Figure 8.    

The second run includes all three parameters and achieves the largest reduction in the objective function 
corresponding to 1.85% non-uniformity. However, the lack of multiple local minima inside the range of the 
parameters examined in this study restricts the efficiency of the optimization approach. Further improvement in 
the growth rate uniformity will consist of more optimization parameters (e.g. reactor pressure, precursor inlet 
flow rate, etc).  

 
 

Parameter Optimal Value ∞L Norm L2 Norm 
Fd 400.0 4.40% 0.010283 
Fo 130.0 4.08% 0.009545 
Tw 410.0 2.36% 0.005523 

Fd, Fo 399.8, 130.0 4.26% 0.009437 
Fd, Fo, Tw 398.4, 130.0, 411.7 1.85% 0.004252 

Table 2 : The results of two optimization runs 

6 CONCLUSIONS 

A computer-aided analysis was applied to the computational study of tin oxide deposition in an APCVD 
reactor. The essential tools employed in the design procedure of a single-wafer reactor were a computational 
fluid dynamics model and an evolutionary algorithm. In particular, a three-dimensional reactor-scale model for 
the gas flow, mass and energy transfer is coupled to a heterogeneous kinetic model for the film growth. The 
individual effects of three process parameters on the spatial uniformity of deposition were investigated with 
parameter continuation runs. Finally, a framework was developed for enabling the CFD/kinetic code to perform 
optimization studies, under the objective of minimizing the non-uniformity of the growth rate across the wafer.  
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Abstract. A numerical model has been developed for the accurate prediction of pre-concentration and transport 
of DNA during microcapillary electrophoresis. The model incorporates conservation laws for the different 
buffer ions, salt ions and DNA sample, coupled through the solution of Poisson’s equation to account for the 
field modifications that cause electromigration. Results are presented for the prediction of DNA sample pre-
concentration and transport during microcapillary electrophoresis in a double-T injector microdevice. 
Experimental results have also been obtained and compared with the corresponding numerical results under 
similar conditions and excellent agreement has been obtained. Finally, the validity of the results demonstrates 
the potential of the numerical model for future optimization of such microchip devices with respect to 
significantly enhanced resolution of sample separation.     
 
 
1 INTRODUCTION 

 
Microfluidic devices for chemical and biochemical analyses have attracted significant interest due to large-

scale genome sequencing initiatives and recent decisions to generate large genotype databases for human 
forensics. There is a growing need for improved technology at a lower cost for high-throughput and fast 
nominally real-time DNA assays. Using micromachining technology, a series of microchannels can be fabricated 
on a single substrate of glass, quartz, or plastics in which multiple procedures, e.g., sample loading, pre-
treatment, chemical reaction, separation, etc., can be performed [1,2]. The primary process of separation 
performed in microdevices is similar in principle to that of conventional capillary electrophoresis, though highly 
miniaturized and improved. To a large degree, this improvement is attributable to the very small volume of 
injected sample plugs, which is often two orders of magnitude lower than that in conventional capillary 
electrophoresis, yielding faster separation times and offering process integration [3]. Furthermore, microdevice 
electrophoresis is finding increasing applications in potential lab-on-a-chip formats [4]. 

 
Despite significant advances being made in many aspects of DNA microchip electrophoresis, repeatability, 

and indeed improvements in the DNA injection process have lagged other developments within the field. 
Currently, there is a critical need for optimizing microdevice systems for improved separations with minimum 
use of sample and better resolution and sensitivity [5]. A reduction in the amount of sample required, results in a 
lower consumption of fluorescent dyes, which are significant contributors to the total cost of sequencing. DNA 
sample pre-concentration or stacking observed in the early periods of electrophoresis, namely sample injection, 
could potentially achieve these improvements [6]. 

 
A numerical model is presented for the accurate and efficient prediction of pre-concentration and transport of 

DNA during sample introduction and injection in microcapillary electrophoresis. The model incorporates 
conservation laws for the different buffer ions, salt ions, and DNA sample, coupled through a Gaussian electric 
field to account for the field modifications that cause electromigration. The accuracy and efficiency required to 
capture the physics associated with such a complex transient problem are realized by the use of the finite 
element-flux corrected transport (FE-FCT) algorithm in two dimensions [7]. The model has been employed for 
the prediction of DNA sample pre-concentration and transport during electrophoresis in a double-T injector 
microdevice. To test its validity, the numerical results have been compared to the corresponding experimental 
data under similar conditions, and excellent agreement has been found. Finally, detailed results from a 
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simulation of DNA sample pre-concentration in electrophoretic microdevices are also presented. These results 
demonstrate the great potential offered by the model for future optimization of such microchip devices with 
respect to significantly enhancing the speed and resolution of sample separation.  

2 MATERIALS AND METHODS 

2.1 Details of Microfabricated device used 
  

A micro-fabricated device based on the double-T injector type design used at the Whitehead Institute for 
Biomedical Research (WIBR) and Massachusetts Institute of Technology (MIT) BioMEMS Laboratory has been 
used [8]. A schematic diagram is shown in figure (1).  The device consists of the cathode, anode, sample and 
waste reservoirs together with the three main channel sections, namely the separation channel, cross-injector 
channel (injector off-set) and channel tail. Photolithographic etching techniques on fused-silica wafers that are 
12 cm long, 1 cm wide and 1.1 mm thick are used for the micro-fabrication.  The channels are approximately 
100 µm wide, 40 µm deep, whilst the separation channel is typically 11.5 cm long.  The sample and waste arms 
of the injector are approximately 5.0 mm in length, and horizontally offset by a distance of 300 µm. Glass 
reservoirs of 50 ml volume are affixed around the laser-drilled holes that access the electrophoretic channel in 
order to contain the appropriate volumes of sample and buffer solutions.  
 

 
Figure 1. Microdevice used for the experiments. The computational domain used for the simulations is shown in 

the black rectangle. 
 

  Conventional separations are performed using four consecutive steps: pre-electrophoresis, sample 
introduction, injection and separation. During pre-electrophoresis, a large potential gradient, typically several 
hundred volts per centimeter, is imposed between the cathode and anode ports of the device and later between 
the sample and waste reservoirs. This is used to remove any stray contaminants in the injector prior to the 
loading of DNA. Next, the DNA sample which includes salt ions is added to the sample reservoir and TTE 
(TRIS-TAPS-EDTA) buffer is added to the waste reservoir. During sample introduction¸ a different potential 
gradient is applied (El) along the sample and waste reservoirs of the injector in order to draw DNA molecules 
into the micro-device and create a uniformly distributed DNA sample within the injector offset. The DNA and 
chloride anions enter from the sample reservoir, whereas the TRIS cations enter from the waste reservoir.  
Finally, during the separation stage, a different potential gradient, called the run gradient, Er, is applied between 
the cathode and anode ports of the device in order to attract the DNA towards the positively charged anode. The 
process of pre-concentration or stacking of DNA molecules into the channel and their subsequent separations 
take place during this step. 

 
2.2 Experimental Conditions  

 
Τhe microdevice channels are filled with a solution of the polyacrylamide sieving matrix and TTE buffer by 

using a syringe, whilst ensuring that the channels are bubble free.  The DNA sample is introduced from the 
sample reservoir, and the TTE buffer is added to the waste reservoir. DNA sequencing-reaction products are 
introduced into the injector offset by applying a negative potential gradient of 150 V/cm between the sample and 
waste reservoirs (sample reservoir at positive potential and waste reservoir is kept to ground) for a time span of 
180 s. There is no applied voltage at the anode and cathode reservoirs during sample introduction. A run 
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potential gradient of 200 V/cm (2300 V at the anode and 0 at the cathode in this particular device) is then 
applied for 15 s during injection. Leakage of excess sample from the injector offset into the separation channel is 
prevented by the application of a small electric pull back potential gradient of 40 V/cm between the sample and 
waste reservoirs 15 s after injection throughout the separation stage.  

 
2.3 Theoretical Model  

 
The transport of each ionic species (buffer ions TRIS+ and TAPS-, salt ions namely chloride), as well as the 

DNA species, is represented by a conservation law and the effect of the reaction and generation terms is 
assumed to be negligible [9]. In this model the governing equations for the three species is given by: 

 

0).( =+∇+
∂
∂

ii GF
t
ci           (1) 

 
where ci is the concentration of the ionic species i and Fi and Gi the convective and diffusive fluxes respectively. 
The species present in this study are those of TAPS, Cl and TRIS ions. In turn the convective and diffusive 
fluxes are given by: 
 

                                   EFi iii cz µ=                                                                        (2) 
 

        ii cD ∇=iG                                                                         (3) 
 
where zi and µi are the valence and mobility of the ionic species i respectively, E is the electric field intensity 
and Di is the diffusion coefficient of ionic species i. 

 
The three conservation laws are coupled by the electric field, E, which is expressed by Poisson’s equation in 

order to account for the effect of the charges on the field: 
 

          
ε
ρ

−=∇E.                                                                          (4) 

 
with ε being the permittivity of the medium and ρ the charge density. Relating the charge density to the 
concentration of the charged ions yields 
 

          Fcz
i

ii∑=ρ                                                                      (5) 

 
where F is the Faraday constant.   

 
The dynamics of the buffer electrolyte and salt ions determine the electric field distribution since their 

charges influence the total electric field through equation (4).  Since the concentration of DNA is orders of 
magnitude smaller than the buffer and salt, it does not influence the electric field.  In fact, the electric field in the 
electrolyte system drives the sample DNA species of concentration cDNA, mobility µDNA, diffusion DDNA and 
valence –1.  The dynamics of the DNA sample is therefore governed by equation (6), which completes the 
model: 
 

                    0).( =∇−−∇+
∂

∂
DNADNADNADNA

DNA cDc
t

c
Eµ                                             (6) 

 
In numerical studies, difficulties arise from the solution of the conservation equations, such as the ones 

encountered in this model, due to the very steep, shock-like gradients that appear in convection dominated 
regions, in particular when simulating moving boundaries during the stacking process.  Consequently, a very 
accurate numerical technique is required to capture the development of sharp gradients without introducing 
unrealistic effects such as excess diffusion or oscillations. In this study we employ the finite-element flux-
corrected transport (FE-FCT) method recently reported for the characterization of the shock-like motion of 
charged particles in the presence of high electric fields in gas discharge problems [10].  The FE-FCT method 
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maintains the ability to capture steep gradients, through the FCT, and allows the use of unstructured triangular 
grids via the FE.  This significantly reduces the number of unknowns and hence computing time, as fine 
resolution is only used where necessary. 

 
2.4 Computational Conditions  

 
The aim of this study is to predict the transport of DNA in the initial part of electrophoresis and more 

specifically during the pre-concentration process.  From the experimental images, it is evident that the dynamics 
are focused in or near the injector region during this time frame.  As a result the injector system shown in  figure 
(1) (represented in a black rectangle) is used as the computational domain, in order to capture the behaviour of 
the system during the introduction and injection stages. This approximation is necessary in our attempt to make 
the calculations more amenable without compromising the efficiency. The tail, separation channel, sample and 
waste arms are truncated, while maintaining all the other dimensions which are crucial for the correct 
characterization of the physics behind the pre-concentration process. The voltages are then adjusted to match the 
potential gradients applied in the experimental case so that the experimental and numerical results can be fairly 
compared. These approximations are justified given the fact that the truncation occurs far enough from the 
injector and hence it is safe to assume that the potential gradients remain constant in the remainder of the device. 
The initial and boundary conditions are also adjusted accordingly to emulate the experimental conditions [9]. 

3 RESULTS AND DISCUSSION 

3.1 Numerical vs experimental results   
The electrophoresis micro-devices studied by this model are from WIBR/MIT, however the methods used 

are general and can be applied to other devices as well. Results for the sample injection stage are presented after 
sample introduction has taken place as shown in figure (2). 

 
 

 
Figure 2. Sample introduced into the injector off-set (sample introduction stage). Experimental result. 

 
 
At the end of sample introduction and beginning of sample injection, the DNA occupies the sample arm, the 

injector, and the waste arm. During the early stages of injection, DNA molecules migrate rapidly within the 
sample of the injector offset, but experience an abrupt drop in velocity upon reaching the lower field within the 
high-conductivity electrolyte buffer [8]. The subsequent decrease in velocity creates a narrow, concentrated zone 
of DNA molecules at the interface between the sample and separation buffer, called the stacked sample. This 
stacking mechanism is a unique, physical process which is caused by a difference in potential gradient between 
the sample and the buffer solution. It increases the sample concentration throughout the electrophoretic injection 
and has generated high-resolution data in numerous subsequent electrophoretograms. The numerical and 
experimental results for two time instances during sample injection are shown in figures (3) and (4). Sample pre-
concentration is evident in both figures, however as time progresses it becomes more pronounced and the peak 
amplitude of the DNA sample increases. It is also very important to observe the agreement between the 
experimental and theoretical results, demonstrating the validity of the numerical model to characterize the 
processes of transport and pre-concentration in microchip electrophoresis. 
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Figure 3. Comparison of experimental results (left) with corresponding numerical simulation (right) during 

sample injection (t = 1.875 s after sample introduction). 

    
 

                                                                               
Figure 4. Comparison of experimental results (left) with corresponding numerical simulation (right) during 

sample injection (t = 4.375 s after sample introduction). 
 

Finally, figure (5) presents the DNA sample evolution along the centre line of the injector during sample 
injection. Pre-concentration is evident once more as time progresses with the DNA sample reaching its peak 
value 13.125 s after sample introduction. 

 
Figure 5. DNA sample pre-concentration at five different time instances. Pre-concentration is evident. 
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4 CONCLUSIONS 

A numerical model based on the incorporation of conservation laws for different buffer ions, salt ions and 
DNA sample, coupled through Poisson’s equation to account for the field modification that causes 
electromigration, has been applied for the accurate prediction of pre-concentration and transport of DNA during 
sample introduction and injection in micro-capillary electrophoresis.  

 
The model has been employed for the prediction of DNA sample pre-concentration and transport in a double 

T injector based microdevice and the numerical results obtained have been compared with the corresponding 
experimental data under the same conditions, thus demonstrating good agreement and confirming the validity 
and the predictive power of the numerical model. Finally, good insight into the theory of sample pre-
concentration, which is a key step in microdevice DNA separations, has also been presented.   
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Abstract. With the advent of Computational Fluid Dynamics (CFD), a lot of progress has been seen in the areas 
of atmospheric pollution dispersion and urban air quality, particularly at the local scale. This work invetsigates 
the flow of a turbulent boundary layer over a realistic urban canopy representing a scale model of the central 
London area (UK), using  CFD simulations. CFD is used in this work  as a fit-to-purpose application in order to 
identify the salient features of the wind flow and  to provide appropriate parameterizations for use in operational 
modelling. A qualitative examination of the flow has shown that the flow is dominated by large vortical structures 
whose form varies with the particular building obstacle area. These vortical structures form systematic air flow 
exchanges between the in-canopy and above-canopy flows, which can be modelled  using the concept of an 
exchange velocity. Finally this parametrisation the definition of a “breathability” property of the canopy that can 
be used as merit index in sustainable urban design.  
 
1 INTRODUCTION 

 
The flow of the wind through and above an urban area, and the dispersion of material in this flow are often 

addressed by considering the problem at different scales. It has been customary to use spatial scales, as they can 
describe the major urban flow features; however the spatial scales can also be related to time scales through an 
approrpiate wind advection velocity. The range of spatial scales consists of: the regional scale (of the order of 
hundreds of kilometres), the city scale (up to 10 or 20 km), the neighbourhood scale (up to 1 or 2km) and the 
street canyon scale (less than 100-200m).  Within the city the wind flow directly affects air quality, pedestrian 
mobility and comfort. The same wind flow, but on a larger scale, represents the wind environment within which 
new buildings are to be placed; this is of concern both for wind-loading problems and for the provision of clean 
air to the buildings, as well as the removal of exhaust air from the urban canopy[2]. This wind environment and the 
building construction affect some of the exchange processes between the building interior and exterior, and 
consequently, building air quality and energy use.  Additionally, hazardous materials are normally prohibited from 
heavily populated areas, but where this is not the case there is a need for emergency authorities and civil defense 
personnel to have operational tools available to determine what action to take in case of an accident[2]. Very 
recently there has been increased concern about the non-accidental release of hazardous meterials in urban areas. 

This study addresses the wind flow through and above an urban area at the neighbourhood scale over a 
realistic urban canopy. It forms part of a larger research effort under the UK consortium DAPPLE[4]  which 
involves field experiments, wind-tunnel experiments, computational modelling, meteorological measurements, 
and model development and evaluation. In this paper we present and discuss qualitatively the results from a 
numerical study of the wind flow over  a central London area. The qualitative examination of the flow aims at the 
identification of the salient features of the flow and the use of this information  to enhance operational modelling. 
A parallel aim of this work is to identidy appropriate properties of urban canopies for use as merit index in 
sustainable design.  

2 THEORY 

2.1 Boundary layer meteorology 
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Urban obstacles exert a relatively large drag force on the atmosphere. This can be treated by standard 

atmospheric formulas[14], as long as the mean building height is small compared to the surface boundary-layer 
depth (usually aproximately 100-200m) and the surface has some statistical homogeneity. Figure 1 depicts a 
typical urban area, showing the three major sublayers: the urban canopy sublayer, the roughness sublayer and the 
inertial sublayer. The inertial sublayer is the area where the boundary layer has adapted to the integrated effect of 
the underlying urban surface, and it is treated by standard boundary-layer formulas. In the urban canopy sublayer 
the flow at a specific point is directly affected by the local obstacles, and in the roughness sublayer the flow is still 
adjusting to the effects of many obstacles.  

The surface shear stress (averaged over the urban surface) defines a friction velocity, u*, that can be used to 
derive wind and turbulence profiles. It is assumed that, regardless of the underlying surface, the wind speed at the 
top of the boundary layer (i.e., at a height of ∼500 to 1000m) is approximately equal to the equilibrium wind speed 
defined by the geostrophic wind speed, which is based on the synoptic pressure gradient. The wind-speed profile 
conforms to Monin-Obukhov similarity theory, with friction velocity (u*) as the key scaling velocity, and two 
additional scaling lengths, the surface roughness length (z0) and the surface displacement length (d). For neutral or 
adiabatic conditions the wind-speed profile can be described by 
 

⎟
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=
0

ln*
z

dzuU
κ

 (1) 

 
where κ is the von Karman’s constant taken to be 0.4. 
 
2.2 Urban morphology 
 

Estimates of the surface roughness length and the displacement length can be made using information about 
urban morphology, e.g. building sizes and spacing. The total building plan area, Ap, and the total building frontal 
area, Af,  in a building lot area, AT, can be used to define suitable parameters for use in many empirical urban 
boundary-layer formulas: the dimensionless frontal area, λf, and the dimensionless plan area, λp. The frontal area 
parameter is more important to drag because it represents the surface facing the wind flow. Due to a different  λf  
parameter, different urban flows can be observed. For example, at small  λf  the buildings act in isolation; at larger  
λf  the building wakes interfere with each other,and at even larger λf  a skimming flow over the buildings has 
limited direct penetration into the spaces between the buildings[8].  Typical values of λf  are ∼0.1 for areas with 
moderate density of buildings and ∼0.3 for downtown areas[2]. 

Several field and laboratory data sets as well as theoretical and empirical formulas in the literature have been 
used to derive relations  between the non-dimensional frontal area parameter λf , and the non-dimensional surface 
 

 
Figure 1: Schematic of the flow through and over an urban area 

 
roughness and dispalcement lengths, as normalised over the average building height[9].For example the surface 
roughness and the displacement lengths (z0 and d respectively).,  for typical downtown areas (λf  ∼ 0.3) with 
average building height Hr  can be described by: 
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Although urban areas might be better represented as regions (neighbourhoods) of gradually varying surface 
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roughness length,  an approach that treats an urban area as one of a uniform surface roughness length and an 
equilibrium  boundary layer profile is often adopted; this is mainly because of the difficulties involved in 
processing geometrical data from multiple individual buildings that are needed to apply some morphological 
methods in the deduction of the surface roughness and displacement lengths[10] . 
 

3 METHODOLOGY 

 
3.1 The full-scale urban topography and the CFD geometry  
 

The urban area under investigation centers on the intersection of Marylebone Road and Gloucester Place in 
Central London, UK  and spans an area of  250m-radius. Marylebone Road is a busy dual carriageway, in places 
up to 7 lanes, and forms the northern boundary of the London Congestion-Charging Zone; it is 20˚ North of due 
East. From topographical maps of the area, the average building height of the area is estimated to 22m; from the 
specific building arrangement the urban morphometry parameters are estimated as λf ∼0.25 and λp∼0.5.  In the 
CFD simulation, a 1:200 scale model of the urban area is represented and the resolved built area includes 42 
buildings, with an average model building height H of 0.11m. The resolved built area is depicted in Figure 3. The 
computational domain however extends a further distance both in the upstream and downstream directions of the 
outermost features of the built-area model, according to published recommendations[3]. The domain size is 6.2m 
(x-direction) x3m (y-direction) x0.55m (z-direction) corresponding to 56Hx27Hx5H. The geometry was prepared 
using the pre-processor GAMBIT[7]. 
 
3.2 Governing equations  
 

The flow simulation is produced by solving the 3-D Navier-Stokes equations coupled with a seven-equation 
Reynolds-Stress turbulence model (RSM)[11], implemented in the CFD code FLUENT[7]. RSM provides the 
necessary functionality and allows for anisotropic turbulence (which is known to be a characteristic feature behind 
bluff body obstacles), despite its inherent complexity and a tendency to overestimate the wake region behind a 
single cube obstacle[12]. Steady simulations were carried out, giving a time-averaged view of the flow, neglecting 
possible phenomena such as unsteady vortex shedding and occasional sweeps of air from above the canopy[6]. The 
focus of this work is on novel ways of examining the mean features of urban canopy flow and achieving fit-for-
purpose accuracy for the above aims rather than precise prediction accuracy when comparing with experimental 
profiles.  
 
3.3 The numerical implementation  
 

The finite-volume approach using a high-resolution unstructured, tetrahedral mesh is used to descritise the 
computational domain. The cell edge size is typically 0.03H, where H is the average model building height within 
the canopy, and near the ground, with a growth rate of 1.1 applied. Grid refinement tests led to a total number of 
cells near 4 million in order to resolve sufficiently the computational domain.  

 

 

Figure 2. The spatially averaged mean velocity profile near an urban area. 

 

U

z

logarithmic velocity 

       profile
sublayer

roughness

inertial

sublayer

outer layer

surface layer

U=(u*/κ) ln[(z-d)/z0]

969



Marina K-A Neophytou and Rex E. Britter. 
3.4    Boundary conditions 
 

An inflow condition was applied at the leftmost (upwind) side (y-z plane) of the domain (with reference to 
Figure 3). An inlet wind profile is specified according to equation (1); the values of the surface roughness and 
displacement lengths were calculated from equation (2) using the morphology parameters of the modeled urban 
area). For the turbulence parameters, profiles of the turbulent kinetic energy and the turbulent dissipation rate 
were specified according to design specification rules[13] and measurements from wind tunnel experiments using 
the same model geometry[4]. 

A pressure outlet condition was applied at the rightmost (downwind) side (y-z plane) of the domain. Symmetry 
boundary conditions (zero mean flow and zero normal gradient of all quantities at the plane) were applied at the 
northern and southern vertical sides of the domain (y-direction pointing to the North in Figure 3). A symmetry 
condition was also applied at the horizontal top of the domain (x-y plane).  A wall boundary condition (with 
standard wall functions) was applied at the ground and building surfaces. 
 

4 RESULTS 

4.1 Overall remarks 

General observations of the flow characteristics within the modelled urban area were made by releasing mass-
less tracer particles from selected buildings and other surfaces of interest. Contours of velocity, turbulence and 
pressure were also examined. For the purpose of this paper the discussion will concentrate on the velocity field in 
a qualitative manner. The main purpose is to illustrate and identify salient features of the flow that can be used and 
then modeled in operational models, as well as used as merit indices in sustainable urban planning.  

Figure 4 shows pathlines followed by different particles released at the inlet plane; the different colours denote 
different particle identity.  This visualization shows that the flow is dominated by large vortical structures whose 
form varies with the particular building obstacle area. These vortical structures mix air from the top of the urban 
canopy with air within the canopy and vice-versa.  Some minor vortical structures also seem to mix air across the 
width of canopy; from within but across smaller distances. The vortex patterns seem to originate in the short 
canyons behind buildings and are different from the archetypal 2-D street canyon flows. It must be recognized that 
the formations observed here are time-averaged simulated results, and the flow will in fact be unsteady in nature. 
Similar patterns have been observed however both in the unsteady and the corresponding steady simulations of 
regular cube arrays[9]. This visualization suggests that the form of these vortices may influence the effectiveness of 
upward mixing (and air replenishing) within the canopy. Thus the concept of an exchange velocity, as defined by 
the average velocity of transfer of mass into or out of the canopy can be used. This exchange velocity would be 
directly relevant to the removal of polluted air and heat from urban canopies. This would point as well towards 
appropriate design rules for greener and sustainable urban planning. 

4.2 Velocity field 

The wind velocity vectors and contours at different horizontal slices are shown in Figures 5-6. Wind velocity 
vectors and contours on a vertical slice are shown in Figure 7.  

Figure 5 depicts the wind velocity vectors on a horizontal surface slice at a vertical height z=H/2.  The 
incoming flow is in the direction from left to right. The cross-sections of buildings projected on this surface are 
shown in grey and act as walls (zero velocity). A strong flow channeling along large roads (e.g. Marylebone and 
the outermost parallels) is observed.  Strong preferential channeling is also observed in the perpendicular direction 
to the flow, in the case of Gloucester Road -from south to north.  Cross-wind channeling however appears less 
strong than the wind-wise direction. No significant reversed or recirculation flows are observed on this surface, 
despite the observed vortical structures in the 3-D domain. The oval surface on the northeast of Marylebone Road 
(with corresponding velocity vectors that appear) is Regent Park, which is below the height of the selected slide; 
its projected surface appears in this cut for reference. 

Figure 6 depicts the contours of wind speed on three different horizontal surfaces, at heights z=H/2 
(corresponding to the presented case of wind velocity vectors), H, and 2H - from top to bottom respectively. The 
colourbar is clipped to the global maximum and minimum values of speed.  A key flow feature is the presence of 
wakes of buildings, formed as the air flows over and around building obstacles.  As we move closer to the ground, 
more buildings are present inside the wakes of neighbouring buildings. Another flow feature observed is the 
presence of shear layers, e.g. near the edge of the wedge-like building in the contour plot at z=H; overall, higher 
velocities are also seen throughout the domain. In the contour plot at height z=2H, only the highest buildings (the 
three towers) are met by the air flow; the wakes of these buildings are the main disturbances to a bulk flow of 
seemingly higher velocities than those observed at lower heights. 
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Figure 7 depicts the contours of wind speed and the velocity vectors on a vertical slide at y=4.5H. The 

incoming flow is in the direction from left to right, and the colourbar is clipped to the global maximum and 
minimum values. The speed contour plot shows how air movement within a street canyon is more, or less, 
enhanced, depending mostly on the upwind buildings but sometimes as well on the downwind buildings. In the 
last downwind canyon for example, depicted in the figure, air movement is induced from a small recirculation 
region formed by the main wind flow facing the tower (last building) just downwind the canyon. 

4.3 Pressure and turbulence fields 

Overall pressure variations are consistent with changes in momentum fluxes and the drag exerted from the 
buildings to the flow. A higher pressure on the upwind side of a building and lower pressure on the downwind 
side is generally observed. The turbulence field is subject of a more substantial on-going investigation and will be 
addressed extensively in future work. Specifically Reynolds stresses can be related to the momentum fluxes across 
the canopy top, and hence to air flow exchange between the in-canopy and above-canopy flows; this flow 
exchange is a key feature in the characterisation of the breathability of an urban canopy. For the scope of this 
paper, it can be noted that the overall variations of turbulence kinetic energy and turbulent dissipation rate are 
consistent with known features of flows behind bluff bodies[5]. 

4 CONCLUSIONS 

A numerical investigation of the wind flow over and around a realistic urban canopy was performed using a 
CFD simulation with the RSM turbulence model and a high-resolution mesh. A qualitative examination of the 
results shows that the flow is dominated by large vortical structures whose form varies with the particular building 
obstacle area. These vortical structures form systematic airflow exchanges between the in-canopy and above-
canopy flows, as well as cross-canopy exchanges. The vortex patterns appear to originate in the short canyons 
behind buildings and are different from the archetypal 2-D street canyon flows.  The concept of a bulk air-
exchange velocity is appropriate to define a dynamic property of an urban area - its breathability - that will also be 
useful as merit index in the design of sustainable urban development. 
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Figure 3. The 1:200 scale model of the Marylebone area topography that was represented in the CFD simulation. 

The computational domain extends however to a further distance upwind and downwind from the outer most 
obstacles as flat terrain described in section 3. 

 

 
Figure 4: Path lines of mass-less tracer particles to visualize the 3-D flow. 

 

 

Figure 5. Wind velocity vectors on a horizontal surface at a height z = H/2  

 
 

 

Marylebone Road
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Figure 6:  Wind speed contours (m/s) on horizontal surfaces at  different heights: z =H/2, H, 2H (top to bottom 
respectively); the colourbar is clipped to the global maximum and minimum values.  
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Figure 7:  Wind speed contours  (top) and velocity vectors (bottom) (m/s) on a vertical surface at y=+4.5H; the 
colourbar is clipped to the global maximum and minimum values. 
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