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Preface

The 5th International Congress of the Greek Association of Computational
Mechanics (GRACM) will be held in Limassol, Cyprus during 29 June - 1 July 2005.
The previous conferences in the series were held in Athens, 1992; Chania, 1996;
Volos, 1999; and Patras, 2002.

Since their inception, the conferences have grown in size and scope covering more
and wider areas of Computational Mechanics. In addition to the 8 invited plenary
papers, 107 contributed papers from 12 countries have been accepted for presentation
in GRACMO5. These papers covered a wide range of topics: Solid and Structural
Mechanics, Mechanics of Materials, Structural Dynamics and Earthquake
Engineering, Stability and Chaos, Fracture Mechanics, Fluid Mechanics and
Hydraulics, Aerodynamics, Transport phenomena, Electromagnetism, Biomechanics,
Inverse Problems in Mechanics, Structural Control and Optimization, Artificial
Intelligence and Expert Systems, System Identification, Numerical Methods and
Algorithms, Finite Elements, Boundary Elements and Finite Differences.

The fifth Congress heralds new and innovative activities in a number of areas of
Computational Mechanics and addresses the important issue of where the
developments stand today and what the future will be in the applications of research
developments for the solution of complex problems of modern technology.

The aims of the Congress are to encourage graduate student participation as well as
to become a forum for critical discussion so as to lead to an assessment of past
developments and future application and research needs. The outcome is expected to
help researchers and engineers to shoulder important responsibilities toward the use of
computational methods and mathematical models for the solution of a wide range of
Engineering problems, and to pursue advanced research for the understanding and
definition of the issues that remain to be addressed.

We thank the authors of the plenary and contributed papers for timely submission
and participation in the Congress, the reviewers of the papers, the members of the
Scientific Committee and the members of the Organizing Committee for their support
and guidance. We also express our appreciation to the technical and financial
cosponsors, including the Department of Civil & Environmental Engineering and the
Department of Mathematics & Statistics of the University of Cyprus, the Hyperion
Systems Engineering, the Cyprus Tourism Organization and the Department of
Antiquities, Cyprus. Thanks are also due to the vice-president of GRACM, professor
A. Boudouvis, and to all members of the Executive Board of GRACM for their
continuous support and close cooperation.

An electronic color version of these Proceedings can be found at

http://www.ucy.ac.cy/~gracm05/e-Proceedings.htm

Georgios Georgiou
Panos Papanastasiou
Manolis Papadrakakis June 2005
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DYNAMICS OF LARGE SCALE VEHICLE MODELS COUPLED WITH DRIVER
BIODYNAMIC MODELS

C. Papalukopulos, D. Giagopulos and S. Natsiavas

Department of Mechanical Engineering
Aristotle University
54 124 Thessaloniki, Greece
(Phone: +30 2310 99 6088, Fax: +30 2310 99 6029, e-mail: natsiava@auth.gr)

Keywords: Large scale models, biodynamic models, transmissibility, random road excitation.

Abstract. Biodynamic response of driver/seat subsystem models coupled with mechanical models of ground
vehicles is investigated. When the resulting dynamical systems are complex, an appropriate component mode
synthesis methodology is applied first, leading to a drastic reduction in the dimensions of the original system,
without affecting significantly the accuracy of the predictions within a prespecified frequency range. The
effectiveness of the methodology developed is illustrated by numerical results. In particular, frequency spectra
of several response quantities related to performance of the human and vehicle models were constructed for
motions resulting from periodic and random road excitation. Among other things, the results indicate that it is
necessary to include the flexibility effects of the vehicle structure for improving the model accuracy throughout
the frequency range of interest.

1 INTRODUCTION

The ride comfort and safety of vehicle drivers and passengers is a diverse, challenging and multi-disciplinary
subject, which has recently become an issue with large commercial and legal importance. First, human response
to dynamic excitation depends on many mechanical, physiological and psychological parameters [1]. As a
consequence, in addition to performing analytical studies, a good understanding of the relation between human
vibration and comfort requires extensive laboratory and real environments experimental studies of response of
human body to single or multi-frequency deterministic excitation or random forcing [2-4].

Most of the previous studies of ride comfort in road vehicles employed simplified models of the driver- or
the passenger-seat susbsystem, without considering the effects from the coupling with the dynamics of the
vehicle [3, 4]. However, preliminary results obtained with simplified quarter car models have indicated that this
coupling is important, especially around the critical frequency range 3-5 Hz. In a typical situation, this
simplification is mostly adopted due to the fact that the number of degrees of freedom of a vehicle structure is
relatively large. The main objective of the present work is to develop and apply a systematic methodology
leading to sufficiently accurate determination of dynamic response of humans riding on simplified or complex
mechanical models of road vehicles. In particular, involved systems arise frequently as a result of requirements
posed on the accuracy of the vehicle response. In such cases, the structural components of a vehicle are
geometrically discretized by finite elements, leading to models with a quite large number of degrees of freedom,
which may reach and overcome the order of a million. The basic idea is to first reduce the dimension of the
systems examined by applying appropriate component mode synthesis methodologies [5, 6]. This helps the
efforts towards a systematic and comprehensive study of the dynamics exhibited by large order mechanical
models. Apart from increasing the computational efficiency and speed, the reduction of the system dimensions
makes amenable the application of several numerical techniques for determining the dynamic response of the
complex systems, which are applicable and efficient for low order dynamical systems [7]. Here, this is exploited
in accelerating the determination of critical motions of the driver and the vehicle models examined resulting in
response to periodic or stationary random road excitation.

The basic theoretical ingredients, leading to a reduction in the order of the vehicle mechanical models, are
briefly presented in the following section. Then, typical numerical results are presented on the human and
vehicle steady state dynamics due to periodic road excitation. In the fourth section, similar results are presented
for the same models but when subjected to random road excitation. Finally, the most important conclusions are
summarized in the last section.

521



C. Papalukopulos, D. Giagopulos and S. Natsiavas

2 MECHANICAL MODELS - METHOD OF ANALYSIS

In many areas of interest to the automotive industry, including the prediction of dynamic response,
optimisation and control of ground vehicles (e.g., [8-12]), the most commonly employed mechanical models are
two degree of freedom quarter-car models, like the one shown in Fig. 1a. This is mostly due to their simplicity
and the qualitatively correct information they provide in the low frequency range, especially for ride and
handling studies. On the other hand, when the accuracy of the results is of vital importance, the mechanical
models employed for the vehicle structure are more complex. For instance, in Fig. 1b is shown the body of a
vehicle, which has been geometrically descretized by a relatively large number of (triangular and quadrilateral)
shell finite elements and a much smaller number of solid (hexahedral) finite elements, leading to a model with
1,372,989 degrees of freedom. Such a detailed discretization is necessary when the frequency range of interest is
large, which is the case when investigating hand vibration or performing vibro-acoustics studies [13]. On the
other hand, the corresponding wheel and suspension substructures are represented by appropriate discrete mass,
stiffness and damping elements. Finally, the driver-seat subsystem is represented by either the two degree of
freedom discrete mass, stiffness and damping element model shown in Fig. 2a or by the more involved five
degree of freedom model presented in Fig. 2b [3, 4]. Moreover, in all cases examined, the effects of the system
nonlinearities are ignored.

Ib

la

Figure 2. Human/seat subsystem models: (a) Two degree of freedom model; (b) Five degree of freedom model.

Typically, the equations of motion of a complex mechanical system include contributions from several
subsystems. For instance, if for simplicity it is assumed that the system examined is composed of components I
(say the vehicle body) and II (say the suspension subsystem), the equations of motion for component I alone are
first derived by the finite element method in the following form

MIXI +él§1+f<1§1 :fl(t)' (D

For a typical mechanical model, the order of these equations is quite large. However, for a given level of
forcing frequencies it is possible to reduce significantly the number of degrees of freedom, without sacrificing
the accuracy in the numerical results, by applying standard component mode synthesis methods [5]. Namely,
through a coordinate transformation with form
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x; =%¥q,. @)

the original set of equations (1) is replaced by a considerably smaller set of equations, expressed in terms of the
new generalized coordinates q,- More specifically, application of the Ritz transformation (2) into the original

set of equations (1) yields the smaller set
Mlgl +Clgl +Klgl :il(t)’ (3)
where
_wTy _wTe _wTp _wTr
M, =¥'MY¥. C=%CY. K =% KY¥ ad f, =%Tf,.
The most severe numerical difficulties encountered in setting up equation (3) are associated with the selection of
the columns of matrix ‘¥'; . In particular, this matrix includes the linear modes of the system up to a prespecified

frequency plus a number of static correction modes [5], which leads to very demanding computations when
large order systems are examined.

By applying an analogous treatment, a similar set of equations of motion is also obtained eventually for
component II

MIIQH + CIIQH + Knﬂn =1, ). “4)

Then, combining equations (3) and (4) leads to the equations of motion of the composite system in the classical
form

M +Cx +Kx = £(t). )
The contribution of more components is treated in a similar manner, so that all the unknown coordinates are
included in the vector

xO=, X, ... x,)",
while M, C and K are the mass, damping and stiffness matrix of the system, respectively. These quantities
include contribution from all components of the composite system examined. Finally, the elements of the vector
f(t) represent the terms of external forcing, which arise from road profile geometric irregularities. In general, a

typical road is characterized by the presence of large isolated irregularities, like potholes or bumps, which are
superposed to smaller but continuously distributed profile irregularities. In all cases examined here, only the
latter type of road irregularities are considered. Moreover, the vehicle is assumed to move on a straight path with

a constant horizontal velocity component Vand each of the rear wheels passes over exactly the same road point

as the corresponding front wheel after a constant time delay T = OL/ V, , Where o is the vehicle wheelbase.

In a typical situation, the number of degrees of freedom of the reduced system is relatively small. Apart from
increasing the computational efficiency and speed, the reduction of the system dimensions makes amenable the
application of several numerical techniques, which are applicable and efficient for low order dynamical systems
[6]. Here, this is exploited in accelerating the determination of steady state motions of the models examined,
resulting from periodic or stationary random excitation, as explained in the following two sections.

3 NUMERICAL RESULTS FOR PERIODIC ROAD EXCITATION

This section presents a sequence of characteristic numerical results obtained by assuming deterministic road
excitation. In particular, the vehicle travels over a road with harmonic profile, having amplitude S, and

wavelength A . Consequently, the forcing vector is proportional to S, and involves harmonic terms with

frequency ® =21V, /A
First, Fig. 3 presents typical frequency-response diagrams obtained at two special points of five different
vehicle models, by assuming a vertical harmonic road excitation at the four wheels, with amplitude s, = Icm.

Specifically, the amplitude of the vertical acceleration obtained at the front left wheel and the driver seat is
depicted as a function of the forcing frequency. In four of the models examined, the vehicle is represented by a
two degree of freedom quarter car model with zero, one, two and five degrees of freedom for the driver/seat
subsystem. The fifth model includes the finite element model of the vehicle body, while the driver/seat
subsystem is represented by the five degree of freedom biodynamic model shown in Fig. 2b. As a general
observation, the acceleration levels developed at the wheel are much higher than those developed at the seat
position within the higher frequency range examined. Moreover, the presence of the human/seat subsystem
makes a substantial difference in the overall dynamics, especially in the low frequency range. Finally, the results
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demonstrate that the car body flexibility effects, which are taken into account more accurately by the finite
element model, become important throughout the frequency range examined.

T
Quarter Car ——
Bdof Model -—---—
#dof Model

[Tdof Model —
[EEM. -

Acceleration Magnitude
Acceleration Magnitude

03 I I

0.01 L L

Frequsncy [Hz] Frequency [Hz|

Figure 3. Frequency-response diagrams for periodic road excitation. Amplitude of vertical acceleration: (a) at
the front left wheel and (b) at the driver seat.

Next, Fig. 4 shows results indicating the importance of the coupling between the dynamics of the vehicle and
the biodynamic model of the human/seat subsystem. The results depicted in Fig. 4a were determined by
representing the vehicle dynamics by the quarter car model of Fig. 1a, while the results shown in Fig. 4b were
obtained by employing the finite element model for the vehicle structure. In both cases, the human/seat
subsystem was represented by the five degree of freedom biodynamic model of Fig. 2b. In addition, the
continuous lines indicate results obtained by applying the road excitation at the base of the quarter car model,
while the broken lines indicate results obtained by applying the same excitation directly to the base of the
biodynamic model. Specifically, Fig. 4a shows the magnitude of the transmissibility ratio of the acceleration at
the pelvis to the acceleration at the ground (continuous line) or at the base of the seat (broken line), as a function
of the forcing frequency. On the other hand, Fig. 4b shows the magnitude of the same transmissibility ratios for
the acceleration at the driver head, as a function of the forcing frequency. The differences between the
continuous and the broken lines observed in both cases illustrate the fact that ignoring the vehicle dynamics
leads to significant inaccuracies when predicting human response. Similar differences were also observed for all
the other degrees of freedom of the human model.

10 T T 10

Biodynamic Model —-———-
Quarter Car - Biodynamic Model

" Biodynamic Model -——-
F.E. Model - Biodynamic Model ———

0.1 01

Transmissibility
Transmissibility

N A 0.01

0001 0.001

Frequency [Hz] Frequency [Hz]

Figure 4. Magnitude of the transmissibility functions for the vertical acceleration: (a) at the driver pelvis (quarter
car model) and (b) at the driver head (finite element vehicle model).

The following set of diagrams completes the picture on the response of the large scale vehicle model to
periodic road excitation. In particular, Fig. 5a presents the magnitude of the transmissibility ratio for the
acceleration obtained at the five degrees of freedom of the biodynamic model shown in Fig. 2a, calculated with

the nominal mass of the driver (m, = 70kg). Likewise, Fig. 5b depicts similar results, determined after

increasing the driver mass to m; =100kg .
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Figure 5. Magnitude of the transmissibility functions for the acceleration of the biodynamic model degrees of
freedom, for a driver with mass: (a) m, = 70kg and (b) m, =100kg .

4 NUMERICAL RESULTS FOR RANDOM ROAD EXCITATION

In the sequel, more realistic road profiles were selected. Namely, the vehicle models were assumed to travel over
road profiles characterized by real-valued, zero mean, stationary and Gaussian random fields. For their complete

statistical description, it is sufficient to specify the power spectral density of the road irregularities, say S . (Q),

where Q= 27‘:/ A is a spatial frequency, corresponding to a harmonic irregularity with wavelength A .

According to previous investigations on the subject (e.g., [14]), the geometrical profile of typical roads fits
sufficiently accurately the following simple analytical form

S, (Q)(Q/Q)™, if Q<Q,

56(0) = $,(Q)(Q/Q)"™, if Q=Q,

Q)

where Q) = 1/ 27 is a reference spatial frequency. Then, since the mechanical models examined possess linear

properties, knowledge of the road profile spectral density and the vehicle horizontal velocity permits evaluation
of the spectral density of the stationary vehicle response through the well-known formula

_ T*
Sy (©) =H(0)S, (0)H" (0).
In the last formula, ® =€V, is the temporal frequency, S  (®) and S,,(®) represent the spectral

density matrices of the response and the forcing, respectively, while H(®) is the matrix including the frequency

response functions of the system [15].

First, Fig. 6 presents typical response diagrams obtained for the driver seat by employing the same
mechanical models as those used to determine the results presented in Fig. 3. Namely, Fig. 6a shows the power
spectral density of the acceleration obtained at the driver seat as a function of the forcing frequency, in response
to random excitation caused at the four wheels of the vehicle. The amplitude of the road irregularities is selected
to be about the same as that of the harmonic profile employed in the previous section, resulting in a good quality

road, while the vehicle travels with a constant horizontal speed v, =120 km/h . Likewise, Fig. 6b shows

similar results, obtained by assuming that the vehicle moves with a horizontal speed v, = 70 krn/ h over a bad

quality road. The results depicted in Fig. 6 present a lot of similarities with the corresponding results shown in
Fig. 3b. Again, the presence of the human/seat subsystem makes a substantial difference in the low frequency
range examined. Moreover, the car body flexibility effects are important throughout the frequency range
examined.

Next, Fig. 7 shows results indicating the importance of the coupling between the dynamics of the vehicle and
the biodynamic model. Specifically, Fig. 7a depicts the power spectral density of the driver pelvis acceleration
determined by using a good quality road and representing the vehicle dynamics by the quarter car model of Fig.
la. Likewise, Fig. 7b shows similar results for the driver head, obtained for the finite element vehicle body
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model of Fig. 1b. In both cases, the human/seat subsystem was represented by the five degree of freedom model,
while the broken lines indicate results obtained by applying the road excitation directly to the base of the
biodynamic model. Again, the differences observed illustrate the fact that ignoring the vehicle dynamics leads to

significant inaccuracies in predicting the vehicle driver response.
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Figure 6. Power spectral density of the driver seat acceleration caused by: (a) a good quality road and
Vo = 120 km/ h and (b) a bad quality road and Vo = 70 km/ h.
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Figure 7. Power spectral density of the vertical acceleration: (a) at the driver pelvis (quarter car model) and (b) at
the driver head (finite element vehicle model).

The final set of diagrams completes the picture on the response of the large scale vehicle model to random
road excitation. In particular, Fig. 8a presents the power spectral density of the acceleration obtained at the front
left wheel and the five degrees of freedom of the biodynamic model shown in Fig. 2a for a good quality road

and v, =120 km/ h . Obviously, most of the energy in the signals referring to the degrees of freedom of the

biodynamic model is distributed in a frequency range around 1 Hz, while the energy in the wheel acceleration
signal is concentrated around 10 Hz. Likewise, Fig. 8b depicts similar results, determined for the off-diagonal
elements of the spectral density matrix, corresponding to excitation applied to the front left wheel and
measurements taken at the degrees of freedom of the biodynamic model. Most of the energy in all the signals
shown is distributed and extends over the frequency range up to about 50 Hz. This is illustrated in a better way
by the results of Fig. 9a, showing the cumulative rms value corresponding to the acceleration values shown in
Fig. 8a. For comparison, Fig. 9b presents the same quantities but obtained by employing a quarter car model,
instead.

In closing, it is important to note that the calculation of other response quantities, like apparent mass,
correlation functions and vibration dose values, which are useful in assessing the ride confort of a vehicle [1-4],
can also be performed in a similar fashion. For instance, the number of zero-crossings for the signals considered
can be obtained as a by-product of the calculations performed. More specifically, for the forcing conditions that
led to the results presented in Fig. 8, the number of zero-crossings in the vertical acceleration obtained at the left
front wheel are 18, while for the driver seat are 11. Finally, Fig. 10a presents the corresponding auto- correlation
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function obtained for the acceleration at the driver seat position, while Fig. 10b shows the cross-correlation
function obtained for the same mechanical model between the front left wheel and the driver seat.

PSD Acceleration

CRMS Acceleration

Figure 9. Cumulative rms value corresponding to the acceleration values shown in Fig. 8a.

a7

08

05 |-

Auto Corelation

03

100

01

0.01

0.001

0.0001

Cross PSD Acceleratian

1

Frequency [Hz]

10

(8b)

0.001

Frequency [Hz]
Figure 8. (a) Power spectral density of the acceleration at the front left wheel and the degrees of freedom of
the biodynamic model. (b) Cross spectral density corresponding to excitation applied to the front left wheel and
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Figure 10. (a) Auto-correlation function for the acceleration at the driver seat. (b) Cross-correlation function
between the front left wheel and the driver seat position.

5 CONCLUSIONS

A methodology was developed for determining response of biodynamic driver/seat models coupled with vehicle
models. For large scale models, the basic idea was to first apply an appropriate reduction methodology in order
to eliminate a substantial number of the original degrees of freedom, so that the reduced model is sufficiently
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accurate up to a prespecified level of forcing frequencies. Then, frequency response spectra of several response
quantities related to the dynamic performance of the vehicle and the driver under periodic or random road
excitation were constructed. Among other things, it was shown that the car model flexibility effects are
necessary for improving the model accuracy throughout the frequency range of interest. Moreover, the results
demonstrated that the dynamic quantities determined form a basis for computing other response quantities, like
transmissibility functions, vdv and rms values, which are valuable for assessing ride comfort in a vehicle. The
methodology presented can be easily extended to include the effect of other types of excitation as well as the
effect of strong nonlinearities. It will also help the efforts to select optimum values for the seat technical
characteristics.
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Abstract. In vitro, quasi static tension experiments have been performed on porcine femoral muscle. The nonlinear
stress - strain curves obtained from these experiments, have been introduced in a finite element analysis of an ideal,
axisymmetric and passive (i.e with no contractile behavior) model of skeletal muscle, under both longitudinal
tension and transverse (perpendicular to the fibers) compression. The finite element computation yielded that the
lowest minimum principal stresses, i.e the most compressive normal stresses in the model, develop in the vicinity of
the core of the muscle belly. Thus the damage inflicted on the muscle tissue, due to a transverse compressive static
load, may be more severe in the interior of the muscle than on the contact area between the external load and the
muscle boundary. Analogous observations have been reported in the literature, regarding different muscle models.

1. INTRODUCTION

The mechanical behavior of skeletal muscle under transverse compressive loads, static or dynamic, is related
either to pressure sores caused to paralyzed or geriatric patients that lie in bed for long periods of time or to trauma
suffered by car passengers, after a car crash. In the literature however, only quasi - static transverse compressive
loads acting on skeletal muscle have been considered. Experimental data for the passive behavior of musculoskele-
tal tissues under compression, have been presented by Grieve and ArfistRwghboom et &! have investigated
experimentally the transverse force - length response of skeletal muscle under in - vivo compression and have used
the OgdeR! non - linear and viscoelastic material model, for the simulation of their experimental results. Maggana
et al*! have obtained stress - strain experimental results for transverse and longitudinal muscle compression and
have used the Langevin model for their constitutive interpretation.

Linder - Ganz and Geféh have done finite element analyses of human muscle in the shoulders, pelvis, head
and heels, subjected to compressive loads and concerned with patients lying in bed for long periods. Ooffiens et al
and Todd and Thackgl have performed finite element analyses of the human buttocks under compression, related
to wheelchair users. These three refereficés!” report that compressive stresses in the muscle interior are more
severe than the contact compressive stresses applied on the muscle boundary. BrEllsasegberformed a
theoretical analysis of damage evolution in skeletal muscle tissue with reference to pressure ulcer development.
Spears et &' used finite elements to investigate the effect of different saddle shapes, on the stresses induced in the
cyclist perineum during cycling.

As long as the tensile response of muscle and tendon is concerned, Hawkins &t &elyMyers et al!
performed in - vivo tensile experiments on animal muscle and tendon tissue and have obtained force - length and
stress - strain results respectively. Maganaris and'Pabbve achieved stress - strain curves for tendons under
tension.

In this study we have performed in - vitro tension experiments, on porcine femoral muscle. The nominal stress
- engineering strain curve for the muscle turns out to be nonlinear. This curve has been used in a finite element
analysis of an ideal, simplified and axisymmetric muscle - tendon compound, subjected to combined longitudinal
tension and transverse compression. The tendon stress - strain curve used in the finite element analysis was taken
from Maganaris and Pal#!. The finite element computation yielded that the minimum principal stress, i.e the
most compressive normal stress, develops in the vicinity of the core of the muscle belly and not on the boundary
where the external transverse compression is applied. Thus the damage inflicted on the muscle tissue due to a
transverse compressive static load, may be more severe in the interior of the muscle belly than on its boundary.

2. PREPARATION FOR THE EXPERIMENTS

Tension experiments were performed on specimens taken from the femoral muscle of a Landrace male piglet.
The age of the animal was 8 months and its weight was 60 kg. Immediately after the animal sacrifice, both femurs
together with the surrounding tissues were removed from the animal body and kept in sodium chloride solution
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0.9% w/v at normal refrigeration temperatures- 8°C.

The experiments were performed within 1 - 4 days after the animal was sacrificed. Before the experiments, the
femurs were left to thaw for 15hrs, at room temperature. Then, the muscle tissue bundle surrounding the femur
was removed. Afterwards, several major femoral muscles, from tendon to tendon, together with their surrounding
membrane, were removed from the bundle of muscles around the femur. Obviously, a major femoral muscle
together with the tendons at its ends, has a varying cross sectional area along its length. The cross sectional area
of the muscle is greater in the belly of the muscle and smaller in the neck of the muscle, where the tendon is. The
specimens that were picked for the experiments were those with the most uniform cross sectional area along the
belly. All specimens were tested at room temperature.

In order to measure the strain in the vicinity of the belly of the muscle, where the cross sectional area is almost
uniform and is far from the tendons where the grips were applied, white strips perpendicular to the longitudinal
axis of the specimens, were painted on the surface of the muscle tissue. Six strips were marked on the tissue,
at approximately equal distance from each other, using a correcting fluid marker. The width of the strips was
not uniform across the muscle tissue and varied from 0.5 mm to 1.5 mm. The cross sectional areas of the two
specimens, namely PMT1-2 and PMT4-1, that were used in the experiments, are given in Table 1. These cross

Muscle specimer] Cross sectional area (nim
PMT1-2 80.75
PMT4-1 84

Table 1: The cross sectional areas of the specimens used in the experiments

sectional areas were found by considering the muscle belly cross section as almost circular and measuring the
length of its diameter using a dial extensometer. This measurement was done when the specimens were attached
to the machine grips.

Prior to testing the test machine load cell was checked to have an error of less than 3%.

3. EXPERIMENTS

Tension experiments were performed on the two specimens, namely PMT1-2 and PMT4-1, of porcine muscle
(see Table 1). The end tendons, together with the muscle tissue between them, were attached to the INSTRON 1121
machine grips. An instant drying glue was used on the interface between the tendons and the grips. The velocity
of the grip displacement was 10mm/min. A video camera recorded the evolution of the tension experiments. The
resolution of the video frames that were analyzed was 300 (heigbt)0 (width) pixels and their speed was 36
frames/s. The colour contrast between the white stripes and the reddish muscle was analyzed via image processing,
with the help of a code written in Mathcad. A rectangular area that contained the striped region of the muscle,
was analyzed. This region was interpreted as a matrix of rows and columns of pixels. Within this area, 256
different colours were considered. Each pixel was assigned a colour, among the 256 mentioned and each colour
was assigned a number between 0 and 255. The number 0 was assigned to the black colour and the number 255
was assigned to white colour, with all other colours taking the values in between. At each time and consequently
at each load step that was considered, the numbers corresponding to the colours of the pixels on each row of the
rectangular region, were added and the sums were plotted against the column number corresponding to each row.
The peaks obviously corresponded to the white strips at the point of maximum contrast (see Figure 1). In this
way, variations of white strip width due to marking irregularities, was diminished. The displacements of the peaks,
measured in number of pixels, were divided by the original length between them, measured in number of pixels as
well. Thus we could get a measure of the local engineering strain within the muscle. A mean value of the strains
corresponding to neighboring pairs of peaks, could give an estimate of the strain in the specimen. The strains were
also measured by using the INSTRON machine extensometer. The discrepancy between the measurements of the
video resolution system and the extensometer was found t6%eat strain 0.05 an@% at strain 0.08.

4. EXPERIMENTAL RESULTS

In Figure 2 the quasi - static tension experimental results of the three muscle specimens tested (see Table 1), are
presented. Fitting with polynomial curves has been performed through the experimental result points. The curve
PMT4-1 was used in the finite element simulation that is presented in the following sections. It is evident that the
muscle exhibits nonlinear stress - strain behavior. Such a behavior is typical for soft biological tissues and consists
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Figure 1: The white peaks on a muscle experimental specimen at t#rs (red line) and at = 30s (blue line)

of a low stiffness region at low strains and an increased stiffness region at higher strains. The high stiffness region
is due to the combined load carrying capacity of the individual muscle fibers, which when are stretched, form an

overall stiff bundle. The mechanical behavior that is portrayed in the curves in Figure 2 may be more stiff than its

in - vivo counterpart and the reason may be the refrigeration of the muscle prior to the experiments. Refrigeration
changes the mechanical properties of the mlistle
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Figure 2: Experimental results from uniaxial tension tests on muscle specimens

5. FINITE ELEMENT ANALYSIS

A simplified axisymmetric model for fibrous skeletal muscle was analyzed via the finite element method. This
ideal geometry, consists of a typical belly part and a neck part. A half of the generator plane surface, which
produces the three dimensional muscle shape after & @80Ilution, appears in Figure 3. The axis of axial
symmetry, lies along the left most vertical side of the model shown in Figure 3. The origin is located at the lower
left most corner of the model. We consider only half of the generator plane surface, due to the mirror symmetry
with respect to the horizontal plane that passes from the originzEtxés lies along the horizontal plane of mirror
symmetry and theg axis coincides with the axis of axial symmetry. Note that the lower (belly) area contains the
muscle material and the upper (neck) area contains the tendon material. At the upper end of the neck the half -
diameter is 1.5 cm and at the belly lower end the half - diameter is 4cm. The half length of the muscle - tendon
construction, i.e the distance between the belly lower end and the neck upper end, is 12cm. Plane, two dimensional,
axisymmetric triangular elements, with six nodes, have been used for the discretization of the model.

An axial tensile traction of 1MPa was applied on the end cross section of the neck (see Figure 3). A lateral,
normal pressure of 1MPa was also applied on the generator curve of the muscle boundary (see Figure 3). According
to the stress - strain curve used for the muscle material in this article (see Figure 2), in a simple tension experiment
on a muscle bar of uniform thickness, a nominal tensile stress of 1MPa, corresponds to an engineering tensile strain
of about 10%. Here the lateral load of 1MPa is compressive, but the constitutive model that we used implies an
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Figure 3: A coarse discretization of the muscle - tendon geometry

identical behavior under compression. We employed a static transverse compressive load in our model, while in
car crashes the loads exerted on the human body are dynamic. The muscle is considered in the passive state, i.e
with the contractile behavior inactive.

The displacement constraintgs, = 0 on the lower horizontal boundary and. = 0 on the left vertical
boundary, appear in Figure 3 too. A finer mesh in the muscle region, that was also used as a check for our results,
appears in Figure 4. Note that in Figure 4 the muscle region is the lower one with the fine mesh, while the tendon
region is the upper one with the coarse mesh.
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Figure 4: A fine discretization of the muscle region within the muscle - tendon geometry

A nonlinear elastic incompressible and isotropic model, for both the muscle and the tendon was used. In reality,
the muscle and the tendon materials are transversely isotropic, due to their composition of fiber bundles along the
axial direction. Also in reality the muscle and tendon materials may not be incompressible. Large displacements
were also incorporated in the muscle and tendon deformation models.

The finite element package ANSYS 8.0 was used for the numerical simulation of the mechanical behavior of the
muscle - tendon compound. The Multilinear ELAStic (MELAS) model of ANSYS was used for the introduction
of the constitutive stress - strain relation of the materials (muscle and tendon). The nonlinear stress - strain curves
used within the finite element simulation were taken from Figure 2 (curve PMT4-1) as long as the muscle is
concerned and from Maganaris and Pall(figure 4B in that paper) as long as the tendon is concerned. Via
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the MELAS material model of ANSYS, these curves were converted to multilinear ones i.e to lines that consist
of linear segments of varying slope. Since in the uniaxial tension experiments, the nominal stress (first Piola -
Kirchhoff) and the engineering strain, both of which refer to the undeformed configuration, were recorded, we had
to convert these to the Cauchy stress and to the logarithmic strain respectively, because in ANSYS an analysis with
respect to the current configuration is performed. The relevant conversion relations are

e=In\ 1)

wheree is the logarithmic strain along the axial direction in a simple tension experiment anithe stretch ratio
along that direction, given in turn via the relation

A=1+4¢€ (2)
wheree is the tensile engineering strain. The corresponding conversion relationship for the stress is
o= MI 3)

whereo is the Cauchy (true) stress afids the first Piola - Kirchhoff (nominal) stress. Since both the muscle and
tendon materials were considered as almost incompressible, a Poisson’s ratio equal to 0.45 was assigned to them.

6. FINITE ELEMENT RESULTS

Results in this paragraph are obtained by using the coarse mesh shown in Figure 3. The variation of the
horizontal displacement,. is shown in Figure 5. As expected the most negative value,aé at the boundary
where the lateral pressure is applied. Along the axis of axial symmetry, wauhawe). In Figure 6 the variation

NODAL S0LUTICN AN
——— MAR 12 2005
SUB =4 ko
TIME=10
m (AVG)
REYS=0 \
DHX =7.575
SN =-2.594 \
I
-2.694 -2.095 -1.497 -. 898048 -, 299349
-2.395 -1.796 -1.197 -.598699 1]

Figure 5: The variation of the horizontal displacemept

of the vertical displacement, is shown. The biggest value is on the neck upper boundary where the tensile
load is applied and a zero value appears alongrtlaeis which is an axis of symmetry. The variation of the
maximum principal stress; appears in Figure 7. The greatest value develops at the neck of the compound where
the tensile traction is applied. On the neck upper boundary the maximum principal stress is equal to the applied
traction. The fluctuation of the minimum principal stregsss shown in Figure 8. The biggest absolute value pf
develops at the central area of the belly of the muscle and not close to the line of application of the lateral pressure.
Linder - Ganz and Geféh have also reported that maximal principal compression and von Mises stresses, in the
interior of several animal and human muscle models, exceeded the applied boundary compressive stresses. Similar
conclusions are conveyed by Oomens &t ahd Todd and Thack.

In order to to check the validity of the latter observation, we reran the finite element code with the finer mesh
of Figure 4 . The outcome is shown in Figure 9 and is very close to the one obtained in Figure 8.
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Figure 6: The variation of the vertical displacemept
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Figure 7: The variation of the maximum principal stress

7. CONCLUSIONS

Experimental and finite element analyses of skeletal muscle have been pursued in this paper. In vitro, quasi
static tension experiments, on piglet femoral muscle tissue, were performed. Finite element analysis on a simplified
axisymmetric muscle model, consisting of a muscle and a tendon part and subjected to an axial tensile and a
transverse compressive load, has also been conducted. The main conclusions are:

e The stress - strain relation of the muscle tissue, under quasi static tension, is nonlinear. The larger the strain
the stiffer the muscle becomes, since the muscle fibers work together to form a stiff bundle. Such a behavior
is typical for most soft fibrous biological tissues.

e The finite element analysis of the muscle - tendon simplified axisymmetric compound, subjected to an axial
tensile and a transverse compressive load, indicated that the most severe minimum principal stress, i.e the
most compressive normal stress in our model, develops in the vicinity of the core of the muscle belly (see
Figure 9) and not close to the boundary where the external transverse compression is applied. Analogous
conclusions have been reported in the literathf&:["! for different muscle models, where maximal internal
compressive stresses are greater than the applied boundary compressive stresses. Thus the damage inflicted
on the muscle tissue due to a transverse compressive static load may be more serious in the muscle interior,
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Figure 8: The variation of the minimum principal stress
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Figure 9: The variation of the minimum principal stressunder the finer mesh of Figure 4

than on the muscle boundary.

8. DISCUSSION - LIMITATIONS

The simple tension experiments, conducted on muscle tissue, were performed 1 - 4 days after the animal
sacrifice. It is however knowh! that refregiration causes changes to the tissue mechanical properties. It is
therefore possible, that the mechanical response concluded from these experiments, is stiffer than the one that
would have occurred, if the experiments had been done immediately after the animal sacrifice.

The finite element model that we have constructed for the simulation of the muscle - tendon compound under
combined longitudinal tension and transverse compression, is a simple, ideal, axisymmetric one. No interaction
between the muscle and the surrounding tissues (e. g. bones) has been considered. However, axisymmetry may
interprete in a crude way the action of a distributed load, along part of the muscle belly and the reaction of the
underlying bone. A more realistic picture of the real geometry of such a model would have been obtained via
computer tomography (CT).

The lateral compressive load that we have applied on the muscle is a static one, while in real situations of
muscle injuries caused by car crashes, such loads are dynamic impact loads. Hence an impact analysis on a
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nonlinear elastic material, would be more appropriate in that case.
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Abstract. Abdominal aortic aneurysm (AAA) is a localized dilatation of the aortic wall. The lack of an accurate
AAA rupture risk index remains an important problem in the clinical management of the disease. To accurately
estimate AAA rupture risk, detailed information on patient specific wall stress distribution and aortic wall tissue
yield stress is required. A complete fluid structure interaction (FSI) study of the wall forces is impractical and
thus of limited clinical value. On the other hand, isolated static structural stress analysis based on a uniform
wall loading is a widely used approach for AAA rupture risk estimation that however neglects flow induced wall
stress variation. Aim of this study was to assess the merit of a decoupled fluid structure analysis of AAA wall
stress. Anatomically correct patient specific AAA wall models were created by 3D reconstruction of computed
tomography (CT) images. Flow simulations were carried out with inflow and outflow boundary conditions
obtained from patient extracted data. Static structural stress analysis was performed applying a uniform
pressure wall loading and a flow induced non-uniform pressure loading. In the structural analysis a
hyperelastic arterial wall model and an elastic intraluminal thrombus (ILT) model were applied. Our results
show that the decoupled fluid structural analysis approach yields a more realistic AAA wall stress distribution
than the isolated structural stress analysis approach thus providing a practical alternative to the more complete
but computationally intensive FSI study.

1 INTRODUCTION

Abdominal aortic aneurysm is a localized dilatation of the aortic wall. The physiological processes associated
with AAA development and progression are not as yet fully understood. This pathologic condition has been
found to affect 8.8 % of the population over the age of 65 ' and if left untreated it may lead to rupture. The size
of the aneurysm and its rate of expansion are parameters associated with the risk of rupture. For aneurysms with
a maximum transverse diameter below 4 cm the risk of rupture is very small (but not absent). However, when
the aneurysm transverse diameter is between 4 and 5 cm the risk of rupture is 0.5 % and between 5 and 6 cm it
becomes 5 % rising exponentially with diameter increase **!. The decision for surgical intervention for patients
with AAA’s is complicated by the lack of a sufficiently accurate rupture risk index. A widely used such index,
based on the results from a number of clinical studies P, is the maximum transverse diameter. In cases where
this diameter exceeds 5-6 cm, surgical or endovascular treatment is advised. However ‘small’ (<5 cm) diameter
aneurysms, where ‘watchful waiting’ requiring frequent observation is preferred to surgery, are known to
rupture *'% Therefore, the decision for surgical intervention, associated with a mortality rate of 4-5 % !,
should not be based exclusively on the maximum transverse diameter and a new more reliable rupture risk index
should be introduced.

Recent attempts to establish a reliable AAA rupture risk index were based on the evaluation of the arterial
wall stress distribution. Finite element analysis (FEA) has been used to compute the stress distribution in both
simplified "*"! and anatomically correct ') AAA models. The hemodynamics of the AAA have been
extensively investigated experimentally '*'”) and computationally in both idealized and anatomically correct
models in steady and time varying flow ["®!°!. The coupling of fluid and structure has also been studied in AAA
models . The role of intraluminal thrombus (ILT) on AAA wall stress still remains uncertain. Some studies
support the hypothesis that the ILT introduces a cushioning effect in the transmission of the flow induced
stresses to the wall that reduces the peak wall stress *'**), while others suggest that thrombus has no effect on
the progression of an AAA ***1. Various simplifications have been introduced to the models used in these
studies with respect to the shape of the aneurysm, the inclusion and elastic properties of ILT, the thickness and
elastic properties of the wall, the role of surrounding structures and, the presence of residual stresses on the
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AAA wall.

The stress distribution on the aneurysmal wall is determined by the complex intra-aneurysmal hemodynamics
resulting from the geometric configuration of the ILT modulated flow conduit and the effects of surrounding
tissue. To date the maximum transverse dimension of the AAA is being used routinely in clinical practice as an
estimate of rupture risk. However, the use of this parameter alone has lead in many cases to the underestimation
of rupture risk in ‘small’ (<5 cm) diameter aneurysms and overestimation of the risk of rupture in ‘large’ (>6
cm) diameter aneurysms thus compromising the quality of patient management.

The lack of an accurate AAA rupture risk index remains an important problem in the clinical management of
the disease. Accurate estimation of the patient specific AAA rupture risk requires detailed information on both
the wall stress distribution and the aortic wall tissue yield stress. However, the AAA wall properties and the
stress distribution cannot be measured or even derived with sufficient accuracy from non-invasive measurements
in vivo. As an alternative, numerical approximations of the flow and wall motion equations are sought using wall
constitutive models based on mean elastic properties obtained by in vitro mechanical testing of excised
specimens of the aneurismal wall. Rhagavan et al. ) proposed a two parameter, hyperelastic, isotropic,
incompressible material model for the AAA wall utilizing uniaxial loading stress strain measurements on
excised AAA specimens. The ILT solid structure has been modeled as either an elastic *” or hyperelastic **),
isotropic, incompressible material.

The wall stress computation should ideally result from a complete FSI simulation of the wall forces.
However, this approach still suffers form modeling assumptions, is very intensive computationally and thus
currently impractical. Furthermore, it has been shown in idealized AAA models that the FSI approach yields
peak wall stress estimates similar to those obtained by an isolated structural stress analysis ). The
computational approach most widely used to estimate peak AAA wall stress is the isolated static structural
analysis with a uniform peak systolic pressure wall loading. However, this approach neglects the flow induced
pressure distribution on the AAA wall. Aim of this study was to assess the merit of a decoupled fluid structure
approach for AAA wall stress estimation as compared to the isolated static structural stress analysis approach.
Towards this end, the stress distribution computed for a uniform wall loading in an anatomically correct AAA
model is compared to the stress computed for the same model but for the flow induced pressure wall loading.

2 METHODS

A 86 year old male with an intact 10 cm peak transverse diameter AAA was the subject selected for this study.
The selected aneurysm geomerty exhibits significant tortouosity of the inflow conduit and the proximal
segments of the iliac arteries that is expected to strongly affect the intraaneurysmal flow field. This geometric
configuration is typical of large AAA’s and can be attributed to the asymmetric expansion of the aneurysm sac
caused primarily by the expansion constraints introduced by the proximity of the spinal column. Information on
the 3D AAA geometric configuration was extracted in vivo by contrast enhanced high resolution spiral CT
angiography. The following CT acquisition parameters were prescribed: 120 kVp, 160 mAs effective current
level, 10.4 s scan time, 22.1 mm feed/rotation ratio, 380 mm in plane FOV, 2 mm slice thickness, 1.5 mm
reconstruction spacing/increment, 0.5 mm slice overlap and a 512 x 512 image matrix size resulting in a 0.742
mm in plane resolution. Angiography was triggered at 120 Houndsfield units.

Figure 1. Internal (red) and external (grey-translucent) 3D reconstructed
smoothed surfaces of the CT image extracted AAA geometry.

Segmentation and 3D surface reconstruction of the CT images was implemented using in house developed
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software . From the segmented CT images two 3D surfaces were reconstructed: the true vessel lumen surface
and the external aortic wall surface (Figure 1). A third surface, the internal aortic wall was generated as an iso-
surface 2 mm inwards from the external aortic wall. The third surface, the interface between the AAA wall
endothelium and the ILT, could not be extracted from the CT images as the imaging method still lacks the level
of spatial resolution and contrast required. The location of this third surface relative to the external aortic wall
surface effectively determines the thickness of the AAA wall. Abnormal, small scale surface irregularities
introduced during the imaging and reconstruction processes were excluded from the computational model by
applying pixel width constrained smoothing of the reconstructed surfaces prior to mesh generation.

2.1 Flow Computation

The computational grid generated using Gambit had 333150 tetrahedral elements and non-uniform grid node
spacing to produce higher grid density at the proximal and distal aneurysm neck regions as compared to the
bulge surface. A short, native vessel blended straight tube like extension of the proximal inflow was added to the
model to create a circular cross section inlet required for the application of the exact Womersley solution as the
time dependent inflow boundary condition. The Navier-Stokes and continuity equations for incompressible flow
neglecting body forces are expressed in vector form as:

V-u=0
&z—leﬂ/Vzu M
Dt 2

where, D/Dt=0/ot+u-V is the substantial derivative, p is the fluid density, and v is the fluid kinematic
viscosity.

Fluent 6.1.22 was used to solve the flow equations. For the flow field computations, the arterial wall was
assumed rigid and blood was modeled as an incompressible, Newtonian fluid with a density of 1.05 gr/cm® and a
viscosity of 4.5 cP. Blood is a suspension of red and white cells, platelets, proteins and other elements in plasma
and exhibits an anomalous non Newtonian viscous behavior when exposed to low shear rates or flows in tubes
of less than 1mm in diameter. However, the Newtonian fluid assumption does not affect the major flow features
and is considered an acceptable approximation for modeling blood flow in the macrocirculation B'. The AAA
inflow waveform and the aortic flow split ratio in the iliac arteries were measured in vivo by Doppler US two
hours after CT scanning of the patient. On average, the left iliac artery received 40 % of the aortic flow and the
right iliac artery received 60 %. The discrete Fourier series of the measured AAA inflow waveform can be
expressed as:

0()=0,+.0,"™ @)

n=1

where Q is the steady flow component, N=16 represents the number of Fourier modes used and w is the
fundamental frequency of the measured flow waveform. From the discrete Fourier series of the volume flow rate
in Eq. (2) the fully developed time varying velocity profile was computed using an expression obtained
following Womersley’s derivation %

u(r,t)=

2 N 3 B
ZQO(I_% )+ZQ _Jy(a, r/R))/(l_ 2J (a,i’?) 3L g )
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4 AT se T e

where J, and J; are the Bessel functions of the first kind of order zero and one respectively, A4 is the cross
sectional area and R the inlet radius of the straight tube extension inlet and, a, = Rlnew /V is the Womersley

parameter. The time averaged mean Reynolds number of the prescribed waveform was Re,=355 and the
Womersley parameter for the fundamental frequency of the measured flow waveform was a;=16.7. The velocity
profile given by Eq. (3) was applied as the time dependent inflow boundary condition. A time step size of 6x10™
s was used and 10* time steps were required to complete one flow cycle. A time periodic solution was achieved
after 7 flow cycles. A second order upwind discretization scheme was applied for the momentum equation and
the SIMPLE scheme was used for pressure velocity coupling.
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2.2 Finite element stress analysis

ABAQUS 6.4.1 was used to solve the momentum equations, the wall constitutive equations and the
conditions of equilibrium for the static structural stress analysis. The aortic wall was modeled as an
incompressible, homogenous, isotropic, hyperelastic, material with a uniform thickness of 2 mm. The finite
strain constitutive model proposed by Rhagavan et al. **! was adopted for the arterial wall with a strain energy
density function given by

W:a(13_3)+ﬁ(13_3)2 4)

where, Iy is the first invariant of the left Cauchy-Green tensor B (Izg=tr B). The model parameters were set to a=
17.4 N cm™ and # =188.1 N cm™ that correspond to population mean values obtained from uniaxial loading tests
on excised AAA wall specimens.

The ILT was modeled as an incompressible, isotropic, homogenous, linear elastic material with a Young
modulus E = 0.11 MPa and a Poisson ratio v = 0.45. These values of E and v represent population mean values
obtained from uniaxial loading tests performed on ILT specimens harvested during AAA surgery by Di Martino
et al. ¥, The AAA model assembly included the ILT solid part with 41291 tetrahedral elements and the arterial
wall shell part with 9690 triangular elements. Stress analysis results were obtained both for a uniform wall
loading using the peak systolic arterial pressure (16 kPa or 120 mmHg) and for the non-uniform flow induced
wall pressure loading computed during early systolic deceleration. Mapping of the pressure field from the finer
numerical grid used for the flow computations to the coarser grid used in the stress analysis was achieved by
inverse-distance interpolation. A non-slip condition was applied at the AAA wall - ILT interface. The proximal
and distal ends of the model were constrained longitudinally.

3 RESULTS

The results of the time dependent flow field computation showed that most of the AAA lumen wall surface
was exposed to very low wall shear stress (WSS) throughout the cardiac cycle. Regions of locally elevated WSS
were located near the proximal and distal neck of the AAA bulge (Figure 2a). WSS magnitude was normalized
by the straight pipe inlet Poiseuille WSS. The computed wall pressure distribution during early systolic
deceleration (Figure 2b) showed a significant deviation from the peak arterial systolic pressure which has been
widely used as a uniform wall loading condition in static structural stress analyses. During early systolic
acceleration regions in the vicinity of the distal neck of the aneurysmal wall were exposed to a pressure loading
18 % higher than the peak systolic pressure. Furthermore, most of the aneurysm bulge wall was exposed to
pressures 10 % higher than the peak systolic pressure.

Figure 2. Computed WSS magnitude (a) and static pressure on the wall of the true lumen (b) during early
systolic deceleration. WSS is normalized by the inlet equidiameter straight pipe WSS and static pressure is
normalized by the systolic arterial pressure. The aortic flow waveform applied is also shown (c).

The highly complex flow field that develops in the aneurysmal sac is depicted in Figure 3 by means of
stream ribbons color mapped with static pressure (a) and vorticity magnitude (b). The out of plane curvature
(tortuosity) of the aortic flow conduit injecting blood into the aneurysmal expansion strongly influences the
velocity distribution at the aneurismal bulge inlet. The vorticity colour mapped stream ribbon graph (Figure 3b)
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clearly depicts the increase in vorticity occurring within the tortuous aortic segment leading to the aneurysmal
bulge inlet.

Arterial wall stress distributions for uniform wall loading and flow induced non-uniform pressure are
presented using the Von-Mises stress, a scalar measure of the stress tensor that is proportional to the strain
energy density at each point expressed as

Oym =\/%[(01_0-2)2+(01_0'3)2+(O'2_0'3)2] O]

where g, 0,, 03 are the principal stresses. Application of the non-uniform flow induced wall loading to the AAA
model produced a 12 % increase in the computed peak wall stress as compared to the uniform wall loading
result (Figures 4 and 5). Two regions of high stress were found, one located anteriorly in the distal half of the
AAA bulge with a local peak of 52 N/cm? (Figure 4 arrow) and the other located at the proximal neck anteriorly
and to the left with a local peak of 54 N/cm® (Figure 5 arrow). It should be noted that only the magnitude and
not the locations of the peak stress regions was altered by the introduction of the non-uniform flow induced
pressure wall loading.

Figure 3. Stream ribbons of computed flow field during end systolic deceleration. Static pressure (a) and
vorticity magnitude (b) color mapping is applied. The aortic flow waveform applied is also shown (c).
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Figure 4. Computed Von Mises stress distribution on the AAA wall for uniform peak
systolic pressure loading (left) and flow induced non-uniform wall loading (right). Arrow
shows local maximum of wall stress.
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Figure 5. Computed Von Mises stress distribution on the AAA wall for uniform peak
systolic pressure loading (left) and flow-induced non-uniform wall loading (right). Arrow
shows local maximum of wall stress.

4 DISCUSSION

The AAA selected for this study had a peak transverse dimension of approximately 10 cm and did not rupture
prior to surgery although being almost twice the size above which surgical intervention is commonly advised.
This further supports the argument that the peak transverse dimension is not an absolutely reliable AAA rupture
risk indicator. Model studies have shown that the law of Laplace that relates internal diameter and wall stress is
not appropriate for estimating the stress field even in simplified AAA geometries. Elger et al. '?! found in
models that the wall stress distribution is most strongly influenced by the shape of the aneurysm with peak stress
correlated to wall curvature. This finding is in agreement with our results (see Figs. 4 and 5).

The AAA model used in the present study includes a number of simplifications and underlying assumptions.
A uniform wall thickness was specified due to the inherent limitations in the imaging technique. This affects the
computed stress distribution thus increasing the uncertainty of the results as compared to the exact in vivo
conditions. However, it does not reduce the value of the comparative results presented since it will have a
similar effect in the stress distribution on both computational approaches considered. The hemodynamic
pressure field was computed assuming a rigid wall model. However, it has been shown both experimentally **!
and computationally ** that the introduction of wall compliance to arterial models only has a quantitative effect
on the computed wall stresses whereas the main flow features are preserved.

The computational mesh used for the structural stress analysis was based on the geometry reconstructed from
the CT images obtained throughout the cardiac cycle and over multiple cycles as the acquisition was not gated to
the cardiac rhythm of the subject. As a result, the mean geometric representation of the pressure pulse modulated
AAA structure is reconstructed although a zero-stress state is assumed in the computation. As the zero-stress
state of the AAA cannot be measured in-vivo one could assume that as the diastolic phase occupies most of the
abdominal aorta flow cycle the reconstructed AAA geometry is an approximate representation of the diastolic
pressure modulated AAA stress state. This residual stress has been neglected in this investigation although its
effects are not expected to invalidate the results of this comparative study. The effects of neglecting the residual
stress, which is assessed that may be important, on the computed stress distribution will be addressed in a future
study.

The material properties used in this study where based on mean values and therefore the computed stress
distribution is not expected to represent the exact in vivo wall loading conditions. It should be noted however
that the aforementioned difficulties in constructing a mathematical model to simulate in vivo AAA wall loading
conditions also apply to a further extent to the FSI approach, which is further complicated by the dynamic
effects of wall motion. It is therefore very important to reduce the solution uncertainties identified in the
proposed decoupled fluid structure model before introducing wall motion dynamics in a coupled fluid structure
model.

Our results show that although the isolated static structural stress analysis approach captures the gross
features of the stress distribution it underestimates the magnitude of the peak wall stress by as much as 12 %
compared to the proposed decoupled fluid structure approach. This value may be different when other AAA
cases are considered depending on the aneurysm shape and inflow conditions. However, the intra-aneurysmal
flow-induced wall pressure distribution is primarily influenced by the temporal acceleration and deceleration of
the flow and to a lesser extent by the size of the aneurysmal sac. Consequently, as our stress computations were
based on a typical physiological AAA inflow waveform, the 12 % difference in the computed peak wall stress
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should be considered as a representative result. Furthermore, the decoupled fluid structure approach yields the
local AAA hemodynamic conditions thus allowing for the identification of wall regions exposed to low and
oscillatory wall shear stress and high shear gradients, conditions that have been linked to the development of
wall lesions. This information may then be used to further support prognosis of AAA rupture risk.

In order to establish a more reliable patient specific index of AAA rupture risk it is necessary to further
improve the accuracy of the computational models used. This requires imposing realistic boundary conditions
extracted from the patient in vivo to a computational model that couples fluid and solid dynamics. This study
shows that a decoupled fluid structure approach is a practical alternative to the more complete but
computationally intensive FSI study.
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Abstract. Biomechanics of the periodontal ligament (PDL) around human teeth is still an open problem. The
assumption of nearly incompressible PDL leads to Reynolds’ equations in curvilinear coordinates over the
boundary of the tooth. This paper deals with the numerical solution of these equations around an axisymmetric
rigid tooth that moves on its axial plane due to in-plane loading. A boundary-type symmetric stiffness matrix of
order 3 %3 is introduced, in order to correlate the applied force-system on the tooth with its three displacements:
two translations and one rotation. The elements of this matrix are calculated using mid-point integration along
the half axial boundary of the tooth being in contact with the periodontal ligament. The efficiency of the method
is tested in two cases: an idealized conical and a nearly anatomical paraboloidal root. For both cases, the
location of the centre of resistance, the centre of rotation and the distribution of the pressure are calculated.

1 INTRODUCTION

The biomechanics of tooth movement is an important task that mainly concerns dentists and orthodontists
but also computational mechanics and CAD/CAE scientists. Each tooth is surrounded by a periodontal ligament
(shortly PDL), which protects the biological tissues by absorbing the applied mechanical loads during chewing
or orthodontic treatment. Particularly in orthodontics, the loading is called “force-system” and it refers to both
force and torque applied to the tooth bracket that is usually fixed in the middle of the crown. In this case, the aim
of a computer simulation is to determine the centre of resistance as well as the centre of rotation for a certain
force-system, or inversely, to determine the proper force-system that will produce the desirable centre of rotation
so that the aesthetic malfunction is corrected through medical treatment. The centre of resistance refers to a point
where the applied force F' produces pure translation, while the centre of rotation corresponds to the
instantaneous pole of pure rotation, well known from elementary kinematics. More details can be found in
classical works!'?!,

In order to analyze tooth movements, two-dimensional elastic models using Airy’s stress functions have been
proposed*?!. Also, computational methods such as the finite element method have been proposed by many
investigators'®”!. The interested reader may also consult a state-of-the-art report™. The relevant analyses include
linear elasticl”, viscoelastic!” as well as isotropic and anisotropic models!'™'¥. Besides the prediction of the
above-mentioned centres of rotation and resistance, many investigators such as Middleton et al."" report that the
calculation of the distribution of the pressure inside the periodontal ligament offers important information for the
understanding of the induced biological effects such as bone remodelling during orthodontic treatment!'®'7,

Since it is widely accepted that the PDL is a fluid or semi-fluid matrix material, for the purposes of this study
we consider a simple mechanical representation of the PDL as an incompressible mediator between the tooth
and the alveolar bone, i.e. acting force system and resulting pressure distribution. Thus, it is here assumed that
the thin elastic PDL is governed by Reynolds equations. This hypothesis makes again timely the excellent work
of Synge!"™, 70 years ago, who proposed that tooth movement may be determined on the following assumptions:
e Tooth may be regarded as a rigid body, held in a rigid socket by a thin membrane that fills the space

between;

e The periodontal ligament has a constant thickness;
e Periodontal ligament is elastic, homogeneous, isotropic and incompressible.

Using extensive tensor analysis, Synge!"®! obtained two-dimensional and also axisymmetric Reynolds’
equations in curvilinear coordinates along the interface between the tooth and the PDL. These formulas were
solved analytically for a two-dimensional wedge and an axisymmetric cone. However, real teeth of complex
geometry and variable thickness of the periodontal ligament cannot be solved in a closed form and a relevant 2-
D computational method was recently proposed!”’.
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This paper revisits and extends the excellent theoretical work of Synge!'® so that it becomes now applicable

to any arbitrary shaped axisymmetric tooth that is surrounded by an incompressible PDL of variable thickness.
This is achieved by introducing a symmetric 3%3 stiffness matrix, K, with respect to three degrees of freedom:

two translational (u,v) and one rotational (w). The four independent elements ki/ of the stiffness matrix K are

calculated using one-dimensional (such as mid-point) integration along the half of the open interface between
the tooth boundary and the periodontal ligament in order to determine five regular line integrals (/s). Also, the
pressure inside the PDL is calculated on the basis of the same line integrals, s, plus one more.

The efficiency of the proposed method is presented for two test cases that approximate an upper central
incisor: a typical conical-shaped model (where an analytical solution exists) and a parabolic-shaped model,
respectively. For both cases, the centres of resistance, the centres of rotation and the distribution of pressure are
calculated.

2 MECHANICAL THEORY

2.1 Description of the problem

From the engineering point of view, the problem is posed as follows. Let us assume a rigid axisymmetric body
(T: tooth) inside another axisymmetric rigid body (S: socket). The space between these two bodies is occupied
by an incompressible membrane of a prescribed variable thickness A=#(s), which is a function of the arc length s
along the tooth boundary, as shown in Figure 1.

All three bodies (tooth, socket and membrane) are assumed to be three-dimensional but only an axial
section (shown in Figure 2) is required for the following analysis. A force-system F={F, F,, M.}", is applied on
the bracket of tooth and it undertakes a displacement u={u,v,w}". Obviously, (F,, F)) denote forces while M. a
moment as shown in Figure 3. In general, we ask for:

(a) The displacements of the body (T)

(b) The related centres of resistance and rotation and

(¢) The pressure distribution inside the incompressible membrane between the tooth apex O and the margin
AB.

Tooth

Periodontal
ligament

Figure 1: A three-dimensional view of an axisymmetric tooth surrounded by its periodontal ligament
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%

AB : tooth margin
O :tooth apex
by :normal displacement

periodontal ligament (PDL)

Figure 2: Geometry of the structure composed by the tooth (T), the periodontal ligament (PDL) and the socket
(S). Definition of Cartesian axes and rigid-body displacements (u,v,w).

Eracket

L root length

L root diam eter

CRe : Centre of resistance
CRo : Centre of rotation

d=L+H

=

Figure 3: Definition of tooth geometry (L: root length, D: root diameter), applied force-system F={F, F,, M.},
centre of resistance (Cre) and centre of rotation (Cro).

2.2 Basic equations
The hydrodynamic field around a moving axisymmetric rigid tooth (T) within a rigid socket (S) is governed

by[18]

10 ) K

[Rh3p IR0 AT, YO M
R 0Os 0s) R*0¢’ "

with p=p(s) denoting the pressure within the PDL, R the radius of the tooth, ¢ the azimuthal angle, x the shear

modulus and b, the normal displacement component on tooth boundary. With respect to a two-dimensional
coordinate system Oxy shown in Figure 2, the tooth movement is analyzed in two translations (uv) towards x-

and y-axes, as well as one rotation (w) about the origin O that is chosen at the apex of the tooth. The
displacement components of a point M are then ¥ —y® and v+xw, and the normal component b, , in the

sense from the socket S to the tooth T, is given by

b":—u%+cos¢ vg-s-a) x@-s-R% )
ds ds ds ds

The nature of the problem dictates to seek for a solution including the first harmonic in ¢, in the form

p = pls.9)= f(s)+ gls)cos ¢ (3)
By substituting Eqgs (2, 3) into Eq.(1) one receives
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3
1o RK’ ﬂ+d—gcos¢ +h—2(—gc0s¢)=12,u —udR+c0s¢[vdx+RdR}
ds R ds

R Os ds ds ds
Then, by separating the corresponding terms, we obtain the two equations
li Rh3ﬂ :_12/md£ “4)
R Os ds ds
3
LOfpypdg —hzg:12,uv@+12,ua) v, gIR (5)
R 0s ds R ds ds ds
The boundary conditions for the functions f'and g are
10)=~r,,. g0)=0. g(t)=0 ©)

the last due to the fact that p must be single valued at the apex (s=/).
By integrating Eq.(4) one receives
Rh3g=—6yuR2 +C (7
N
and after a second integration, the function fis given by

f=~6uu [RIds+C[R" W ds+C" (®)
0 0

where the C and C' are integration constants and are calculated as follows.
For R=0 at the apex, Eq.(7) results in C=0. Then, for s=0 Eq.(8) implies ¢’ = f(0)= P, - S0, fis given as

S =Py, —6uu[Rh™ ds ©)
0
and due to Eq.(3), the pressure at any point becomes
pls)= P,,, ~6pu [ R ds + g(s)cos g (10)
0

At this point, it is assumed that the thickness (%) of the membrane is constant. Also, a new independent variable
is introduced as follows

_tds (11)
:ng
so that (=0 when s=0 and (=00 when s=I. Now, the second differential equation of our problem [Eq.(5)] becomes
d’g (12)
-g=F
i 8 ©)
where
F(é,):lz,uvRﬂ_’_lZ,uwR xﬂ+Rd—R (13)
Rode T w ¢ T d¢
The analytical solution of Eq.(12) is given as
¢ ¢
g=C e +Clet +%e§ [e? F(2)da —%e-g [e! F(4)da (14)
0 0
For s=0 ({=0), the boundary condition g ‘ o =0 implies that the integration constants are interrelated as
C,+Cl =0 (15)
As aresult, Eq.(14) is further written as
© ¢
g=—sinh¢ e F(A)d2—e™ [sinh 4 F(2)dA (16)
¢ 0

It can be easily seen that the function g [Eq.(16)] depends on both the geometrical factor { as well as the two
kinematic degrees of freedom, i.e. v and w (involved in F, cf. eq.(13)).

2.3 Pressure Distribution
2.3.1 Pressure at the apex
Since for s=/ it holds that g(/)=0 [eq.(6)], Eq.(3) results in

(p)y = f()=P,, —6uuth-3 ds (17)

2.3.2 Pressure at any point of the membrane
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pls,p)=P,, —6uuh _[Rds+g(s v,)cos ¢ (18)

0
2.4 Force — Displacement Relationship

The equilibrium of the tooth under the force-system system F={F,, F), F.}" leads to the following

relationship between this and the induced displacement u={u,v,0}":
s=l  ¢=272

F=] ] r-r) RS dg
20 g=0 s (19)
5=l ¢=272 dx
F,==[ [ (p-P,)Rcosp-=dsdg
520 $=0 ds
s=l  ¢=272 dx dx dr
M.=-| ¢Io(p P,,)Reosg [x R ds]dsdqﬁ

By substituting the pressure p from Eq.(18) in Eq. (19) we obtain

s=I
F. =6muuh™ IRds F, ——72'.[ gR—ds M, =-r IgR (x%-#R%j ds (20)

5=0 5=0

3 A MODERN CONSIDERATION

3.1 Kinematic quantities

In order to generalize the above procedure to any arbitrary shaped axisymmetric tooth root, in this paper a
numerical solution is proposed. For simplicity, a PDL of constant thickness is considered. In this case, in virtue
of Eq.(16), Eq.(20) obtains its final matrix form

F k, 0 0 u

Fob=| 0 ky ky|-v @
M. 0 ky ky| @
or, in compact form:
F=Ku (22)

where the above 3x3 “stiffness” matrix K relates the applied force-system F on the tooth with the induced rigid-
body movements u. The elements of K are given as follows:

1
ky=c I, ky=2¢[(silh{ L +e L) R % ds (23)
0

! 1
_ dx . _ dx dR
.([ sinh{ -1, +e 4-]4) R - ds, ky,= 2C£(Slnhé"[1+e 4-]2) R (xEJngjds (24)
]
Ismhé’ I+e* 1 )R (xdx+Rdeds (25)
ds ds
where the arc- length dependent functions are:
o dx T dx 26
L= j LR A, 12=Iz(s)=12(g):£smhz-1e~a a2 (26)
. dx dR ny dv . dR 27
13=13(S)=13(§):J;e *R- [xd7+REj di,  L=L(s)=1({)=e 4_(|;smh/1-R-( d7+Rﬁ) di @7
and the constants are: L= ‘I[ R g —constant and 0267!%3 (28)

Using the above definitions, it is trivial to prove that k3,=k;. In other words, the stiffness matrix K is symmetric.
3.2 Determination of centers

3.2.1 Centre of Resistance (Cre)
By virtue of Eq(21) in case of pure translation («=0) due to a force F), one can easily derive:

N (29)

and also - M, _ @ (30)
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3.2.2 Centre of rotation (Cro)

This centre corresponds to the well-known pole of motion and its location may be inside or outside the tooth,
depending on the applied loads (F.,F,,M.). It should become clear that the moment M. includes not only the
external applied torque M, at the bracket B, but also the moment of the forces (F,,F,) with respect to the origin
O. Since the motion of each point P on the tooth may be considered as a result of pure rotation around the centre
of rotation Cro, it is given on the basis of the displacements of the tooth apex O (O = P) as follows

Xew === s Yoy == 31)
®
For the particular case of a force F, applied at a point on the long tooth axis Ox and being perpendicular to
that (plus an external torque M, at the bracket B), it is easily proven that u=0 and consequently y,,,=0. In other
words, the centre of rotation lies on the axis of symmetry. Furthermore, if only a single tipping force F) is
applied at a distance d from the apex O, the solution of the equations system leads to

umo, yoDlbahad) (ke thnd) (32)
(k22k33 _k23) (kzz k33 _k53)
whence
__ (kss —ky d) (33)

X ro T
; (_ k23 +hky d )
From the above analysis it is concluded that, generally, the centre of rotation (Cro) depends on all three induced
displacements (u,v,®) or, in other words, on the applied force-system.

3.3 Pressure distribution
After the determination of the tooth displacement u = {u,v,a)}T, equation (18) may be applied for each point
along the tooth/PDL interface. A careful inspection shows that besides the integrals 7 ,7,,7, and 7, [Eqs.(26-
27)], the application of eq.(18) at a certain point M of the PDL requires of one more integral 7, that depends on
this point, and it is given by

p(s)=P,, —6puuh>1,(s)-sinh {12 uh™ [7, (s)v+1, (s)a)]— e “[1,(s)v+1, (s)] (34)

1
where ]6 — IG(S):'[R ds (35)
0

4 NUMERICAL IMPLEMENTATION

4.1 General procedure

Numerical implementation consists of the accurate and efficient calculation of the five integrals, Is, explicitly
given in Eqs.(26-28); theses are functions of both the tooth shape and the thickness of the PDL. Additionally, if
the distribution of the pressure p,~p(s),) along the PDL is desired, it is necessary to additionally calculate one
more integral involved in eq.(40), as it was mentioned above.

In general, the open boundary S=AOB of the tooth being in contact with the PDL, is divided into N
boundary segments. These may be either straight segments (two-point definition) or curvilinear arcs such as
parabolic (three-point definition). However, only straight elements were implemented in this paper. In particular,
the tooth root was subdivided by N equidistant parallel planes normal to its axis of revolution. At the so
produced N+1 nodal points with curvilinear coordinates s¢=0,s,5,...,55=A0, the coordinates (x;, »)),
(=1,2,...,N) are prescribed. Integrals /s and stiffness k; (i,j=1,2,3) in Eq.(21) are calculated by using one-
dimensional numerical integration (such as mid-point for simplicity), the latter being equivalent to one-point
Gaussian quadrature.

After the Is have been calculated, the linear system of the three equations [eq.(21)] is easily solved in (u,v,w)
and then both the centre of resistance and the centre of rotation are calculated. In the sequence, by sweeping the
boundary AOB from A (s=0) to B, the pressure is successively calculated at the 2N+1 nodal points. In detail, the
proposed algorithm consists of the following steps:

Step 1: Divide half of the tooth surface (boundary) into segments made by N cuts perpendicular to the axis of
symmetry at equal distances along this axis.

Step 2: For each boundary segment, calculate and store the variations of the five integrals given by Eqs.(26-28),
ie. AL, i=1,....,5.

Step 3: Calculate the integral 7 (1)= i Al -
i=1

Step 4: Sweep all segments along the tooth boundary and calculate the corresponding nodal values of the
integrals /,(s,).7,(s,).15(s,) and £,(s,), i =1.2,..N -
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Step 5: Calculate the line integrals in eqs.(23-25), on the basis of the nodal values that were found in Step 4.
Step 6: Apply the force-system and calculate (u,v,) by solving a linear system of two equations.
Step 7: Calculate the pressure distribution using Eq.(34) and the nodal values of the integrals found in Step 4.

4.2 Application

We analyze a typical upper central incisor of either conical (where an analytical solution exists) or paraboloid
shape with the following geometrical data (Figure 3):
Root length  : L =13-0 mm; Root diameter : D = 7-8 mm; Elastic modulus (Tanne et al.”®)): E=0.68MPa ;
Poisson’s ratio: v=0.50 ; Shear modulus: 4=E/[2(1+v)]=0.227MPa; PDL thickness #=0-229 mm.
The atmospheric pressure was taken as P,,,=0-101 MPa. The centre of rotation is calculated for the case of a
tipping force F,=IN that is applied at the bracket of the tooth at a distance //=5.8mm from the line AB (tooth
margin) of the PDL (Figure 3); so, the distance between the bracket and the apex becomes d = L+H = 18-8 mm.
Obviously, the pressure P is a function of the arch length s. Nevertheless, for presentation purposes results
are presented in Figure 4 in terms of the normalized x-coordinate, i.e. the ratio x/L. For a given large or small
value of x/L, there are two corresponding points along the tooth surface, i.e. (left: M; and right: My) or (left: M,
and right: M3), respectively, as shown in Figure 3. It is also noted that for the conical case illustrated in Figure 4,
both the analytical and the numerical technique are identical (as anticipated).
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Figure 4: Pressure distribution for several orthodontic force systems: (a) Upper left: Pure translation under a unit
force (F,=1N) applied at the centre of resistance, (b)Upper right: Pure rotation under a moment (M.=5Nmm), (c)
Lower left: Extrusion under a unit force (F,=1N) and (d) Single tipping force under a unit force (£,=1N) applied at
the tooth bracket at a distance /=5.8mm above the margin AB

Table 1 presents the results of the calculated positions of the centre of resistance (Cre) and the centre of
rotation (Cro) using a variable number of boundary segments », based on equidistant cuts by lines perpendicular
to the long tooth axis. It can noticed, for example, that in case of a paraboloidal root the calculated position of
the Cre converges near the value 8-253mm from the apex, that corresponds to 63.5% of the root length measured
from the tooth apex (O) or 36.5% from the margin AB. Also, Table 2 presents the calculated stiffness of the
PDL in pure translation, extrusion and pure moment rotation, as well as the location of the centre of resistance
(Cre) as a percentage of the root length.
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Table 1. Calculation of the centre of resistance (X,,.) and the centre of rotation (X,,,) for an upper central incisor (root length
L=13mm, root diameter D=7.8mm) using N boundary segments along (AO). Distances are measured from the apex.

Number Conical root Paraboloidal root
of boundary segments () Xoye [mm] X, [mm] X [mm] X [mm]
8 9-689 9-103 8:410 7-857
16 9-622 9-118 8-305 7-805
32 9-600 9-140 8:271 7-803
64 9-592 9-154 8-260 7-808
128 9-589 9-162 8:256 7-813
256 9-588 9-167 8-255 7-815
512 9-587 9-169 8:254 7-817
1024 9-587 9-170 8-254 7-818
2048 9-587 9-170 8:253 7-818
4096 9-587 9-171 8-253 7-818
Analytical 9-587 9-171 - -

Table 2. A comparison between the stiffness and the location of the centre of resistance (Cre) of the conical and paraboloidal
roots corresponding to an upper central incisor using N=4096 boundary segments.

STIFFNESS Location of Cre
Shape of root Translation [mm/N] Extrusion Rotation in (%)
[mn/N] [rad/N.mm]
Conical 1.887x10° 1.396x10° 2.446x10” 26.3
Paraboloidal 9.380x10°° 8.947x10°° 2.050x10°° 36.5

5 CONCLUSIONS

A boundary-type computational technique was presented for the calculation of the centres of resistance and
rotation, as well as the induced pressure distribution inside the periodontal ligament of a loaded tooth. The
formulation consists of a symmetric “stiffness” matrix based on Reynolds equations, which represents the
resistance of the tooth-support to several force-systems. Due to the poor numerical integration scheme applied,
in order to achieve convergence a significant large number of boundary segments was required.

REFERENCES

[1] Nikolai, R.J. (1985), Bioengineering Analysis of Orthodontic Mechanics, Lea & Febiger, Philadelphia.

[2] Burstone, C.J. (1962), Biomechanics of tooth movement. In: Vistas in orthodontics, Eds. B.S. Kraus and R.A. Riedel, Lea and Febiger,
Philadelphia, pp. 197-213.

[3] Christiansen, R.L. and Burstone, C.J. (1969), “Centers of rotation within the periodontal ligament,” Am J Orthod 55(4), pp. 353-369.

[4] Nikolai, R.J. (1974), “Periodontal ligament reaction and displacement of maxillary central incisor subjected to transverse crown tipping,”
Journal of Biomechanics 7, pp. 93-99.

[5] Nikolai, R.J. and Schweiker, J.W. (1972), “Investigation of Root-Periodontium Interface Stresses and Displacements for Orthodontic
application,” Experimental Mechanics 12, pp. 406-413.

[6] Tanne K., Nagataki T., Inoue Y., Sakuda M. and Burstone C.J. (1991), “Patterns of initial tooth displacements associated with various
root lengths and alveolar bone heights,” American Journal of Orthodontics and Dentofacial Orthopedics 100, pp. 66-71.

[7] McGuiness N.J.P, Wilson A.N., Jones M.L. and Middleton J. (1992), “A stress analysis of the periodontal ligament under various
orthodontic loadings,” European Journal of Orthodontics 13, pp. 115-120.

[8] Provatidis, Ch. and Toutountzakis, N. (1998), “A critical review of older and contemporary applications of biomechanical methods in
orthodontics,” Hellenic Orthodontic Review 1, pp.27-49.

[9] Jones M.L., Middleton J., Hickman J., Volp C., Knox J. (1998), “The development of a validated model of orthodontic tooth movement
of the maxillary central incisor in the human subject,” Russian Journal of Biomechanics 2, pp. 36-44.

[10] Provatidis, Ch. (1998), Bone remodelling in orthodontics, In: Computer Methods in Biomechanics and Biomedical Engineering - 2, Eds.
J. Middleton, M.L. Jones and G.N. Pande, Gordon and Breach Science Publishers, The Netherlands, pp. 655-661.

[11] Provatidis C.G. (1999), “Numerical Estimation of the Centres of Rotation and Resistance in Orthodontic Tooth Movements,” Computer
Methods in Biomechanics and Biomedical Engineering 2, pp. 149-156.

[12] Provatidis, C.G. (2000), “A comparative FEM-study of tooth mobility using isotropic and anisotropic models of the periodontal
ligament,” Medical Engineering & Physics 22, pp. 359-370.

[13] Provatidis, C.G. (2001), “An analytical model for stress analysis of a tooth in translation,” International Journal of Engineering Science
39, pp. 1361-1381.

[14] Provatidis, C.G. (2002), “Parametric finite element analysis and closed-form solutions in orthodontics,” Computer Methods in
Biomechanics and Biomedical Engineering 5(2), pp. 101-112.

[15] Middleton J., Jones M. and Wilson A. (1996), “The role of the periodontal ligament in bone modeling: The initial development of a
time-dependent finite element model,” American Journal of Orthodontics and Dentofacial Orthopedics 109, pp. 155-162.

[16] Provatidis, C.G. (2002), “The role of the principal strains within the periodontal ligament of a tooth during long-term intrusion,” Russian
Journal of Biomechanics 6 (3), pp. 38-49.

[17] Provatidis, C.G. (2003), “A bone-remodelling scheme based on principal strains applied to a tooth during translation,” Computer
Methods in Biomechanics & Biomedical Engineering 6 (5-6), pp. 347-352.

[18] Synge, J.L. (1933), “The tightness of the teeth, considered as a problem concerning the equilibrium of a thin elastic membrane,”
Philosophical Transactions of Royal Society of London, Series 231A, pp. 435-477.

[19] Provatidis, Ch. and Kanarachos, A. (2000), “Boundary-type hydrodynamic analysis of tooth movement,” Engineering Analysis with
Boundary Elements 24, pp. 661-669.



5" GRACM International Congress on Computational Mechanics
Limassol, 29 June — 1 July, 2005

Fluid Mechanics and Aerodynamics

553






5" GRACM International Congress on Computational Mechanics
Limassol, 29 June — 1 July, 2005

A MESHLESS METHOD FOR LIFTING-BODY FLOW SIMULATIONS

Jiahn-Horng Chen and Hong-Mau Chen

Department of Systems Engineering and Naval Architecture
National Taiwan Ocean University
2 Pei-Ning Road, Keelung, Taiwan
e-mail: BO105@mail.ntou.edu.tw

Keywords: Radial Basis Function, Lifting Body, 2-D Potential Flow

Abstract. A meshless method with the logarithmic radial basis function is introduced to solve two-dimensional
potential flow past a lifting body. The collocation approach is employed to find the numerical solution. It is
found that the new radial basis function demonstrates a better convergence than the reciprocal multiquadric
function that is widely employed in the literature. Furthermore, the present study successfully applies the
meshless method to problems in a multi-connected domain.

1 INTRODUCTION

The meshless method has been widely investigated in the past decade and emerged as a new category of
computational methods. One of its advantages lies in that no mesh generation is required to solve differential
equations numerically. It is well known that in traditional numerical methods, such as finite element methods,
finite difference methods, and boundary element methods, it is usually difficult and takes much time to generate
proper meshes for computational purposes. This is especially true for three-dimensional problems with
complicated geometry in engineering applications.

The meshless method is currently at the stage of rampant development. Various approaches and
computational procedures have been proposed and advocated in the literature. However, not every method that
is claimed to be meshless is really meshless. Basically speaking, a true meshless method must possess the spirit
of “meshlessness.” That is, it provides a computational procedure without relating to any mesh point
connectivity.

Based on this spirit, three different approaches to develop meshless methods have been successfully
proposed. The first one is based on the spirit of finite element method and employs the Petrov-Galerkin weak
formulation!*?. Detailed theories and formulations can be found in the book by Atluri and Shen'?. In fact, this
approach is the earliest one that attempted to replace the finite element method that generally needs complicated
meshes in computations. However, its major disadvantage lies in that the Galerkin-type approach cannot be used
for interpolation purposes. Therefore, its applications in problems with essential boundary conditions are usually
difficult.

The second approach is of boundary element type. This approach is somewhat new, compared to the first one.
It attempted to discretize boundary integral formulation without employing a mesh. Of course, grid points in this
approach are all on the boundaries. Several procedurest™ **! have been proposed with different discretization
concepts.

The third approach employs radial basis functions (RBF). The essence of this approach is its employment of
high-order interpolating functions to approximate solutions of differential equations. All RBFs possess the
property that their values are determined only by distances and have nothing to do with directions. Therefore,
they are spherically symmetric functions. According to the theories of partial differential equations, they are
especially applicable to elliptic type equations.

One may find many RBFs in the literature, such as, for example, monomials, various orthogonal polynomial
functions, Fourier series, and so on. These simple RBFs are only applicable to simple differential equations with
simple geometries. The development of more advanced RBFs originated from interpolation of multivariate
functions. Their outstanding accuracy in interpolations has been widely validated. For example, Frank®
compared nearly 30 interpolating methods for discrete data and found that Duchon’s thin-plate spline and
Hardy’s multiquadric function fit data best. These two functions are special cases of RBFs. In the literature, the
multiquadric function, reciprocal multiquadric function, Gaussian function, and thin-plate spline are
representatives for fitting discrete data. Recently, Kansal® introduced multiquadric functions to solve
hyperbolic, parabolic and elliptic differential equations with collocation methods. He found that they had quite
good convergence properties and achieved outstanding computational efficiency. More recently, Cheng, et al’®!
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conducted a thorough study of mutiquadric RBFs applied to partial differential equations and showed their
superior convergence property. In fact, the RBF is of spectral convergence order for interpolation of discrete
data points. Many believe that this property is preserved in solving differential equations with collocation
methods.

In addition to remarkable convergence property, there are several other advantages in using RBFs together
with a collocation method to solve differential equations. For example, the solution procedure is truly meshless.
Furthermore, the dimensionality of space has no effects on the convergence rate. Only the density of grid points
does.

Applied to solution of partial differential equations, the RBFs have their own inherent disadvantages, too.
For example, they are usually globally supported, rather than compactly supported. This leads to a full
coefficient matrix. In addition, in solving simultaneous algebraic equations, they easily result in poor
conditioned coefficient matrices. Several remedies for these inherent drawbacks have been proposed in the
literature. Among them, the most promising one is the compactly supported RBFs!%-%2,

Nevertheless, it is quite unfortunate that discussions and applications of RBFs for solving differential
equations are seldom examined from the view point of differential equation theories. Even though we may
approximate solutions of differential equations by superposition of RBFs which are carefully chosen, it is
believed that more reliable and efficient computations can be achieved when the choice of RBFs is considered in
connection with theories of differential equations.

Furthermore, one of early applications of meshless methods to potential flow computations has been due to
Alturi and ZhutYl. They illustrated capabilities of the Galerkin-based meshless method in computing the external
uniform flow past a circular cylinder. Nevertheless, they were not interested in the flow physics and did not
discuss in their numerical procedure how to circumvent the non-uniqueness problem encountered in this multi-
connected flow setup. Following the idea of Galerkin-based meshless method, Mosqueira, et al™! proposed “the
enrichment function” to improve accuracy in computations of potential flows. In addition, Tolstykh™ first
employed simple RBFs to compute external flow problems.

2 THEORETICAL FORMULATION AND RADIAL BASIS FUNCTION

2.1 Theoretical formulation
A uniform potential flow past a lifting body in two dimensions can be described by the Laplace equation

Vip=0 1)
where ¢=¢(x,y) is the velocity potential through which we have the velocity field
u=Vvo (2)
The boundary conditions are

Vé-n=0, on thesurface of body

3
Vo=U, faraway from the body. @)
where nand U = U,i + U,j denote outward unit vector normal to the body’s surface and the uniform velocity far
away from the body, respectively. For the incoming flow, the angle of attack, a., is defined as

U,
o=tan”’ (—’J
UX

Since the above flow setup in two dimensions establishes a multi-connected problem, an additional Kutta
condition must be specified to ensure the well-posedness of the mathematical formulation.

2.2 Logarithmic Radial Basis Function
In the literature, the multiquadric function

1
f=—— (4)
Vr2+c?

where r represents distance between the collocation point and any point in the field and ¢ some proper constant,
is usually employed as the RBF for the solution of Eq. (1). It is interesting to find that this function is
surprisingly similar in form to the analytical spherically symmetric solution of Eq. (1) in three dimensions
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1
¢=—4—nr. ®)

Therefore, it is somewhat expectable that the multiquadric function is a good choice in computations to
approximate the solution of Laplace equation.

Nevertheless, it is well known that in two dimensions, the spherically symmetric solution to the Laplace
equation is of the form

¢=2—1n|nr (6)

Hence, one may expect that a logarithmic form of RBF
f=In(r? +c?) @)

is a more suitable choice for computational purpose. In fact, the enrichment function proposed by Mosqueira, et
al™ is similar to Eq. (7). They employed such a function to improve numerical accuracy in solving the Laplace
equation. Unfortunately, their formulation is of Galerkin type and they did not have further discussions.

2.3 The Meshless Method
Having chosen the proper RBF, we can discretize Eq. (1) and boundary conditions. First, we properly select

a set of collocation points, x, =(x;,y;), where i=1,2,...,n. Then, we express the solution to be

§09~Da s, =X a, G +?) ®

where g, are coefficients to be determined and r, is the distance between the field point x and the collocation
point x,. The approximate solution, Eq. (8), satisfies the governing equation at all interior collocation points

and the boundary conditions at boundary collocation points, from which we obtain simultaneous equation
system for unknown coefficients.

3 TESTS OF CAPABILITTY OF LOGARITHMIC RADIAL BASIS FUNCTIONS

To test the capability of the logarithmic RBF in solving the two-dimensional Laplace equation, we carried
out a series of case studies. The test problem is to solve the Laplace equation in a unit square domain with
different types of boundary conditions.

3.1 Test 1 (Dirichlet Boundary Conditions)

For the first test, Dirichlet boundary conditions are specified on all sides of the square domain, as shown in
Figure 1(a). On the right, left, and bottom sides of the domain, we prescribed ¢=0. On the upper side, we

1.0E-1
maximum error (multiquadric RBF)
average error (multiquadric RBF)

=
— o -
¢ = SIn 7zx 1.08-2 —f=3—maximum error (logarithmic RBF)
—— average error (logarithmic RBF)

1.0E-3

error

1.0E-4

1.0E-5

1.0E-6 I T T T T T T T ] 1/h
4.00 8.00 12.00 16.00 20.00
(a) Test problem with Dirichlet boundary conditions. (b) Errors for different grid densities and RBFs.

Figure 1. Test domain and computational results.
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specified a sinusoidal function, ¢ =sin mx.

Both the logarithmic and multiquadric RBFs were implemented in our computations with different densities
of collocation points. In addition, to compare these two functions, we employed three sets of collocation points
in computations. All the three sets are uniformly distributed. The distances in both x- and y-directions between
two consecutive points are 2=0.2, 0.1, and 0.05. The total numbers of collocation points for the three sets are
25,121, and 441, respectively.

Figure 1(b) shows the errors at the best values of ¢. The maximum error represents the maximum deviation
of the computed data from the analytical solution at the collocation points. The average error denotes the L,-
norm of deviation. As we have expected, the data shown in Figure 1(b) indicate that employing the logarithmic
RBF leads to more accurate computational results. Generally speaking, the results due to the logarithmic RBF
are at least one-order better than those due to the multiquadric RBF if the density of collocation points keeps the
same. To reach the error order of 107, the number of collocation points for the logarithmic RBF is about 1/4 for
the multiquadric RBF.

3.2 Test 2 (Neumann & Dirichlet Boundary Conditions)

For the second test, we replaced the Dirichlet boundary condition on the upper side with a Neumann type of
boundary condition, d¢/on =sinnx, as shown Figure 2(a).

We employed the same grid distributions stated in Sec. 3.1. The computational results are shown in Figure
2(b). Again, the results shown here were obtained with the best choices of ¢. They show that the choice of
logarithmic RBF gives a better numerical solution, compared to the multiquadric RBF at the same density of
collocation points. And again, to reach the error order of 1073, the number of collocation points required for the
logarithmic RBF is about 1/4 for the multiquadric RBF.

3.3 Summaries from the Tests

The two simple tests given above show that the logarithmic RBF seems a good choice in approximating two-
dimensional problems. In fact, it exhibits a better approximation to the exact solution in either case. Of course,
this is what one may expect because of its similarity to the spherically symmetric solution for the Laplace
equation in two dimensions.

Here we do not discuss how the value of ¢ is chosen. For detail, see the work by Chen™. General
observations show that it depends on the density of collocation points. The value becomes smaller for a denser
collocation point distribution.

4 APPLICATIONS TO LIFTING-BODY PROBLEMS

To apply the collocation method to a lifting-body flow problem, we have to address two additional features
which bring forth numerical difficulties.
The first one arises because of flow physics. In the formulation, the far-field boundary condition, Eq. (3), isa

1.0E+0

maximum error (multiquadric RBF)

average error (multiquadric RBF)

Oplon = sin mx LoEL

maximum error (logarithmic RBF)

oo

average error (logarithmic RBF)
1.0E-2

1.0E-3

error

1.0E-4

1.0E-5

1.0E-6 I T T T T T T T ] 1/h
4.00 8.00 12.00 16.00 20.00
(a) Test problem with mixed boundary conditions. (b) Errors for different grid densities and RBFs.

Figure 2. Test domain and computational results.
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(a) Schmatic diagram of collocation point arrangement.  (b) Pressure coefficient distribution on cylinder
surface.

Figure 3. Flow past a circular cylinder without lift.

vector-valued one. Directly applying approximate expression of the velocity potential, Eq. (8), at any far-field
boundary point leads to two algebraic equations. It generally results in a simultaneous equation system in which
the number of equations is larger than that of unknown coefficients. To circumvent this dilemma, we devised a
symmetric set of collocation points.

The second one comes from the Kutta-condition. It states that the flow leaves the trailing edge at a finite
velocity. There are several practical ways to apply this condition. The way we chose here is that the flow speeds
on upper and lower surfaces of the lifting body are equal at equal distances from the trailing edge. In the present
study, it was usually applied at the midpoint between the trailing edge and closest collocation points on the body
surface from the trailing edge.

4.1 Flow past a Circular Cylinder without Lift

The first case we studied is a uniform flow past a circular cylinder without lift. The Kutta condition was
specified at the rear point of the cylinder, which gives a symmetric flow pattern.

A staggered collocation point arrangement that was used in the present study is schematically shown in
Figure 3(a). In our computations, the computation domain was truncated at a radius of 10R, in which R
represents the radius of cylinder.

Solving the algebraic equation system, we obtain the approximate expression of the velocity potential. Then
we substituted it in the Bernoulli equation to find the pressure field. And the pressure coefficient, defined as

PPy
C =
p %pUZ

©)

can be computed. Here p_ and p represent the pressure at the far field and the density of fluid, respectively.

For the present study, the computed pressure coefficient on the cylinder surface is shown in Figure 3(b). The
horizontal axis represents the azimuthal angle measured from the x-axis with origin at the center of cylinder.
Compared to the analytical solution of pressure coefficient, the present computational results show very good
agreement.

4.2 Flow past a Circular Cylinder with Lift

For the second case, we prescribed the Kutta condition at the point (x, y) = (ﬁ /2,—0.5). This is a somewhat

unnatural specification. However, it provides a good test case in that there exists an analytical solution for such a
flow. Theoretically, such a specification of the Kutta condition introduces in the flow a circulation of strength
I"=2nU in which U represent the speed of flow at the far field.
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The collocation point arrangement employed in the
first test case was adopted for computations in the
present study. Through the same computation procedure
described above, the computed pressure coefficient
distribution on the cylinder is shown in Figure 4. Again,
we find that the present method gives reasonable results.

4.3 Flow past a Hydrofoil

We now proceed to compute the potential flow past
a two-dimensional hydrofoil. The NACA16-006 foil
section, a typical section used in hydrofoils, was
adopted for computations. This is a symmetric foil
section without camber. The maximum thickness is
0.06¢, in which ¢ denotes the chord length of the foil
section.

The collocation point arrangement is shown
schematically in Figure 5. It was generated simply by
the use of H-grid concepts in the conventional grid
generation, even though we believe that not so many
collocation points are required for the regions far up
above and down below from the hydrofoil. Owing to its
symmetry, only half of the computational domain is
shown here. Furthermore, in Figure 5, the scaling in the
direction normal to the incoming flow is magnified in
order to show clearly the collocating points. The
computation domain is 7¢ in length and ¢ in half width.
For computation purposes, the chord length is usually
normalized to unity.

Two computational cases were carried out here. For
the first one, the incident flow angle of attack is at
a=0°. Since the foil section is a symmetric one, the
flow in this study case is symmetric and there is no lift.
Figure 6(a) shows the pressure coefficient distribution
on the upper surface of hydrofoil. Compared to the
measured data™, the results of the present method have
a reasonable agreement.

For the second test, the incident angle of incoming
flow is a=3". The results are shown in Figure 6(b). In
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Figure 4. Pressure coefficient distribution on the
cylinder for which the Kutta condition
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this case, we do not have data for comparisons. However, the trend shown in the plot seems reasonable. The area
enclosed by the two curves of pressure coefficients distributions for the upper and lower surfaces represents the
lift coefficient.

5 CONCLUSIONS

The logarithmic radial basis function, together with a collocation method, has been successfully applied to
computations of lifting-body flow problems in two dimensions.

This new RBF is introduced from the theoretical point view. Results of some preliminary test cases have
shown that this type of RBF gives a good approximation. In fact, the numerical solutions obtained in the test
cases indicate that it gives a better approximation with fewer collocation points.

Then it was applied with a symmetric collocation point distribution to solve the potential flow around a
lifting body. The Kutta condition was applied in a way suitable to collocation point method. The computed
results in the test cases show that the present procedure works well.

6 ACKNOWLEDGEMENT

This work was supported by the National Science Council, Republic of China, under grant NSC92-2611-E-
019-007. The authors would like to express their thanks for this support.

REFERENCES

[1] Atluri, S. N. and Zhu, T. (1998), “A new meshless local Petrov-Galerkin approach in computational
mechanics,” Computational Mechanics, 22, pp. 117-127.

[2] Atluri, S. N. and Shen, S. (2002), The Meshless Local Petrov-Galerkin Method, Tech Science Press,
Encino, CA.

[3] Kulkarni, S. S., Telukunta, S. and Mukherjee, S. (2002), “Application of an accelerated boundary-based
mesh-free method to two-dimensional potential theory,” IABEM 2002, International Association for
Boundary Element Methods, UT Austin, TX, USA.

[4] Chen, W. and Tanaka, M. (2002), “A meshless, integration-free, and Boundary-only RBF Technique,”
Computers and Mathematics with Applications, 43, pp. 379-391.

[5] Li, G. and Atluri, S. N. (2002), “Boundary cloud method: a combined scattered point/boundary integral
approach for boundary-only analysis,” Computer. Methods Appl. Engrg., 191, pp. 2337-2370.

[6] Frank, R. (1972), “Scattered data interpolation: tests of some methods,” Math. Comput., 38, pp. 181-199.

[71 Kansa, E. J. (1990), “Multiquadrics --- A scattered data approximation scheme with applications to
computational fluid dynamics ---1. Surface approximations and partial derivative estimates,” Comput.
Math. Appl., 19, pp. 127-145.

[8] Kansa, E. J. (1990), “Multiquadrics --- A scattered data approximation scheme with applications to
computational fluid dynamics --- Il. Solutions to hyperbolic, parabolic, and elliptic partial differential
equations,” Comput. Math. Appl., 19, pp. 147-161.

[9] Cheng, A. H.-D., Golberg, M. A., Kansa, E. J., and Zammito, G. (2003), “Exponential convergence and
H-C multiquadric collocation method for partial differential equations,” Numerical Methods for Partial
Differential Equations, 19, pp. 571-594.

[10] Buhmann, M. D. (1998), “Radial functions on compact support,” Proc. Edingurgh Math. Soc., Vol. 41, pp.
33-46.

[11] Wendland, H. (1995), “Piecewise polynomial, positive definite and compactly supported radial basis
functions of minimal degree,” Adv. Comput. Math., 4, pp. 389-396.

[12] Wu, Z. (1995), “Compactly supported positive definite radial functions,” Adv. Comput. Math., 4, pp. 283-
292.

[13] Mosqueira, G., Colominas, I., Navarrina, F., and Casteleiro, M. (2001), “Meshless methods applied to
potential flow problems,” in Computational Fluid and Solid Mechanics (edited by K. J. Bathe), pp. 908-
911, Elsevier, Oxford, UK.

[14] Tolstykh, A. I. (2001), “High-accuracy difference and meshless methods for fluid and solid mechanics,”
Proceedings of the 8" International Conference of Enhancement and Promotion of Computing Methods
for Engineering and Science (EPMESC VII1), Shanghai, China.

[15] Chen, J.-H. (2005), “Logarithmic radial basis function for two-dimensional elliptic partial differential
equations,” in preparation.

[16] Abbott, I. H. and von Doenhoff (1959), Theory of Wing Sections, Dover, New York, USA.

561






5" GRACM International Congress on Computational Mechanics
Limassol, 29 June — 1 July, 2005

DISCONTINUOUS GALERKIN DISCRETIZATIONS FOR VISCOUS
COMPRESSIBLE FLOWS

loannis ToqupoqusJr and John A. Ekaterinarisi

t Department of Mathematics
University of Athens
P.0.BOX 1527, FORTH/IACM, 71110 Heraklion, Greece
toulioa@iacm.forth.gr

iFORTH/IACM
P.0.BOX 1527, 71110 Heraklion, Crete, Greece
ekaterin@iacm.forth.gr

Keywords: High order methods, unstructured grids, shock capturing.

Abstract. Discontinuous Galerkin discretization is applied for the numerical solution of the Euler and Navier-
Stokes equations. Second- and fourth-order accurate solutions are obtained for simple inviscid and viscous
flows computed with triangular meshes and polynomial bases of first and third order, respectively. For flows
with discontinuities, classical slope limiters are applied for second- and third-order accurate solutions. In
addition, characteristic based filters are used to make possible higher order accurate solutions of flows with
discontinuities at a reduced computing cost. Discretization of the viscous terms is performed by solving an
additional auxiliary equation for the gradient of the conservative variables. Inviscid and viscous flow solutions
of different order of accuracy computed with triangular elements are presented.

1 INTRODUCTION

Many CFD applications, such as rotor aerodynamics, large eddy simulations (LES) of compressible flow,
and computational aeroacoustics (CAA) require high-order accuracy in space. In the last few years, efficient
finite-difference methods™™® found widespread application in these fields. These methods were applied in
simple Cartesian-type meshes 7 and more complex domains through the use of generalized coordinate
transformations.® ' For highly accurate computations in three dimensions, grid smoothness is required to retain
the designed order of accuracy of high-order methods and extreme caution is needed for the computation of
metric quantities®® that appear in the generalized coordinate transformations in order to preserve the high-order
of spatial accuracy provided by centered finite-differences™ or WENO schemes.™” For high order methods that
require wide stencils,!” *! specification of boundary conditions is not straight forward. In addition, domain
decomposition™ often used for complex domain grid generation (multi-block meshes) or for parallelization,
requires overlap in order to ensure that the high-order accuracy of the interior scheme is retained at the
interfaces of the domains.

Unstructured grid methods!**® overcome some problems associated with domain decomposition and
discretizations of complex domains. Preservation of high order accuracy in unstructured finite volume
methods™! is computationally intensive. The recently proposed spectral volume method™ for triangular meshes
and the discontinuous Galerkin (DG) method for triangular™® & ! or quatrilateral™! unstructured meshes
overcome the shortcomings of high-order finite volume methods for unstructured grids. The DG method appears
to offer certain advantages over the spectral volume method™! because it is highly local, easy to parallelize, and
possible to extend for viscous flow computations.™ 1 Furthermore, the DG method is suitable for high-order
accurate discretizations of complex domains with triangular, quadrilateral, or mixed-type elements and can
preserve high order of accuracy in distorted meshes and meshes with hanging nodes that may result from local
grid refinement.* In addition, the systematic study of Ref. 18, demonstrated that for wave propagation the DG
method has very good performance even for anisotropic grids.

In this paper, applications of the DG finite element method for the numerical solution of the Euler and the
Navier-Stokes (NS) equations are presented. High-order polynomial representations of the approximate solution
within the elements (up to fifth order) are used. The accuracy of the DG method is demonstrated for
discretizations with triangular meshes. It was found that for linear-type problems, such as weak acoustic
pressure pulse spread, the achieved order of accuracy is approximately the order of the polynomial basis plus
one. The achieved order of accuracy for third- and fifth-order polynomial bases is demonstrated for long time
integration of a nonlinear problem, the isentropic vortex convection. Additional results for supersonic inviscid
flows are presented. The accuracy of viscous flow computations is also demonstrated.
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2 GOVERNING EQUATIONS
The two-dimensional Euler or Navier-Stokes equations in conservation law form are considered.
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where U is the solution vector for the conservative variables, and F_, G, are the inviscid flux vectors, and

inv

F. G, are the viscous fluxes. The nonlinear Euler equations can be used for propagation of weak or strong

Vi

acoustic type disturbances. In these cases, a source term S(x,y,t), which contains disturbances of density
p, = p,(x y,t) and pressure p = p (x,y,t), isimposed as initial condition. The evolution of weak acoustic-type

disturbances is governed by the linearized Euler equations for the acoustic velocities and pressure. Therefore, for
validation purposes, solutions computed with the numerical solution of the full nonlinear Euler equations could
be compared with available exact solutions of the linearized Euler equations.

Time marching of the viscous or inviscid equations, Eq. (1), can be performed with computationally
intensive but unconditionally stable implicit methods. *® ! Third- or fourth-order accurate Runge-Kutta
methods may also be applied for explicit time marching. In this work the total variation diminishing (TVD) third
order Runge-Kutta TVD RK-3 method of Refs. 19, 20, and 21 was used. This method is TVD in the sense that
the temporal operator itself does not increase the total variation of the solution. The TVD property of the time
integration scheme may not be important for linear problems. It plays however, an important role for time
marching of nonlinear hyperbolic problems when using DG space discretizations.

Explicit time marching of DG discretizations with the TVD RK-3 method is appropriate for demonstrating
the accuracy of steady state, but more important, of time accurate solutions. For high order DG discretization the
stability of explicit time marching schemes %2 degrades dramatically. As a result, numerical solutions of realistic
high Reynolds number flows are not possible with explicit time marching. Recent applications of implicit
schemes % 1 with the DG method demonstrated very good performance for both steady-state ™ and time
accurate solutions™ of time dependent problems.

3 SPACE DISCRETIZATION

The DG method was used for the first time by Reed and Hill ¥ for the numerical solution of the neutron
transport equation. The DG method is briefly described in this section. Further information, more details, and
analysis of the DG method the can be found in the original references > 2! and the review articles of Refs. 12

and 24. For each time step the approximate solution, u_, of the governing equations, Eq. (1), written in

h?

conservation law form as, 6,u+ V- F(u) =0 is sought in the finite element space of discontinuous functions V,

such that V, ={¢p, e L'(2):¢ |, ,eV(K), VK eT,} where T is a discretization of the domain (2 using
triangular or quadrilateral elements and V ( K) is the local space that contains the collection of polynomials up

to degree K . The weak formulation of the inviscid part of the governing equations is

%j () (Ndx== " [ Fux)-fi,cp (AT +[FUX)-V(p (N )

eedK ¢ K

where ¢ (x) is any sufficiently smooth function and fi, , is the outward, unit normal to the edge e.

K
Assuming polynomial expansions of the approximate solution u, in Eg. (2), and using the same polynomials
for the weighting function ¢ (x) (Galerkin approximation) the weak form can be solved numerically. The mass
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matrix integral at the left hand side of Eq. (2) is evaluated numerically using Gauss-Radau integration rules. The
integrals on the right hand side of Eq. (2) are evaluated using quadrature rules as follows:

J.F(U(X!t))'ﬁe,K¢ (X) szZl//, F(U(Xel’t))'ﬁe,K(D (Xel) |e| (3)
[FUeD)-Vp (0) =T o F Ul 1) Y (xc DIK] @

It is important to compute the line integrals of Egs. (3) and (4) using appropriate order Gaussian quadrature
rules. For example, with a third-order polynomial basis a quadrature rule that integrates exactly at least sixth-
order polynomial must be used in Eqg. (3).

The data are assumed discontinuous across the interfaces of the continuous domain and at each interface two

values are available. Therefore, the flux F(u(x,t))~ﬁevKgo (x) is replaced by a suitable numerical flux
Ife'K(x,t) for the approximate solution U, and the test function ¢ eV (K). Using IfevK(x,t) in Egs. (2) and

(3), and the desired expansion order for the approximate solution U, we obtain

%f Uy (%, (X)X = 3 @ F (U, (X ;1) V(X ) IK]
) Jtl ()
=Y 2w k() n(%) lel Vo eV(K), VKeT,

eedK 1=l

where time advancement of Eq. (5) is performed with the third order accurate Runge-Kutta method.
The major difference of the DG formulation with a standard node-based Galerkin finite element method is
that the expansion in each element is local without any continuity across the element boundaries. The value of

the numerical flux IEEVK(x,t) at the edge of the boundary of the element K depends on two values of the
approximate solution, one from the interior (right) of the element K, u" = uh(xi“‘“‘),t) , and the other from the
exterior (left) of the element K , u" = uh(x“’“‘),t). Any consistent, conservative exact or approximate Riemann

solver can be used to obtain the numerical flux F, (u(x'”“K’,t),u(x”“”,t)) as follows
E (U5 U%) = Z[F(UL) A,y + F(UR) -y |- F (U5, 0%) 6
e,K ! - 2 e,K e,K ' ( )

where F*(UL,UR) is the dissipative part of the numerical flux. The computationally efficient local Lax-

Friedrichs flux and the Roe’s flux were used in our implementation.

It was shown (see Ref. 12 and references therein) that the formal order of accuracy of the DG method is at
least n+1/2 if polynomials of degree at most N are used as basis functions. Furthermore, it was shown that for
linear problems and Cartesian-type or semi-uniform triangular grids the order of accuracy is(n+1). For

simplicity in the rest of this paper, the method is called (n+1)th order accurate if the basis functions are

polynomials of degree at most n .
The approximate solution within each element is expanded in a series of local bases functions (polynomials)
as follows:

uh(x,y,t)=ZCj(t)ij(x, y) ()

where C; (t), j=1,2,...,3 are expansion coefficients or degrees of freedom for each element, to be computed

at each time step, and PJk (x,y) are polynomial nodal or modal bases of degree K the most. In this work, first-
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third- and fifth-order nodal polynomials for the master element were used. First order polynomial expansion,
k =1, can be obtained with a hierarchical basis that contains (k +21)(k +2)/2 = 3 first order polynomials. The

following non-hierarchical nodal basis of orthogonal, first-order polynomials was used: P’ =1-2y,

P; =2x+2y-1, P; =1-2x. Each of these polynomials takes unit value at one node, located in the middle of
an edge, and zero value at the other nodes located at the middle of the other edges. Orthogonality of the
Pil, P;, P; polynomials implies that the mass matrix resulting from the integration at the left hand side of Eq. (4)
is diagonal. Second and higher-order nodal polynomial bases are not orthogonal. Nonorthogonality of the
polynomials P’, j=1,...,10, for example, implies that the mass matrix of Eqg. (5) must be computed using high-

order accurate Gauss-Radau integration. The fifth-order polynomial basis (k=5) requires
(k +1)(k +2)/2 =21 fifth degree polynomials. This expansion basis yields sixth-order accuracy but is very

computationally intensive for the solution of the Navier-Stokes equations.

4 LIMITING OF DG DISCRETIZATIONS
Limiting operators™™® ? ATI, on piecewise linear DG expansions U, are constructed in such a way that
they satisfy accuracy (if U, is linear, then AII, U, = U, ) conservation of mass for every element K, and slope

limiting (the gradient of ATT, u, is not bigger than that of U, for each element K). Theoretical analysis of the
slope-limiting operators can be found in Cockburn et al. ®” Cockburn and Shu.!
For solutions with le base functions inside the triangle K the expansion of Eq. (7) is used for the

approximate solutions u, (x, y,t), where the degrees of freedom or expansion coefficients c (t) are the values
of the numerical solution at the midpoints of the edges. The basis function is a linear function that takes unit
value at the midpoints m, of the I —th edge and zero value at the midpoints of the other two edges. For more
details see Refs. 12 and 20. Limiting of higher order accurate DG discretizations is more complex and

computationally intensive. Therefore characteristic based filters in the spirit of Ref. 3 were used to make
possible high order accurate solutions with discontinuities.

5 VISCOUS TERM DG DISCRETIZATION
The compressible Navier-Stokes (NS) equations can be written in compact vector form as follows:

Z—l:+v-fi(u)+va(u,Vu):O (8)

where U is the vector of the conservative variables and f;, f, denote the inviscid and viscous flux functions.

The discretization of the viscous, diffusive part of the NS equations with the DG method is less well known and
different than the method described previously for the convective, inviscid part. The straightforward way to
extend the scheme of the DG discretization of Eq. (2), which was developed for the convective part of the NS
equations, using a centered flux leads to numerically stable but inconsistent solutions.* 2! The numerical

solutions seem to converge with mesh refinement but have O(1) errors with exact solutions.

Bassi and Rebay?”) introduced a formulation for the discretization of the compressible Navier-Stokes
equations with the DG method that is convergent and consistent. Baumann and Oden'®®! presented another
successful method that avoids the inconsistencies of the simple formulation by adding extra penalty terms to the
inner boundaries. The consistent formulation of Bassi and Rebay!?” for the spatial discretization of the viscous
term in the NS equations was constructed by resorting to a mixed finite element formulation. The second-order
derivatives of the conservative variables required for the viscous terms were obtained by using the gradient of

the conservative variables, VU =S(U), as auxiliary unknowns of the NS equations. The NS equations were
therefore reformulated as the following coupled system to the unknowns S and U.

S-Vu=0
u+V-f (U)+V-f,(u,S)=0 ®)
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The weak formulation of the first equation of the system of Eq. (9) is

{Sh(;ﬁdx—g?uhm;ﬁ dr+£uhv¢ dx=0 (10)

where the term U, -N in the second (contour) integral of Eq. (10) is replaced by a numerical flux

H, (u™,u’,n). This numerical flux is the average between the two interface states

Hs(u‘,u+,n)=%(u‘+u+)n (11)

The computed auxiliary variables S, are used to form the second equation of the system in Eq. (11) as follows:

[uy ¢ dx—f,, (u,) ngdr + [f,,(u,) Ve dx

(12)
+q->fvis(uh’sh) ‘ng dr—jfvis(uh’sh)v¢ dx=0
e K
In Eq. (12), the term f, (U, ,S;) - N is replaced with the following centered numerical flux
h,(u,S,u’,S",n) = %[fv(u,S) +f,(u",S")]-n (13)

6 RESULTS

The accuracy of the numerical method presented in the previous sections was first demonstrated for simple
problems in Cartesian domains. Next inviscid and viscous flow solutions in more complex domains were
obtained. Time accurate numerical solutions were computed for the propagation of weak disturbances. The
accuracy of the numerical solutions was evaluated by comparing the computed results with the exact solution of
the linearized Euler equations. A test problem, which has an exact solution, the propagation and reflection of a
Gaussian pressure pulse from a solid wall, was considered. A small disturbance initial condition for the full

Euler equations is specified by p(x,y) =exp(=In 2[x2 —(y- yo)z]/w) where w is the width of the pulse and

y is the distance from the wall. The computed pressure disturbances from the numerical solution of the full

nonlinear Euler equations were found in very good agreement with the exact solution of the linearized Euler
equations.
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Figure 1. Comparison of the computed solution Figure 2. Error of numerical solutions computed
(Ax =0.5) with exact result at time T=10. withAx =1.0, P*, and P° polynomial bases.

Further validation of time accurate solutions was carried out for the convection of an isentropic vortex.
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Numerical solutions of the Euler equations were computed until nondimensional time T=10 (100 unit lengths)
with third- and fifth-order polynomial bases on a series of meshes with Ax =0.25, Ax=0.50,and Ax=1.0.

A comparison of the computed solutions with the exact result is shown in Fig. 1. The error of the computed
solutions with A x =1.0 is shown in Fig. 2. Grid convergence of the computed solutions is shown in Fig. 3. The

plot of Fig. 3 that includes the 4™ and 6™ order theoretical slopes, indicates that the numerical solutions achieves
the designed order of accuracy.

Supersonic flow computations with the total variation bounded (TVB) limiter are shown in Figs. 4 and 5.
Fig. 4 shows the computed pressure field over a cylinder atm_=2.0. The oblique shock reflection problem at

M_=3.9 was also solved numerically. The computed solutions of Figs. 4 and 5 indicate that the TVB limiter

with the parameter values of Ref. 12, is appropriate for capturing of strong shocks. Further investigation is
required for accurate and sharp capturing of transonic shocks. For transonic flow computations, in Ref. 29
instead of the TVB limiter a stabilization operator was applied. It was shown in Ref. 29 that computed solutions
with the stabilization operator and sufficient grid resolution preserve monotonicity and produce sharp capturing
of transonic shocks. Evaluation of our approach for stabilization of DG discretizations for transonic flow using
characteristic based filters®®! is currently in progress.
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Figure 3. Grid convergence of the numerical solutions Figure 4. Computed pressure for inviscid M =2.0
computed with P° and P° polynomials. supersonic flow over a cylinder.
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Figure 5. Computed Mach number for oblique shock reflection; m_ =3.9.

Computations of viscous flows with third order polynomial expansions (fourth-order accurate solutions)
were carried out for low Reynolds humber, laminar, compressible viscous flows. It was pointed out in section 2
(see also remarks by Atkins and Shu??) that with the increase of the order of polynomial expansion basis of the
DG discretizations the CFL stability reduces dramatically. As a result, with the available computing resources it
was possible to demonstrate and validate the approach for the DG viscous term discretization only for solutions
of simple, low Reynolds number viscous flows, which do not require very small grid spacing to accurately
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capture the near wall steep gradients. Two representative examples are shown; (1) channel flow, (2) low Mach
number laminar boundary layer that is compared with the Blasius incompressible flow solution.

The computed flowfield in the channel is shown in Fig. 6. A comparison of the computed velocity
distribution with the analytic parabolic velocity distribution is shown in Fig. 7. In spite of the coarse mesh very

good agreement of the solution computed with P° polynomial bases (for both inviscid and viscous fluxes) is
obtained with the exact result. The laminar boundary layer flow at Re =500 was computed using three meshes.
The coarse mesh contains 1350 triangular elements and the minimum length of the orthogonal triangle side
(distance from the wall) is Ay = h =0.04 . The minimum distance from the wall of the medium and fine mesh is
Ay =h =0.02 and Ay = h =0.01, respectively. The computed solution is shown in Fig. 8. A comparison of the

coarse and fine grid solutions with the Blasius solution is shown in Fig. 9. Good agreement is obtained for the
fine grid solution.
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Figure 6. Computed velocity field for channel flow Figure 7. Comparison of the computed solution with
atm, =03 the incompressible flow exact result.
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Figure 8. Computed velocity for zero pressure

. Figure 9. Comparison of the computed velocity with
gradient flat plate boundary layer flow at M_=0.3.

the Blasius exact result.

7 CONCLUSIONS

The DG finite element method was used for high order accurate discretization of the Euler and Navier-
Stokes equations. Time marching was performed with the explicit, third order accurate, TVD-RK3 method.
Supersonic shocks were captured using a TVB limiter with first-order polynomial expansions. Application of
this limiter with higher order polynomial expansions is computationally intensive and alternative ways to
suppress oscillations are currently investigated. The viscous terms in the Navier-Stokes equations were
discretized in the DG framework using an auxiliary equation for the gradient of the conservative variables.
Computed solutions for viscous and invicid flows were in good agreement with exact results. Severe time step
limitations for high-order polynomial expansions with explicit time integration make high-order accurate
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numerical solutions very intensive computationally and incorporation of implicit time marching is required for
solutions of realistic viscous flow problems with the DG method.
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Abstract. A primary goal of turbulence modeling based on the Reynolds-Averaged Navier-Stokes equations is
to determine the Reynolds stress tensor in order to close the turbulence problem at the mean velocity level.
However, the Reynolds stresses alone do not characterize adequately the turbulence, especially in presence of
rotation; the structure of the turbulence is also important. Hypothetical turbulent eddies are used to bring
awareness of turbulence structure into the turbulence model. Averaging over an ensemble of eddies produces a
set of one-point statistics, representative of the eddy field, and a set of equations of state relating the Reynolds
stresses to these statistics. An algebraic model for the eddy statistics is constructed in terms of the local mean
deformation normalized by a turbulence time scale. The algebraic model is closed with evolution equations for

turbulent scales borrowed from the v2—f B! turbulence model (V2F), providing the turbulence time scale, the

turbulent kinetic energy, and a velocity scale for the turbulent transport of the turbulent scales. It is shown that
the algebraic structure-based evaluation of the Reynolds stresses can be used directly with a conventional model
for the turbulence scales. The model is evaluated in spanwise rotating channel flow and in flat plate boundary
layers.

1 INTRODUCTION

Flow predictions have become a standard feature of modern flow system design. Where turbulence is
important there is need to have a good model for the turbulent transport and for the turbulent stress, in order to
produce adequate predictions of skin friction, flow separation, heat and mass transfer, and other flow features.
As a result of the efforts of many contributors, turbulence models are now quite adequate for simple flows, but
there remain important engineering problems where improved models are needed. For example, improved
models for turbulence in rotating systems would enable better turbomachinery design. Linear eddy-viscosity
models are known to be inaccurate in predicting the effect of strong streamline curvature and frame rotation.
There is no shortage of modifications and adjustments proposed in the literature to correct their behavior. For
example Shih et al.'"! modify the k—& model by introducing coefficients in the & -equation that depend on the

shear rate and frame rotation. A more consistent redesigning of the & -equation for flows with rotational effects
has been proposed by Haire and Reynolds!®. Another recent attempt by Durbin and Pettersson-Reif™*! consists in
the modification of the eddy-viscosity coefficient (again by introducing dependency on the shear rate and frame
rotation). In the latter case the justification for the choice of the selected functional dependency comes from the
study of solutions of second-moment models in the case of homogeneous rotating shear. Although these
modifications are shown to provide encouraging predictions for simple flows with rotation, their accuracy for
more complex situations remains unclear. Differential Reynolds stress models, on the other hand, possess the
obvious advantage that the turbulence production terms and the stress anisotropy are automatically accounted
for. Unfortunately, the difficulties in modeling the stress redistribution terms and their inherent numerical
stiffness make them not amenable to mainstream use in engineering calculations. Algebraic Reynolds stress
models have received a substantial amount of attention given the potential benefit of introducing stress
anisotropy in the controlled environment of an eddy-viscosity closure. Several models'**! have been devised
with various degree of success. The basic idea behind these models is to express the Reynolds stress tensor as a
function of one or more (up to ten) different tensors. This is not different from what is used to derive the so-
called non-linear eddy-viscosity models where additional (high-order) terms are added to the Boussinesq
relationship between mean strain and Reynolds stresses.
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Reynolds and coworkers!®”* have repeatedly argued that for adequate modeling and description of rotating
turbulence, information about the turbulence structure is crucial. The Reynolds stresses only characterize the
componentality of turbulence, that is, which velocity components are more energetic. The turbulent field has
much more information than that contained in the Reynolds stresses, which is important in presence of rotation,
and which is described by the turbulence structure. For instance, the dimensionality of the flow is important.
This carries information about which directions are favored by the more energetic turbulent eddies: if the
turbulent eddies are preferentially aligned with a given direction, then the dimensionality is smaller along that
direction. In the Algebraic Structure-Based Model (ASBM), hypothetical turbulent eddies are used to bring
awareness of turbulence structure into the turbulence model. Averaging over an ensemble of eddies produces a
set of one-point statistics, representative of the eddy field, and a set of equations of state relating the Reynolds
stresses to these statistics. The structure-based approach to build the Reynolds stress closure has lead to the
development™'”! of an ASBM closed with a novel two-equation model based on transport equations for the
turbulent kinetic energy, k , and for the large-scale turbulent enstrophy @2 . The model has been calibrated for
channel flow simulations and the results have shown excellent agreement with available direct numerical
simulation (DNS) data.

The primary objective of this work was to explore the ASBM with transport equations for conventional
turbulence scalars, namely the V2F model. Advantages of this set of scale equations are its availability in
computational fluid dynamics (CFD) codes and the fact that it relies on a scalar diffusivity, v?, for turbulent
transport of the scalars, which eases the model’s numerical implementation in complex geometries/flows.
Results are presented for boundary layer flows, with and without pressure gradients, and for channel flow, with
and without spanwise rotation.

2 THE STRUCTURE-BASED ALGEBRAIC STRESS MODEL

The eddy-axis concept!” is used to relate the Reynolds stress and the structure tensors to parameters of a
hypothetical turbulent eddy field. Each eddy represents a two-dimensional turbulence field, and is characterized
by an eddy-axis vector, @; . The turbulent motion associated with this eddy is decomposed in a component along
the eddy axis, the jetal component, and a component perpendicular to the eddy axis, the vortical component.
This motion can be further allowed to be flattened in a direction normal to the eddy axis (a round eddy being
characterized by a random distribution of kinetic energy around its axis). Averaging over an ensemble of
turbulent eddies gives statistical quantities representative of the eddy field, along with constitutive equations
relating the normalized Reynolds stresses and turbulence structure to the statistics of the eddy ensemble:

u:u’
fj == (=935 —ay) + e
+(1- ¢)Z - anmbnm)5 %(1_anmbnm)aij _bij +ainbnj +ajnbni] (1

+(=y / )(g|pra +8]prapi){%[1_1(1_anmbnm)]5kr+Zbkr_laknbnr}~

The eddy-axis tensor, a; = <V a;a j >, is the energy-weighted average direction cosine tensor of the eddy

axes. The eddy-axis tensor is determined by the kinematics of the mean deformation. Eddies tend to become

aligned with the direction of positive strain rate, and they are rotated kinematically by mean or frame rotation.
Motion around the eddy is called vortical, and motion along the axis is called jetal. The eddy jetting

parameter ¢ is the fraction of the eddy energy in the jetal mode, and (1 - ¢) is the fraction in the vortical mode.

Under irrotational mean deformation, eddies remain purely vortical (¢ = O). Shear produces jetal eddies, and in
the limit of infinite rapid distortion (¢ - 1) for shear in a non-rotating frame. For shear in a rotating frame, ¢

ranges from 1 for zero frame rotation to 0 for frame rotation that exactly cancels the mean rotation in the frame,
for which the mean deformation in an inertial frame is irrotational.
The eddy helix vector y| arises from the correlation between the vortical and jetal components. Hence

7x =0 for purely vortical turbulence (¢ = 0) or for purely jetal turbulence (¢ = 1). Typically y, is aligned with

the total rotation vector QI . The eddy-helix vector is the key factor in setting the shear stress in turbulent fields.
Flattening is used to describe the degree of asymmetry in the turbulent kinetic energy distribution around an
eddy. A round eddy has no preferential distribution. If the motion is not axisymmetric around the eddy axis, the

eddy is called flattened. The eddy-flattening tensor, by, is the energy-weighted average direction cosine tensor
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of the flattening vector. The intensity of the flattening is given by the flattening parameter, y . Under rapid

irrotational deformation in a fixed frame eddies remain axisymmetric. Rotation tends to flatten the eddies in
planes perpendicular to the rotation direction.

Following Reynolds et al.l''! the eddy-axis tensor, a; , is computed on the analysis frame, where the

I] >
turbulence might be at equilibrium or very close to it. The eddy-axis tensor is computed with no reference to the
frame rotation, as it is only kinematically rotated by it!*!. The evaluation is divided in two parts. Initially a

strained eddy-axis tensor, a:, is evaluated based on the irrotational part of the mean deformation. Next a

I] >
rotation operation is applied, sensitizing the eddy-axis tensor to mean rotation. This procedure produces eddy-
axis tensor states that mimic the limiting states produced under rapid distortion theory (RDT) for different
combinations of mean strain with on-plane mean rotation, while guaranteeing realizability of the eddy-axis
tensor.

The strained a;; is given by

* 5 ¥ s 2a* _S
as = (Sikag +S k@i =3 Smn@nm9ij )T

1
ij gaij+ Tt o s
ao +21 T SkpSkqapq

=3Sjj =Sy Jjj /3 is the traceless strain-rate tensor with S; = (6ui /OXj +0Uj / OX; )/2, 7 is a time

@)

where SE
scale of the turbulence, Eq. (14), and a, =1.6 is a ‘slow’ constant. This gives realizable states for the eddy-axis
tensor under irrotational deformations.

The final expression for the homogeneous eddy-axis tensor, a; (for near-wall regions see Eq. (9)), is
obtained by applying a rotation transformation to the strained eddy-axis tensor, aIJ ,

Q; Qi Ly
aj = HyHjag, Hyj = o5 +hy

+ P N
2
2
V2 Qo

where szp =Q Qg - The orthonormality conditions Hy H j = &; and HjHj = &j require

h =4/2h, —h?/2. (4)

[11,2]

3)

h, is determined with reference to RDT for combined homogeneous plane strain and rotation

,/ (I++1- ifr <1
+ r) ifr 5)

A-+1-1/1) 1fr>1

N|»—
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where r = (apq ar rp)/(Sannma,m()
The flattening tensor bj; is modeled in terms of the mean rotation rate vector, €2;, and the frame rotation rate
vector, Qif R
f f
(€ +CpQy )(Qj +Cp Q)

by = f —, C,=-10 (6)
(Q +CQ ) +C Q)

The helix vector y, is taken as aligned with the total rotation vector,

QF -
Vi =y ———, y=ﬂ1/M- (7)
JQLQL I+

Modeling ¢, B (see Eq. 7), and y is a crucial part in the construction of the model. The equations for these
scalars are found by analyzing target turbulent states corresponding to a mean deformation. Throughout the
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model development there is a strong effort to make it consistent with RDT solutions, aiming to improve model
dependability and realizability for a wide range of mean deformations, as well as to obtain guidance in the
functional shape chosen for the structure parameters. Tentative functional forms for the structure parameters are
thus chosen with reference to RDT. A set of parameter values is chosen to mimic the isotropic turbulent state
(the eddy structure is expected to consist of axisymmetric ( = 0), vortical (¢ = 0) eddies). Finally interpolation
functions (along with model constants) are chosen to bridge these limiting states (isotropy and RDT). They are
selected specially to match a canonical state of sheared turbulence, observed in the log region of a boundary
layer.

The structure scalars are parameterized in terms of 7, , 7¢ , and a’, representatives of the ratio of the mean

flow rotation to the mean flow strain, frame rotation to mean flow strain, and a measure of anisotropy
a.. S S ’ pg = pq >

respectively,
;€2 Q ji ) T
Mm = Ts e =Mm _Slgn(aanmsSsn
| @pgSprSar pq > pr2qr

nm, n¢ are weighted by the eddy-axis tensor, allowing the model to satisfy the principle of material frame

indifference to rotation, when appropriate.

As a no-slip wall is approached, the velocity is driven to zero through the action of viscous forces.
Furthermore, the velocity vector is reoriented into planes parallel to the wall through an inviscid mechanism
(wall blocking) which acts over distances far larger than the viscous length scale. Thus the velocity component
normal to the wall is driven to zero faster than the tangential components. In the structure-based model it is
postulated that the eddy orientation shall also be parallel to the wall. A wall-blocking procedure is then
introduced to reorient the eddies into planes parallel to the wall. The structure parameters are also sensitized to
wall blocking, such that the modeled Reynolds stresses are consistent with the expected near wall asymptotic

behavior.

h
ij »
algebraic procedure, Egs. (2, 3) (note that the superscript ‘h’ has been added in the current section). It is then
partially projected onto planes parallel to the wall,

As in Reynolds et al.!'"!, the homogeneous eddy-axis tensor, a; , is computed based on the homogeneous

1
ay = Hy Hjag, Hi = D—(5ik - Bi), D2 =1-(2-By)ay B, ©)

a
where H,; is the partial-projection operator, and D; is such that the trace of a;; remains unity. The blockage

tensor Hy; gives the strength and the direction of the projection. If the wall-normal direction is X, , then B,, is

the sole non-zero component, and varies between 0 (no blocking) far enough from the wall, to 1 (full blocking)
at the wall. By; is computed by
D,D ;

B.=—1J @ if ®,®,>0. 10
ij CD’kCD’k kT k ( )

If all gradients of @ vanish, Bj is computed from an average over surrounding points. The blocking

parameter, @ , is computed by an elliptic relaxation equation

2 3/2 3
1290 g, L = C, Max K Coa . (11)

OXy OX . £ €

with @ =1 at solid boundaries, and ® , = 0D/0x, =0 at open boundaries, where X, is the direction normal to
the boundary. The definition of L is inspired by Durbin and Pettersson-Reif*. Here C, =50, and
St
CL=1.0————— (12)
LT
with S2 = 25;;Si . This form is chosen so as to limit the growth of L in rotating flows, when & decreases

substantially. An overgrown L would enforce too much blocking on the turbulence structure over too much of
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the flow. An alternative solution''?! would be to add to & the viscous dissipation. This would in fact again limit
the decay of & near a stable wall in rotating flows.

To recover proper asymptotic behavior of the Reynolds stresses, I}, oc O(Xz) and ry, o O(X22 ), as the wall

at X, =0 is approached, the homogeneous jetal, ¢h , and helix, )/h , parameters are modified using

p=1+p" - 1)1-Bu )% y=7"(1-By). (13)
A consequence of this approach is that realizability is automatically satisfied for r .

3 SCALES AND NUMERICAL IMPLEMENTATION

[9]

In Langer and Reynolds"” the model was closed with two scalar transport equations, for the turbulent kinetic

energy, k, and the large-scale turbulent enstrophy, @” . These make use of the structure information made
available by the ASBM. They provide the energy to scale the normalized stresses that come out of the ASBM, a
length scale needed to determine the blocking of the stresses, and also a time scale, 7, used to normalize the
mean flow strain and rotation rates, as well as the frame rotation rate, which are fed to the ASBM. Here these
scale equations are substituted by a set of V2F scale equations''”), not reproduced here. Besides the turbulent

kinetic energy and a blocking length scale, these scalars also provide a velocity scale, v, for the turbulent
transport term present in the scale equations, and again a time scale, used to normalize strain and rotation rates
fed to the ASBM. The time scale is given by:

2 k : 14 ’

We consider the V2F scale equations here as an early simplification in the model development. The V2F
equations are more readily available in existing 3D multi-purpose codes, have been well tested and developed,
and provide a simple turbulent transport model. In the original model, the turbulent transport followed a
tensorial model, which could be challenging to implement in an implicit solver.

The mean momentum equations receive the gradient of Reynolds stresses returned by the model, Rjj = 2kr;; .

In eddy-viscosity models it is trivial to treat the Reynolds stress gradient term implicitly, which is important for
stability. With the ASBM the Reynolds stresses are computed with an algebraic procedure and added explicitly
to the momentum equations. For improved numerical stability, the Reynolds stress gradient is treated in a
manner akin to the deferred correction approach!'*!, where n represents the iteration level

a a aU _n+1 a aU _n
— (R |J=— ! - —L _R" |, 15
OX ( ”) oX {VT OX oX T I (15)

J J J

and vy is the turbulent viscosity as provided by the V2F model. Upon convergence the terms involving the
turbulent viscosity cancel out and only the Reynolds stress gradient remains.

4 NUMERICAL RESULTS

We first compare the model with two flat-plate boundary layers: a zero pressure gradient (ZPG) boundary
layer at Re, =1410"), and an adverse pressure gradient (APG) boundary layer''®.. Figures (1) and (2) show

comparisons of the ASBM combined with the V2F scale equations for the ZPG and for the APG boundary
layers, respectively. Comparisons are made using wall units, and in the APG case, only one station is reported,
2/3 of the way through what Spalart and Watmuff''® call the ‘comparison region’, x = 0.80 . The mean velocity
is very well captured in the ZPG case, while the agreement is not so good in APG case. The discrepancy in the
value of the free stream velocity indicates an underprediction of the skin friction coefficient. The anisotropies of
the turbulence intensities predicted by the model are in good agreement with the DNS.

For a fully developed channel flow undergoing orthogonal mode rotation, the mean continuity equation is
automatically satisfied (V =dU /0x=0). The momentum equation in the streamwise direction becomes a
balance between the (modified) pressure gradient and the viscous and turbulent fluxes. The presence of frame
rotation in this particular configuration allows the investigation of the model's response to rotation in perhaps the
most critical fashion, when all secondary effects are solely due to the turbulence. In more complex flows, other
terms representative of the mean motion (convective, Coriolis, body force, and especially pressure gradient

575



Carlos A. Langer and Stavros C. Kassinos.

terms) can also be active in the momentum equations, sharing some of the job of representing distinct physical
phenomena. Then inaccuracies in the turbulence model itself may be overshadowed due to smaller importance
of the Reynolds stress in the momentum equations.

Results shown here correspond to a family of pressure-driven fully-developed channel flows, in presence of
spanwise frame rotation, aligned with the mean flow vorticity. The mean flow is given by U; = {U(y),0,0} in a

coordinate system X; = {x, Y, Z} where y is the wall normal, X is the streamwise direction with streamwise
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Figure 1. Mean velocity and turbulence intensities for ZPG boundary layer. Solid lines: DNS!"*!, Dashed lines:
model
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Figure 2. Mean velocity and turbulence intensities for APG boundary layer, at x=0.80. Solid lines: DNS!"®,
Dashed lines: model.

velocity U , and z is the spanwise direction. The frame rotation rate vector is given by Qif = {0,0,(23f } The
wall-normal mean velocity necessarily vanishes by continuity for a fully developed channel flow with zero
velocity at the walls. The solutions depend on two parameters; the friction Reynolds number, Re, =u_h/v, and
the rotation number, R0 = Q' 2h/ U,, where Q' is the magnitude of the frame rotation rate, h is the half
height of the channel and U, is the bulk velocity in the channel. For the fully developed rotating channel flow
the friction velocity can be defined in terms of the streamwise pressure gradient, uf =-hd (P / p)dx .

Figure 3 corresponds to a set of fixed frame channel flows. On the left are mean velocity profiles in wall
coordinates (normalized by the wall shear stress and viscosity) for a series of friction Reynolds numbers.
Comparisons are made with DNS!'" at Re, = {180,395,590}. Two distinct log laws!'*'" are also shown. On the

center are the turbulence intensities for Re, =590 . The anisotropy predicted in the log region is a testament to
the accuracy of the ASBM in this case. On the right are the structure-dimensionality components for this case.
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Of note is the d;; component. It is the smaller component indicating structures preferentially aligned with the
X -direction. Furthermore it shows a minimum near the wall, where near-wall streaks aligned with the flow
direction have come to be expected.

Figure 4 corresponds to a set of channel flows in a rotating frame, where Q; is aligned with the mean flow
vorticity. The ASBM is compared against DNS*”). On the left are mean velocity profiles normalized by the bulk
velocity at Re, =360. With frame rotation, Ro=0.22, the velocity profile becomes asymmetric about the

centerline of the channel. In spanwise frame rotation, the Coriolis terms drop out of the mean flow equations
making them insensitive to direct effects of frame rotation. The mean flow asymmetry is then a secondary effect
due to the effect of the frame rotation on the Reynolds stresses and turbulence structure. In the center the ASBM

30
—— DNS (Moser et al., 1999) 3 Symbols: DNS, Moser et al. (1999) 1
T ASBM A % Lines: ASEM 0.8
In(y")/0.41 45 22 %

28 R oy

20 f----- In{y)/0.38 +4.1

1 dii 0.4
10 0.2
0
0
0 -1 -0.2
1 10 +1 00 1000 0 200 . 400 600

y y

Figure 3. From left to right. Mean velocity, turbulence intensities and dimensionality tensor components for
fixed-frame fully-developed channel flow. Symbols: DNS!”, Lines: model, correlations!'*'"!,

turbulence intensities are compared to the DNS results. The ASBM captures the anisotropy of the Reynolds
stresses and its dependence on frame rotation. Notice in particular the fact that the wall-normal intensity, v',
outgrows the streamwise intensity U' in the core region of the channel. In the right are profiles of the structure
dimensionality tensor. Comparing with Figure (3) it is clear that the dimensionality is little affected by the frame
rotation. It does display an asymmetry, but this results directly from the asymmetry in the mean velocity
gradient. There are no dramatic changes as in the Reynolds stresses.
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Figure 4. From left to right. Mean velocity, turbulence intensities and dimensionality tensor components for
spanwise-rotating fully-developed channel flow. Symbols: DNS*%, Lines: model.

4 CONCLUSIONS

A new algebraic structure-based model has been presented as an alternative for the engineering analysis of
complex flows. The results presented here demonstrate (i) the capability of the ASBM, coupled to the V2F
equations, to be integrated directly to the wall, (ii) the response of the model combination to boundary layer
flows and to situations where strong rotation is present, and where the turbulence is the sole responsible for the
secondary effects observed, and (iii) the possibility of coupling the ASBM with the conventional scale
equations, readily available in CFD packages.
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Abstract. A4 numerical algorithm based on the control volume approach is developed for the simulation of the
flow in a 2-dimensional centrifugal pump impeller. The flow domain is discretized with a polar, Cartesian mesh
that covers a periodically symmetric section of the impeller. Advanced numerical techniques for adaptive grid
refinement and for the treatment of cells that contain both fluid and solid regions are implemented in order to
achieve a fully automated grid construction for any number of blades or blade geometry. The process is verified
by a precision check of the numerical results. Then, a methodology is developed to extract the characteristics
curves of a pump using the numerical results for the impeller section only. This also needs an estimation of the
additional losses through the casing and the inlet and outlet sections of the pump. The regulation of the
corresponding loss coefficients is done for a commercial pump, for which there are available measurements
with both the original and a modified design impeller (different blade number and geometry) in place. Finally,
the completed evaluation algorithm is used to find the optimum impeller geometry that maximizes the pump best
efficiency point, using as design variables the blade angles at the leading and the trailing edge. The results show
that the developed methodology, which is easily extensible to 3-dimensions, can be used for performance
prediction and design optimization in hydraulic turbomachines.

1 INTRODUCTION

The numerical simulation of the fluid flow for the design of hydraulic turbomachinery has become a
requisite tool in order to increase efficiency and reduce cavitation. However, in spite of the continuous increase
in computing power, the inverse design numerical optimization is still a laborious task, because it needs a large
number of flow field evaluations. Such computations may be very costly, especially when the entire 3D domain
in both the impeller/runner and the casing of the machine are simulated, and many design variables are
incorporated. For this reason, few real 3D inverse design methods have been developed, as the inverse time
marching method,!" the pseudo-stream function method,”” and the Fourier expansion singularity method."!
These methods are very time consuming and exhibit some difficulties in correlating the design parameters with
the blade geometry (the first two) or convergence problems (the latter). A quasi-3D method is recently
proposed,” *' which performs a blade-to-blade solution and saves computer time by using only one
representative hub-to-shroud surface. All the above models are based on the inviscid simplified assumption. The
application of fully 3-dimensional turbulent flow analysis tools for the impeller/runner design increases in the
last years,[* whereas the use of Navier-Stokes validation in inverse design optimization methods is still not a
common practice, since in addition to the time-consuming calculations, there is a need for automated mesh
generation in complex geometries. Some recently developed models are based on this advanced approach.!'®!!

The computer time needed by these models depends strongly on the generation cost of the body-fitted grid,
as well as on the grid quality. An alternative practice in complex domains is the use of Cartesian grids that need
much reduced construction effort. The main drawback of these grids is the inability to fit the grid lines to a
sloped boundary. Several numerical techniques have been developed to improve the accuracy in such regions,
globally classified in cell-cut and immersed boundary methods.!'*"!

In the present work such advanced numerical techniques developed for the automatic generation of Cartesian
grids in irregular geometries are incorporated in a computer algorithm for the simulation of a centrifugal pump
operation. The optimization algorithm has been recently tested for laminar flows in simple geometries.'*! In
order to accelerate the shape optimization process, the computational domain contains only the pump impeller in
a 2-dimensional approach, while special modeling is applied to produce the characteristic curves of the whole
pump. With this methodology the cost per evaluation is much reduced compared to a fully 3D simulation of the
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pump, giving thus a quick and reasonable estimation of the optimum values of the design parameters.

2 THE NUMERICAL METHODOLOGY

For the simulation of the flow in a 2-dimensional pump impeller the incompressible Navier-Stokes equations
are expressed in polar coordinates and for a rotating with the impeller system. The latter, in conjunction with a
circular inner and outer boundaries used here, results in a steady flow field throughout the domain, hence the
governing equations for a horizontal space (no gravity) become:

Continuity: V-w=0 (1)

Lo R Y -
Momentum: W-VW:—Za)xw—a)x(a)xw)——p+VV2w 2
P

where w is the fluid velocity in the rotating system (relative fluid velocity), w is the angular rotation speed of
the impeller, and p, p, v are the fluid pressure, density and kinematic viscosity, respectively. The system of the
averaged form of the above equations, along with the k-¢ turbulence model, is numerically solved with the finite
volume approach and a collocated grid arrangement, using a preconditioned bi-conjugate gradient (Bi-CG)

solver. Setting cyclic boundary conditions the solution can be restricted to the 1/z part of the impeller, where z is
the number of blades.

2.1 Numerical grid

As stated in the Introduction, the use of Cartesian grids for numerical design optimization provides the
significant advantage of a fast and automated grid generation process. Other desirable features include the
easiness in the construction and control of locally or adaptively refined regions, as well as the capability to use
discretization schemes of higher, in general, accuracy, compared to other grid types. All the above features are
recently developed and incorporated in the numerical algorithm, which is used for the present study after
transporting to polar, rotating coordinates. The numerical technique, more details of which can be found in
Anagnostopoulos,”'! introduces a multiple stencil that allows the application of second order discretization
schemes to any grid cell, regardless of its refinement ratio or local grid topology, therefore it is applicable not
only to refined but also to completely unstructured Cartesian grids. Moreover, in spite of the gain in accuracy,
the resulting expressions remain simple and robust, and for some schemes become even simpler than the original
ones.!"” Finally, this method can be easily extended to 3-dimensions. An indicative picture of such a 2-
dimensional grid, adaptively refined near the blades of a centrifugal impeller, is shown in Figure 1. For a given
accuracy of the results, it was found that the above technique achieves considerably greater savings in computer
cost than each of the local grid refinement and the higher-order discretization methods alone."
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Figure 1. Indicative grid for a 2D pump impeller and detailed view at the blade leading edge.

2.2 Geometry representation

A cell-cut, sharp-interface grid construction method, developed and tested with success in various applied
studies in the past,!"® is now modified and further improved in order to increase its accuracy from first order to
almost second order near irregular boundaries. With this new method no cell-merging is performed, but all the

grid cells that are totally or even partly filled with fluid are solved using the same general equation of the
following linearized form:

(Ap =7y Sp)Pp ZZViAi¢i +rySy.  Ap :Z?’iAp i=E,W,N,SU,D 3)

where A4; are the coefficients linking the dependent variable @p with its neighbors on the adjacent grid volumes,
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and Sy, Sp are additional source terms. The geometric coefficients y; and y, represent the free portion (not
blocked by the solid boundary) of the cell faces and volume, respectively.®!

The fluid variables (velocities, pressures, etc) are computed at the centroid of the Cartesian cells, which for a
partly filled cell does not coincide with its geometric centre, as shown in Figure 2. For this reason, special
stencils are introduced to compute the cell-face values and the gradients of the flow variables, making a
compromise between simplicity and accuracy, which results in cost-effective relations with almost second-order
accuracy. The additional terms are included in the coefficients of the general equation (3), whereas all the
needed geometric quantities are computed by a preprocessing algorithm. As a result, after defining the geometry
of the computational domain, the grid construction process can be performed in a fast and fully automated way.
Wall boundary conditions are also set automatically to every boundary cell (e.g. cells P, to P, in Fig. 2).

The above partly-filled-cells (PFC) method preserves the accuracy of the boundary representation and retains
the conservation property. Moreover, it was not found to affect the stability of the solution algorithm, while its
simplicity makes it easily applicable to both 2D and 3D complex geometries. An indicative picture of such a grid
can be observed in Figure 1, where only the solvable cells are drawn.

Sluid Q m free cell
ne [0 R
Figure 2. Treatment of partly filled grid cells. Figure 3. Sketch of a centrifugal pump impeller.

2.3 Impeller head and power calculations

Using a convergent flow field, the net energy added to a unit mass of fluid by the impeller can be calculated
after computing the total energy of the fluid at the impeller inlet and exit, as shown in Figure 3. Hence the fluid
head H,, is obtained from the flux-weighted relation:

1 - 2 —c?
le:1'1’2—['11:—"‘-[[?2 b5 le‘I 4)

0, rg 2g

where c is the absolute velocity of the fluid, O, the flow rate through the impeller and g the gravity acceleration,
while the subscripts 1 and 2 denote impeller inlet and exit conditions, respectively. The integration is
approximated by a summation over the radial flow rates dg at all the grid cells facing the inlet or the exit
circumference of the impeller. On the other hand, the power absorbed from the impeller, N,, can be calculated
from the torque M, on the blades:

N,=p-g-0, H,=0-M, :w~.[ 2[(;7><ﬁ)-p+(F><fw)-c0tﬂ]-b-dr %)

where 7 the unit vector normal to the blade surface, 7,, the wall shear stress, 4 the blade angle and b the

impeller width, whereas the integration covers both the pressure side and the suction side of the blade (Fig. 3).
Although the simulation is 2-dimensional, the impeller width b is a function of radius r, as in the real impeller.

2.4 Pump characteristic curves

Although the simulation is restricted to the impeller geometry, which furthermore is considered 2-
dimensional, the numerical results can be used as a basis to estimate the performance of the entire pump. To do
this, the additional hydraulic losses are properly expressed and abstracted from the head results, according to the
following analysis (Figure 3). The effect of the impeller shroud and hub surfaces can be computed using Darcy’s
law, from the relation:
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5} 2 2
dhy = J’ dr oyt ©
n Dh 2g

where 4 is the friction coefficient, w, and w, are the flow radial and (relative) tangential velocity components,
and Dy, = 2b is the hydraulic diameter, with b the impeller width.

At the exit of the real pump impeller the flow enters into the spiral volute and decelerates. The sudden
expansion losses are proportional to the absolute exit velocity of the fluid, namely:

dhy =ky - ¢ (7)

The above Egs. (6) and (7) are flux weighted along the impeller periphery in order to compute the corresponding
average values.

Away from the design flow rate conditions additional losses appear at the suction side, due to the impeller
incidence and the inlet pipe recirculation, as well as at the volute tongue. All these losses can be included in an
approximate expression of the type:

dhy = ky-(1-0/0, ) (®)

where Qy is the design flow rate. The rest hydraulic losses in the inner and outer pump section, as well as in the
spiral volute, can be taken proportional to the pump flow rate Q:

dhy =k, O’ )

Using the above relations, the pump head H can be estimated by abstracting from the computed impeller
head H, (Eq. 4) all the above losses:

The mechanical losses at the shaft bearings, along with disk friction power, can be taken into account by
increasing the computed impeller power N, (Eq. 5):

N=N,/n, (11)
and the volumetric losses due to leakage flow are expressed as:

o =070, (12)
Hence, the pump efficiency can be finally computed from the relation:

n= —==—— 157 13
N H Q " ( )

u

In order to use the above relations, the values of the coefficients k, to k4 and the efficiency factors #¢ and #,,
must be known, otherwise they can be regulated using experimental or statistical data.

2.5 Numerical optimization

In order to find the combination of the impeller design variables that maximizes the target value, an
optimization algorithm is developed based on the unconstrained gradient approach. This selection is made after
some preliminary numerical tests showed that the cost function (here the pump efficiency) does not exhibit local
maxima outside a global maximum region. However, this is not an analytic function, and hence a problem of
non-continuity and scattering arises. The algorithm is specially designed to operate even for such discrete data,
using a varied with trial-and-error step along the gradient direction. Also, the gradients are computed using
forward finite differences at the beginning, and central differences when the cost function approaches maximum,
and with a variable step size. The algorithm converges very fast within the region where the cost function
maximizes, although due to scattering it cannot always find the absolute maximum. However, the fast
performance allows repeating the calculations from different starting values, to verify or correct the resulting
optimum.

3 RESULTS
3.1 Accuracy and precision checks

The accuracy of the representation of the blade geometry with the PFC method was tested first, along with
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the grid dependency of the flow field results. This was performed using the base-case geometry of Figure 4, that
is a periodically symmetric section of the centrifugal impeller (z = 9 blades). Then, the impeller is turned step-
by-step at a small fraction (1/20) of the tangential width of the boundary cells, resulting in a number of different
grid configurations at the blade boundary line. The scattering in the corresponding flow field results is due to the
numerical error introduced by the PFC method.

@
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Figure 4. Pressure contours and flow Figure 5. Predicted values of the fluid
streamlines in the computational domain. head and the impeller power.

The computed values for the fluid head and impeller power (Egs. 4 and 5) are concentrated in Figure 5, for
two grids: a coarse (8000 nodes) and a finer (27000 nodes) that has two refined layers around the blade, as in the
example of Figure 1. The precision of the refined grid results is satisfactory, since the mean and maximum
deviation from the mean values are of the order of 0.5% and 1% respectively. These are about one fourth of the
coarse grid corresponding ones, confirming that the PFC method preserves the accuracy of the discretization
scheme.

On the other hand, the differences in the mean values between the two grids represent the grid-dependency
of the results, and they are again of the order of 1%, which is an adequate accuracy. Consequently, the refined
grid is selected to be used for the rest calculations.

3.2 Regulation of the model

The adjustable coefficients involved in the model Egs. (6) to (13) are regulated using the characteristic
curves of a commercial centrifugal pump operating with a new impeller, constructed in the Laboratory. The
impeller has 9 two-dimensional (non-twisted) blades with inlet and exit diameter D;=70 mm, D,=190 mm, exit
width b,=9 mm, and inlet and exit angle £5,=26 deg, ,=49 deg (Fig. 4). The blade shape is a simple circular arc
of constant thickness 5 mm, and with both ends rounded.
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Figure 6. Measured and computed characteristic curves of the pump.
The measured characteristic curves H—Q and #—Q for this pump are shown in Figure 6, along with the

numerical results from the 2-dimensional impeller simulation, obtained by Egs. (4) and (5). The head H,, that
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the water acquires in the impeller is as expected quite higher than the pump head H. Next, the efficiency
coefficients 5y and #,, were defined from statistical data, whereas using least-squares regression analysis, the
values of the adjustable coefficients k,, k; and k; were computed so as the pump head H from Eq. (10)
approximates well the corresponding experimental curve.

Finally, the efficiency of the pump is calculated from Eq. (13) and the resulting curve is also plotted in
Figure 6. Although this curve is not produced by fitting, the agreement with the corresponding measured curve
is very good, and this verifies the consistency of the followed modeling strategy and the validity of the adjusted
coefficients for this particular pump.

3.3 Optimal blade design

The objective here is to maximize the best efficiency value of the pump, using as design variables the inlet
and the exit blade angles. However, the exact location of the best efficiency point (BEP) of the pump depends on
the blade design, therefore it must be found for every set of the blade angles. This would need the construction
of the n-Q characteristic curve of the pump, by computing several points on it with corresponding runs of the
evaluation algorithm. An alternative and much faster method is tested here, according to which the unknown
flow rate at the BEP is treated as an additional design variable, along with the blade angles, and its value is
obtained when the optimizer converges.

Figure 7. Examples of blade shape and the computed flow field: a) £,=35, £,=72 deg; b) =21, $,=22 deg.

During the optimization process the evaluation algorithm is capable to generate the grid and solve the flow
equations for a wide range of different blade configurations, two extreme examples of which are plotted in
Figure 7. The convergence rate of the optimization algorithm, which is described previously in chapter 2.5, is
shown in Figure 8, for two different starting values. Although the starting values are selected far from the
optimal region, the algorithm reaches there in less than 20 evaluations, whereas final convergence occurs in
about 60 to 80 evaluations, which can be performed in about 15 to 20 hours by a P4 PC.
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Figure 8. Convergence history of the Figure 9. Variation of the design
optimization algorithm. variables during optimization.

The corresponding variation of the blade angles during the optimization process is drawn in Figure 9, where
contour lines of constant efficiency are also plotted, as they computed for the optimal flow rate. The two paths
converge to the same region, although not to exactly the same point, due to non-continuity effects. The optimal
inlet blade angle is about 20-21 deg, which is more consistent with the present rotation speed (3000 rpm) and the
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impeller inlet diameter (the real laboratory blade had been constructed with an inlet angle of 26 deg, in order to
operate the pump effectively as a turbine too). On the other hand, the exit blade angle exhibits a wider optimal
region, ranging between 50 and 58 deg, which is in agreement with theoretical and statistical data. For example,
the classic blade number selection relation of Pfleiderer!'”

s=65. 22D G (Bt B (14)
D, - D, 2

for , = 54 deg. gives z = 8.6 — 9 blades.
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Figure 10. Pump characteristic curves with the initial and the optimal impeller.

The calculated characteristic curves of the pump with the optimized impeller are drawn in Figure 10, along
with the corresponding initial blade curves (shown also in Fig. 6). The maximum efficiency of the pump with
the optimal blade is about 3% higher (from 70.5% to about 73.5%). However, the BEP is displaced to smaller
flow rates comparing to the initial one (52 m*/h from 63 m’/h), and the same is valid for the maximum head. The
latter is now reasonably higher because of the larger exit angle (initially £, = 49 deg).

4 CONCLUSIONS

A numerical methodology for the calculation of the flow field in a pump impeller and the prediction of the
pump characteristics curves is developed, regulated, and tested against experimental and statistical data, with
encouraging results. The computer algorithm is found suitable to be used for design optimization purposes in
hydraulic pumps and turbines, thanks to the automatic grid generation and the increased precision of
representing irregular boundaries. The main advantage validated in the present study is that the methodology
provides the ability to localize the optimal region of the design variables at low computer cost.

A more elaborate design would require the detailed simulation of the fluid passage through the 3D impeller/
runner geometry and even the casing of the machine, by performing costly Navier-Stokes solutions.
Consequently, the less accurate but much faster modeling approach proposed here can be used as a starting
optimization strategy in order to locate the region of maxima, and thus to reduce the number of the subsequent
3D evaluations.
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Abstract. A discrete adjoint approach to grid adaptation is presented. In particular, this paper is con-
cerned with the prediction of integral flow quantities, such as the forces acting upon isolated or cascade
airfoils, with user—defined accuracy. The aim is to achieve this accuracy through a small number of com-
putations on successively adapted coarse grids. On each grid the flow and adjoint equations are solved.
The adaptation sensor on each grid is computed in terms of flow and adjoint variables and residuals. The
method application is considered to be succesful if the overall computational cost is less than that required
to solve the problem on a very fine grid, safely adequate to reach the same accuracy but, unfortunately, not
known in advance. An a posteriori error analysis formulation, that is the tool guiding the grid adaptation,
is adjusted to an upwind compressible flow solver, investigated with respect to its parameters and extended
to cascade flows.

1 INTRODUCTION

Often, the conclusive output of a flow analysis is one (or more) integral quantities which need to be
computed with acceptable accuracy for engineering applications. Typical examples of integral outputs in
aerodynamics or turbomachinery are the lift and drag of an isolated airfoil or the peripheral force acting
on a cascade blade. This occurs frequently in design optimization problems, where the aerodynamic shape
with the minimum or maximum value of an integral quantity (minimum drag, maximum lift, maximum
loading in a peripheral cascade, etc) is sought. Since search methods (in particular, those based on
evolutionary algorithms) require a great amount of evaluations to reach the optimal solution, the CPU
cost per evaluation needs to be as low as possible. One way to minimize the cost is by reducing the grid
size, without however damaging the prediction accuracy, at least for the integral output of interest.

In view of the above, the accuracy with which the entire flow field is calculated is of importance only so
far as this affects this integral output. It is known that flow equation models, discretization schemes and
grid resolution are the main issues which determine the accuracy in CFD computations. In what follows
the inviscid flow equations are solved and the discretization scheme is a vertex—centered finite—volume
method for unstructured grids, [1]. The inviscid fluxes are computed by means of the Roe’s approximate
Riemann solver [2] with second-order spatial accuracy [3]. In this framework, the integral output needs
to be computed with user—defined accuracy through computations made on the coarser possible grid, i.e.
with the minimum CPU cost.

This can be done through formulating and solving an appropriate adjoint (dual) problem. Using the
flow and adjoint variables and residuals, a measure of the expected contribution of each grid node to the
error in the integral output is estimated, [4-8]. This measure, in the form of a scalar sensor field over the
grid edges, is used to selectively enrich the coarse grid in error inducing areas. The adaptation leads to
a new grid on which the flow and adjoint equations are solved again and this procedure goes up as long
as high error inducing grid subsets are identified. The computation on the finally adapted grid yields the
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integral output with the desired accuracy. In the expense of this iterative algorithm, which relies upon
the numerical solution of flow and adjoint equations on sequentially adapted grids, engineers overcome the
necessity to generate extremely fine grids and the CPU cost reduces. We will show that the cost of solving
the direct and adjoint equations on successive grids is lower than that of solving the flow equations on a
very fine mesh.

The structure of this paper is as follows: The formulation of the adjoint problem and the definition of
grid adaptation sensors are presented first. More about the method can be found in any of the aforemen-
tioned works on a posteriori error analysis. In the results section, the method is applied to flow problems
concerned with the accurate prediction of lift and drag in isolated airfoils and the peripheral force in a
compressor cascade. Through these cases, particular features of this method are highlighted.

2 A POSTERIORI ERROR ANALYSIS

Let f(U) be an integral flow quantity, resulting from the integration of the flow variables U over a
part of the domain boundary. A specific accuracy level is required for f(U). Let us also consider two
computational grids, namely the coarse (index H) and the fine (index h) ones, over the flow domain. Uy
and U, can be calculated through satisfying the flow equations, Ry (Ug) = 0 or R,(Us) = 0, on each
grid. Then, fy(Uy) and fr(Us) can be computed through the same integration scheme. Note that Uy
and fg(Up) are obtained using low—cost computations and are not so accurate since both the solution
of the flow equations and integration are carried out using the coarse grid. In contrast, the solution of
Ry, (Up) = 0 is computationally expensive and, practically, undesirable. Finally, starting from Uy, one
may interpolate it onto the fine grid by means of a prolongation operator I ,{I to get

Ul = iUy 1)
and, f(U["), through integration over the fine grid.
By expanding the first—order Taylor series about f,(UJ’) and Ry, (UH), we get (= is used instead of =)

e 0 - U @)

fuUn) = fa(UF) +
ORy,

Ry(Un) = Ry(UF) + 50,

|y (Un = U1y = 0 (3)

where 2 8U |UH and 2 8U |UH are computed using the prolongated field U . According to eq. 3, U, — U is
given by

OR,, 17"
e e G (@)
which, upon substitution into eq. 2, provides an estimate of the integral functional as follows
Ofn, [0Rw, 1
70 = FoUE) = ey |Gl | Rail) 6

The matrix inversion in egs. 4 and 5 can be handled by introducing the adjoint variables ¥, satisfying the

so—called adjoint equations

oRn, 1" afh !

au, |UH ‘I’h|U,{I = |U (6)
In terms of the adjoint variables, the functional f,(U}) is merely expressed as

T
1nU) = Fu ) = (Talyp ) RaUF) (7)

Eq. 7 can be considered as a better approximation to f,(Uy), compared to f,(Uf). However, solving for
¥}, should be avoided, as we did for any other computation on the fine grid. So, instead of solving eq. 6,
the adjoint equations are written and solved on the coarse grid, i.e.

] o= () ®
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U is then interpolated over the fine grid nodes, through the prolongation operator J,fl ,

v = JHey 9)
So, instead of eq. 6, the following equation can be used

Fu(Un) = fu UL = (TR (UL (10)

3 GRID ADAPTATION

The last term in eq. 10 stands for a correction term (error) through which a better (than f5(U/T))
estimate of f can be obtained, without however solving any partial differential equation on the fine grid.
This is possible in the expense of additionally solving the adjoint equations on the coarse grid, i.e. with
as much as twice the cost of computing Ug. However, if higher accuracy is needed, the coarse grid can
be adapted, particularly in areas which induce the maximum error in the integral output and the same
procedure is repeated. The grid adaptation must be driven by a sensor which is proportional to the
aforementioned error. In [?], it is demonstrated that this error can be written as either

10~ 1) = (1) Ra () + (Walgr —9F) Bu(UF) (1)
1) = £ = (2" Ry () + {RY (¥4} (U - UF) (12)

where the residual of the adjoint equation on the fine grid is

T T
Afn
U — | = 13
(510 (13)
From the above relations, an adaptation criterion, which takes into consideration the errors associated
with both the flow and adjoint equations, is, [?]

OR
RYW) = | Gt luy

1 T

e =5 D1 (@ n — L Wi, [Ru(LHT U] 0 | +
1(k)

T

| [ fUH - LhHUH]z(k)

[y (Li ¥ )] (14)

I(k) |

where L and @) are linear and quadratic interpolation schemes. Considering that the fine grid h is defined
based on the existing coarse grid, € is assigned to each coarse grid element (here, edge) and the summation
over [(k) takes into account any fine grid element associated with the coarse grid element k. Finally, the
local adaptation parameter is defined by

€k
€o

M = (15)

where e, is a user—defined allowed error for the integral output. Grid edges marked with 7 > 1 should be
refined. The grid adaptation cycles terminate when there are no more edges marked for refinement.

4 THE OVERALL ALGORITHM - PRACTICALITIES

The repetitive grid algorithm which leads to the computation of f(U) with prescribed accuracy includes
the following steps.

1. Solve the flow and adjoint equations using the same coarse unstructured grid and compute f(Ug).

2. Generate the fine grid (usually the “quadruple” grid, created by subdividing each coarse grid triangle
into four triangles) and compute LI Uy, QF Uy, LF ¥y and QF Uy over its nodes.

3. Compute the flow and adjoint equation residuals at the fine grid nodes, using LhH Ug and Lf Wy
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4. Calculate the adaptation sensor n;, for each coarse grid edge and refine accordingly the coarse grid.

5. Update the coarse grid and return to step (1).

The numerical solution of the Euler equations is carried out through the aforementioned time—-marching
solver. The numerical inviscid fluxes crossing the interface between any pair of adjacent node—centered
control volumes, are computed through the Roe’s approximate Riemann solver, [?]. They become second-
order accurate through variable extrapolation, [?], which requires the primitive variable gradient at the
grid nodes. Gradients are computed over the triangular elements and, then, scatter-added to the nodes.
The discretized system of equations is solved using the pointwise implicit Jacobi method. The matrix
coefficient is filled in by considering only first—order convection terms; thus, the non—zero pattern of the
coefficient matrix, in graph theory terms. coincides with that of the adjacency matrix in graph theory.

The previous assumption concerning the formation of the matrix coefficient is important. During the

ORu
oUg

the sake of computational convenience, only the first—order terms are taken into account in the discrete

T
solution of eq. 8, [ ] is set equal to the transpose of the aforementioned coefficient matrix. Thus, in

T
adjoint equation. The r.h.s. term in the same equation, (ng’;’{) is expressed according to the trapezoidal

integration law. In the present problems, the trapezoidal rule is exclusively used to compute integral
outputs. Switching to a more accurate integration formula is possible and can be employed in a straight-
forward manner; however, this does not affect the conclusions drawn below.

5 RESULTS-DISCUSSION

The first case is concerned with the study of the flow developed around the isolated RAE2822 profile.
The flow is inviscid with Mo, = 0.50 and @y = 3°. The maximum Mach number over the airfoil is about
0.92 and drag should approach zero. The initial grid is generated through the advancing front method
after defining 112 nodes along the airfoil contour, clustered close to the leading and trailing edges. The
initial grid (URG1) is fully unstructured, with as many as 1448 nodes and 2763 triangles. No particular
care concerning the location of nodes is taken.

A couple of computations on successively refined grids are first made to obtain some reference results,
concerning lift and drag coefficients. Starting from URG1, a grid (URG2) with as many as four times
its triangles is generated by splitting each one of its triangles into four. The generation of the so—called
uniformly refined grids (URG) is repeated three times. Over these four grids, the flow solver is used to
predict the flow field and, through integration, to compute lift (C;) and drag (Cy) coefficients. These values
are tabulated in table 1 which also shows the CPU cost of each computation. All four computations are
made with the same initialization; even if the computation on any fine grid could start from the converged
solution on the previous (coarser) grid, this is avoided in the sake of fairness in the comparison of CPU
costs. A solution is considered to be converged if the maximum residual becomes lower than 1072° and this
criterion determines the CPU cost of each computation. All computations are made on an Intel Pentium
M processor at 1.80GH z. Note that Cy approaches zero without reaching it, due to numerical diffusion.

Grid | Nodes | Triangles C Cy | CPU secs.
URG1 1448 2763 | 0.6674 | 0.008744 13.3
URG2 5659 11052 | 0.6907 | 0.004243 111.0
URG3 | 22370 44208 | 0.6975 | 0.003551 1124.1
URG4 | 88948 176832 | 0.6998 | 0.003463 11331.2

Table 1: Flow around the RAE2822 airfoil. Computed (reference) C; and Cy values using four uniformly
refined grids.

The grid adaptation with a posteriori error analysis is employed four times, with the same starting
grid (URG1). Each time, a different e, value is used; the e, values used are listed in fig. 1 which shows
the changes of C; during the successive grid refinements in terms of grid size (left) and CPU cost (right).
In all cases, a small number of adaptation cycles (around five) is needed. After the first or second cycle,
the grid size increases slightly. On the other hand, the CPU cost of the flow analysis on each refined grid
is, more or less, the same, since the starting flow field is interpolated from the converged solution on the
coarser grid. All four runs show the correct trend of the C; value computed over the finally refined grids.
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Figure 1: Flow around the RAFE2822 airfoil, with user—defined accuracy in C;. Computed C; values during
the grid adaptation driven by 7, plotted in terms of the number of nodes (left) and CPU cost (right).
The curves shown correspond to four different e, values.

Fig. 2 compares the cost for obtaining the final C; value, with user—defined accuracy, with that of
using the URGs of table 1. Using the two runs with the lower e, values, useful conclusions can be drawn.
The e, = 0.0006 run computes a better (slightly higher, i.e. closer to that of URG4) C; value than that
computed using URG2. This computation leads to an adapted grid with 2634 nodes (URG2 possesses
5659 nodes which, despite that, yields a slightly worse C; value). The cost for the computation using
e, = 0.0006 is about 193 secs. Using the more strict C; criterion (e, = 0.0001), the C; value computed
using URG3 is obtained. However, fig. 2, the cost of this run (555 secs) is about half of the cost for URG3
(1124.1 secs). The economy in CPU cost is, in fact, noticeable.
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Figure 2: Flow around the RAE2822 airfoil, with user—defined accuracy in C;. Comparison of C; values
computed using (a) a posteriori error analysis with grid adaptation and (b) the URGs, table 1.

Two more comparisons for the same case can be made using the plots shown in fig. 3. First, eq. 10 is
used to correct the C; computed on each grid during the successive adaptation cycles. Compared to fig.
1 (left) a slight additional improvement is shown in fig. 3 (left). Also, the C; values on the successively
refined grids (for e, = 0.0001) are extrapolated according the Richardson’s formula and this offers an
additional way of exploiting the a posteriori error analysis method, fig. 3 (right).

The same airfoil, with the same infinite flow conditions and starting grid (URG1) is used for four new
computations. This time, the target is the computation of Cy with prescribed accuracy. Four e, values are
used. The results obtained are shown in figs. 4, 5, according to the previously used presentation mode.
The conclusions that can be drawn are similar. For instance, fig. 5 (left) shows that the same accuracy
level can be obtained using a much coarser grid. From fig. 5 (left) and the CPU costs listed in table 1,
it is also obvious that the lower e, value (e, = 0.0001) reaches the best value for Cy in about 3000 secs
compared to the four times more expensive computation using URG4. As in the case of C} correction, the
correction of Cy through eq. 10 or Richardson extrapolation, (not shown here in the interest of space) can
be used to further improve the Cy predictions. The starting grid as well as two finally adapted grids for
e, = 0.0001 used as threshold for C} and Cy are shown in fig. 6.

The last case is concerned with the accurate prediction of the peripheral force coefficient in a compressor
cascade. Here, a 2D controlled diffusion airfoil cascade is utilized and the integral quantity that needs to
be computed with desired accuracy is the non-dimensional force component in the pitchwise direction.
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Figure 3: Flow around the RAKE2822 airfoil, with user—defined accuracy in C;. Corrected through eq. 10
(left) and Richardson extrapolated (right, for e, = 0.0001) C; values computed using (a) a posteriori error
analysis with grid adaptation and (b) the URGs, table 1.
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Figure 4: Flow around the RAE2822 airfoil, with user—defined accuracy in Cy. Computed Cy values during
the grid adaptation driven by 7y, plotted in terms of the number of nodes (left) and CPU time (right).

0.009 , , , , 0.009 , ; : :

0.008 -\  Uniformly Refined —e— -~ 0.008 - Uniformly Refined —e— -
= Eta_k Adapted ---B--- =) Eta_k Adapted ---8---
£0.007 £0.007
\ :
S 0.006 i) 0.006
=S b=
8 0.005 8 0.005
O E'\ O .
20.004 s 20.004 >
£ Lo SN — 3 e g &

0.003 0.003

0.002 0.002

0 5000 10000 15000 20000 25000 0 1000 2000 3000 4000 5000
Number of Nodes CPU time (secs)

Figure 5: Flow around the isolated RAE2822 airfoil, with user—defined accuracy in Cy. Comparison of Cy
values computed using (a) a posteriori error analysis with grid adaptation and (b) the URGs, table 1.

Since the flow is inviscid, this is derived through the integration of the pressure distribution around the
airfoil and projection in the pitchwise direction. The coefficient of interest is denoted by Cr,. The flow
conditions are: M ;s = 0.37 and a; = 47°. In all computations, the Jacobi method is used with CFL
number equal to 50. The convergence criteria are the same as previously. Of course, modifications in the
adjoint method are necessary, in order to account for periodicity.

Table 2 shows the three URGs used to get reference C'r, values so as to compare the expected gain from
the use of grid adaptation based on the a posteriori error analysis with uniformly (and, thus, uncontrollably
expensive) grid refinement. URG1 is the starting grid in every subsequent calculation.

Fig. 7 shows the results of five computations with a wide span of e, values. In contrast to the monotonic
curves previously shown, in all cases, an overshooting in Cr, is observed before reaching its final value, on
the finally adapted grid. According to table 2, we may assume that the desired Cp, value is about 0.033.
We can see from fig. 7 that the lower the desired accuracy threshold e,, the closer to 0.033 the terminal
Cry value is captured.
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Figure 6: Flow around the RAE2822 airfoil. Left: starting grid (URG1), Middle: finally adapted grid
(5571 nodes, 10777 triangles), computed using e, = 0.0001 for C;. Right: finally adapted grid (15290
nodes, 30170 triangles), computed using e, = 0.0001 for Cy.

Grid | Nodes | Triangles Cry | CPU secs.
URG1 1809 3327 | 0.032880 24.6
URG2 6945 13308 | 0.032988 189.8
URG3 | 27198 53232 | 0.033014 1472.6

Table 2: Flow in a 2D compressor cascade. Computed (reference) peripheral force coefficient values using
three uniformly refined grids.
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Figure 7: Flow in a 2D compressor cascade, with user—defined accuracy in Cry,. Computed Cp, values
during the grid adaptation driven by n, plotted in terms of the number of nodes (left) and CPU cost
(right), for five different e, values.

Fig. 8 compares the results of grid adaptation through a posteriori error analysis with those obtained
using the three URGs. In terms of grid size, the a posteriori error analysis based adaptation leads to much
smaller numbers of grid nodes. The difference is not that important in terms of CPU cost; however, this
depends on the convergence criteria used during the repetitive solution of the flow and adjoint equations
and could be improved through the selection of different values. Fig. 9 presents the finally adapted grids
for e, = 0.0005 and e, = 0.00005. It is obvious that the latter leads to a considerably finer grid close to
the blade airfoil.

6 CONCLUSIONS

In this paper, the a posteriori error analysis method combined with grid adaptation techniques was
presented, as a tool that ensures the computation of integral quantities with user—defined accuracy. The
expected gain, which was confirmed by the examined cases, is that our goal can be achieved without using
uncontrollably fine grids; local criteria can be used to drive the grid refinement in areas which induce the
higher errors in the computation of the integral output of interest. The repetitive solution of the flow
and adjoint equations are carried out on comparatively coarse grids, so the overall CPU cost reduces.
Correction formulaes, based on either the adjoint formulation or Richardson extrapolations can be used
to improve the prediction accuracy, with the same computing cost. In this paper, the a posteriori error
analysis method is extended to periodic turbomachinery flows.
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Figure 8: Flow in a 2D compressor cascade, with user—defined accuracy in C'r,. Comparison of Cr, values
computed using (a) a posteriori error analysis with grid adaptation and (b) the URGs, table 2.

TR

Figure 9: Flow in a 2D compressor cascade, with user—defined accuracy in Cr,. Left: Initial coarse grid
(URGL, 1809 nodes, 5136 triangles). Middle: finally adapted grid (2048 nodes, 3786 triangles), computed
using e, = 0.0005. Right: finally adapted grid (3368 nodes, 6354 triangles), computed using e, = 0.00005.
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Abstract. An existing method and the corresponding software for the numerical solution of the Euler and
Navier—Stokes equations in high—speed flows is extended to account for low-speed flows as well. This is
achieved through the multiplication of the governing equations by a precondition matriz which is defined
at each grid node in terms of the local Mach number and ensures adequately clustered eigenvalues and,
thus, optimal convergence characteristics at all flow speeds. A second—order upwind scheme is adapted
to the preconditioned system of equations through appropriate assumptions, which are clearly presented
in this paper. 2D or 3D, inviscid or turbulent flow problems are analyzed, in external aerodynamics and
turbomachinery.

1 INTRODUCTION

It is well known that the numerical solution of the compressible fluid flow equations for the low Mach
regime suffers from slow convergence and increased computing cost. It is also known that the main reason
for the performance degradation of the relevant software, based on time—marching schemes and the theory
of hyperbolic system of equations, is the large disparity between acoustic waves and fluid speeds. To
overcome this problem, completely different formulations for the prediction of low—speed or incompressible
flows such as pressure correction and pseudo—compressibility methods, have been developed. However,
maintaining and extending two different CFD tools by the same research group is, in fact, cumbersome.
The only way to use the same time—marching solution method regardless of the flow speed, is through
preconditioning.

Conceptually, preconditioning is based on the multiplication of the pseudo—time derivative by an appro-
priate precondition matrix without affecting the steady state solution. The precondition matrix is defined
in terms of the local Mach number [1], [2], [3] and degenerates to the unit matrix at sonic speed. According
to the hyperbolic system theory, the Jacobians of the convection terms are multiplied by the inverse of the
precondition matrix and this gives rise to much more clustered eigenvalues compared to those of standard
Jacobians. The selection of the precondition matrix depends on the vector of solution variables. In the
literature, different precondition matrices have been proposed depending on whether the flow equations
are solved in terms of @ = [pu v T]¥ or W = [0 ou gv E]7 (see [4] or [5] and [6], respectively).

The implementation of preconditioning in a numerical flow solver depends practically on the discretiza-
tion scheme used. The present method [7], [8] is based on the finite volume technique for unstrucured grids
with an upwind scheme for the discretization of convection terms. The latter are computed by sweeping
the grid edges and employing a 1D Riemann flow solver between the two edge nodes. To maintain the
existing formulation, a couple of assumptions concerning the management of the precondition matrix are
made. These assumptions concern even the residual of the iteratively solved equations and contribute to
the elimination of pressure oscillations that the conventional system of equations produce at low Mach
numbers, particularly close to the leading and trailing edges of airfoils.
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2 GOVERNING EQUATIONS AND LOW-MACH PRECONDITIONING

Though this paper is concerned with both 2D and 3D all-speed flows, for the sake of simplicity, the
analysis of the method will be restricted to 2D flows; any extension to 3D flows is straightforward and,
thus, omitted. The 2D Euler equations for compressible flows are written, in conservative form, as follows

ow OoF 0G
W+%+a—y:0 (1)

where
0 ou ov
W ou 7 ng +p el ouv @)
ov (7 ouv ’ ou® +p
E (E +p)u (E +p)v

Here ¢ is the density, v and v the velocity components, F the total energy per unit volume and p the
pressure. Note that only steady flow simulations are of interest. Starting from eq. 1, the preconditioned
equations are obtained by multipliying the pseudo—time derivative term by the inverse of an appropriate
precondition matrix I', namely

oF
STV U1 .

or

ow ow ow
o7 A5 I‘Aya—yfo (4)

where A, = g{f/ and A, gg/

written in terms of the primitive variable array V= [0 u v p|T as follows

oV oV —— aV

— +T A4, +TA,— =0 5

ot oz Y oy (5)
where A, and Zy are the corresponding Jacobian matrices, A, = M~'A, M, Zy = M~ 1AM, T =
M~'TM and M = 2%

As already mentioned in the introduction, the role of the precondition matrix I (and, subsequently,
the role of I' ) is to alleviate the disparity between acoustic waves and the fluid speeds which characterize
the non—preconditioned (regular) system of flow equations and is the main reason for the slow convergence
of any numerical solution method applied to low Mach number flows. This paper adopts the precondition
matrix originally proposed by [6], namely

100 —iz

= 010 0

=loo1 o ©)
000 a

where a = min[1, M?] and M is the local Mach number; I' can be obtained from T, since I' = MTM 1.

Through the application of the Gauss’ divergence theorem, the integration of eqs. 5 over any finite
volume cell leads to the integral of numerical fluxes crossing its boundary. Let @ = (ng,n,) denote the
normal vector to the boundary; the application of any upwind scheme to numerically compute these fluxes
as well as the convergence characteristics of the resulting solution method is determined by the eigenvalues
of the preconditioned directional Jacobian matrix

Ap =T A =T(A,n, + Ayn,) (7)
which are

M = X=0U-7

A _ 1 = > = =12 217(2

si = S0 +a)T A1 -@)F 72 + dac2|l’} (8)
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It can be shown that, for low Mach number flows, the eigenvalues, (eq. 8) are much more clustered
than those of the non—preconditioned system A\j = X5 = ¥ -7, \; = A} = U7 + ¢|]|, giving thus rise
to better convergence properties. Fig. 1 compares the ratio A3/A; of the preconditioned and the non—
preconditioned system Aj/A} for two different ranges of the Mach number. It can clearly be observed that,
through preconditioning, eigenvalues become much more clustered as Mach number approaches zero.
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Figure 1: Comparison of the A3/A; ratio for the preconditioned and the non—preconditioned system for
0.1 < M <1 (left) and 0.01 < M < 0.1 (right).

3 DISCRETIZATION AND NUMERICAL SOLUTION

The preconditioned equations are integrated over vertex—centered finite volumes U defined in fig. 2 for
2D problems. To carry out the integration, the assumption that I" stays out of the integral, which facilitates
considerably the subsequent development of equations, is made. The meaning of this assumption is that,
in any vertex—centered cell, I remains fixed and equal to that defined at the enclosed node P. So

oW
/UWdU+FAU(?nz+@ny)daUO (9)

which, through further analysis of terms, yields

(&)
—P5WP+FP Z E)PQ:O (10)
Qenei(P)

Atp

Figure 2: Control volume surrounding a node.
or, equivalently,
Up 1=
—Wp+Tp Y. (I 'TTpg)=0 (11)
Atp .
Qenei(P)

where nei(P) is the set of grid nodes that are linked with P through grid segments and 3 p@ is the numerical
flux crossing the interface of the finite volumes defined around adjacent nodes P and ). Between P and
@, the 1D Roe approximate Riemann solver [9] is employed, according to which
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- 1

®pg 5

where fpo is the Roe—averaged Jacobian at the midnode between P and Q and AW PQ = W p— WQ
For second order accuracy, WL = Wp + %1@ VWP and WR = WQ + %@ VWQ should substitute for

W p and WQ, respectively. The last term in eq. 12 is rewriten as follows:

[H(W p,iipg) + H(Wq,iipg)] - %|APQ|AWPQ (12)

[Apg|AW pq = |TphLroApgl AW pq
~ TpoTrodrelATW pg
= TpolAr.o|AWpq (13)
Here |/IFPQ| is defined by
|AFPQ| = pFPQ MFPQ |pITP1Q (14)

where Ap is the diagonal eigenvalue matrix of Ap po Whereas Pr and 15{ ! are the diagonalization matrices
composed of the right and left eigenvectors, respectively. Subscript I' denotes that the matrices are derived
from the preconditioned system and any quantity marked with ~ is Roe-averaged. Through eqs. 13 and
14, eq. 12, becomes

— 1 . . 1~ 1,
P pg = §[H(WPa iipq) + H(Wq,7ipq)l — fpéglArpQ AW pq (15)
According the stability criteria applied for the preconditioned system, the local time step is

CFL hr

At =g = =72 2|72
A+ a0 + VIA - a)[d]? + dac?]i]?}
which is simplified to At = IC;?I\WJ}:CI}:?TI for the non preconditioned case (a = 1). In the 2D case, eq. 16 is used
to compute At at each triangle using its minimum height A and the C'F'L number defined by the user.
Time steps are then scatter—added to nodes.

(16)

4 RESULTS AND DISCUSSION

A number of test problems has been selected to demonstrate the capability of the programmed software
to cope with all-speed flows. Our intention is not to demonstrate how accurate the computed results are,
but to convince the reader that, through preconditioning, one can exploit software based on the theory
of hyperbolic equations even in low Mach number flows where, by nature, time-marching methods are
slow. No comparison with experimental or other reference computational results is shown, since the non—
preconditioned method was adequately validated in the past at high subsonic and transonic flows. The
demonstration that follows is concerned with inviscid and viscous flows, around an isolated airfoil, in
a compressor cascade and around a complete aircraft. Any comparison concerning convergence speed is
presented as a function of iterations. The CPU cost per iteration of the preconditioned system of equations
is slightly higher than that of the non—preconditioned one, due to the excess number of floating point
operations it involves. However, the difference in CPU cost is almost negligible and, thus, the comparison
in terms of iterations can be interpreted as a comparison in terms of cost.

The first problem is concerned with the computation of the inviscid flow around the isolated NACA12
airfoil. The same unstructured grid (950 nodes, 1800 triangles) was used to predict the flow field at three
different infinite Mach numbers, namely M., = 0.1, 0.01 and 0.005, with the same infinite flow angle
Qo = 5% Fig. 3 compares the residual drop in terms of iterations. Note that no stopping criterion
was used, so any comparison between the performance of the non-preconditioned and preconditioned
equations can be objectively quantified, depending on the desired maximum allowed residual. In all cases,
preconditioning leads to better convergence characteristics; it is clear that the lower the Mach number the
lower the computing cost.

In the M, = 0.1 case, the gain achieved through preconditioning is not that important, though it
does exist. For higher M., values, both systems give very similar convergence characteristics and this can
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be explained by the precondition matrix form, eq. 6, which tends to the unit matrix. By comparing the
residual curves of the preconditioned equations in all three cases, it can be seen that they remain close to
each other whereas the convergence of the non-preconditioned equations drifts much more slowly as the
Mach number decreases. In the cases Mo, = 0.01 and 0.005, assuming a stopping criterion for the residual
equal to 10719, preconditioning leads to convergence of about five to eight times lower CPU cost.
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Figure 3: Inviscid flow around the NACA12 airfoil. Convergence diagrams for My = 0.1 (top-left),
My = 0.01 (top-right) and My, = 0.005 (bottom).

Fig. 4 shows a close up view of the unstructured grid used and the Mach number contours computed
through the preconditioned equations around the airfoil, for M., = 0.005.
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Figure 4: Inviscid flow analysis for NACA12 airfoil. Mach number contours for M, = 0.005, and Mach
number increment AM = 0.0002.

Fig. 5 compares the pressure distribution around the airfoil, produced by the preconditioned and
non—preconditioned solver with the same computing cost. Close to the leading and trailing edges, the
preconditioned equations eliminate non—physically accepted pressure kinks, thanks to the modified last
term in eq. 12 which acts as smoothing term.
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Figure 5: Inviscid flow analysis for NACA12 airfoil. Pressure coefficient distribution (M = 0.1).

The second problem examined is that of the inviscid flow analysis in a 3D compresor cascade. The
exit isentropic Mach number equals to 0.1 or 0.3 and a; = 47°. A 2D unstructured grid (1800 nodes,
3300 triangles) was generated at first which was then stacked in the spanwise direction to create the
3D unstructured grid with 40000 tetrhedra and 9000 nodes. Symmetry conditions were employed over
the upper and the lower plane in the spanwise direction. Fig. 6 shows the residual convergence history
for Ma ;s = 0.3 and 0.1. In the high Mach case, both solvers, either with or without preconditioning,
converge easily ; however, the preconditioned equations converge faster. In the low Mach number case, the
preconditioned equations solver converges within 400 iterations (the stopping criterion for the residual is
the same as in the previous case); on the other hand, without preconditioning, even 4000 iterations do not
suffice to get an adequately converged solution.
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Figure 6: Inviscid flow in a 3D compressor cascade. Convergence diagrams for My ;s = 0.3 (left) and
My ;s = 0.1 (right).

The turbulent flow over the same linear cascade was also analysed. The 2D grid consists of 5000
nodes and 9400 triangles, which results to a 3D grid with 170000 tetrahedra and 34700 nodes. The
Spalart—Allmaras one—equation turbulence model [10] was used along with the wall function technique; in
particular, a non zero (slip) velocity was allowed to occur over the blade nodes through assuming that
the real solid wall is located at distance ¢ from the boundary node; J is a user-defined parameter so that
boundary nodes be in the logarithimic region of the boundary layer. Fig. 7 shows the calculated Mach
number contours and compares the convergence of the preconditioned and non—preconditioned equations
for Re = 100000 and My ;s = 0.1. With the maximum allowed residual value be equal to 1072, the
preconditioned equation converge at half the CPU cost of the conventional solver. The lower the stopping
residual threshold, the more important the CPU gain.
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Figure 7: Turbulent flow in a 3D compressor cascade (Re = 100000). Mach number contours of the
preconditioned system (left) and convergence diagram (right).

Last case is that of the computation of the inviscid flow around a complete aircraft. The computational
grid generated around half of the aircraft (due to symmetric flow conditions) consists of 256000 tertahedra
and 45000 nodes.

This case was studied for My, = 0.1 and a, = 0°. Fig. 8 shows the convergence curves for the
preconditioned and non—preconditioned equations and the iso—-Mach contours over the aircraft surface.
The preconditioned equations converge faster and the gain in CPU is expected to increase at lower Mach
numbers.
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Figure 8: Inviscid flow around an aircraft. Convergence diagram (left) and iso-Mach contours for M, = 0.1
(right).

5 CONCLUSIONS

The implementation of low—Mach preconditioning in a time—marching, primitive variable flow solver can
increase its robustness, yielding equally satisfactory convergence at all flow speeds. A couple of assumptions
is made during this implementation in the contest of a second—order upwind scheme, as demonstrated in
this paper. These assumptions often affect positively the accuracy of the predictions by improving the
quality of the solution in areas close to leading and trailing edge of an airfoil. The proposed method leads
to a considerable economy in CPU cost which becomes more important as the Mach number decreases.
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Abstract. Blown film extrusion involves melting and pumping of a polymer melt through a die (usually of the
spiral variety) for the formation of a tubular film, which is stretched in the machine direction and
simultaneouysly radially inflated. Cooling is accomplished by tangentially impinging external air jets and
sometimes by internal vertically impinging air jets. Simulations of laminar very low Re flow through the spiral
die geometry are performed for the determination of flow channel geometry that would result in even melt
outlflow from the die. The bubble inflation process is described on the basis of thin membrane theory using
ordinary differential equations. Bubble cooling by external and internal air jets is simulated using k-epsilon
theory. The importance of the Venturi and Coanda effects in bubble stability and film production is discussed.

1. INTRODUCTION

Blown film extrusion is the most important process for the production of plastic films, ranging in
thickness from 0.5 mm to as thin as 5 um. The polymer is melted in an extruder and the hot melt is pumped
through a die to form a thin walled tube, which is simultaneously axially drawn and radially expanded. In most
installations the extruder(s) are horizontal and the blown film bubble is formed vertically upward as shown in
figure 1.

Cooling is accomplished by air jets (frequently issuing from dual air lips) externally and vertical jets
impinging on the bubble internally. The rate of cooling determines the film production rate. The air-jet velocity
through the Venturi effect in narrow passages helps stabilize the thin bubble of molten polymer, which
eventually solidifies at the so-called freeze-line.

2. DIE FLOW SIMULATION AND DESIGN

The purpose of an extrusion die is to impart the desired shape to the polymer melt stream produced
continuously by the extruder. In blown film extrusion a thin tubular film is formed as the melt flows through the
die lips. The die lip gap width usually ranges from 0.76mm to 3mm and die diameter from a few centimeters for
laboratory lines to more than one meter for industrial installations producing more than one ton of film per hour.
The annular flow is formed in the gap between the inner mandrel and the outer die body. By far the most
common die geometry for blown film production is the spiral one, which is shown schematically in figure 2. The
polymer is fed by a number of melt tubes ending with a “port™ at the start of each spiral. It flows both along the
spirals and in the gap between the mandrel and the die body. The flow rate becomes progressively uniform
around the circumference towards the die exit.

Above the die lips the outgoing polymer stream must have uniform thickness. Uneven thickness tends
to be exaggerated by the subsequent inflation and stretching operations resulting in unacceptable film
production. Polymer melts tend to flow preferentially directly above the ports resulting in periodic thick and thin
sections as shown schematically in figure 3. The tendency for uneven thickness distribution becomes greater as
the power-law exponent in the viscosity function decreases, i.e. shear thinning increases. Thickness variation of
more than 5% above the die lips is usually unacceptable. Another problem is the poor flow distribution along the
spirals and between mandrel and die body. Many dies are currently in operation in industrial installations capable
of producing a film of acceptable uniformity but having part of the spiral channel with stagnant flow regions.
Stagnant flow regions may result in polymer degradation and other production problems.

Computer modeling is necessary for die designs producing uniform thickness without any stagnant flow
regions. This can be achieved by 2-D approximations of the Hele-Shaw variety using control volumes!'*!
relating local pressure to local flow rates or fully 3-D finite element simulations'* for very slow viscous
(creeping) non—Newtonian flow.
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3. BUBBLE FORMATION AND MODELING

As the molten polymer emerges from the annular die lips, the thin tube is undergoing non-uniform
biaxial stretching. The deformation effectively ceases at the freeze line, because the stresses are not large enough
to deform the solid film. For typical film production rate and thinness, it is reasonable to neglect inertia forces,
surface tension, air drag and gravity on the highly viscous melt. Perhaps the neglect of gravity is the weakest
assumption when high production rates are involved.

Figure 4 shows a sketch of an axisymmetric thin tubular film (of thickness h) with an embedded
Cartesian system having unit vectors in the direction of flow m (meridional), in the tangential t and normal n
directions. Mass conservation gives

Q=2nRhV, = constant (D

where Q is the volumetric flow rate, R is the bubble radius, h the bubble thickness and V, the velocity in the
meridional direction.
The equilibrium of forces in the normal direction for the thin membrane assumption is

AP _on O )
h pm pt
where pp,, p; are the curvatures in two directions m and t , o,,, and o, are the corresponding stresses and AP is the
inflation pressure.
The force balance on any plane z gives,
—R*AP + 2nRho, cos 0 = F, = constant 3)

where Fr is the total force exerted on the thin membrane.

By determining the two radii of curvature and combining with the force balance equations we end up
with a single ordinary differential equation’®” which, when solved, provides the bubble shape for a Newtonian
viscosity model. The role of viscoelasticity is to decrease the ultimate bubble radius!*.

4, BUBBLE COOLING

The air-cooling system is an integral part of any blown film line. It greatly affects not only the heat
transfer from the molten polymer film but also the stability and the shaping of the bubble. The bubble shape is
primarily determined by mechanical manipulations and aerodynamics”. Film cooling ultimately affects both
production rate and final film properties.

Two important aerodynamic phenomena may be associated with the cooling airflow, namely the
Venturi and Coanda effects. The well-known Venturi effect is caused when a fluid flows through a constricted
area: its speed increases and the pressure drops. In film blowing, the lower orifice air is flowing through the
narrow gap between the bubble surface and the air ring cone. The resulting Venturi effect causes the bubble to be
pulled towards the air ring cone, visibly deforming the bubble.

The Coanda effect occurs when a free jet emerges close to a surface: the jet tends to bend, “attach”
itself and flow along the surface. The surface may be flat or curved and located inclined or offset to the jet. The
Coanda effect is more pronounced near curved surfaces. Blown film bubble surfaces with the cooling air
impinging on them at an angle, offer the possibility of Coanda type jet attachments and detachments.

Sidiropoulos and Vlachopoulos!'™'" studied the aerodynamics of dual orifice air-rings using a
commercially available finite volume software package to solve the Reynolds averaged Navier-Stokes equations.
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In these equations the effect of turbulence is included through the Reynolds stresses (—pu{u} ), which

involve products of the velocity fluctuations. A variation of the so-called k-g¢ turbulent model was used to
achieve closure of the system of differential equations. In this approach the contribution of Reynolds stresses to
the momentum balance is introduced through the concept of the “effective” viscosity. Although there are more
accurate models to simulate the airflow, the results are often marginally different to justify the increased
complexity of the simulation .

Figure 5 shows a simulation example depicting the calculated airflow streamlines around a typical
blown film bubble. The two simulated airflows (presented on the left and right side of the same figure)
correspond to slightly different setups for the adjustable part of the air ring. Although the geometrical differences
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are minute, the simulation predicts significant differences in the local airflow pattern, which consequently result
in differences in local heat fluxes.

The numerical simulations explained the importance of under-pressure generated by the Venturi effect,
which is large enough to force the bubble to take the shape of the air ring. It appears that the Venturi effect
overwhelms any tendency for different bubble shapes dictated by viscoelasticity. Generally, the Venturi effect is
used to stabilize the process. However, it is known from industrial practice that sometimes even small
adjustments to the airflow may cause bubble instability.

Internal Bubble Cooling (frequently called IBC) of blown film bubbles employs various mechanisms to
exchange the internal air of the bubble. Naturally, this helps to increase the cooling of the film, which would
ultimately lead to increased production rates. IBC typically involves specifically designed equipment, engaged in
exchanging the warm internal air with colder external air and also constantly circulating and mixing the internal
air. In some cases the external air is chilled before injected inside the bubble to maximize the cooling benefit.
With IBC, the expected production rate improvement becomes increasingly important as die size and film layflat
width increase. Production rate increases range from 20% for small bubbles (up to 8" in die diameter) to as
much as 80% for very large bubbles. A simulation of IBC has been published!'?.

5. CONCLUDING REMARKS

The use computer simulation for the determination of flow channel geometry to produce uniform
outflow of a thin polymer tube and stagnation-free regions is absolutely necessary for successful die designs. The
bubble inflation modeling provides insights into the polymer deformation process, but the bubble shape is
primarily determined by mechanical manipulations and the Venturi effect. Turbulent air jet simulations provide
significant information on air ring and internal bubble cooling system design.
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Abstract. We examine the transient, axisymmetric, squeeze flow of viscoplastic materials, under creeping flow.
Both cases of the disks moving with constant velocity and under constant force are studied. This is a transient
simulation, performed for the first time for such materials, in order to determine the transient force or velocity,
respectively, the shape of the liquid/air interface and the effect of gravity very accurately. All these are
impossible with the quasi steady state models used up to now. For the simulation of the viscoplastic behaviour
we employ the approximate model suggested by Papanastasiou. As a numerical scheme we use the mixed finite
element method coupled with a quasi-elliptic mesh generation scheme in order to follow the large deformations
of the flow domain. We show that unyielded material arises around the two stagnation points of flow at the
center of the disks and that the size of these domains increases with the Bingham number. When the disks move
with constant velocity the unyielded region decreases, as time passes and the distance between the two disks
decreases. On the other hand, when a constant force is applied on the disks, they slow down until they finally
stop, because eventually all the material between them becomes unyielded.

1. INTRODUCTION

Squeeze flow is widely used as a typical experiment for the rheological characterization of Non-Newtonian
fluids [1]. The rheological experiment is usually conducted in two different ways, either by measuring the force
required to push the disks at a constant velocity [2] or by measuring the velocity of the disks towards each other
when a constant force is applied [3]. Our efforts are aimed at developing an accurate and efficient numerical
method in order to simulate both versions of such a rheological experiment for the special case of a viscoplastic
material. The deformation and flow of such materials are very important since many multicomponent fluids such
as suspensions, pastes, paints, foodstuffs, foams and slurries, which are very frequently encountered in industrial
processes, are viscoplastic [4]. When the applied stress is below a particular value, which is called yield stress,
these materials exhibit small or no deformation at all (solid like behavior). Above the yield stress these materials
flow with viscosity that depends on the local shear rate.

The behavior of viscoplastic materials in squeeze flow has attracted the attention of several researchers in the
past. In early theoretical studies, the most usual approach was the lubrication approximation [5]. However,
although it was noticed since then that this kind of analysis led to profound kinematic inconsistencies in the
calculated velocity fields, it is still used extensively to evaluate experimental results. O’Donovan & Tanner [6]
were the first who recognized the need to solve the squeeze film problem without assuming the lubrication
approximation. They solved numerically the constant velocity problem employing the biviscosity model for
modeling the viscoplastic behavior of the material and they finally concluded that unyielded material arise only
adjacent to the centre of the plates. Quite recently Smyrnaios & Tsamopoulos [7] provided a qualitative analysis
and numerical simulations for this problem assuming a quasi steady state model. They employed both the
original Bingham model [8] and the exponential one, which was proposed by Papanastasiou [9], clarifying all the
misleading speculations on the position and the existence of yield surfaces in this flow field. They showed that
unyielded material could only exist around the two stagnation points of flow confirming and extending the work
by O’Donovan & Tanner [6]. Matsoukas & Mitsoulis [10] also solved numerically the squeeze flow of
viscoplastic materials, assuming steady state, for both planar and axisymmetric flow confirming the earlier
results by Smyrnaios & Tsamopoulos [7] for the axisymmetric case. They have also provided a more exact
relation for the force that must be applied on the disks’ surface in order to maintain their constant velocity.

In the present work we solve the transient squeeze flow of a viscoplastic material for both cases where the
disks are moving with constant velocity and under constant force. The transient simulation which is done for the
first time for such fluids enables the determination of the transient force or velocity, respectively, the shape of
the liquid/air interface, and the location of the yield surface. Moreover we are able to study the effect of possible
slip of the fluid on the disk surface and the effect of gravity on the flow field.

2. PROBLEM FORMULATION
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We consider the axisymmetric squeeze flow of a viscoplastic material with a constant yield stress, 7, and

Vo
upon yielding a constant dynamic viscosity, 77,. We assume that the fluid has a surface tension, o and that it is
incompressible with constant density, p . Fig. 1 illustrates a schematic of the flow geometry examined herein:
the space between two parallel coaxial disks, whose radial dimension is represented with a, is filled with a
cylindrical sample of a viscoplastic material. The radius of this sample is denoted with b . Initially the disks are

not moving and so the free surface of the fluid is assumed to be straight. At the same time, the pressure inside the
fluid is considered to be uniform, assuming that the ambient pressure is zero.

TRIPLE CONTACT

POINT

: x|
| PR

Figure 1. Schematic of the squeeze flow geometry between two parallel coaxial disks.

We scale all lengths with half the initial distance of the two disks, L, and time with L/ v’ , Where V" is the

characteristic velocity. For the constant velocity problem the choice of the characteristic velocity V" is rather
obvious and it is the constant velocity of the disks /. On the other hand although no characteristic velocity
exists for the constant force problem, due to the decelerating nature of the flow, we have chosen as such the
initial velocity of the disks V(¢ =0") . In addition, both pressure and stress components are scaled with viscous

*

vV . . . L .
scale 79" Thus the dimensionless groups that arise are the Reynolds number Re = PV , the Bingham
Mo
7L ) n ng2 oo
number Bn=——, the Capillary number Ca =——, the Stokes number St = , when gravity is taken
o o o

. . . L a
under consideration, and finally the aspect ratios ¢ = 5 and w= I

The flow of an incompressible fluid is governed by the momentum and mass conservation equations which in
their dimensionless form are:

D
Re==+VP+V.-r-Ste. =0 (1)
Dt — — =~
Vor=0 @
where z is the viscous part of the total stress tensor o,
g= P£ +z, (3)

while v, P are the axisymmetric velocity vector and the pressure respectively.

To complete the description of the flow problem specification of a constitutive equation which describes the
rheology of the fluid is required. In the present study we employ the continuous constitutive equation that has
been proposed by Papanastasiou [9] which relates the stress tensor, 7, to the rate of strain tensor, y, by a simple

exponential relation. The dimensionless form of this constitutive equation is

—Nv
z:{ngnﬂ} @

4

where ¥ is the rate of strain tensor defined as y = &+&T , ¥ is its second invariant, y = [%)} : ;?]1/ 2and N

. mV
is the stress growth exponent N = A
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Smyrnaios & Tsamopoulos [7] have shown that for relatively large values of the exponent coefficient, N,
this model closely approximates the discontinuous Bingham behavior. However Burgos et al. [11] have
suggested that extremely large values of that coefficient should be avoided for reasons that have to do with
numerical stability and the stiffness of the resulting discrete system. The main advantage of this constitutive
equation is the fact that it is continuous and it holds uniformly in yielded and unyielded regions. Thus the
determination of the shape and the location of the yield surface can be done a posteriori in contradiction to the
discontinuous Bingham model. The criterion for this determination has the following form

Yielded material: T> Bn 6)
Unyielded material: 1< Bn (6)

Along the free surface the velocity field should satisfy a local force balance between the surface tension and

the viscous stresses in the liquid

2H

ng=_-n ™
where 7 is the outward unit normal to the free surface and 2H is its mean curvature which is defined as

2H=-V -n, Vo =(L-nn)-V ®)
Taking the tangential and normal to the free surface components of the force balance we get

tn:oc=0 ©)

nn:o = 21 (10)

- = Ca

In addition, the boundary conditions that must be imposed on the axis of symmetry (r =0) and on the plane of
symmetry (z=0) are
n-v=0 an
tn:c=0 (12)
On the surface of the disk, two boundary conditions are imposed. On the axial direction the boundary condition

depends actually on the problem that is examined each time. That is for the constant velocity problem the fluid
has the same axial velocity with the disks, and thus

n-y=-1 (13)
while for the constant force problem the condition that must be imposed is
R,
F—IZﬂozzrdrzo (14)
0

In the present study we also examine the effect of slip of the fluid on the surface of the disks. To this end we
adopt a modification of the slip model that was originally proposed by Kamal et al. [12]. The slip coefficient is
an exponential function of the radial distance from the triple contact point and thus the slip model has the
following form

tn:g=pyet Dy (15)

where R, is the radial distance of the triple contact point from the axis of symmetry, S

S

; is a parameter which is
used to adjust the level of slip velocity in comparison to the wall shear and «,; is another parameter which is

used to adjust the length of the slip region. The model reduces to the no-slip condition as these two parameters
increase whereas when o ; becomes zero, slip occurs over the entire wall boundary.

The model is completed by assuming that the fluid initially is at rest v(r,z,t =0) =0, the free surface is flat

with radius b and finally that the fluid is under constant pressure P(r,z,t=0)= Ci .
a

3. NUMERICAL IMPLEMENTATION

In order to numerically solve the above set of equations we have chosen the mixed finite element method
combined with an elliptic grid generation scheme for the discretization of the transient physical domain.

3.1 Elliptic grid generation
In the present study we employ a quasi elliptic mesh generation scheme that has been recently developed and

applied in several cases by Dimakopoulos & Tsamopoulos [13]. With this scheme the time dependent physical
domain (r,z) is mapped onto a fixed with time computational one (77,£). As such computational domain we
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choose the volume that is initially occupied by the fluid. This mapping is based on the solution of the following
system of quasi elliptic partial differential equations

I"2 +22

Ve 5 +(-g)[vE=0 (16)
v+ z
n n

V-Vn=0 (17)

where the subscripts denote the differentiation with respect to the variable indicated and &, is a parameter that is

adjusted by trial and error. In order to solve the above system of differential equations appropriate boundary
conditions must be imposed. On the fixed boundaries we impose the equations that define their position and the
remaining degrees of freedom are used for the equidistribution of the nodes along the boundaries. In addition,
along the moving interface we impose the kinematic equation
DF
Dt
where F =re, +ze, is the position vector of the free surface, together with a condition that requires the

=V (18)

uniform distribution of the nodes along the free surface.
3.2 Mixed finite element method

The computational domain is discretized using triangular elements because they can conform better to the large
deformations of the transient physical domain. We approximate the velocity vector with quadratic basis

functions, ¢', and the pressure as well as the position vector with linear basis functions, ' . We employ the

finite element/Galerkin method which results into the following weak forms of the momentum and mass
balances

ﬂReg—fw LV ~g}d§)+l[ﬁ~g]¢’df=0 (19)
Iin~de:0 (20)
Q

where dQQ and dI' are the differential volume and surface area respectively. The surface integral that appears in
the momentum equation is split into four parts, each one corresponding to a boundary of the physical domain.
We must also derive the weak forms of the mesh generation equations. Thus after applying the divergence
theorem we get

+(1-) [V&-Vy'a@ =0 1)

IZU Vy'dQ=0 (22)
Q

The resulting set of algebraic equations is solved with the following two-step Newton-Raphson/Non-linear
Gauss Seidel iteration scheme. At each time step the momentum and mass balances are solved until convergence
assuming the physical domain from the previous time step. Thus once the velocities and pressure are known, the
new locations of the mesh points can be determined from the mesh generation equations and their boundary
conditions. This procedure continues until convergence is achieved for both the flow and mesh equations. Finally
the set of algebraic equations is integrated in time with the Predictor-Corrector Euler method using an automatic
adaptation of the time step for optimizing the code performance. The iterations are terminated using a tolerance
for the absolute error of the residual vector which is set to 107

4. RESULTS AND DISCUSSION
4.1 Constant velocity problem

Fig. 2 illustrates the flow field in a volume of a viscoplastic material that initially fills only partially the space
between the two disks, that is when a > b . The snapshots are taken at times t=0.2, t=0.5, t =0.6 and each
one of them shows the contour plots of the axial velocity, on the upper half, and the radial velocity, on the lower
half, for Bn =10, Re=0, Ca=10°, St=0, w=15, £=0.1, ag =5, By =1, N=500. At early times the
fluid moves inside the disks while near the end of the simulation it exits from them. On the left hand side we can
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see the axis of symmetry while on the right hand side we see the free surface of the fluid. We observe that the
free surface, which initially was straight, deforms everywhere even at small times. The axial velocity has its
smallest (negative) values near the disk walls because the fluid follows the motion of the disks in the axial
direction and its values monotonically increase towards zero at the mid-plane.

-1.000x10° 2.169x10"

0.000x10° 7.959x10°
-1.000x10° 6.223x10"
/

1.774x10!
9.137x10"

/
0.000x10° 2.476x10!

Figure 2. Contour plots of the axial, upper half, and the radial, lower half, velocity component at 1 =0.2,
t=0.5,¢=0.6 and for Bn=10, Re=0, Ca=10%, St=0, w=15, ¢=0.1, ag =5, =1, N=500

As for the radial velocity component on the axis of symmetry it becomes zero because of the symmetry.
Moreover, the slip condition which was introduced in this simulation divides the surface of the disks into a
noslip region where the radial velocity is zero and a slip region near the triple contact point. In the slip region,
although the disks force the fluid to move in the axial direction, the fluid near the disks follows only partly that
motion because it is also allowed to slip in the radial direction. Another significant difference is observed on the
axial velocity field near the axis of symmetry. The axial velocity of the fluid remains equal to the velocity of the
disk up to almost half the distance of the disk from the mid-plane and this happens because unyielded material
arises in that region. Smyrnaios & Tsamopoulos [7] have also noticed a similar dependence of the size of these
domains on the aspect ratio. It must be noted though that the different aspect ratios in their quasi steady state
analysis correspond to different time moments in our transient simulation.

Figure 3. Yield surfaces for Re =0, Ca=10°, St=0, w=10, £=0.1, ay =10, f,;=1, N=500 and

various Bn numbers at time ¢ =107

Fig. 3 shows the shape of the yield surface as a function of the Bn number for Re=0, Ca = 10%, St=0,
w=10, £=0.1, B, =1, a;=10 and N =300 at time t=10". As we can see in the figure the
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viscoplasticity of the material affects significantly the size of the unyielded regions that arise in the flow domain.
More specifically their size increases substantially with the increase of the Bn number.

We also examined the effect of the slip coefficients ¢ ; and f,; on the flow field. When the value of S

increases the level of the slip velocity, near the triple contact point, decreases which has an effect on the shape of
the fluid/air interface. However the velocity field away from the triple contact point is not affected significantly.
The other parameter, o, , controls the rate of decrease of the slip velocity and thus it can be used for adjusting

the length of the slip region. The smaller the value of a; the larger the slip region becomes. Simulations have
shown that «, has a very small effect on the shape of the fluid/air interface. However its effect on the domain

of the unyielded region is rather important. Fig. 4 shows the shape of the yield surface for two different
parameters of «; .

095 [ , ]
0,90 -_ K _-
0,85 L / i
0,80 L P ]

oy T o, = 5 B

070 |- O .
065 |- 4
060 | 4

0,55 |- -

o0 L ¢ 00w

Figure 4. Yield surfaces at time t=10" for Bn=30, Re=0, Ca=103, St=0, w=5, =05, B, =10,

N =300 and various «a;

We observe that when the slip region becomes longer the domain of the unyielded material becomes smaller or
for even smaller value of «;, that is when «a  =2.5 which is not presented here, the unyielded area totally

disappears. This happens because as the slip length increases and slip is allowed at a larger portion of the disk
surface, the fluid follows only partly the axial motion of the disks towards the mid-plane and flows also in the
radial direction. Thus the flow becomes extensional near the disk surface and the axis of symmetry which
prohibits the formation of an unyielded domain.

It is very interesting to calculate the squeeze force that must be applied on the disks in order to maintain their
constant velocity because usually in such a rheological experiment the force is the only measured quantity. We
calculate the force acting on the disks by integrating the normal to the disks component of the total stress tensor,
o, , over the portion of the disk surface which comes into contact with the fluid

RC
F= IZﬂazzrdr
0

Fig. 15 shows the dependence of the squeeze force on time and for various Bn numbers. The rest of the
parameters are Re=0, Ca =10, St=0, w=10, £=0.1, Ba=1, oy =5 and N =300. We observe that
the squeeze force increases significantly as time passes because of the decreased distance of the disks.
Furthermore we notice that there is a substantial increase in the force that must be applied on the disks as the Bn
number increases especially at early times. This dependence of the force on the viscoplasticity of the material
was also noted by previous researchers in the past [7],[10]. The variation of the force is almost of one order of
magnitude as the Bn number increases from 1 to 50. Thus we can say that measuring the force that must be
applied on the disks to maintain their constant velocity can be an efficient way of determining the value of the
yield stress for a viscoplastic fluid.
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Figure 5. Evolution of the squeeze force with time for Re=0, Ca = 10°, w=20, £=0.1, ag =5, Bg=1,
N =300 and various Bnnumbers

4.2 Constant force problem

The measured quantities in a squeeze flow experiment that is conducted under constant force are the axial
velocity of the disks and their position with time. The motion of the disks in such an experiment is decelerating
because as they approach each other the resistance of the fluid continuously increases which makes them to slow
down and eventually to stop. Fig.16 shows the evolution of the axial velocity and position of the upper disk with

time for the case of a viscoplastic fluid with Bn =10, Re=0, Ca = 103, St=0, w=5, ¢=05, B, =100,
ag =5 and N=300.

0 1 2 3 4 5 6 7 8
T T T T T T T T T 1'05
0.0 4 1,00
-0,2 — 0,95
- 0,90
- - Vv
o g 085
""" z
A\ d z
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wod L T ... o085
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Figure 16. Evolution of the squeeze velocity and the distance of the upper disk from the mid-plane z, with time
for Bn=10, Re=0, Ca=10>, w=5, £=0.5, a, =5, B, =100, N =300

Indeed, one can see in the figure that the velocity of the disks reduces very rapidly, especially at early times. It is
characteristic that the disk has already lost the 90% of its axial velocity already by the time ¢ = 0.70 while the

distance of the upper disk from the mid-plane is z, = 0.78 . After that point the disk velocity reduces with much

smaller rate and it finally becomes practically zero at time ¢ = 7.78 . The position of the disk at that time moment
is z; =0.64 . The motion of the disks eventually stops because all the material between the two disks behaves as
a rigid solid.
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5. CONCLUSIONS

We studied the transient squeeze flow of a viscoplastic material between two parallel coaxial disks. Both cases
of the disks moving with constant velocity and under constant force, were studied. This is the first truly transient
simulation of squeeze flow for viscoplastic material and allows us to determine the shape of the liquid/air
interface which was impossible with the quasi-steady state models. The simulation of the process is based on the
mixed finite element method for the discretization of the governing equations coupled with a quasi-elliptic mesh
generation scheme in order to follow the large deformations of the physical domain.

We examined the effect of the yield stress, the slip coefficients and the gravity forces. In the constant velocity
problem is shown that unyielded material arises around the two stagnation points of flow at the disk centers,
verifying previous steady state calculations. The size of these domains increases with the Bingham number but
reduces with time because of the decreased distance of the disks. The force that must be applied on the surface of
the disks in order to maintain their constant velocity increases substantially with Bingham number and with time.
The slip condition on the surface of the disks is found to affect significantly the flow field. More specifically the
level of the slip velocity near the triple contact point alters the contact angle of the moving interface with the
surface of the disks, which decreases from 180°. Moreover as the length of the slip region increases, the size of
the unyielded areas reduces significantly. Under typical gravity conditions the flow inside the two disks is not
affected significantly whereas when enough fluid exits them, the effect of gravity on the flow field as well as on
the shape of the free surface becomes rather important.

Finally, when constant force is applied on the disks their motion is decelerating until they finally stop since at
that time all the material between them behaves as rigid solid. The time that is needed for the disks to stop
moving as well as their final position depends strongly on the viscoplastic properties of the material. As the
Bingham number increases the time reduces while the final distance of the disks increases.
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Abstract. Semisolid slurries used in the processing of alloys are materials with thixotropic behavior and yield
stress. All existing and future semisolid technologies are based upon the unique combination of their solid-like
and fluid-like behavior. However, an intrinsic difficulty in utilizing the potential of the process is the rather
complex flow behavior of the slurries. As a two-phase mixture of liquid and solid particles the bulk flow behavior
is determined by the way the two phases interact and evolve during processing. This suggests that process
variables change continuously in a way that is very different from liquid casting.

The objective of rheological studies of the slurries is to describe qualitatively the solid phase structure, the
contribution from the liquid phase, and to express the apparent mechanical response in terms of structural
parameters, such as grain size, degree of agglomeration, etc., and their kinetics. Presently, this ultimate objective
is rather difficult to achieve. Instead, the alternative is to introduce a phenomenological approach that captures
and generalizes the salient features of semisolid behavior. These features are: (a) the existence of a finite yield
stress, (b) the apparent shear-thinning behavior in steady-state shear rate, and (c) the apparent shear-thickening
behavior during rapid transients where the shear rate is variable. Broadly speaking, the mechanical response of
semisolid slurries corresponds to that of a thixotropic, non-linear visco-plastic material with history-dependent
material parameters.

However, the determination of material constants for the assumed behavior is difficult to achieve due to the
high temperature of the suspensions and the short duration of the material response. In this paper we demonstrate
the use of computational rheology as a way to determine the material constants. We show that by modeling exactly
actual classical tests using computational methods we can determine the material constants that fit the assumed
bulk rheological behavior. We show also that the same approach can be used to test various hypotheses about
structure breakdown and the associated time scales.

1 INTRODUCTION

Semisolid slurries are a mixture of rounded, rosette-like solid particles and liquid at a temperature between the
solidus and liquidus isotherms. The average solid volume fraction is a function of the bulk temperature of the
suspension and depending on the local temperature it varies from zero to unity. These materials exhibit a yield
stress, which depends on the solid volume fraction. During processing the viscosity changes significantly due to
segregation effects of the internal microstructure. In general, semisolid materials behave like visco-plastic fluids
characterized by a finite yield stress 1y, and by material properties that are time and shear rate depended. Therefore,
Herschel-Bulkley fluid model with time dependent parameters could be applied to characterize the flow and time
depended phenomena of semisolid slurries [1].

The Herschel-Bulkley model is based on the combination of the Bingham and power-law models. Thus,
Herschel-Bulkley fluids exhibit a yield stress, t,, which is the minimum stress required for the material to deform.
The existence of yield stress in semisolid materials is due to bonding and dry friction between particles. Once the
yield stress is exceeded the material behaves either as a shear-thickening or as shear-thinning fluid with a non-
linear stress strain relationship [1]:
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where K is the consistency index and N is the power-law index, which determines the nonlinear behaviour of the
fluid upon yielding; the fluid is shear-thinning for n<1 and shear-thickening for n>1 [2]. For n=1 the Bingham
model is recovered, in which case K represents the constant viscosity. The three material parameters, K, 7, and n
are determined from experimental data. The Herschel-Bulkley model cannot be used in practical problems because
it is singular when the shear rate approaches zero. With the exception of ideal unidirectional problems,
viscoplastic behavior is usually described using non-singular approximations of Eq. (1). A popular regularization

is the one proposed by Papanastasiou, which is valid uniformly at all levels of y [2,3,4,5]:

- T, [l—ex? (-my ) ]
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In the above constitutive relation Il stands for the second invariant of a tensor and m is a stress growth exponent.
The above regularized constitutive equation provides a satisfactory approximation of the Herschel-Bulkley model

for sufficiently large values of m and is valid uniformly at all levels of Y. The need to determine the yielded and

unyielded regions of the flow is thus eliminated. It should be noted that large values of m might lead to
convergence difficulties while small values can lead to wrong results. Hence, the value of m should be chosen very
carefully [3, 4, 6].

2 COMPRESSION EXPERIMENT

2.1 Description of the Experiment

In this study, we investigated numerically the compression of a finite amount of Herschel-Bulkley fluid by
considering constant, time-independent properties. The numerical simulations were performed under constant load
as well as under constant velocity applied only on the upper side of the sample. This is an important difference
from other experimental studies, in which the compression is performed simultaneously from both sides of the
sample. The objective here is to study the influence of the controlling parameters such as the Bingham (Bn)
number on the compression experiment and other derived material quantities. The topology of the yielded (t > 1,)

and unyielded (t < t,) zones and their evolution during processing is examined here as a key derived quantity.

This aspect is important in understanding the structural changes and rheological attributes of the material during
flow. Alexandrou and his collaborators [3, 7] demonstrated that regularized models such as the Papanastasiou, the
biviscosity and other viscoplastic models could predict the flow and represent the topography of the yield surfaces
reasonably well provided that the regularizing parameters are properly selected.

Figure 1 shows the axisymmetric sample of initial radius R and height H=2R used in the simulations. Due to
the non-dimensionalization the height is equal to one (H=1) and the width is D/2=R=0.5. The material is placed
on a plate and compressed from the top by applying either constant force or constant velocity.

Due to symmetry, only one-half of the sample is used in the simulations. A related flow to this problem is Stefan’s
squeezing flow, in which both sides are set under external pressure. Symmetry boundary conditions are imposed
along the axis of symmetry (r=0) and the velocity vector is zero along the bottom.

In the experiment performed under constant velocity, the specimen is compressed (from the top), and the
transverse velocity (pointing downwards) is set to unity. While in the case of experiment performed under
constant load, the boundary condition at the top of the sample is given by the relation:

F:Lg'ez ds 3)

where S refers to the area at the top. The velocity in this case is everywhere set to zero at t=0.
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Figure 1: Geometry of the compression experiment.

2.2 Governing Equations

The flow is governed by the continuity and momentum equations for an incompressible fluid:

V-u=0 4)

la

ou
p 5?+u-Vu =V. (5)

where p is the density of the fluid, and o is the total stress tensor defined as ¢ = -pl + 1, p being the pressure and I
the unit tensor. The viscous stress tensor T is assumed to obey the regularized Herschel-Bulkley equation (2)
which closes the system of equations (4) and (5).

The governing equations in Lagrangian coordinates together with the constitutive relation, boundary conditions
and the free surface are descretized using the mixed-Galerkin finite element method with the standard nine-node
quadrilateral elements. The resulting non-linear system of equations was linearized using a Newton-Raphson
iteration procedure and a solution is considered converged when the maximum error is less than 107,

2.3 Non-dimensionalization

The non-dimensional form of the equations 4 & 5 for both experimental cases (constant load and constant
velocity) becomes:

V-u'=0 5)
au : * * *
—+U -Vu |= V.o (6)
ot
The dimensionless form of the regularized Herschel-Bulkley constitutive relation (2) takes the form:
. 1—exp(-M7") oo | v
T {Bn—p.(* AL ”}v (7
= v L

where 7y * is the dimensionless rate of strain tensor, Bn is the Bingham number and M the dimensionless
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stress growth exponent.
In the case of constant load there is no characteristic velocity and the Bingham number Bn and the
dimensionless growth exponent M are defined in terms of the force F:

T H?
Bn = =— 8
= ®)

F 1/n
M=m| ©)

where H is the initial height of the sample.

In the case of constant velocity the Bingham number Bn and the dimensionless growth exponent M are defind
by:

By - fo M (10)
K U"
mU
M=——
o (11)

where U is the compression velocity.

3 NUMERICAL RESULTS

For the selection of the most suitable mesh refinement we employed five meshes (10x10 to 20x20) with
number of elements in the range from 100 to 400 (10x10 to 20x20) and we examined the convergence of the
numerical results. By taking into consideration also computer’s processor speed, we selected the mesh with 256
(16X16) elements, which gives practically converged results.

In Figure 2 is shown typical mesh shapes with 256 (16X16) elements, obtained during an experiment under
constant load with Bn=0.1 and M=300. Note that the mesh appears to be more refined due to the fact that the
graphics package divides each nine-node element into four quadrilaterals.

Figure 2: Typical meshes obtained during a constant force experiment; Bn=0.1 and M=300
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The effects of the Bingham number, Bn, and the power-law exponent, n, on the evolution of the sample height,
i.e. on the rate of compression, under constant load are illustrated in Figures 3 and 4 respectively. Figure 3 shows
the evolution of the sample’s height for five different Bingham numbers (Bn=0.05, 0.1, 0.3, 1 and 2), which
increases by increasing the Bingham number (Bn) and reaches earlier the steady state. In experiments under
constant load, compression is in general very rapid initially and then decelerates slowly approaching a “steady”
state. As for the influence of the power-law exponent illustrated in Figure 4 the rate of compression, as expected,
increases for higher values of n.
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Figure 3: Effect of the Bingham number on the evolution of the sample’s height;
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Figure 4: Effect of the power-law exponent n on the evolution of the sample’s height in a constant
force experiment; Bn=0.1 625
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Figure 5 shows snapshots of the sample in an experiment under constant load and Bn = 0.1, taken at different
times. Note that for presentation purposes the snapshots are not in scale. The evolution of the yielded (grey colour)
and the unyielded (black colour) areas is also shown. Initially the material is yielded at the edges of the sample’s
upper side. As expected, the size of the yielded regions increases as the experiment proceeds. The compression of
the sample begins soon after the whole material is yielded, with the exception of the unyielded spot located just
above the bottom of the sample and around the axis of symmetry, which persists till the end of the compression
experiment. Although the load remains constant on the top side decreases, due to the increase of the area of the
compressed side, the total applied stress. Interestingly, in these final stages the unyieded area grows again
instantaneously because the effective stress field in the sample decreases. This phenomenon is due to the fact that
the sample is compressed with constant load, which is applied from its top side.
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Figure 5: The evolution of the yielded (grey colour) and unyielded (black colour) areas in a
constant force experiment; Bn = 0.1.
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Abstract. The time-dependent, two-dimensional compressible Newtonian flow over the reservoir-die region is
solved assuming that slip occurs along the die wall following a non-monotonic slip law. The combination of
compressibility and nonlinear slip leads to self-sustained oscillations of the pressure drop and of the mass flow
rate at constant piston speed, when the latter falls into the unstable negative slope regime of the flow curve. The
effect of the reservoir volume on the amplitude, the frequency and the waveform of the pressure oscillations is
studied and comparisons are made with experimental observations concerning the stick-slip polymer extrusion
instability.

1 INTRODUCTION

Slip at the wall is considered to be a key factor in polymer extrusion instabilities, such as the stick-slip
instability!™?. A characteristic of the stick-slip instability not encountered with other types of extrusion
instability, such as sharkskin and gross melt fracture, is that this is accompanied by pressure and mass flow rate
oscillations which result in extrudate shapes characterized by alternating rough and smooth regions™?. Recent
work concerning numerical modeling of the stick-slip instability has been reviewed by Achilleos et al.! who
discuss three different instability mechanisms: (a) combination of nonlinear slip with compressibility; (b)
combination of nonlinear slip with elasticity; and (c) constitutive instabilities. In the present work, we
investigate further the compressibility-slip instability by means of numerical simulations.

The compressibility-slip mechanism has been tested by Georgiou and Crochet™*® in the Newtonian case,
with the use of an arbitrary non-monotonic slip equation relating the wall shear stress to the slip velocity. These
authors numerically solved the time-dependent compressible Newtonian Poiseuille and extrudate-swell flows
with non-linear slip at the wall, showing that steady-state solutions in the negative-slope regime of the flow
curve (i.e. the plot of the wall shear stress versus the apparent shear rate or the plot of the pressure drop versus
the volumetric flow rate) are unstable, in agreement with linear stability analysis. Self-sustained oscillations of
the pressure drop and of the mass flow rate at the exit are obtained, when an unstable steady-state solution is
perturbed, while the volumetric flow rate at the inlet is kept constant. These oscillations are similar to those
observed experimentally with the stick-slip extrusion instability. In a recent work, Georgiou!® obtained similar
results for the compressible, axisymmetric Poiseuille and extrudate-swell flows of a Carreau fluid with slip at
the wall, using an empirical slip equation that is based on the experimental measurements of Hatzikiriakos and
Dealy!"® on a HDPE melt. Unlike the experimental observations®®**” however, the limit cycles of the periodic
solution obtained in all these numerical studies do not follow the steady-state branches of the flow curve.

As pointed out by Georgiou™, including the reservoir is necessary in order to account for the compression
and decompression of most part of the fluid, and obtain limit cycles following the steady-state branches of the
flow curve, i.e. for obtaining pressure and extrudate flow rate oscillations characterized by abrupt changes, as is
the experiments. Only such abrupt changes can lead to extrudates with alternating relatively smooth and
sharkskin regions, which is the basic characteristic of the stick-slip instability. Note that the reservoir region is
taken into account in various one-dimensional phenomenological models, which are also based on the
compressibility/slip mechanism™. These describe very well the pressure oscillations but they are not predictive,
because they require as input certain experimental parameters.

The objective of the present work is to extend the simulations of Georgiou!® by including the reservoir
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region and study the effect of the reservoir length on the pressure oscillations. According to experiments®°*2,

the period of the oscillations scales roughly with the volume of the polymer melt in the reservoir. Weill®! and
Durand et al.' also studied experimentally the effect of the reservoir length on the durations of compression
and relaxation and found that both times increase linearly with the reservoir length, which indicates that the
latter does not affect the waveform of the oscillations.

In Section 2, the governing equations, the slip equation and the boundary and initial conditions are discussed.
In Section 3, we describe briefly the numerical method, present the numerical results, and make comparisons
with experimental observations. Finally, in Section 4, we summarize the conclusions.

2 GOVERNING EQUATIONS AND BOUNDARY CONDITIONS

The geometry of the flow corresponds to the actual setup used in the experiments of Hatzikiriakos and
Dealy™®. There is a contraction region at 45 degrees between the barrel and the die as shown in Fig. 1. The
actual values of the radii of the barrel and the die, denoted respectively by R, and R, and the length of the die, L,
are tabulated in Table 1.In the simulations, the length of the barrel, L,, varied from 20R to 200R.

No slip
v.=v.=0
0 R, =125R
Vz =—2
Rb
VI” :O . .
Reservoir and contraction
Piston
- G}’Z = 0
V7

Figure 1. Geometry and boundary conditions for the time-dependent. compressible, axisymmetric flow over the
reservoir-capillary region, with slip along the capillary wall

Symbol Parameter Value
Ry Radius of the barrel 0.9525 cm
Ly Length of the barrel

Contraction angle 45 degrees
R Radius of the die 0.0381 cm
L Length of the die 0.762 cm

Table 1 : Symbols and values of various lengths concerning the flow geometry

To non-dimensionalize the governing equations, we scale the lengths by the capillary radius, R, the velocity
vector, v, by the mean velocity ¥ in the capillary, the pressure, p, by #V/R,  denoting the constant viscosity, the
density, p, by a reference density, p,, and the time by R/V. With these scalings, the dimensionless continuity and
momentum equations for time-dependent, compressible, isothermal viscous flow in the absence of body forces
become:

a—/D+V-,0V=O Q)
ot
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and
ov 2
Rep E-FV-VV =-Vp+V°v 2

where Re is the Reynolds number, defined by

Re = M (3)
n

The above equations are completed by an equation of state relating the pressure to the density. We used the first-
order expansion:

p=1+Bp (4)
where B is the compressibility number,
pnV
B=—— 5
2 ()

f being the isothermal compressibility.
Along the capillary wall, slip is assumed to occur following the three-branch multi-valued slip model:

Aoc™
10w+ 0<v,<v,
— e
Yw = AZO-W v Ve2 SVW s Vmin (6)
Ago?, iy ZVnin

where v, is the relative dimensionless velocity of the fluid with respect to the wall, o,, is the dimensionless shear
stress on the wall, v,, is the maximum slip velocity at o,,, and v,,;, is the minimum slip velocity at o,,,,. The third
branch is the power-law slip equation suggested by Hatzikiriakos and Dealy™ for the right branch of their flow
curve. The first branch results from the slip equation they propose for the left branch of their slope curve after
substituting all parameters for resin A at 180°C and taking the normal stress as infinite. Finally, the second
negative-slope branch, which corresponds to the unstable region of the flow curve for which no measurements
have been possible, is just the line connecting the other two branches. The values of all the slip equation
parameters and the definitions of the dimensionless numbers A4, can be found in Ref. 6.

The other boundary conditions of the flow are shown in Fig. 1. Along the axis of symmetry, we have the
usual symmetry conditions. Along the barrel and the contraction walls both velocity components are zero (no
slip). Along the capillary wall, only the radial velocity is zero, whereas the axial velocity satisfies the slip
equation (6). At the inlet plane, it is assumed that the radial velocity component is zero while the axial velocity
is uniform, corresponding to the motion of the piston at constant speed. Note that the imposed volumetric flow
rate, O, is scaled by zR’V. The simulations are carried out on a fixed domain, i.e. the motion of the piston is not
taken into account. This is a reasonable assumption provided that the piston speed is low. At the capillary exit,
the radial velocity component and the total normal stress are assumed to be zero.

Finally, as initial condition, we use the steady-state solution corresponding to a given volumetric flow rate
0, that we perturb to Q at ¢=0.

3 NUMERICAL RESULTS

We use the finite element formulation for solving this Newtonian flow problem, employing biquadratic-
velocity and bilinear-pressure elements. For the spatial discretization of the problem, we use the Galerkin forms
of the continuity and momentum equations. For the time discretization, the standard fully-implicit (Euler
backward-difference) scheme is used. Various finite element meshes have been used in the simulations with the
reservoir length, L;, ranging from 20 to 200. These were refined near the walls, and around the entrance of the
capillary. The longest mesh (L,=200) consisted of 4511 elements corresponding to 42403 unknowns. In all
results presented below the following values for the slip equation parameters and the compressibility number
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have been used: 7,=3.23, 4,=0.0583, m,=2.86, 4,=0.929, m;=-4.43, 4;=4.04, and B=1.54 10" .

We first constructed the steady-state flow curves for the reservoir-capillary region. In Fig. 2, we show the
log-log plot of the pressure drop, measured along the centerline from the piston to the die exit, versus the
volumetric flow rate obtained with Re=0.01 and L,=80. Due the non-monotonicity of the slip equation, the flow
curve exhibits a maximum and a minimum, which define the limits of the unstable regime, i.e. only the steady-
state solutions corresponding to the two positive-slope branches are stable. As already mentioned, the steady-
state solutions are perturbed by changing the volumetric flow rate from an old value to the desired one Q. Given
that the flow is compressible, the behavior of the time-dependent solution depends on whether the new value of
Q corresponds to a positive-slope branch, or to the negative-slope branch which is unstable. In the first case, the
new steady-state is obtained without any oscillations, whereas, in the second case, the solution is oscillatory and,
after a transition period, becomes periodic. Self-sustained oscillations of the pressure drop and the mass flow
rate are obtained which are similar to those observed experimentally in the stick-slip extrusion instability
regime. All the results presented below have been obtained in the unstable regime.

2

10 T

AP

10 10° Q 10"

Figure 2. Flow curve for Re=0.01 and L,=80

In Fig. 3, we show the oscillations of the pressure drop (Fig. 3a) and the volumetric flow rate (Fig. 3b)
obtained by perturbing the steady-state solution for Re=0.01, L,=80 and Q0=1.35. In Fig. 3a, we show two
different possibilities when the pressure drop is measured across the entire flow domain, (4P),,, and across the
capillary, (4P)..,. Sudden jumps of the pressure drop are observed in the latter case. The volumetric flow rate at
the capillary exit is also characterized by sudden jumps which is consistent with experimental observations.
Plotting the trajectory of the solution on the flow curve plane (Fig. 4) shows that, after a transition period, a limit
cycle is reached which follows exactly the positive-slope branches of the steady-state flow curve. The
volumetric flow rate increases together with the pressure following exactly the left positive-slope branch of the
flow curve and, when the pressure reaches its maximum value, O jumps to the right positive slope branch. The
volumetric flow rate then starts decreasing together with the pressure following this branch till the pressure
reaches its minimum and then jumps to the left positive-slope branch and starts the next oscillation cycle. This
behavior agrees well with experimental observations®®'”. Note also that in our previous study™, the limit cycles
did not follow the steady-state flow curve due to the omission of the reservoir region. This drawback was also
exhibited by the one-dimensional model of Greenberg and Demay!**! , which does not include the barrel region.
Note that one-dimensional phenomenological relaxation/oscillation describe the oscillations of the pressure and
the volumetric flow rate in the stick-slip instability regime under the assumption that these follow the
experimental flow curve™ ! The present simulations are the first to show that the limit cycle follows the
steady-state flow curve.
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Figure 3. Pressure and flow rate oscillations for 0=1.35, Re=0.01 and L,=80
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Figure 4. Trajectory of the solution on the flow curve plane; 0=1.35, Re=0.01 and L,=80

We then reduced the value of the Re from 0.01 to 0.001 in an attempt to approach the experimental value
(1.43 10®). As shown in Fig. 5, where we compare the oscillations of 4P during one cycle for Re=0.01 and
0.001, L,=80 and Q=1.35, decreasing the Reynolds number has no practical effect on the oscillations. However,
the artificial overshoots are observed in the flow rate. Thus instead of trying to eliminate the overshoots by
reducing the time step (which would have resulted into much longer runs), we decided to continue the runs with
Re=0.01. Note that in our previous study™ for the extrudate-swell flow, in which the reservoir region has been
excluded, we observed that as the Reynolds number is reduced the amplitude of the pressure-drop oscillations is
reduced, the amplitude of the mass-flow-rate oscillations is increased and the frequency of the oscillations is
considerably increased. This shows once again the importance of including the reservoir region.
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Figure 5. Comparison of the pressure oscillations for Re=0.01 and 0.001; L,=80 and 0=1.35
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Figure 6. Effect of the reservoir length on the pressure oscillations; 0=1.35 and Re=0.01
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In order to study the effect of the reservoir length on the pressure oscillations we obtained results for various
values of L,. In Fig. 6, we show the pressure oscillations for different values of L,, Re=0.01 and 0=1.35. We
observe that the period of the pressure oscillations increases with L, while their amplitude seems to be less
sensitive. This is more clearly shown in Fig. 7, where the period and the amplitude of the pressure oscillations
are plotted versus the reservoir volume. In agreement with experiments with different polymer melts®®'°16:171
the period T increases linearly with the reservoir volume while the amplitude is essentially constant. In Fig. 7a,
the period appears to pass through the origin which is not the case with the experiments. Finally, in order to
show the effect of the reservoir on the waveform of the pressure oscillations we plotted the normalized pressure
oscillations during one cycle for L, =20 and 200 (Fig. 8). The waveform is independent of the reservoir length,
i.e., the durations of the compression and relaxation increase linearly with the reservoir length. This agrees well
with the experiments of Weill'®), Hatzikiriakos and Dealy® and Durand et al.%.

150 T T T T 15
T Amplitude T
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Figure 7. The period and the amplitude of the pressure oscillations versus the reservoir volume; 0=1.35 and
Re=0.01
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Figure 8. Effect of the reservoir length on the waveform of the pressure oscillations; 0=1.35 and Re=0.01
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4 CONCLUSIONS

We solved numerically the time-dependent, compressible flow of a Newtonian fluid over the reservoir-
capillary region, assuming that slip occurs along the capillary wall following a non-monotonic slip law based on
the experimental findings of Hatzikiriakos and Dealy!"® for certain polyethylene melts. By using meshes of
different length, we have studied the effect of the reservoir length on the pressure oscillations occurring when
the imposed flow rate falls in the unstable negative-slope regime of the flow curve. Our calculations showed that
the pressure oscillations follow the steady-state flow curve and that their period increases linearly with the
reservoir length, while their amplitude and waveform remain unaffected. These results are in good agreement
with the experiments of Weill'®! | Hatzikiriakos and Dealy™®, Durand et al.'!, and others, which have also shown
that the period and the shape of the pressure oscillations vary also with the imposed flow rate, where their
amplitude remains unaffected. The effect of O on the pressure oscillations is currently under study.
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Abstract: Applied liquid coatings are often dried or cured to their final form. Under uniform conditions, drying
can be taken to be one-dimensional, i.e. top-down, in most coatings except at the edges, where it is both top-
down and edge-in. However, uniform drying conditions are difficult to achieve, and in-plane gradients in
concentration, shrinkage, and stress develop. Drying at the edge is the archetype of such non-uniform drying;
modeling it can help in assessing the effects of in-plane gradients. A two-dimensional theory of drying is
formulated and used to model non-uniformly drying coatings. The equation system is solved by a method of
lines. The solutions illustrate effects of non-uniformities on concentration distribution, and consequently on
shrinkage and stress gradients. The resulting stresses can produce curling, cupping, cockling, cracking,
delaminating from the substrate, and other defects in the final coating.

1 INTRODUCTION

Coatings are generally applied as liquid, then dried or cured to their final solid form. Whether by gelation or
vitrification, the transition from liquid to solid can be approximated as occurring at a specific concentrationt™?.,
Solvent evaporation during drying reduces the stress-free state of the coating causing its current state to shrink. If
the coating is liquid, its current state shrinks isotropically and with no slip at the substrate. If differential
shrinkage produces deviatoric strain, deviatoric viscous stress appears in proportion to the local strain rate; the
proportionality is the viscosity. If the coating is an elastic solid, in-plane shrinkage of its current state is
frustrated by adhesion to the substrate. If differential shrinkage produces elastic strain, elastic stresses appear in
proportion to the local strain; the proportionality is the elastic modulus. Only solvent loss and shrinkage after
solidification produces stress in the drying coating!*2.

Far from the edge, drying is top-down and, under uniform conditions, gradients in concentration, stress and
shrinkage are one-dimensional: normal to the substrate. However, non-uniformities in mass transfer, coating
thickness, and substrate profile can lead to in-plane gradients in concentration, shrinkage and stress; so can other
factors. Near the edge, drying is both top-down and edge-in; and even under uniform conditions, gradients in
concentration, stress and shrinkage are two- or three-dimensional: normal and parallel to the substrate. One-
dimensional models of drying and stress development are inadequate for understanding these gradients and their
consequences.

2 THEORY AND COMPUTATION

Theory of two-dimensional drying is brought to bear on coatings applied as liquid that solidify at a moving
front to their final dried solid form. The governing equations are those describing solvent mass transfer by
diffusion and convection; viscous flow in the liquid coating; appearance and subsequent migration of the
solidification front; shrinkage and stress development in the solid coating; and the effect of falling solvent
concentration on the coating’s diffusivity, viscosity, elastic modulus, yield stress and post-yield viscosity.

The governing equations are highly non-linear, and difficult if not impossible to solve in terms of standard
domain-spanning functions. So the equations are solved by a “method of lines:” Galerkin’s method with finite
element basis functions in space, and finite-differencing of the time-dependent basis function coefficients.
DassL package™ is used to solve the equations by a Newton’s method with secant-approximated Jacobian!™; and
Hood’s frontal solver™ is used to solve the linear matrix problem at each iteration.

The model system chosen resembles closely a polystyrene-toluene solution. The coating behaves like a
Newtonian liquid before solidification, a neo-Hookean elastic solid after. Wherever the local stress in the solid
coating exceeds the yield stress, the coating relaxes stress to the yield value by plastic yielding of the stress-free
state. Von Mises yield criterion® and its associated flow rule are used to model stress relaxation by yielding.
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Available experimental data on the concentration dependence of diffusivity, viscosity, and elastic modulust’%%!

were fitted empirically and the curves were extended to regions where data were not available. There appears to
be neither experimental data nor theoretical framework about the concentration dependence of yield stress and
post-yield viscosity. So the yield stress was taken to be a constant fraction of the elastic modulus, and post-yield
viscosity was assumed to vary with composition as does the Newtonian viscosity.

3 RESULTS AND DISCUSSION

3.1 Drying near the edge after solidification

Solidified drying coatings that adhere to the substrate cannot shrink freely in the in-plane direction i.e.,
parallel to the substrate. The difference between the current state and the stress-free state of the coating is elastic
strain, to which stress is proportional; the proportionality factor is elastic modulus. At the edge, drying is both
top-down and edge-in, and inherently two-dimensional. Non-uniform solvent removal there causes non-uniform
shrinkage, and produces in-plane gradients in stress, as shown in Figure 1. Stress varies close to the edge but
only imperceptibly more than four to six thicknesses away. Far away from the edge, the cross- and down-web
tensile stresses fall to their transversely isotropic value, as seen in Figures 1a and 1b; the normal peeling stress
and shear stress vanish, as seen in Figures 1c and 1d. Near the edge, the cross- and down-web tensile stresses
vanish at the free corner; and the peeling and shear stresses are theoretically “infinite” — an elastic singularity
— at the pinned corner. In-plane stress gradients can produce defects such as cockle. The high tensile stress
concentration at the pinned edge can lead to delamination from the substrate. Even uniform in-plane tensile
stress away from the edge, when excessive, can produce defects like curling and cupping, and failures like
cracking and crazing. If the coating yields, i.e. relaxes stresses plastically, the local stress in the coating falls to
the yield value everywhere that value has been exceeded. Thus, plastic yielding reduces the level of stress
overall and variation of the concentrated stress near edges, and therefore the danger of defects and failures.
Predictions from the model show that high elastic modulus and high yield stress raise the level of stress and in-
plane stress gradients; high post-yield viscosity prevents the stresses from relaxing rapidly, producing a stress
peak.

The high elastic modulus and yield stress of hard coatings make them susceptible to cracking and
delamination. A method sometimes advocated to lower the overall stress is to apply a thin sub-layer of softer
material between the hard layer and the substrate. The idea is that the softer sub-layer would allow the upper
layer to retract more from the edge without significantly affecting the coating’s functionality. Retraction of the
upper layer’s edge would allow its current state to be closer to its stress-free state, thereby lowering its strain and
stress.

Figure 2 shows the effect of sub-layer thickness on the upper layer’s edge retraction and stress concentration.
The upper layer’s elastic modulus, yield strength, and post-yield viscosity are five times greater than those of the
sub-layer. The upper layer’s initial thickness is 50 microns in all cases; whereas the sub-layer’s thickness was
varied from 0 to 50 microns. With rising sub-layer thickness, the edge of the upper layer retracts more and its
stress falls. However, edge retraction is limited and soon asymptotes. The retraction’s effect is felt only near the
edge, and falls quickly about four to six thicknesses away. Figure 3 shows the effect of the sub-layer’s thickness
on stress concentration in the sub-layer. Because edge retraction lowers stress in the top-layer, it exerts less
traction at the interface between the two layers producing less stress in the sub-layer. The stress concentration at
the pinned edge is significantly lower than that in the single layer coating. Predictions from the model indicate
that the amount of edge retraction depends on the ratio of the moduli of the two layers and the ratio of their
thicknesses. Weaker, thicker sub-layers allow the upper layer’s edge to retract more but only up to a limit.
Therefore the method advocated cannot lower stress overall, yet it can at an edge, and thereby reduce the danger
of delaminating from the substrate.

3.2 Drying near the edge before solidification

Whereas the concentration of stress in a solidified coating reaches no more than six thicknesses from the
edge (as noted earlier by Tam™ and Lei*?), instances are numerous'® where the edge effects have intruded
much farther. Such defects can develop or begin developing when the coating is still liquid.

To examine this aspect, a flat liquid coating with an initially rounded edge, as shown in Figure 4a was
modeled. If drying accompanies flow, the evolution of edge shape can be split into two stages: in the first, drying
is insignificant and the volume of liquid is constant; in the second, drying becomes appreciable and the liquid
volume shrinks continuously.

In the first stage, flow of the liquid coating is driven by capillarity, i.e. the gradient in curvature of the free
surface. Liquid is driven away from the curved edge toward the middle, as shown in Figures 4b to 4e, until
ultimately the coating reaches its static equilibrium shape. The profile is an arc of a circle if the effect of gravity
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is negligible, as shown in Figure 4f.

In the second stage, the loss in solvent volume causes the stress-free state of the liquid to shrink. The
difference between the current state and stress-free state is deviatoric strain to which deviatoric viscous stress is
proportional; the proportionality is viscosity. If the viscous stress exerts a net local force (i.e. non-vanishing
divergence of the stress tensor — or stress dyadic), the liquid coating flows. The capillary pressure force is much
larger than the viscous force from the rate of shrinkage. The liquid profile remains an arc of a circle. Because
solvent evaporates, the arc’s radius changes with time, as shown in Figures 4g to 4i.

Only in narrow stripe coatings can the liquid attain the arcuate shape. Otherwise, the coating solidifies before
the capillary flow from the edge reaches the middle of the coating. The shape of the dried coating depends on the
liquid shape at the time of solidification. Initial solvent concentration and drying conditions determine the time
to solidify; resistance to flow determines the liquid edge shape. Flow resistance depends on the coating’s
viscosity, surface tension, and thickness. Solutions of the governing equations illustrate that higher viscosity,
lower surface tension, and thinner coatings increase the flow resistance and in that way prevent the edge effect
from extending far inward.

3.3 Drying near the edge during solidification

Edge effects that develop when the coating is still liquid would continue to move inward unless they were
arrested by solidification. Solidification starts where the solvent concentration is the lowest, usually at the edge
where the coating is the thinnest, and propagates to the interior of the coating. To study the effect of
solidification on edge effects, a drying coating that solidifies at a moving front was modeled. Solidification was
taken to occur at a specified concentration, and the solidification front was tracked explicitly with separate
material (“Lagrangian”) meshes for the liquid and for the solid. The boundary between the meshes was the
solidification front.

Initially, the coating was taken to be fully liquid, and drying, shrinkage and flow are modeled as described
above. Onset of solidification was declared when the solvent concentration in a small number of finite elements,
about five or six, dropped below the specified concentration. The solver was halted; the coating was remeshed
into solid and liquid parts; the old solution was transferred onto the new mesh; and the solver was restarted.
Figure 5a shows the liquid and solid regions near the edge at the onset of solidification. The meshes deformed so
that the interface always corresponded to the isopleth of the solidification concentration, as shown in Figures 5b
to 5h. The two meshes were remeshed when necessary to maintain numerical accuracy. End of solidification was
declared when the maximum solvent concentration in the coating was no more than 0.1% of the solidification
concentration. The coating continued to dry as a solid until no more solvent remains in the coating.

The in-plane stress gradients in a fully dried coating are shown in Figure 6. Predictions from the model show
that solidification alleviates some of the edge effects that developed when the coating was still liquid. As in the
fully solid case, stress varies close to the edge but falls off quickly away from the edge. Perceptible edge effects
extend up to ten thicknesses from the edge, compared to six thicknesses in the fully solid case and twenty
thicknesses in the fully liquid case.

4 SUMMARY AND CONCLUSIONS

Elastic stresses develop in a solidified drying coating in response to its frustrated in-plane shrinkage. The
effects of the coating’s elastic modulus, yield strength, and post-yield viscosity on stress development and
distribution can be analyzed and predicted, as is done here. Edge retraction of the upper layer in a drying two-
layer coating can reduce stress near the edge of a coating and so reduce the danger of delaminating from the
substrate but cannot significantly affect stress in the rest of the coating.

Edge effects that arise from flow in the liquid phase intrude farther from the edge than those from post-
solidification shrinkage and elastic stress. The final edge shape of dried coating depends on the edge shape of the
liquid coating at the start of solidification, which in turn depends on initial shape, surface tension, and the liquid
coating’s resistance to flow. The thinner and more viscous a coating, and the lower its surface tension, the
narrower the edge region where thickness varies in an otherwise uniform coating.

Edge effects that arise in the liquid phase tend to be alleviated by flow until a coating solidifies. When
solidification begins at the edge, flow in the liquid coating away from the edge relative to the solidified coating
reduces the thickness variation making the coating more uniform. Elastic stresses can appear only after
solidification, and they develop in the same way as stresses developed in drying solid coatings.
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Figure 1: Stress distribution near the edge of a fully dried solid coating
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Figure 2: Cross-web tensile and peeling stresses in the top layer of a two-layer solid coating
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Figure 3: Cross-web tensile and peeling stresses in the bottom layer of a two-layer solid coating.
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Figure 4: Edge shape of a still liquid coating at different times of drying.
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Figure 5: Solidification front movement near the edge of a drying coating.
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Figure 6: Final stresses near the edge of an applied liquid coating that solidified at a moving front.
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Abstract. Fountain flow is the phenomenon of deceleration and outward motion of fluid particles as they
approach a slower moving interface. Numerical simulations have been undertaken for the flow of Newtonian
and viscoelastic fluids, obeying an integral constitutive equation of the K-BKZ type, capable of describing the
behaviour of polymer melts. The flow simulations are performed for planar and axisymmetric geometries and
show the shape and extent of the free surface, as well as the stresses and pressures in the system. The semicircle
is a good approximation for the free surface of fountain flow, but detailed computations show the effect of
elasticity on the free surface, which is non-monotonic as the elasticity level (or Weissenberg number) increases.
The Newtonian values are faithfully reproduced and the new viscoelastic results show subtle differences, which
influence the stress levels in the flow field.

1 INTRODUCTION

Fountain flow is a well-known fluid-mechanics phenomenon present in all cases where a moving fluid
displaces another immiscible fluid"!. Within the context of non-Newtonian fluid mechanics, this type of flow is
of interest in polymer processing, and in particular in the flow of polymer melts in injection-mold filling!*!. The
theoretical problem has been adequately addressed in the mid-80’s by a number of researchers®™), who dealt
primarily with Newtonian fluids and showed intricate patterns developing when tracing particles, in agreement
with experiments?®®. Mavridis et al.”’) showed in a sample run that power-law fluids only slightly affect the
position of the flow front. Beris” argued that fountain flow patterns (especially the observed V-shapes™) are
independent of the model and form as a consequence of fluid-mechanics principles that the fluid obeys at the
front. Quite recently, Bogaerds et al.”! performed calculations with a viscoelastic model (the extended pom-
pom!'”) and showed that the flow front is not affected appreciably by the elasticity of the polymer melt, and it
does not deviate much from a semicircle for a wide range of flow rates in a planar domain. All these works have
shown that the results range from 0.8 to 1.05 of the radius of the semicircle, with the lower values corresponding
to the axisymmetric case of a Newtonian fluid, while shear-thinning of power-law fluids brings the results closer
to a semicircle front.

Although the problem is well understood from the physics and fluid mechanics points of view, it has become
evident that numerically subtle differences exist for different fluid models and types of domain geometry (planar
vs. axisymmetric). It is, therefore, the purpose of the present paper to address these issues and provide detailed
results both for the free surface location and the other flow variables in the system for Newtonian and viscoelastic
fluids.

In the present work, a standardized commercial low-density polyethylene melt (IUPAC-LDPE)!"" with long-
chain branching is studied with the purpose of finding how rheology affects the flow behaviour in fountain flow.
First the polymer is rheologically well-characterized with a modified K-BKZ integral model. Then it is simulated
in fountain flow between parallel plates with the purpose of determining the free surface and finding the amount
of centerline front movement. The results from the simulations are compared with the corresponding Newtonian
results. Conclusions are drawn regarding the behaviour of different types of fluids in injection molding, where
fountain flow is prominent.

2 MATHEMATICAL MODELLING

The problem at hand is that of a polymer melt flowing under a pressure gradient in a tube (or between parallel
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plates) and acquiring a free surface at the moving front, called the “fountain”. The tube has a radius R (or the
plates have a half gap of H) and a length of L as shown here schematically in Figure 1. The polymer flows under
shear flow in most of the domain except near the front, where due to the presence of the free surface and the
stagnation point at B, rearranges itself to accommodate the free surface. The centerline front location z,, reduced
by the radius R gives rise to the definition of ¥ = Az./R, in equivalence to the definition of extrudate swell''!. In
what follows, we consider that the channel length L is long enough (L/R = L/H =10) so that it is adequate to
impose at entry a fully developed velocity profile even for highly viscoelastic polymer melts.

v~v;=0

C p=0

vA(r) nv=0

I\
i
|
i
|
i

I
< >t »
< T L]

L " AZc]

Figure 1. Schematic representation of fountain flow in a tube together with the boundary conditions for
determination of the free surface at the moving front.

The flow is governed by the usual conservation equations of mass and momentum for an incompressible fluid
under isothermal conditions:

V.-v=0 (1
0=-Vp+V-7 ()
where V is the velocity vector, T is the extra-stress tensor, and p is the scalar pressure.

The constitutive equation that relates the stress to the deformation history is a K-BKZ integral equation. In its
more general form, it is written as!'”

t
= 1 A, t—t' (=' = j
- Zk - I.,1.) | Co (t)+0C(t) |dt’ 3)
"T1%0 ékkew( M ]H(C e | € 000

where A and a, are the relaxation times and relaxation modulus coefficients at a reference temperature 7y,
respectively, €is a material constant, and H(I¢, /-1 ) is a strain-memory function depending on /¢, /!, the first
. . o -1 . . .

invariants of the Cauchy-Green tensor C; and its inverse C; , the Finger strain tensor. The material constant &

is given by
N. 0
~ro o (4)
N, 1-0
where N; and N, are the first and second normal stress differences, respectively.
The strain-memory (or damping) function H proposed by Papanastasiou et al.!"*! has the following form
H(I_.,)= = 5)

(@=3)+p1..+(1=P.

where « and g are material constants. This damping function, called PSM, has been used extensively for
predicting the viscoelastic character of polymer melts with good success''*'*!. Note that in principle, multiple H,
can be used by having different ¢;’s and f;’s for every relaxation mode.
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3 DIMENSIONLESS PARAMETERS

For viscoelastic materials a generalized Weissenberg number Ws is defined as!'?:

v
Ws=<A> (6)
H

where <A> is the average relaxation time of the polymer and V is a characteristic velocity, usually taken as the
average velocity of the melt, V.
In the case of fountain flow of polymer melts and with respect to Figure 1, it has been customary to define the

quantity y_, called the apparent shear rate, which is related to the volumetric flow rate O and the width W by
(axisymmetric geometry) v, =40/ R’ (7a)
(planar geometry) y, =60/ W(2H)’ (7b)

The apparent shear rate can be used as a convenient representation of flow rate in the absence of a single
relaxation time. This measure has been used in the experiments by Meissner''"! and will be used in the present
work as well.

4 RHEOLOGICAL CHARACTERIZATION

This work is concerned with a low-density polyethylene (LDPE), under the code name I[UPAC-LDPE melt A,
and used previously as a benchmark material for rheological characterization and flow behaviour ', Some of
its specific data is given in Table 1!,

Table 1: Material parameter values for the [UPAC-LDPE melt A%,

Property LDPE
Density, p (25°C) (g/cm’) 0.918
Mass-Average Molar Mass, M,, (g/mole) 258,000
Polydispersity, M,/M, 16.6
Melt Temperature, T, (°C) 108
Zero-Shear-Rate Viscosity, 7, at 150°C (Pa-s) 51,500
Activation Energy, £, (J/mole) 58,000

This polyethylene has a random-like long-chain branched structure due to radical polymerization at high
pressure. The degree of long-chain branching cannot be determined quantitatively. The rheological material
functions of polymer melts are dynamic properties, such as the storage and loss moduli, and steady properties,
such as their viscosity in shear and elongation, and the normal stresses in shear. The viscosity in shear was
measured by mechanical-dynamic experiments using a rotational rheometer. In Figure 2a, storage and loss
moduli at 150°C are shown as a function of frequency (symbols on the graphs). These data can be used for the
determination of the relaxation spectra, which are required for modelling the flow behaviour (lines on the
graphs). Figure 2b shows the viscosity function calculated from G "and G ”.

The above material data have been modelled with the K-BKZ integral eqn. (3) and the damping function PSM
(eqn. 5) in order to determine the parameters of the model. These are reproduced in Table 2 and show a spectrum
with 8 relaxation times. From the relaxation spectrum it follows that the zero-shear viscosity 77,=2{a;A;) = 51,064
Pa-s and the average relaxation time <A >=X(a,A%)/ Zlaiky) = 58.7 s, thus giving evidence of the pronounced
elasticity of LDPE.

Table 2: Material parameter values used in eqn. (3) for fitting data of the [UPAC-LDPE melt at 150°C
(6=-0.25, p=0.92 g/cm3, <A1 >=58.7s, ny=>51,064 Pa-s).

k ﬂuk (S) ay (Pa) (273 ﬂk

1 10* 129,000 14.38 0.018
2 107 94,800 14.38 0.018
3 102 58,600 14.38 0.08
4 10" 26,700 14.38 0.12
5 10° 9,800 14.38 0.12
6 10' 1,890 14.38 0.16
7 10 180 14.38 0.03
8 10° 1.0 14.38 0.002

3
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Figure 2. Rheological data for the IUPAC-LDPE melt. Symbols represent experimental data. Lines correspond to
model predictions according to the K-BKZ model (eqn. 3) with the parameters of Table 2.

With the parameters of Table 2, it is possible to fit the experimental data for different shear rates and obtain the
shear-thinning behaviour for the shear viscosity, as well as the quadratic behaviour at very low shear rates for the
first normal stress difference, as shown in Figure 2.

For the uniaxial elongational viscosity 77z, multiple values of the f—parameter have been used to reduce the
amount of strain-hardening at higher elongational rates. We also note in Figure 2b that the planar extensional
viscosity 7p starts from the Newtonian value of 7p = 477, and follows the shear viscosity 7y in its thinning
behaviour. The biaxial extensional viscosity 7 starts from the Newtonian value of 77z = 677, and also follows the
shear viscosity in its thinning behaviour. Previous experience with simulations for polyethylene melts™ has
shown that the extensional behaviour is crucial in predicting correctly their flow behaviour in both axisymmetric
and planar flows.

The data for the second normal stress difference N, have shown a non-zero value, = —0.25121,

5 METHOD OF SOLUTION

The special numerical scheme developed by Luo and Mitsoulis!'® for the implementation of integral-type
constitutive equations with the finite element method (FEM) has been used. This scheme is effectively an EVSS-
G/SI scheme in the jargon of viscoelastic simulations. This means that there is a splitting of elastic and viscous
stresses (Elastic-Viscous-Stress-Splitting), that the viscous stresses enter the stiffness matrix using a reference
viscosity (77, = 1), while the elastic stresses enter the load vector and are incremented to reach higher elasticity
levels. The elastic stresses are calculated according to the constitutive eqn. (3) using streamline integration (SI).
Galerkin averaging is used for the velocity-gradient field (the G in EVSS-G) to obtain a smooth field. However,
our method uses as primary variables only the two velocities and pressure (u-v-p formulation) instead of also
using the stresses and the rates-of-strain, as done in the mixed formulation (u-v-p-t;-y ;) for differential models.
This renders the simulations extremely fast, even for multiple relaxation modes.

The numerical algorithm for convergence is Picard iteration, i.e., direct substitution. Convergent solutions
have been obtained for a wide range of apparent shear rates for a fixed domain!'®. However, for flows with fiee
surfaces, such as the ones considered here, and due to the highly viscoelastic nature of the melts manifested by
very high deformations in the order of 100%, it was found necessary to proceed carefully and use severe under-
relaxation for the free surface movement in the order of 10%, sometimes allowing only as much as 1% movement
of the newly updated position.

The solution procedure advances slowly from low flow rates (Newtonian behaviour) to higher ones by using a
flow rate increment scheme. On average 13 CPU s per iteration were needed with a mesh having 600 elements on
an Athlon™ 64 processor at 3400+ MHz for a total of 1150 iterations up to y, = 300 s". The criterion for

convergence was 107 for the maximum changes in the velocities, 107 for the pressure, and 107 for the free
surface.

The initial meshes form a rectangle, with the origin at the RHS centerline. During the solution process the
mesh deforms to accommodate the fountain flow with the free surface at the front. The deformed finite element
meshes used in this study at the end of the computations are shown in Figure 4 for Newtonian fluids (both
geometries) and for the LDPE melt in planar flow. The domain in its entirety extends to —10H upstream of the
front to ensure the correct imposition of a fully developed velocity profile upstream. Because of symmetry only
half the domain is used. The grid consists of 600 quadrilateral 8-node serendipity elements, 1901 nodes, and
4453 unknown u-v-p degrees of freedom (DOF).
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Figure 4. Deformed finite element meshes used in the simulations: (a) full view (upper half is the original mesh,
lower half has quadruple number of elements for the calculation of the stresses and the stream function), (b)

blown-up view of the computational domain near the front.

6 RESULTS AND DISCUSSION

6.1 Newtonian results — Flow field

First the numerical simulations have been carried out for Newtonian fluids in both planar and axisymmetric
geometries. The Newtonian values are: y = 0.876 (axisymmetric) and y = 0.931 (planar). We note a difference of
5.5% in favour of planar geometry (cf. the extrudate swell values of 13% for axisymmetric and 18.5% for planar
geometries''>'”). Thus, the maximum thrust forward of the advancing front at the centerline can be at most
87.6% (tube) and 93.1% (flat channel) for Newtonian fluids.

Behrens et al.l’) have produced a table indicating such values, which is updated here as Table 3. The reasons
for the discrepancies are due to the mesh construction and its density, especially around the singular exit point C.

Table 3. Dimensionless centerline front location y for Newtonian fluids.

Investigator Geometry Frame of Reference X
Mavridis et al.l” Planar Moving-steady 0.90
Coyle et al.l¥ Planar Moving-steady 0.93
Behrens et al.” Planar Moving-steady 0.94
Behrens et al.l” Planar Fixed-transient 0.91
Bogaerds et al.™® Planar Moving-steady 0.92
This work Planar Moving-steady 0.93
Mavridis et al.l” Axisym. Moving-steady 0.83
Behrens et al.” Axisym. Moving-steady 0.82
Behrens et al.” Axisym. Fixed-transient 0.86
Behrens et al.” Axisym. Exp. result 0.83+0.04
This work Axisym. Moving-steady 0.88

5
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It must be pointed out that the fountain flow problem is more difficult than the extrudate swell problem,
because the free surface is perpendicular to the main flow direction, whereas in extrudate swell the free surface
follows the main flow direction. Also, in the Newtonian extrudate swell the domain gets deformed in the order of
13-19%, while in fountain flow the domain is deformed in the order of 88-93%.

The numerical solutions give a wealth of information regarding all kinematic and dynamic variables of the
flow field. The results for axisymmetric and planar geometries are shown in Figure 5, where contours are given
for several variables. The kinematic variables are the stream function (PSI), the two velocities v, or v, (U) and v,
or v, (V), and the shear rate 7y OF .. (GXY), while the dynamic variables are the pressure, p (P), and the 3

(planar) or 4 (axisymmetric) extra Stresses, f O T, T, O T, Ty OF T, and 74 (or TXX, TYY, TXY, T33).
Interesting points to notice is the fully developed flow upstream, which extends down to about one radius R or
half gap H from the exit. The streamlines, u-contours and shear rate contours are parallel to the walls and the
isobars are vertical lines. The maximum value for the pressure occurs at entry (not shown), while the reference
zero value has been set at the exit point C. Small negative pressures also occur at the flow front and are a
consequence of the singular point at the exit wall. The strain rates are equal to the stresses due to assuming a unit
viscosity. Most of the rearrangement occurs right at the exit where the minima and maxima occur because of the
exit singularity. Eleven (11) contours have been drawn between the minimum and the maximum values.

NEWTONIAN (axisymmetric) NEWTONIAN (planar)

761
559
E 358
156
E 045
247
448
E 550

25 2 15 1 05 0 05 1

25 2 45 4 05 0 05 1
z/R

T AT O TR P PO L T TR T TN TN | bttt i,
25 2 45 4 05 0 05 1 3 25 2 45 1 05 0 05 1 3 25 2 15 4 -05 0 05 1 3 25 2 15 4 05 0 05 1
z/ z/R x/H x/H

Figure 5. Contours of kinematic and dynamic variables obtained from the simulations of fountain flow for
Newtonian fluids. Eleven (11) contour values are shown between maximum and minimum.

6.2 Viscoelastic results — Flow field

The viscoelastic numerical simulations have been carried out for a wide range of apparent shear rates y,

from 0.001 s and reaching as high as 300 s”. Typical results from one such run are shown in Figure 6, where
contours are given for the highest apparent shear rate y =300 s (Ws=5870, from eq. 6) for several variables.

The kinematic variables are the stream function (PSI), the two velocities v, (U) and v, (V), and the shear rate
;}xy (GXY), while the dynamic variables are the pressure, p (P), and the 3 extra stresses, 7., 7,, %, (or TXX,

TYY, TXY). The pressure and the stresses are given in dimensionless form, being divided by 7)V,,/H. The
velocities are divided by V,,,. Interesting points to notice and in contrast with the Newtonian flow fields are the
squeezing and bending of the streamlines near the exit due to the viscoelastic nature of the melt. Also the fully
developed shear flow is reduced compared to the Newtonian. The melt now takes a full gap (2H) to rearrange
itself near the exit, and produces a bullet-like profile with less roundness than in the Newtonian case. Because of
the assumed non-zero second normal stress difference (£#0), the isobars are not vertical lines but exhibit a
parabolic profile between the walls. The maximum value of the pressure is at entry (not shown), while high
negative pressures occur near the singularity, which is now much more pronounced. The shear rates for this case
are indeed high, reaching values at the die wall > 500 s™'. The stress contours show that the flow rearranges itself

6
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more than a gap from the exit, with most of the rearrangement occurring right at exit where the minima and
maxima occur because of the exit singularity.

3 2 A 0 1 - 32 A 0 1 b
x/H x/H
Figure 6. Contours of kinematic and dynamic variables obtained from the simulations of fountain flow for the
IUPAC-LDPE melt A at y =300 s". Eleven (11) contour values are shown between maximum and minimum.

6.3 Viscoelastic results — Centerline front location

The dependence of the centerline front location on the apparent shear rate y is presented in Figure 7 for the

IUPAC-LDPE melt A. The behaviour of the front location is typical of polymer melts, i.e., starting from the
Newtonian value of 93% of the half gap H at extremely low shear rates, it first decreases reaching a minimum of
79% around 0.3 s™', and then increases substantially reaching values of 108% at apparent shear rates of 300 s™.
An important observation that can be made is that the phenomenon is nonlinear. In the past, it has been assumed
that fountain flow profiles are approximately those of a semicircle!', and they do not change much either for
different fluid models or different types of geometry. The current results show that those observations are
generally true in a rough way. However, different fluid models do play a role, the y-variable depends for polymer
melts on the flow rate, and the type of geometry is also an important parameter.

142 : . . . .

[ IUPACLDPE-A ]
1.08 N 150°C a
1.04
1.00 |
096 |

092}

Centerline Front Location, y,

076 o i )
0.001 0.01 0.1 1 10 100

Apparent Shear Rate, v, (1/s)
Figure 7. Centerline front location as a function of apparent shear rate for the [IUPAC-LDPE melt A at 150°C.
7
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7 CONCLUSIONS

The current work has addressed the issue of simulating Newtonian and viscoelastic polymer melts flowing
under a pressure gradient between parallel plates or tubes for the determination of fountain flow. The simulations
were undertaken for the flow of a standardized branched low-density polyethylene melt (IUPAC-LDPE). For the
viscoelasticity of the polymers, rheological data of dynamic and steady properties were used over a wide-range of
shear and elongational rates. The rheological data has been fitted with the K-BKZ/PSM model with a spectrum of
8 relaxation times and associated parameters for the melt. This well-known model has been used for the first time
in fountain flow simulations of polymer melts.

The simulations have addressed the issue of finding the moving fountain front by constructing a streamline,
which is the free surface of the fluid. This is done after a solution for the conservation and constitutive equations
has been achieved via the Finite Element Method. FEM uses as primary variables the two velocities and pressure
(primitive variables approach). Then the stresses are calculated via streamline integration and then the free
surface coordinates are found by using the updated velocity field and integrating the velocity profiles there. The
simulations revealed a distinct behaviour in the LDPE melt compared with the Newtonian simulations. LDPE
shows a bullet-like fountain flow at high shear rates with less roundness of the front than the Newtonian fluids.
These results are a prelude for a full study of non-isothermal effects in fountain flow of polymer melts.
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Abstract. In this paper the possibility of making use of fractional derivatives for the simulation of the flow of
water through porous media and in particular through soils is considered. The Richards equation, which is a
non-linear diffusion equation, will be taken as a basis and is used for the comparison of results.
Fractional derivatives differ from derivatives of integer order in that they entail the whole history of the function
in a weighted form and not only its local behavior, meaning that a different numerical approach is required.
Previous work on the topic will be examined and a consistent approach based on fractional time evolutions will
be presented.

1 INTRODUCTION

Infiltration is defined as the flow of water through porous media and in particular through soils. It follows
the ordinary laws of hydrodynamics. The Richards equation, which is a non-linear diffusion equation, is usually
used for its description " * *| even though in several cases it fails to predict variations in the behavior of
different types of soil. The present work is an attempt to ascertain whether fractional calculus is suitable as a tool
for the simulation of the saturation front in partially saturated porous media. Therefore the substitution of the
derivative with respect to time with a fractional derivative of order smaller than unity is considered * .
Fractional calculus is a branch of mathematics related to integrals and derivatives of arbitrary order and dates
back to the 17" century '°!. Fractional derivatives differ from derivatives of integer order in that they entail the
whole history of the function in a weighted form and not only its local behavior. Lately it was found to have
many applications in physics and mechanics, especially concerning the description of anomalous diffusion " *],
It has been suggested! to replace the time derivative in the Richards equation by a fractional derivative as a way
to describe experimental observations that show deviations from normal diffusive scaling. We found that the
referenced paper ' contains several theoretical errors (see also '), and we discuss ways how these can be
eliminated. An improved and consistent approach based on fractional time evolutions " will be presented.

2 ABSORPTION IN POROUS MEDIA
2.1 Derivation of the Richards equation

A soil mass generally consists of a network of partially or totally interconnected interspaces of various sizes
and shapes. These interspaces may be filled with air or water or both. The volumetric moisture content@(t,x) ,

also called local volume fraction of water, is defined as the ratio of the volume of water to the volume of a
representative elementary soil volume located at position X. Under the assumption that the porosity (defined as
the volume fraction of pores) is constant, and that the speed of the solid phase vanishes, the mass balance for the
liquid phase yields:

=2 = —div(q) )
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where ( is the specific discharge of fluid through the interstices of the solid matrix. The flow of liquids in

unsaturated media is determined by the pressure, gravity and capillary forces acting on the liquid. We consider
the capillary potential (per unit weight of water):

U =(p/p,g+2) ()

where the pressure is determined by the surface tension and curvature of the air-liquid interface. We will
consider horizontal absorption and therefore neglect the effect of gravity. Thus the moisture discharge vector is
related to the total potential by means of the following equation:

q=—K-grad(¥) 3)

which is known as the moisture conduction equation. Combining equations (1) and (3) we acquire the following
equation, known as the Richards equation:

00 0 0 0 0 0 0
—=—|D(l)—0|+—|D(O)—0|+—|D@O)—0 4
ot 8x[()8x] 8y[()8y] 62[()82] )
where D(6)=K(d¥/df) is known as the moisture diffusivity. For example from Philip """ we get the
following empirical moisture diffusivity function
D = D, exp(c-0) %)

where D, =8.3-107cm’/min and ¢ =19. In Fig. 1 the experimental data and the fitted function of eq. (5) are

presented. In what follows we will only consider one - dimensional moisture diffusion along horizontal soil
columns. For this case the Richards equation will take the form
00 0 0
—=—|D()—10]|. 6
ot c'?x[ ( )8X ] ©)

We choose the coordinate system such that X =0 corresponds to the left end of the horizontal soil column.

diffusivity in crm®crdmin

. . . . .
0 0.1 0.2 0.3 0.4 0s
wolumetric moisture content

Fig. 1: Empirical diffusivity function from reference %,

The fitted line corresponds to eq. (5).

2.2 Discussion

In the former analysis, the soil skeleton has been assumed to be rigid and the inertial effects have been
assumed to be negligible, as the progress of the phenomenon is slow. The thermal effects and the effects of
condensation and evaporation have been neglected, as well as the complications arising from the interplay of air
and water ['""'?. With the introduction of the similarity variable

X
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Richard’s equation (6) transforms into an ordinary differential equation, which has been used to find analytical
solutions for soil water flow problems and also to find the dependence of the conductivity on the degree of
saturation ', However, as summarized in a recent publication by Pachepsky et al. ©*), significant deviations
from the scaling law eq. (7) have been observed in many published experiments. Relationships between
positions and times at which a particular value of the volumetric moisture content is observed suggest a
similarity transformation of the form

E=xt° ®)

The case of o<1 could be interpreted as non-Brownian transport of particles that remain motionless for
extended periods of time, for example, when waiting periods have a power law distribution.

In the aforementioned paper of Pachepsky et al. ) the defect of Richards law is addressed by resorting into
non-standard diffusion mathematical models that involve fractional derivatives with respect to time. It is worth
noticing that one of us'! has shown that the analysis of Pachepsky et al. (2003) et al. is mathematically flawed.
An attempt to correct this analysis and the corresponding numerical integration of the fractional diffusion
equation is shown below.

3 FRACTIONAL CALCULUS

Fractional calculus is the field of mathematical analysis which deals with the investigation and applications
of integrals and derivatives of arbitrary order [*”!. Although the term “fractional calculus’ is actually a misnomer,
the designation ‘integration and differentiation of arbitrary order’ being more appropriate, it is well established
due to prevailing use. In contrast to integration and differentiation of integer order, for integration and
differentiation of arbitrary order a great variety of definitions exists. That is both one of the advantages and one
of the disadvantages of fractional calculus.

If f(x) is locally integrable on(~,00), then the right hand fractional Riemann-Liouville integral of f (x)

of order o > 0 is defined as
o 1 X a—
|7+f(x):r_fw (x—u)"" f (u)du ©)

for almost all —oo <y < X < oo and for suitable f . The subscripts in | denote the terminals of integration in

the given order.
The following general definition of fractional derivatives was introduced in [: The right sided fractional
derivative of order 0 < a <1 and type 0 < (3 <1 with respect to t is defined by

fof f (t) _ [Ijila) %( Iﬂ([l:ﬁ)(lia) f )] (t) (10)

for functions for which the expression on the right hand side exists.
The fractional Riemann — Liouville derivative is a special case of eq. (10) corresponding to 5 = 0, namely

D1 (x) =117 (x) (an

where 0 < a <1.

Another definition introduced by Liouville in 1832, but often referred to as “the Caputo approach”,
corresponds to the fractional derivative of order o and type 1 as defined in eq. (10) and has proved to be very
popular among engineers, especially as far as the field of viscoelasticity is concerned. It reads

[14]

a,l _ l—ni _ 1 X f/<u)
Dy (x)= 117 dxf(X)—F(l_a>ﬁ e (12)

where 0 <a <1. This is a far more restrictive definition than the previous one, in that it demands that the
derivative of f (X) be absolutely integrable.

It is crucial to note that the different definitions of the fractional derivatives and integrals have a different
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physical meaning. It is therefore of great significance that care is taken, when entering the field of applications.
One example of this fact is the connection of the fractional derivatives to continuous time random walks.
Eq.(13) has a rigorous relationship with continuous time random walks, whereas the solution of eq.(14) does not
admit a probabilistic interpretation ['*.

O f (x,t

D(‘)’;lf (X,t)—Ca% (13)
O* f (x,t

Dé:’_of (x,t):Ca% (14)

where C is a fractional diffusion constant.

e

4 PREVIOUS WORK

Pachepsky et al. ), following the scaling deviations observed in experiments from the scaling resulting from
the Richards equation (cf. Table 1 of that reference) considered the equation

0 o0
D{"'0 =—| D, (0)— 15
0=2{0,0)5] (15

replacing the derivative with respect to time with a fractional one. Consequently they attempted a solution of the
resulting time-fractional absorption equation by inserting the similarity variable from eq. (8) and transforming
the equation into an ordinary differential equation, as was done by Philip, who introduced the similarity
transform in the Richards equation. In an attempt to reproduce the results, we found that the transformation of
eq. (15) into an ordinary fractional differential equation is not possible in the same way as in the casea =1.
This is because the authors assumed the following relationship to hold:

N dé ..
D0 = d_§ D;’¢ (16)

which leads to the ordinary fractional differential equation:

d do) T(l—a/2) do
d_f[D(0>d_£]_m5d_§_o (17)

Let as assume as a counterexample that 6 =t*, £ =t .Then, for the eq. (16) the following relationship
should hold for all values of b:
I'(1+b
z(b):lgzconst (18)
bI'(l1+b—a)

However, as can be seen in Fig. 2 this is not true. This finding gives rise to serious doubts concerning the
validity of the numerical solution presented in ). An additional implication is the fact that the equation
considered would in fact require an initial condition of integral type, which is not provided and in experimental
situations is hard to obtain.
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Figure 2: Counterexample demonstrating the inapplicability of the “chain rule”, used in eq. (16)

5 FRACTIONAL RICHARDS EQUATION

The derivative of order equal to unity may be defined as follows

T(t)f(s)-f(s)

f(s)—f(s—t
if(s):limM:—lim (19)
ds -0 t -0 t
which identifies —d/dt as the infinitesimal generator of time translations defined as
TA)F(s)=1f(s-1) (20)

As shown by one of us "), fractional derivatives arise respectively as the infinitesimal generators of coarse
grained time evolutions

du

(0 (s)= [T (s)h, [%]_ @)

t

where t is considered as a duration of time and therefore it is always positive, and h_ is a one-sided stable law

) The order « of the derivative lies between zero and unity, and gives a quantitative measure for the decay of
the averaging kernelh . The case a == lindicates that memory effects and history dependence may become
important.

Taking into consideration the nature of the problem and the initial conditions provided, it is obvious that we
need to consider a fractional derivative of type 6 =1, which would result in the following equation

d 20(t,x)
D;;'0(t,x)=—|D, (§)——= 22
0 (tx) ax[ - ()=, ] (22)
with initial condition
0(0,x)=0(x) (23)

where D, is the fractional diffusivity and is in general dependent on 6 . From this point on we will refer to eq.
(22) as the fractional Richards equation.

6 NUMERICAL METHOD
For the solution of eq. (22) we will make use of an Adams-Bashforth-Moulton algorithm introduced by
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Diethelm and Freed!'®. Eq. (22) is rewritten as a weakly singular Volterra equation of the second type

1 a1 0 08
e(t,x)_e(o,x)—i—mfo(t—u) 5[@&]% (24)

Considering an equidistant mesh

Zaj,n-H f (tj 2 X, 0] (X)> + an+1,n+1 f (tn+1 ’ X90:+1 (X>>] (25)

P

where the predictor 0,

(x)is evaluated by the relationship

P 7 1 <
o7, (x):@(x)+m;bw f(t;.x.0,(x)) (26)

and the constants are evaluated as follows

ha a+1 « . -
—a(a+1)(n —(n—a)(n+1) ) if j=0
“ - a+l - a+l o+l - -
8,00 ={———((n—j+2)"" =2(n=j+1)"" +(n— )] if1< j<n
a(a+1) on
h® .
fj= 1
a(a+1) my=n+
hﬂ =\« =\
bj o :;((”JA*J) —(n—1j) )
f (t,x,0) signifies g[D" ?], and for its evaluation finite elements will be used.
X X

7 RESULTS

The fractional Richards equation, namely eq. (22), was solved by means of the numerical method presented
in section 6. For the fractional diffusivity function we assumed

D, (¢)=D, (28)
where D, = 0.1cm’ /min® . The initial condition was assumed to be a step function given as
~ c, x=0
o(x)=1" 29
( ) C,, X>0 (29)

where ¢, =0.6 and ¢, =0.2.

In Figs. (3a) and (3b) the volumetric moisture content as a function of the distance from the beginning of the
soil column is shown for the fractional Richards equation and Richards equation respectively. The curves
displayed are isochrones corresponding to times equal to 0, 100, 200, 300, 400, 500, 600, 700, 800, 900 and
1000 min. The lowermost curve corresponds to the initial conditions, whereas the uppermost to time equal to
1000 min. For the case of the fractional Richards equation these results were achieved for order of the
fractional derivative equal to 0.9. As can be seen in this case the process appears indeed to be slower than
evaluated by the Richards equation and could therefore be termed as sub-diffusive.

In Fig 3(a) we plot X versust, where X and t solve the equation

6(t,x)=0.3. (30)
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Here 6(t,x) is the solution of eq. (22) for «=0.9, D, (6) given in eq. (28) and initial conditions as in eq. (29).

In Fig. 4(b) the isochrones of volumetric moisture content as a function of x are exhibited for different
values of the fractional derivative and time equal to 1000 min. The curve closest to the axis corresponds to
a =0.70, whereas the uppermost curve corresponds to the classical Richards equation.

085

volumetrnic moisture content

0.65

yolumetric moisture content

% [cm)
Figure 3: Isochrones of the volumetric moisture content Q(t, X) as a function of x for t=0, 100, ..., 1000 min
and initial conditions given by eq. (29). The uppermost curve corresponds to t=1000 min, whereas the one
closest to the axis to the initial conditions. (a) Fractional Richards eq. (22) with D, (9) =0.1cm’/min®; (b)

Richards equation eq.(6) with D(¢)=0.1cm*/min .

=
=
m
il

=
m

o

n

m
T

o
n
T

o

B

,m
T

o

o}

lail
T

o
w
T

volumetric moisture content
o
=N

o

[}

n
T

2r ./ — richards 1
G === fractional

2 . . . . . . . . .
0D 100 200 300 400 G500 GO0 00 800 900 1000
(a) t[min]

o
-
]

Figure 4: (a) Plot of the positions in time and space at which a volumetric moisture content G(t, X) equal to 0.3

was observed for the Richards and the fractional diffusion equation, that is the solution of eq.(30); (b) The
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volumetric moisture content 0('[, X) as a function of X is exhibited for different values of the fractional

derivative o, with initial conditions given by eq. (29), D, (0) given in eq. (28) and t equal to 1000 min .

8 CONCLUSIONS

The present study has shown that fractional calculus could be used to model the saturation front in partially
saturated porous media in cases of subdiffusive behavior. It is important however that the right type of fractional
derivative is introduced and the proper initial conditions are considered. Further on, it must be kept in mind that
this approach has so far no proven connection neither to continuum mechanics nor to continuous time random
walk theory and can be termed as phenomenological.

To further establish the possibility of using fractional derivatives to better model anomalous diffusion
behavior of water in porous media, it is important that the relationship of the classical diffusivity to the
fractional diffusivity is investigated and that work similar to the above for the case of varying diffusivity is
produced, as we encountered numerical instability, when the exponential law, eq. (5), was implemented. It
would also be of great interest to investigate the relationship between the movement of water in soil and the
continuous time random walk with long-tailed power law distribution of waiting times.
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Abstract. In the paper discrete-continuous mechanical models built by means of the one-dimensional visco-
elastic continuous structural macro-elements are applied for dynamic investigations of mechanical systems and
structures. The coupled vibration and wave effects are used for fault detection and localization in the most
important components of the considered objects, i.e. in shafts, axles, beams, rods cantilevers and others.

1 INTRODUCTION

The commonly observed fast development of machines operating under great material loadings requires more
and more precise fault detection and localization of their most heavily affected and responsible parts. The
dynamic methods for fault detection and localization based on the vibratory!"! and wave?! approaches are very
popular now. A practical application of these methods realized in the form of on-line dynamic diagnostics or test-
rig-exciting of real objects must be supported by proper theoretical investigations carried out by means of several
analytical or numerical methods and mechanical models. Currently, the finite element method belongs on the one
hand to the most advanced and reliable, but on the other hand this method is not free of numerous drawbacks and
disadvantages. In this paper there is proposed an alternative method of modeling and dynamic analysis of
mechanical systems described in details in ! and applied e.g. in ™**\. This method is based on discrete-continuous
models built by means of the finite structural elements with continuously distributed inertial-visco-elastic
properties, called further the visco-elastic continuous macro-elements (V-ECM). The main purpose of the
research carried out in this paper is a fault detection and localization in responsible parts of machines and
structures by means of dynamic analyses performed using the discrete-continuous mechanical models.

2 GENERAL ASSUMPTIONS FOR THE DISCRETE-CONTINUOUS MODELS BUILT BY MEANS
OF THE V-ECM
The most heavily affected and responsible components of a broad class of machines and mechanisms are
shafts, axles, rods, cantilevers, guideways and others. For dynamic analyses they can be usually regarded as one-
dimensional media. Here, each segment of such real component of constant or almost constant cross-section can
be substituted in the model by the structural macro-element of continuously distributed inertial-visco-elastic

properties of the length |;, cross-sectional area A; and polar and diametral moments of inertia Jy; and I;, i=1,2,...,n,
as shown in Figure 1, where n denotes the entire number of such macro-elements in the assumed model.
m[,][, -[Oi

mz%z,[oz oA EL, 6 oAi. L1, G o

bt gik)

Figure 1. The visco-elastic continuous macro-elements (V-ECM)
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In order to represent inertial properties of the components remaining almost undeformed during studied dynamic
processes, such as rotors, impellers, coupling disks, gears, flywheels and others, to the extreme cross section of
the V-ECM the rigid disk of mass m; and diametral and polar mass moments of inertia J; and ly; can be attached
directly or by means of the massless elastic membrane. The defined in this way macro-elements can be applied
for investigations of bending, torsional and longitudinal vibrations, which usually are the most important in
majority of machines and mechanical systems. Torsional and longitudinal motion of cross-sections of the V-ECM
is described by the following partial differential equations

2
r(l ajazei(x,t)_ 070, (x.1)

+1— =g (X,1), 1

L Q)
where in the i-th macro-element 6;(x,t) denotes the angular or longitudinal displacement of the cross-section of
the co-ordinate X, the symbol I' is equal to the Kirchhoff modulus G in the case of torsional vibrations or to the
Young modulus E in the case of longitudinal vibrations and p, T denote the material density and the retardation
time of material damping, respectively. The function gj(X,t) describes the external excitation continuously
distributed along the macro-element. Flexural motion of cross-sections of the V-ECM can be described by the
partial differential equations derived using various beam theories, e.g. the Bernoulli-Euler, Rayleigh or the
Timoshenko one. For example, motion of the rotating with the speed Q2 beam macro-element described by the
Rayleigh beam theory is governed by the following equation

4 3 2
5 64vi(X,t) 0 vi(x,t) 0 v; (x,1) 0 v; (x,1)
Elj| 1+t— 1 - plj -2jQ +pAi—2+
o ox ox?at? ox2 ot ot
avi(x,t)
+C; T + ksivi (x,t) = a; xt, (2

where Vj(X,t) denotes the complex transverse displacement in two perpendicular planes and Kg;, Cs; are respectively
the stiffness and damping coefficient of the visco-elastic continuous foundation. These macro-elements are
mutually connected directly according to the structure of the real object or coupled with each other by means of
discrete oscillators which can also describe the assumed imperfections in the considered systems in the form of
cracks, bearing support misalignments, local rotor-shaft anisotropies or rigid coupling misalignments. In the
discrete-continuous models such connections are expressed in the form of geometric and dynamic boundary
conditions for the motion equations, e.g. (1) and (2). The geometric boundary conditions describe displacement
identities of the extreme cross-sections of the directly connected adjacent macro-elements. The dynamic
boundary conditions are equations of equilibrium of the inertial, elastic, damping, external, gyroscopic, support
reaction forces and moments formulated for the directly connected adjacent macro-elements as well as for the
macro-elements mutually connected by means of discrete oscillators.

3 MATHEMATICAL FORMULATION AND SOLUTION OF THE PROBLEM

The mathematical formulation of the problem investigated by the use of the assumed discrete-continuous
models is based on the local analytical solutions of the partial differential equations of motion of the V-ECM
cross-sections. In the paper the Fourier solution in the form of infinite series in orthogonal eigenfunctions is used,
which leads to the following system of ordinary differential equations in the modal co-ordinates™*!

M@)F(t) + C(Q,t, r(t), r(t))rt) + K(t, ri))r(t) = F(, Q2 ,F(L), r(t)). 3)

These equations can be uncoupled in the linear case or mutually coupled by the taken into consideration
nonlinear, parametric and skew-symmetrical terms contained in the variable or response-dependent mass,
damping-gyroscopic and stiffness matrices M, C and K, respectively. In (3) r(t) denotes the vector of unknown
modal co-ordinates r(t) and F is the time- and response-dependent external excitation vector. Moreover, the
d’Alembert solution in the form of travelling longitudinal and shear elastic waves has been applied leading to the
mixed systems of algebraic and ordinary differential equations with a retarded argument”’. Numerical integration
of both mentioned above types of equations enables us to obtain dynamic responses of the considered mechanical
systems or structures with assumed imperfections. It is to emphasize that the computational algorithms built on
the basis of mathematical relations derived in a consequence of the applied Fourier and d’Alembert solution are
characterized, in a comparison with the traditional methods, by very strong numerical efficiency and stability — so
important for simulations being performed many times, in particular, when the fault detection and localization
procedure reduces to an inverse problem investigation.
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4 EXAMPLES OF APPLICATION

In the computational examples there is considered the multi-bearing rotor-shaft system with a transverse
crack and with a local shaft anisotropy associated by a bearing misalignment. For this system the vibratory
approach for fault detection is applied. Here, by means of numerical simulations of coupled lateral-torsional-axial
shaft vibrations the cause-symptom relationships have been collected in order to detect and localize the
imperfection during operation monitoring of the real object. The wave approach is applied in the case of cracked
cantilever rod and beam, where the determined reflected waves inform us about a fault existence and position.

4.1 The rotor-shaft system with the cracked shaft

The discrete-continuous model of the rotor-shaft system with the transverse crack and with the coupling disk
misalignment is presented in Fig. 2. The investigations have been performed for the rotor-shaft system with two
identical bladed disks supported on three journal bearings. Each bearing is represented by means of the dynamic
oscillator of two degrees of freedom, where beyond the oil-film interaction also visco-elastic properties of the
bearing housing and foundation are taken into consideration. With a reasonable for practical purposes accuracy
the bladed disks can be substituted in the discrete-continuous model by the system of dynamic oscillators in the
form of rigid rings mutually attached to the rotor-shaft by means of the visco-elastic mass-less membranes
enabling rotations of these rings as well as their translational displacements in the shaft axial direction, as shown
in Fig. 2. Parameters of these oscillators have been determined by the use of the proper modal reduction method.
In the considered rotor-shaft system the transverse crack of depth a/D=0.3 in the shaft segment between the
second bearing #2 and the first bladed disk was assumed, which is demonstrated in Fig. 2. An additional local
shaft flexibility caused by the crack is represented by the mass-less spring connecting the adjacent shaft
segments, coupling shaft lateral motion with torsional and axial one as well as realizing crack “breathing”
process. The 6x6 stiffness matrix of this spring has been determined similarly as in ' i.e. using the fundamentals
of fracture mechanics.

i

Figure 2. Discrete-continuous model of the rotor-shaft system with the transverse crack and with the coupling
disk misalignment

The system non-linear dynamic response has been obtained by solving (3) in the range of system rotational
speeds 12005000 rpm for four circumferential crack positions on the shaft o,=0, 90, 180 and 270 deg in order
to investigate a severity of coupling effects of the rotor-shaft bending-torsional-axial vibrations indicating the
presence of the crack. For each considered rotational speed and the gravitational load acting on the considered
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system the proper mean values of the oil film stiffness and damping coefficients have been determined. In this
way the bearing anisotropic and non-symmetric properties were introduced. The only assumed source of dynamic
external excitation are the static residual unbalances of the bladed disks mutually shifted by the phase angle
A=180 deg. Thus, the torsional-axial vibrations can be regarded here as an output effect caused by bending
vibrations of the rotor-shaft. The quantities of particular interest in these investigations are bending vibration
displacements of the shaft at the bladed disk locations, the dynamic torque transmitted by the shaft between the
bladed disks and the thrust bearing axial force. The results of simulations are presented in Fig. 3 in the form of
amplitude characteristics of the listed quantities expressed as functions of the constant rotational speed values.
The amplitude of the transverse shaft displacements is defined as one half of the longer diameter of the ellipse
featuring the disk center orbit. The amplitudes of the remaining quantities are regarded as maximum fluctuation
values with respect of their average values of the steady state dynamic response. In Figs. 3a,b there are shown the
transverse displacement amplitude characteristics for the 1™ and 2" disk, respectively. Both plots are similar to
each other and they are characterized by one resonance peak at the rotational speed ca. 3648 rpm corresponding
to the system 2" bending natural frequency 60.8 Hz determined by means of the Rayleigh- and confirmed by the
Timoshenko-beam theory. It is to remark that respective plots obtained for four considered crack position angles
op almost overlay, which means that in the considered system the circumferential crack location does not
influence the rotor-shaft bending vibrations. Fig. 3¢ presents the amplitude characteristics of the dynamic torque
induced by the shaft bending vibrations. These plots are also characterized by one resonance peak at the
rotational speed ca. 3264 rpm corresponding to the system 1% torsional natural frequency 54.4 Hz. It is to remark
that the not presented in a graphical form time histories of this torque oscillate with the fundamental synchronous
frequency (/2n. This means that the coupling between shaft bending vibrations and torsional-axial vibrations of
the shaft-bladed disks system indicates the greatest magnitude in the conditions of ordinary parametric resonance
of the first order, in a contradistinction to such coupling studied in *! caused by residual disk unbalance only. At
this juncture, the combined parametric resonance is observed and the dynamic torque fluctuates with double-
synchronous frequency Q/r. In the considered case the system axial response in the form of thrust bearing force
indicates the parametric ordinary resonance of the frequency 54.4 Hz and the ordinary “bending” resonance of
the frequency 60.8 Hz, which follows from the respective peaks of the amplitude characteristic shown in Fig. 3d.
The time histories of this force are characterized on the one hand by very small extreme values, but on the other
hand by much richer frequency spectra including synchronous, double-synchronous and higher-frequency
components of comparable magnitudes. From the respective plots in Fig. 3c it follows that the torsional-axial
responses of the shaft-bladed disks system are particularly severe for the crack location angles a,;=0 and 90 deg,
when the crack remained all of the time continuously open. Then, one obtains the extreme values which in the
case of dynamic torque are important not only from the diagnostic viewpoint. However, the analogous plots in
Fig. 3¢ obtained for o,=180 and 270 deg have no importance. This result confirms rightness of the commonly
applied assumption that for practical purposes in the field a crack can be treated as a permanently open crack.
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Figure 3. Amplitude characteristics of the system coupled dynamic responses
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4.2 The rotor-shaft system with the local shaft anisotropy and with the bearing misalignment

Analogous amplitude characteristics of the coupled bending-torsional-axial dynamic responses have been
obtained for the similar double-span rotor shaft system characterized by the local shaft anisotropy associated with
the bearing misalignment. The discrete-continuous model of this system is presented in Fig. 4. In order to collect
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Figure 4. Discrete-continuous model of the rotor-shaft system with the local shaft anisotropy and with the
bearing misalignment

for the two mentioned rotating systems with the assumed imperfections the cause-symptom relationships for fault
detection and localization during real object monitoring, it is necessary to perform a qualitative analysis of these
amplitude characteristics. For the transverse forces in bearings #1, #2, #3, the dynamic torques in the shaft
between the bladed disks (T2) and between the second bladed disk and the right-hand shaft end (T1), the blade
rim retarding transverse forces acting on the disks (D1), (D2) and for the axial force in the thrust bearing in Figs.
5 and 6 there are shown results of the FFT analysis obtained for two exemplary rotational speeds n=1740 and
2200 rpm of the rotating system with the local shaft anisotropy and the bearing misalignment. In these figures
there are plotted response amplitude components in the domain of frequency related to the synchronous
frequency X. Each amplitude peak excited by natural multiple of the synchronous frequency X corresponds to the
induced bending (B) or torsional-axial (T-A) eigenform of the investigated mechanical system. For the four
mentioned above studied quantities in Table 1 such relationships between the excitation frequency and the
number of induced eigenform have been collected for the most important amplitude peaks at four selected
rotational speed values n=1740, 2200, 2610 and 3012 rpm. In the all cases of rotational speeds the resonance
phenomena are observed. For n=1740 rpm the parametric resonance of the coupled bending-torsional-axial
vibrations occurs yielding the response components of the excitation frequency 4X. At n=2610 rpm the ordinary
resonance is observed with the external excitation frequency 2X and at n=3012 rpm an increase of response
amplitudes has a character of the parametric resonance with the excitation frequency components 1X, 2X and 3X.
The case of N=2200 rpm can be regarded as the “mixed” one, in which the bending response is induced by the
ordinary resonances of the external excitation frequency 2X and the torsional-axial response is characterized by
the induced components of frequencies 1.4X, 3X and 4X.

The collected in this way excitation frequency — induced eigenform relationships for greater number of
rotational speeds within the exploitation range of the rotor-machine inform us about possible coupling effects
between the bending, torsional and axial vibrations caused by the assumed fault, e.g. the crack, shaft anisotropy,
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Figure 6. Results of the FFT analysis of the system dynamic response for n=2200 rpm

bearing or coupling misalignment and others. Then, proper comparisons of these relationships with the analogous
monitored on-line responses of the real object enable us to detect and localize the given type of imperfection.
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Rotational speed
n [rpm] 1740 2200 2610 3012
Synchronous freq.
X [Hz] 29.0 36.667 435 50.2
. 2X—>1B .
B f
earing forces AX—55 T-A 2X—>5B 2X—>7B 2X— excitation
~1.4X—>1T-A
Dynamic torques in 4X—5 T-A 2X— excitation 2X—3 T-A 1X—>1T-A
the shaft 3X—>5T-A
4X— 7 T-A
~1.4X—>1T-A
Blade rim transverse 2X— excitation 1X—>1T-A
retarding force 4X>5ST-A 3X—5 T-A 2X>3T-A 2X— 4 T-A
4X—7 T-A
Axial force in the 2X—>4 T-A
thrust bearing 4X—>5T-A 4X—-7 T-A 2X—-3 T-A 3X7.8 T-A

Table 1 : Cause-symptom relationships due to the imperfections in the rotor-shaft system

4.3 Crack detection in the cantilever rod and beam using the wave approach

The transverse cracks have been also detected and localized in the cantilever rod and in the cantilever beam
by means of the analysis of traveling elastic waves propagating and reflecting in these objects due to the
diagnostic high-frequency impulses exciting respectively longitudinal waves in the rod and shear waves in the
beam. The cracked cantilever rod and beam is represented by two longitudinally or transversally deformable
visco-elastic continuous macro-elements (1) and (2), as shown in Fig. 7. Motion of their cross-sections is
described by the homogeneous partial differential equations (1) for I'=E in the case of the longitudinal wave
analysis in the rod and for I'=SG in the case of the shear wave investigation in the Timoshenko beam of the cross-
sectional shear ratio S. The equations of motion (1) are solved with boundary conditions describing the support
properties, external loading as well as the presence of the crack. The introduced by this crack an additional
longitudinal or transverse flexibility is represented by the mass-less spring of stiffness Kk, determined by means of
the Castigliano theorem using the fundamentals of fracture mechanics, in an analogous way as for the cracked
rotor-shaft discussed in Chapter 4.1. The diagnostic excitation force P(t) has been applied in the form of the
triangular impulse modulated by the high-frequency sinusoid, i.e. in the identical way as in 6], where the similar
problem was considered by means of the spectral finite element method.
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Figure 7. Discrete-continuous model of the cracked cantilever rod or beam

For the rod and beam model presented in Fig. 7 the Fourier and d’Alembert solutions of the motion
equations (1) can be applied. The former, in the considered here linear case, leads to the infinite set of uncoupled
modal equations (3). The latter leads to the above mentioned set of algebraic and ordinary differential equations
with the retarded space-time argument z in the following form

9,(2) :—f2(z—2I2), Kgi(z)+gl(z) = Kfl’(z—2ll)— fl(z—2I1)+ f2(z—ll)+g2(z—ll),
fz’(2)=f1’(2—|1), fl’(Z)=F(Z)+gi(Z), “)

where the functions f; and @;, i=1,2, represent longitudinal or shear waves propagating along the X-axis
respectively in positive and negative sense, Fig. 7, K=[A/(kols), F(2)=P()I/(TA), l,=I-lI;, and |5 [m] is the
reference distance. An integration of the appropriately truncated number of the modal equations (3) or sequential
solving of equations (4) yield in time domain system dynamic responses in the form of travelling elastic
longitudinal or shear waves. For sufficiently small integration step both solutions lead to almost identical results.
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Figure 8. Transverse displacement of the free end of the cantilever beam with a crack in the middle (a) of its
entire length and in the cross-section distant 75% of the entire length from the clamped end (b)

In Fig. 8 there are presented exemplary simulation results of shear wave propagation in the form of
transverse displacements of the cantilever cracked beam, where the crack has been assumed in the cross-section
distant respectively one half of the beam entire length I, i.e. for x=1,=0.51, Fig. 8a, and 75% of the beam length,
i.e. for x=1;=0.75l, from its clamped end, Fig. 8b. In these figures several “great” displacement peaks of the beam
free end are observed, where the “first” peak corresponds directly to the action of the external force P(t) and the
“next” two “great” peaks are caused by successive reflections of the shear waves from the clamped end of the
beam. “Between” the “great” peaks in Figs. 8a,b several additional “small” peaks occur. These “small” peaks
appear regularly after successive wave reflections from the beam cross-section, in which the crack has been
assumed. Here, the simulated effect of wave reflections as well as the time delays, after which the waves reflected
from the crack are recorded, are the most essential. An appearance of these additional reflected waves informs us
about an existence of the imperfection as well as the known value of wave propagation velocity multiplied by the
proper time delay enables us to localize this imperfection in the considered continuous medium.

5 CLOSING REMARKS

In the paper the rod- and beam visco-elastic continuous macro-elements (V-ECM) have been used to build
structural discrete-continuous physical models of mechanical systems and structures applied for fault detection
and localization in the rotor-shafts, cantilever rods and beams. The continuous distribution of inertial-visco-
elastic properties of the V-ECM enables us a fault detection by means of the vibratory and the wave approach.
The vibratory approach for fault detection applied here to the rotor machine for a determination of cause-
symptom relationships necessary for dynamic diagnostic of the real object is on the one hand rather labour-
consuming and not very sensitive to small defects. But on the other hand, this method can be applied to complex
mechanical systems and structures for an analysis of parametric and non-linear coupled vibrations. However, the
wave approach for fault detection and localization reducing to investigation of travelling elastic wave
propagation and reflections in time domain is very simple in applications and much more sensitive to small
defects than the vibratory one. But on the presented level, the wave method can be applied to relatively simple
models of elements of machines and structures. Nevertheless, in the case of both approaches the proposed here
method of discrete-continuous modeling of mechanical systems and structures based on the V-ECM is a reliable
and computationally very effective tool for dynamic analysis and fault detection in numerous cases of practical
applications and theoretical studies.
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Abstract. Earthquake-resistant design of structures using probabilistic analysis is an emerging field in
structural engineering. This paper examines the application of Neural Networks (NN) to the probabilistic
analysis of real-world structural systems under seismic loading. Probabilistic analysis is carried out using the
Monte Carlo Simulation (MCS) method incorporating the improved Latin Hypercube Sampling technique.
Limit-state fragilities for steel moment resisting frames are determined by means of nonlinear time history
analysis with a suite of ground motion records. The use of NN is motivated by the large number of time
consuming nonlinear time history analyses required for MCS. The Rprop algorithm is implemented for training
the NN utilizing available information extracted from each record. The trained NN is used to compute the level
of damage which is expressed as maximum interstorey drift values, thus leading to a close prediction of the limit
state fragility curves.

1 INTRODUCTION

Extreme earthquake events may produce extensive damage to structural systems. It is therefore essential to
establish a reliable procedure for assessing the seismic risk of real-world structural systems. Probabilistic
analysis provides the framework to model the various sources of uncertainty that may influence structural
performance under seismic loading conditions. Probabilistic analysis is performed in order to obtain fragility
curves, which provide a measure of the safety margin of a structural system for different limit states.

The theory and the methods of structural reliability have been developed significantly during the last twenty
years and are documented in a large number of publications'". In this work the probabilistic safety analysis of
framed structures under seismic loading conditions is investigated. Randomness of ground motion excitation
(that influences seismic demand) and of material properties (that affect structural capacity) are taken into
consideration using Monte Carlo Simulation. The capacity assessment of steel frames is determined using
nonlinear timehistory analysis. The probabilistic safety analysis using Monte-Carlo Simulation and nonlinear
time history analysis results in a computationally intensive problem. In order to reduce the excessive
computational cost, techniques based on Neural Networks (NN) are implemented. For the training of the NN a
number of Intensity Measures (IMs) are derived from each earthquake record, for the prediction of the level of
damage, which is measured by means of maximum interstorey drift values 6,,x.

2 FRAGILITY ANALYSIS USING MONTE CARLO SIMULATION

The seismic fragility of a structure F(x) is defined as its limit-state probability, conditioned on a specific peak
ground acceleration, spectral velocity, or other control variable that is consistent with the specification of
seismic hazard

F,(x)=P[LS,/ PGA > x] ()

where LS; represents the corresponding i™ limit state and the peak ground PGA is the control variable. If the
annual probabilities of exceedance P[PGA > x] of specific levels of earthquake motion are known, then the mean
annual frequency of exceedance of the i limit state is calculated as follows:

P[LS ] = j Fo(x)P[PGA > x]dx 2)
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Equation (2) can be used to make decisions about, for example, the adequacy of a design or the need to retrofit.
In the present study we seek the fragility Fz(x). Once the fragility is calculated the extension to eq. (2) is
straightforward.

Often Fr(x) is modelled with a lognormal probability distribution, which leads to an analytic calculation. In
the present study Monte Carlo Simulation (MCS) with improved Latin Hypercube Sampling (LHS) is adopted
for the numerical calculation of Fr(x). Numerical calculation of eq. (1) provides a more reliable estimate of the
limit state probability, since it is not necessary to assume that seismic data follow a lognormal distribution.
However, in order to calculate the limit state probability, a large number of nonlinear dynamic analyses are
required for each hazard level, especially when small probabilities are sought.

The proposed methodology requires that MCS has to be performed at each hazard level. Earthquake records
are scaled to a common intensity level that corresponds to the hazard level examined. Scaling is performed using
the first mode spectral acceleration of the 5% damped spectrum (Sa(7,5%)). Therefore, all records are scaled in
order to represent the same ground motion intensity in terms of Sa(7},5%). Earthquake loading is considered as
two separate sources of uncertainty, ground motion intensity and the details of ground motion. The first
uncertainty refers to the general severity of shaking at a site, which may be measured in terms of any IM such as
PGA, Sa(T,5%), Arias intensity, etc. The second source refers to the fact that, although different acceleration
time histories can have their amplitudes scaled to a common intensity, there is still uncertainty in the
performance, since IMs are imperfect indicators of the structural response. The first source is considered by
scaling all records to the same intensity level at each limit state. The second source is treated by selecting natural
records as random variables from a relatively large suite of scenario based records. The concept of considering
separately seismic intensity and the details of ground is the backbone of the Incremental Dynamic Analysis
method™, while Porter et al.”! have also introduced intensity and different records as two separate uncertain
parameters in order to evaluate the sensitivity of structural response to different uncertainties.

The random parameters considered in this study are the material properties and more specifically the
modulus of elasticity E and the yield stress f, as well as and the details of ground motion where a suite of
scenario based earthquake records is used. The material properties are assumed to follow the normal distribution
while the uniform distribution is assumed for the records in order to select them randomly from a relatively large
bin of natural records. The first two variables are sampled by means of the iLHS technique in order to increase
the efficiency of the sampling process.

In reliability analysis the MCS method is often employed when the analytical solution is not attainable and
the failure domain can not be expressed or approximated by an analytical form. This is mainly the case in
problems of complex nature with a large number of basic variables where all other reliability analysis methods
are not applicable. Expressing the limit state function as G(x)<0, where X=(x1,x2,..,xM)T is the vector of the
random variables, the probability of exceedance can be obtained as

Po= [ f,(xdx (3)

G(x)20

where f,(X) denotes the joint probability of failure for all random variables. Since MCS is based on the theory of
large numbers (N,,) an unbiased estimator of the probability of failure is given by

P =Niwjzi“1(xj) “

where I(X;) is a Boolean vector indicating “successful” and “unsuccessful” simulations. In order to estimate Pys
an adequate number of Ny, independent random samples is produced using a specific probability density
function for the vector X. The value of the failure function is computed for each random sample x; and the Monte
Carlo estimation of Py g is given in terms of the sample mean by

&)

where Ny is the number of simulations where the maximum interstorey drift value exceeds a threshold drift for
the limit state examined. In order to calculate eq. (5) Ny, nonlinear time history analyses have to be performed
at each hazard level. Clearly the computational cost of performing so many nonlinear dynamic analyses is
prohibitive. In order to reduce the computational cost, properly trained Neural Networks are implemented.

3 FEED-FORWARD NEURAL NETWORKS

A feed-forward neural network consists of a number of units linked together and attempts to create a desired
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mapping between the inputs and the target of the training set. The training set is a set of input-target pairs
D = {x", t"}, where m is the number of the pairs and X, t™ are the input and target vectors, respectively. A
neural network architecture 4 consists of a specific number of layers, a number of units in each layer and a type
of activation functions. If a set of values w is assigned to the connections of the network a mapping y(Xx; w, A) is
defined from the inputs X to the outputs y. The quality of this mapping, with respect to the training set, is
measured by an error function:

E, (D, A) = X (y(x"sw, -t ©)

A learning algorithm tries to determine the values of W, in order to achieve the right response for each input
vector applied to the network minimizing the value of £p. The numerical minimization algorithms used for the
training generate a sequence of weight parameters W through an iterative procedure. To apply an algorithmic
operator O we need the starting weight parameters w”, while the iteration formula can be written as follows

W(Hl) — O(W(t)) — W(t) +AW(I)

(7

The changing part of the algorithm Aw" is further decomposed into two parts as

W_g 4O
Aw"=a d

®)

where d is a desired search direction vector of the move and g the step size in that direction.

Regularization

In the error function £, various modifications have been applied, like the addition of the momentum term and
the inclusion of noise in the learning process. In this work an extra regularizing term Ew(w) is added to the Ep,
which penalizes the large values of the weights in order to achieve a smoother or simpler mapping:

1
EW (W:ﬂ) = z ZE Wi
b (€))
the Ey is called weight energy term, and the error function to be minimized becomes:

£ =aky (W, A) + B, (D, A) (10)

The constant « is called regularizing constant and should not be confused with the momentum term. The two
constant « and f are determined using the following two rules™’:

20k, =y
2PE, =N-y (an
with
koo
y= ——
A +i (12)

where A; are the eigenvalues of the quadratic form SEp, N is the number of output units times the number of the
training pairs and £ is the total number of the weight parameters.

Learning algorithm

Learning algorithms can be divided to two categories. (i) Algorithms that use global knowledge of the state of
the entire network, such as the direction of the overall weight update vector, which are referred as global
techniques. In the conventional back-propagation learning algorithm the gradient descent algorithm is used
belonging to the global learning algorithms. (ii) Local adaptation strategies based on weight specific information
only such as the temporal behaviour of the partial derivative of the corresponding weight. The local approach is
more closely related to the neural network concept of distributed processing in which computations can be made
independent to each other. Furthermore, it appears that for many applications local strategies achieve faster and
more reliable prediction than global techniques despite the fact that they use less information!. In this work the
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tl7).

Rprop'® algorithm has been adopted since it has been proved very efficien

The Rprop learning algorithm with locally adaptive learning rates is based on an adaptive version of the
Manhattan-learning rule and has been developed by Riedmiller and Braun'®. The abbreviation Rprop algorithm
stands for the Resilient backpropagation algorithm. The weight updates can be written as

ot
© _ 0
Awij‘ =-n; sgn(—‘J

i (13)
with
min((l : 1’]i(jt-l) Dnmax )5 lf 61.:[ % > 0
ij ij
oE, ot
¢ =Jmax(b-ni" ), if == —=<0 14
nu ( nu nmm) aWij awij ( )
n;", otherwise

where 0=1.2, b= 0.5, #,,x=50 and nmm=0.l[7]. The learning rates are bounded by upper and lower limits in order
to avoid oscillations and arithmetic underflow. It is interesting to note that, in contrast to other algorithms, Rprop
employs information about the sign and not the magnitude of the gradient components.

4 PREDICTIONS OF THE SEISMIC RESPONSE USING NEURAL NETWORKS

As already mentioned feed-forward Neural Networks are used in order to reduce the number or earthquake
simulations required for the calculation of the probability of eq. (5). The principal advantage of a properly
trained NN is that it requires a trivial computational effort to produce an acceptable approximate solution. Such
approximations appear to be valuable in situations where actual response computations are CPU intensive and
quick estimations are required. Neural Networks have been applied in the past by Papadrakakis et al.”™ in order
to calculate the probability of failure for steel moment frames using inelastic static analysis. In recent studies
NN have been adopted for the reliability analysis of structures by Nie and Ellingwood” and Hurtado!”
However, in the present study the NN are implemented in order to predict the maximum seismic response with
natural earthquake records replacing the time consuming nonlinear time history analysis. The NN are trained in
order to predict the maximum interstorey drift 6, for different earthquake records which are identified by NN
using a set of Intensity Measures (IM).
Table 1 : Intensity measures

No Intensity Measure
1 PGA (g)
2 PGV (m)
3 PGD (m)
4 V/A (sec)
5 Arias intensity (m/sec)
6 Significant duration (5 to 95 % of Arias) (sec)
7 RMS acceleration (g)
8 Characteristic Intensity
9 CAV
10 Spectral Intensity
11 Total Duration (sec)

12 Sa(Ty) (g)

13 Sv(T}) (cm)
14 SaC, c=2 (g)
15 SaC, c=3 (g)

The term Intensity Measure is used to denote a number of common ground motion parameters which
represent the amplitude, the frequency content, the duration or any other ground motion parameter. A number of
different IMs has been presented the literature!'"!, while various attempts to relate an IM with a damage measure
such as maximum interstorey drift values exist!'). The IMs adopted can be classified as structure-independent
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(e.g. PGA, Arias Intensity) or as both structure and record dependent (e.g. SaT,). The complete list of the IMs
used in this study is given in Table 1.

It can be seen that the IMs selected, vary from widely used ground motion parameters such as peak ground
acceleration (PGA) to more sophisticated measures such as SaC. The definitions and further discussion on the
first thirteen measures of Table 1 is given by Kramer'''. The last two IMs refer to the measure proposed by

Cordova et al."™ which is defined as:
SaC = Sa(T), |28 1) (15)
Sa(T))

The parameter ¢ takes the value 2 and 3 for the 14" and the 15™ parameter of Table 1, respectively. These IMs
were introduced in order to assist the NN to capture the effects of inelasticity by considering the elastic spectrum
at an “effective” period longer than 77, thus reflecting the reduction in stiffness.

For each hazard level separate training of the NN is performed by means of the above IMs. The training
process is based on the fact that the trained NN will assign small weights to the IMs which have poor correlation
with the damage measure selected. Instead of using the whole set it was examined the suitability of using only
some of the IMs of Table 1. The parametric study was performed for various intensity levels since the
performance of an IM depends also on the level of nonlinearity that the structure has undergone. The 10
combinations of IMs, shown in Table 2, were compared.

Table 2: Intensity measures combinations

1,2,3,5,9,10,12
1,2,3,5,9,10,12,14
1,2,3,5,9,10,12,14,15
ALL

ID IM combinations
A 1

B 1,2

C 1,2,3

D 1,2,3,5

E 1,2,3,5,9

F 1,2,3,5,9,10
G

H

|

J

Table 3: Prediction errors (%) on the maximum interstorey drift 6,

IM Combination

A B C D E F G H | ALL

PGA = 0.05g

MAX 49.7 39.6 19.6 32.6 15.9 14.8 49 27.0 236 9.0

MIN 44 0.2 0.9 0.3 0.3 0.6 1.0 1.8 0.6 0.3

MEDIAN 29.1 9.9 4.8 5.2 5.9 5.5 2.9 5.3 4.7 4.0
PGA = 0.27g

MAX 32.6 28.2 214 26.6 46.7 23.6 9.5 24.5 359 96

MIN 0.9 0.1 1.1 0.5 1.4 0.1 0.6 0.7 0.3 1.5

MEDIAN 16.9 16.1 9.8 17.2 9.0 7.2 4.9 7.2 4.4 4.4
PGA = 0.569

MAX 62.0 67.2 28.8 422 354 28.0 332 293 164 92

MIN 6.7 3.2 0.2 0.6 0.1 0.2 0.7 1.3 22 0.8

MEDIAN 18.5 20.4 9.7 12.6 19.2 15.5 9.0 9.2 7.1 43
PGA = 0.90g

MAX 72.1 452 51.0 233 13.3 16.9 12.0 8.7 125 92

MIN 3.0 6.1 1.4 0.5 1.2 0.9 0.5 0.6 0.2 0.9

MEDIAN 36.5 15.2 15.7 3.0 2.8 7.8 1.8 3.8 2.9 3.5

The performance of each combination is shown in Table 3. The efficiency of the NN is evaluated for the ten-
storey steel moment resisting frame described in the next section. For this parametric study the material random
variables were considered with their mean values. The efficiency is measured by means of the error on the
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prediction of 6,,,, obtained by means of eq. (10). From Table 3 it is clear that the use of record dependent only
measures, such as PG4, lead to increased error values, while more refined measures help to reduce the error
considerably. The use of the complete set of IMs in Table 1 is preferred since it performed equally well for all
four hazard levels examined in the parametric study.

5 NEURAL NETWORKS BASED FRAGILITY ASSESMENT

A suite of 95 scenario-based natural records were used in this study. All records correspond to relatively large
magnitudes of 6.0-6.9 and moderate distances, all recorded on firm soil and bearing no marks of directivity. In
order to obtain the fragility curves, sixteen hazard levels expressed in PGA terms ranging from 0.05g to 1.25g
were used. For each hazard level, risk assessment is performed and five limit state fragilities are calculated. Each
limit state is defined by means of a corresponding maximum interstorey drift 0,,,,x value. In the present study the
five limit states considered range from serviceability, to life safety and finally to the onset of collapse. The
corresponding 6, threshold values range from 0.2 to 6 percent.

The test example considered to demonstrate the efficiency of the proposed procedure is the five-bay, ten-
storey moment resisting plane frame of Figure 1. The mean values of the modulus of elasticity is equal to
210GPa and the yield stress is f=235MPa. The coefficients of variation for E and f; are considered as 5% and
10%, respectively, while both variables are assumed to follow the normal distribution. The constitutive law is
bilinear with a strain hardening ratio of 0.01, while the frame is assumed to have rigid connections and fixed
supports. The permanent load is equal to 5kN/m” and the live load is taken as Q = 2kN/m’. The gravity loads are
contributed from an effective area of Sm. All analyses were performed using a force-based fiber beam-column
element!'*! that allows the use of a single element per member, while the same material properties are used for all
the members of the frame. Geometric nonlinearities were taken into consideration. Therefore, the FE model
allows collapse to take place only due to second order effects, which however are not so pronounced for the
frame considered in this study.

5,49m

‘L el e el e P e

5@9.15m
Figure 1. Ten-storey steel moment frame

For training the NN both training and testing sets have to be selected for each hazard level. The selection of
the sets is based on the requirement that the full range of possible results has to be taken into account in the
training step. Therefore, training/testing triads of the material properties and the records are randomly generated
using the Latin Hypercube sampling. In the case of earthquake records the selection has to take into account that
the scaling factor should be between 0.2 and 5. This restriction is applied because large scaling factors are likely
to produce unrealistic earthquake ground motions. Furthermore, the records selected for generating the training
set have to cover the whole range of structural damage for the hazard level in consideration. Thus, nonlinear
time history analyses were performed, for mean E and f; values, where the 0, values of each record that satisfy
the previous requirement were determined for each hazard level. In total 30 records are selected for generating
the training set of each hazard level taking into account that the selection has to cover the whole range of .«
values. Therefore, training sets with 90 triads of E, f; and record number, all sampled as discussed above, are
generated. Finally, a testing sample of 10 triads is also selected in a similar way in order to test the performance
of the NN.
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Figure 3. Number of NN-Simulations required (Near collapse limit state, O,,,.x > 6.0%)
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Figure 4. Prediction of 6,,,« for the testing sample

The fragility curves obtained for the five limit states considered are shown in Figure 2. Figure 3 shows the
number of MCS simulations required for the fragility curve of a one limit state, in particular the Near Collapse
limit state (Bmax>6.0%). It can be seen that depending on the calculated probability of exceedance the number
simulations required for a single point of the fragility curve, ranges from 50 to 1000. The validity of the
prediction obtained with the NN is shown in Figure 4. The maximum interstorey drift values predicted for the 10
components of the testing set compared to the values obtained with nonlinear timehistory analysis are shown in
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Figure 4 for four hazard levels. Figure 4, gives the impression that better prediction is obtained for the lower
intensity levels, however this occurs because the horizontal axis of Figure 4 corresponds to #,,,x values and not
on the relative error on 6,,,,x, which practically remains constant for all four intensity levels.

6 CONCLUSIONS

A very efficient procedure for the fragility analysis of structures based on properly trained Neural Networks is
presented. The NNs are trained by means of a set of intensity measures that can be easily extracted from the
earthquake records. The proposed methodology allows the use of Monte Carlo simulation for the calculation of
the limit state fragility curves, where the only simplifying assumptions made are the distributions of the
uncertain parameters. The proposed formulation may be more complicated compared to other simplified
approaches, however it offers a different approach to an emerging problem in earthquake engineering leading to
reduction of the computational cost. The results obtained once combined with regional hazard curves can be
directly applied to the performance-based design of steel frames.
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ABSTRACT

Modern developments in the space of aeronautics, particularly since the incident of 11" of September
2002 in the U.S.A. which affected negatively the economic potential of air companies worldwide, render explicit
the need for exploitation of air structures up to their designed structural life or even further and consequently
the need for adoption of maintenance techniques supporting their structural integrity in an acceptable,
according to their designed criteria, manner. One of the most promising techniques is the so called ““composite
patch repair method”, a method capable to repair cracked metallic structures using adhesively bonded
composite patches, that constitutes an effective method for re-establishment of structural integrity. However,
even though this method has important advantages, problems concerning the long-term behavior of the adhesive,
the appearance of debonds, etc. appear and have led to the considerable delayed widespread acceptance of this
method.

In the present study the realization and implementation of elements of a structural health monitoring
system for composite patch repairs is being performed, combining elements from the theory of structural repair
mechanics, the theory of intelligent materials and structures and particularly the technology of optical sensors
and neural networks.

The inverse problem of fault detection, qualification / quantification and life expectancies are studied
using neural network techniques. Various network learning algorithms are evaluated for the corresponding
failure cases and comparison results are developed. The data taken from the experimental test series (part | of
the study) are used as network exemplars for training/test reasons and the corresponding deviations are
calculated as well as the network performance metrics.

INTRODUCTION

Current economic world conditions are forcing to the operation of all structural types, especially for
complex, expensive and multidisciplinary structures, beyond their design life. This requirement has led to a
maximization effort of the performance vs. cost ratio, in order to achieve the optimum Return of Investment. In
that respect, alike the philosophy for human body monitoring using periodical check ups, modern structural
elements do require the same attention as it comes to their structural integrity. Current trends are dealing with on
line health monitoring systems capable to trace the external stimulus and the subsequent failures this stimulus
can lead to. These trends are expressed mainly in the aeronautic technological field due to the requirement of
high performance — load budget operation of air structures. The modern systems expressing this structural health
monitoring (SHM) philosophy are split in two main categories [1]:

e Monitoring using load spectrum: these systems are capable to estimate the cumulative damage due
to fatigue loading of a structure using elements of load spectrum, operational usage and field experience. These
systems are based on prior knowledge of analytical/numerical models of the structure and are not capable to
identify an existing failure but are limited to damage prognosis.

e Health monitoring systems: these systems are capable to trace a number of predetermined field
variants and usually are embedded on the structure under consideration. Most of the times these systems tend to
be integrated, using sensing, adaptation and damage logic, or semi-integrated, having only sensing and damage
logic.

Moreover, the level of integration of the system defines the model of sensing and damage logic required
for a specific application. For example a system designed to monitor the health of a large scale structural element
(a bridge) should use global approach techniques using distributed sensing elements, due to the fact that a point-
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wise system resolution is not required. On the other hand, for the case of monitoring a crack propagating on the
skin of an aircraft, where high strain resolution is required, a local sensing technique should be preferred
combined with the proper damage logic.

The damage logic itself is expressed by the two following techniques [2]:

e Logic based on analytical/numerical models that apply to the specific structure or a family of
identical structures, having predetermined field distributions for each discriminated fault signature.

e Logic based on decoupled from the structure itself numerical techniques, that do not take into
account the geometry or the constituents of the structure but are based on existing load experience and field
mapping. Such techniques are based on statistical models, on neural networks, on genetic algorithms or any
combination of these.

According to the level of detail required by a health monitoring and damage identification system, four
levels of logic implementation can be used [3]:

e Level 1: Damage verification and identification
e Level 2: Damage localization

e Level 3: Damage quantification

e Level 4: Life expectancy

In the present work, the use of neural networks and genetic algorithms is studied with specific
application in a composite patch adhesively bonded to a crack metallic structure, in order to implement a
structural integrity logic (four levels of implementation) concept in terms of health monitoring of the repair. In
that respect, various learning algorithms are examined and compared using the fiber optic behavior of [4].

LEARNING ALGORITHM

In order to design the best solutions available for each level of implementation, two main network types
were used: a classification network and a function approximation network. Each network was used for a specific
level of implementation. Thus, for levels 1 and 2 a classification network was used while for levels 3 and 4 a
function approximation multilayer perceptron network was used. For further information on these types of
networks, the reader is advised to refer to [5] and [6].

In order to secure the best possible results in terms of output error, convergence to a solution, etc. the
following five network learning algorithms [5] were examined and verified:

e Momentum

Step
Delta-Bar-Delta
Quick Prop
Conjugate Gradient

A portion of the data set used as a learning/testing/validation set for the network performance, is provided in
Table 1.

Specimen Sensor A Sensor B Crack Length
B 0.455 0.324 10
B 0.461 0.323 11
B 0.482 0.322 12
B 0.501 0.321 14
B 0.535 0.320 13
B 0.650 0.340 15

Table 1: Input data set for network learning algorithm evaluation

The data set was consisted of 400 exemplars (data points). The network used for the algorithm evaluation was
consisted of 10 to 30 hidden processing elements and the test was performed with 1000 to 5000 epochs
(iterations). The network architecture used is presented in figure 1.
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Input Level Hidden Level  OQuiput Level

@
A

Hidden PE's

Figure 1: Network Architecture

Input A

The results of the test for each specific algorithm in terms of learning and test error are presented graphically in
figure 2, where as L is denoted the learning error whereas T is the testing error, for the range of epochs and PE’s.

Momentum Learning Step Learning

20.00%

15.00% / 15.00%

10.00% 10.00%

10 12 14 16 18 20 22 2 26 28 PES g0 10 12 14 16 18 20 2 2 2 28 PEs 30

10 12 14 16 18 20 22 24 26 28 PEs 30 10 12 14 16 18 20 22 24 26 28 PEs 30

Conjugate Gradient Learning

20.00%
15.00%

10.00%

10 12 14 16 18 20 22 24 2 28 PES 5
Figure 2: Learning and test error vs number of PE’s

From the above results, it was obvious that the best algorithm available, in terms of minimum learning and
testing error was the momentum learning algorithm. On the contrary, the most stable and fast convergent
algorithm was QProp and Step. Considering that:

o the data to be used are generally a small set, the required convergence would occur soon

o the data variance is negligible

the momentum algorithm was chosen for the developed network algorithms.
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SHM LEVEL1

For the implementation of the capability to identify and verify fault that occurred in a composite patch
repair, due to the lack of experimental data from [4], the learning data set used was produced using the finite
element method, for the model presented on figure 3.

Figure 3: The structure FE model and the assumed sensor positions

Three types of failure were model as typical failures that can occur in a composite patch, which are presented in
figure 4:

Baze madel Crack

Local Disturbance Delamination

Figure 4: Modeled failure types

The data set was consisted of 500 exemplars (data points). The network used for the algorithm evaluation was
consisted of 10 to 30 hidden processing elements and the test was performed with 1000 to 5000 epochs
(iterations). Using the figure 3 strain measurements as inputs, for the various load cases, for a typical
classification multi layer perceptron network using the momentum learning algorithm, the following results were
achieved for the considered network output:

Network Epochs Hidden PE’s Test Error MSE NMSE r
1-MOMO05-1000 1000 5 14.14% 0.488 0.816 0.441
1-MOM10-1000 1000 10 14.68% 0.502 0.841 0.434
1-MOM15-1000 1000 15 13.50% 0.5 0.838 0.431
1-MOM20-1000 1000 20 13.73% 0.5 0.847 0.431
1-MOM25-1000 1000 25 14.33% 0.496 0.83 0.429
1-MOM30-1000 1000 30 13.98% 0.499 0.836 0.432
1-MOMO05-2000 2000 5 14.01% 0.486 0.813 0.446
1-MOM10-2000 2000 10 14.48% 0.492 0.823 0.433
1-MOM15-2000 2000 15 14.16% 0.493 0.826 0.434
1-MOM20-2000 2000 20 14.15% 0.495 0.828 0.429
1-MOM25-2000 2000 25 15.91% 0.568 0.951 0.315
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1-MOM30-2000 2000 30 16.12% 0.572 0.958 0.307
1-MOMO05-3000 3000 5 14.64% 0.485 0.812 0.456
1-MOM10-3000 3000 10 13.84% 0.491 0.822 0.44
1-MOM15-3000 3000 15 14.29% 0.489 0.819 0.436
1-MOM20-3000 3000 20 15.94% 0.61 1.03 0.343
1-MOM25-3000 3000 25 13.44% 0.522 0.873 0.429
1-MOM30-3000 3000 30 16.34% 0.6 1 0.377

Table 2: Results from SHM Level 1 network

where the network codification used, had the format (SHM Level) — (Learning Algorithm) (PE’s) - (Epochs),
MSE stands for Mean Square Error, NMSE is Nominal Mean Square Error and r is the correlation coefficient
[6]. From the results provided, the best test error was achieved for the 1-MOMZ25-3000 network and was
13.44%. This error could be misinterpreted as high enough, but for the case of a classification network is
acceptable since the major concern is the number of misclassifications (how many misclassifications happened
in the test sample) and not the variations of the probability of classification (which for the specific case the mean
probability to belong to the specific class of failure was 85% that is an acceptable result).

SHM LEVEL 2

Using the same approach as for the case of SHM Level 1, a typical classification multilayer perceptron
was used to locate the potential damage occurred within a composite patch. Due to the monitoring capabilities
provided in [4], three classes of failures were assumed for the case of a composite patch, which are presented in
figure 5.

Figure 5: Classes of failure for SHM Level2

The data set was consisted of 850 exemplars (data points). The network used for the algorithm evaluation was
consisted of 10 to 30 hidden processing elements and the test was performed with 1000 to 5000 epochs
(iterations). Following the very same approach as in the case of SHM Level 1, the network output results are
presented in table 3:

Network Epochs | Hidden PE’s Test Error MSE NMSE r
2-MOMO05-1000 1000 5 8.25% 0.39 0.96 0.54
2-MOM10-1000 1000 10 14.41% 0.83 6.64 0.662
2-MOM15-1000 1000 15 3.60% 0.9 2.22 0.56
2-MOM20-1000 1000 20 3.82% 0.92 2.28 0.52
2-MOM25-1000 1000 25 15.30% 0.86 6.88 0.65
2-MOM30-1000 1000 30 3.22% 0.81 2 0.6
2-MOMO05-2000 2000 5 9.27% 0.46 1.15 0.6
2-MOM10-2000 2000 10 7.72% 0.34 0.84 0.66
2-MOM15-2000 2000 15 7.75% 0.41 1.01 0.63
2-MOM20-2000 2000 20 7.65% 0.32 0.8 0.67
2-MOM25-2000 2000 25 8.38% 0.5 1.23 0.6
2-MOM30-2000 2000 30 9.39% 0.45 1.13 0.57
2-MOMO05-3000 3000 5 9.30% 0.47 1.16 0.6
2-MOM10-3000 3000 10 10.18% 0.49 1.21 0.57
2-MOM15-3000 3000 15 8.24% 0.41 1.02 0.62
2-MOM20-3000 3000 20 8.37% 0.46 1.15 0.61
2-MOM25-3000 3000 25 9.20% 0.42 1.04 0.59
2-MOM30-3000 3000 30 8.11% 0.37 0.91 0.64

Table 3: Results from SHM Level 2 network

From these results, it was found out that the minimum error was achieved using the 2-MOM30-1000 network
and, generally, the error varied from 3.22% to 15.3%.
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SHM LEVEL 3

Using the same approach with SHM Level 1& 2 networks, but using instead a function approximation
network, for the mapping

f (6‘ sensorl , gsensorz) - cracklength

z z

the results achieved are presented in table 3:

Network Epochs | Hidden PE’s Test Error MSE NMSE r
3-MOM10-1000 1000 10 7.09% 0.097 | 0.1385 | 0.971
3-MOM15-1000 1000 15 4.08% 0.038 | 0.053 0.975
3-MOM20-1000 1000 20 8.20% 0.01 0.152 0.971
3-MOM25-1000 1000 25 6.34% 0.05 0.07 0.997
3-MOM30-1000 1000 30 7.48% 0.006 | 0.097 0.974
3-MOM10-2000 2000 10 2.81% 0.003 | 0.052 0.975
3-MOM15-2000 2000 15 6.69% 0.005 | 0.084 0.975
3-MOM20-2000 2000 20 5.50% 0.005 | 0.077 0.974
3-MOM25-2000 2000 25 2.19% 0.007 0.1 0.978
3-MOM30-2000 2000 30 4.46% 0.005 0.07 0.974
3-MOM10-3000 3000 10 5.52% 0.004 0.06 0.975
3-MOM15-3000 3000 15 6.03% 0.005 0.07 0.975
3-MOM20-3000 3000 20 6.84% 0.006 0.08 0.975
3-MOM25-3000 3000 25 6.93% 0.005 0.08 0.978
3-MOM30-3000 3000 30 2.69% 0.004 0.05 0.974
3-MOM10-4000 4000 10 3.25% 0.003 0.04 0.975
3-MOM15-4000 4000 15 3.73% 0.003 0.05 0.975
3-MOM20-4000 4000 20 6.03% 0.005 0.07 0.975
3-MOM25-4000 4000 25 8.30% 0.007 | 0.113 0.975
3-MOM30-4000 4000 30 6.37% 0.005 0.07 0.978
3-MOM10-5000 5000 10 6.53% 0.005 0.08 0.975
3-MOM15-5000 5000 15 4.80% 0.004 0.05 0.975
3-MOM20-5000 5000 20 5.33% 0.004 0.06 0.975
3-MOM25-5000 5000 25 3.57% 0.003 0.05 0.975
3-MOM30-5000 5000 30 6.41% 0.005 0.07 0.975

Table 4: Results from SHM Level 3 network

Whereas, it is obvious that the best network output is achieved using the 3-MOM25-2000 network architecture,
while the error in all configurations varied between 2.19% and 8.3%.

SHM LEVEL 4

Finally, for the case of life expectancy of the repaired crack, having a propagating failure, suing the
same techniques as those in SHM Level 3 networks for the mapping

sensorl sensor 2
f(e, V€, N

cracklength) > N

consumed ! exp ected

the following results were achieved using a data set of 2000 epochs:

Network Epochs Hidden PE’s Test Error MSE NMSE r
4-MOM10-1000 1000 10 10.46% 0.0001 0.001 0.999
4-MOM15-1000 1000 15 13.79% 7.1E-05 | 0.00044 0.999
4-MOM20-1000 1000 20 16.69% 0.0001 0.001 0.999
4-MOM25-1000 1000 25 15.96% 0.00052 0.003 0.998
4-MOM30-1000 1000 30 17.32% 0.0003 0.002 0.998
4-MOM10-2000 2000 10 10.5% 0.00002 0.001 0.999
4-MOM15-2000 2000 15 13.94% 7.9E-05 0.0005 0.999
4-MOM20-2000 2000 20 7.14% 0.0001 0.0006 0.999
4-MOM25-2000 2000 25 3.82% 0.00008 0.0004 0.999
4-MOM30-2000 2000 30 14.90% 0.00013 | 0.00083 0.999
4-MOM10-3000 3000 10 10.97% 0.00003 0.0002 0.999
4-MOM15-3000 3000 15 3.53% 0.00038 0.0002 0.999
4-MOM20-3000 3000 20 4.34% 0.00004 0.0002 0.999
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4-MOM25-3000

3000

25

8.38%

0.0001

0.0008

0.999

4-MOM30-3000

3000

30

8.49%

0.0004

0.0005

0.999

Table 5: Results from SHM Level 4 network

Whereas, it is obvious that the best network output is achieved using the 4-MOM20-3000 network architecture,
while the error in all configurations varied between 3.53% and 17.32%.

RESULTS

Having completed the training process as well as the validation of the network architectures for the
given data set, the optimum network architecture for each SHM Level was submitted to a “live” process, during
which real strain data (not training or validation set data) taken from the sensors were fed on the networks. The
network outputs for this “unknown” data set were very good, close enough to the expected causes. For economy
of space, the most interested cases of network architectures for SHM Level 3 and 4 are presented in figure 6.
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Figure 6: Network output using “unknown” data set for SHM Level 3 and 4 on various test specimens

Similar results were achieved for the rest of the network architectures used for SHM Level 1, 2. Moreover, in
order to check the stability of the solutions due to small data perturbations, uniform “noise” (from 1 to 5%) was
added to the data input of the networks in order to evaluate their response. Due to the fact that a uniform type
“noise” filter was added to the design of the networks, these small perturbations did not result to solution
instability, but on the contrary, validated the stable performance of these networks as presented on figure 7.
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Figure 7: Network output stability testing SHM Level 3 and 4

CONCLUSIONS

Following the here presented analysis, it was found out that, the inverse problem of fault detection,
qualification / quantification and life expectancy of a composite patch repair, during its operational usage, can be
treated using neural network techniques and fiber optic sensors. The results achieved showed that the
combination of fiber optic sensors and neural network damage prognosis and diagnosis capabilities can be
considered a semi-integrated health monitoring system for the composite patch repair technique, ensuring the
long term stability and durability of the repair.
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ABSTRACT

Modern developments in the space of aeronautics, particularly since the incident of 11" of September
2002 in the U.S.A. which affected negatively the economic potential of air companies worldwide, render explicit
the need for exploitation of air structures up to their designed structural life or even further and consequently
the need for adoption of maintenance techniques supporting their structural integrity in an acceptable,
according to their designed criteria, manner. One of the most promising techniques is the so called ““‘composite
patch repair method”, a method capable to repair cracked metallic structures using adhesively bonded
composite patches, that constitutes an effective method for re-establishment of structural integrity. However,
even though this method has important advantages, problems concerning the long-term behavior of the adhesive,
the appearance of debonds, etc. appear and have led to the considerable delayed widespread acceptance of this
method.

In the present study the realization and implementation of elements of a structural health monitoring
system for composite patch repairs is being performed, combining elements from the theory of structural repair
mechanics, the theory of intelligent materials and structures and particularly the technology of optical sensors
and neural networks.

This investigation was carried out within the purposes of a Research project by the Research and
Product Design Department of Hellenic Aerospace Ind.

INTRODUCTION

Current economic world conditions are forcing to the operation of both military and civilian aircraft
well beyond their original design life, resulting in innovative repair techniques. The recent development of high
strength fibres and adhesives has led to the invention of a new methodology for the repair of metallic structures
by the adhesive bonding of patches manufactured by composite materials. Bonded repairs are mechanically
efficient, cost effective and can be applied rapidly to produce an inspectable damage tolerant repair. The actual
objective of the repair of a cracked or corroded metallic structure by an adhesively bonded composite patch is,
practically, the transfer of loads from the one side of the sound material to the other via the patch, deviating the
damaged area. With this technique the patch is usually manufactured using carbon / epoxy or boron / epoxy
composite materials, while its bonding on the structure is achieved using high strength adhesives. The load
transfer from the component to the patch and vice versa is achieved by the shear stresses applied on the adhesive
layer. Even though the technique presents great advantages from a life cycle cost point of view for the aeronautic
structures, the certification of the method for operational usage is not yet completed. Problems such as the long
term stability of the adhesive bonding, precludes the method from a widespread acceptance as a field repair
technique.

In order to advance the potential spreading of the composite patch repair technique, on line health
monitoring should be adapted to secure the long term stability and the structural integrity of the repair and the
structure as a whole. In that respect and in order to enable on line monitoring of the local stress field into a composite
patch during a potential failure, such as crack or debond propagation, optical fiber sensors can be structurally
integrated into it. Fiber optic sensors became lately a main research area in the field of “Smart Structures” because of
the significant advantages they offer compared to previous efforts in the area of stress-strain monitoring (e.g. strain
gages, etc.). Various types of sensors can be intrinsically embedded in a composite material, like the Bragg Grating,
Fabry-Perrot, the Polarimetric, etc. On the contrary, there are not many candidate fiber sensors in the case of a
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composite patch due to the miniature dimensions used, the single fiber embedding and interface requirement, the
requirement to trace a single, decoupled strain component, etc. Therefore, in the present study, Fiber Bragg grating
sensors were embedded in the composite patches, to trace the mechanical field variations. The field variations, for
simplicity reasons, were assumed mechanical only, decoupled from any thermal effect, by keeping the environmental
conditions stable during the experimental study.

SPECIMEN DESIGN

In order to proceed to the experimental studies, various specimens were designed and manufactured.
First of all and before any other experiment, the behavior and the repeatability of the strain measurements taken
from the Bragg sensors should be evaluated as well as the durability of the sensor during the test process. Three
specimens (Type I) were manufactured, according to the geometrical characteristics presented in figure 1.

360 mm

Bragg Grating BSmm
160mm
Figure 1: Measurement repeatability specimen (Type I)
The materials used, considered isotropic, are presented on Table 1.

Material Thickness(mm) E (MPa) | G (MPa) \

Aluminium 2024-T3 6 72000 26900 0.3
Textron 5521 Prepreg 0.125 per lamina 207000 4800 0.21

FM73 Film Adhesive 0.2 - 750 -
Optical Fiber Diameter 0,1mm 70000 0.29

Table 1: Material properties

The vertical projection of the crack tip of the metallic structure was chosen as the sensor location, based on
the numerical simulation results presented in [1]-[5]. The composite patch used was manufactured using six
laminates of carbon epoxy prepreg. The sensor was embedded between the third and fourth lamina, based on the
results of [4]. The physical characteristics of the sensors were the following:

Center wavelength Ag= 1535410 nm
A)=~0.7nm

Reflectivity R=85~97 %

Sensor length L=2mm

The specimens were submitted to a tensile testing process using an Instron test machine. The specimens
were gradually loaded to a range of 1 to 10 KN tensile load and measurements for each load condition were
recorded from the optical fiber sensors. A COTS Micron Optics Bragg Interrogator had been used for the
acquisition of measurements, having the capability to store digitally the wavelength shifts of the sensors during
the loading process.

Moreover, specimens were manufactured in order to study potential fault propagation. Taking into account
that the faults studied were the crack or debond propagation, the specimens of figure 2 were manufactured (Type
IT). Each of these specimens was representing a potential debond (yellow area) developed in the area of the crack
tip, between the composite patch and the repaired metallic area. The aim of the test series was to examine the
possible propagation patterns of the cracked and/or debond area, using NDI techniques. Fiber optic sensors were
not embedded in these specimens, due to the fact that measurements should not be taken. The specimens,
manufactured using the materials of table 2 with six ply composite patch, were submitted to fatigue testing,
using the following load data:
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e Meanload: 2,1 tn
e Amplitude : 1,9 tn
e Load frequency : 10 Hz

e
85mim

B5mT

EOmm

360mm
360mm
360mm

Figure 2: Fault propagation study specimens (type II-1, 2 and 3 respectively)

Finally, in order to monitor the propagation of a failure in a composite patch repair, more specimens were
manufactured, having embedded optical fiber sensors, as presented in figure 3. Each of these specimens had two
embedded optical sensors, in positions determined after the experimental study of specimens type II, using the
same materials and sensors of specimens type I and II. The crack tip sensor was called as sensor “a” while the
second sensor was called “b”. The loading conditions of the specimens were identical with the conditions of

specimens type I1.

160mm
160mm

360mm
360mm
360mm

Bragy Gratings

Figure 3: Monitored specimens (type I1I-1, 2 and 3 respectively)

For each of the above, three specimens were manufactured in order to secure the experimental results. The exact
specimen details are presented in Table 2.
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. 111-1 111-2 111-3
Specimen Code
A D G B E H C F |
FBG a - Center
Wavelength (nm) 1551,24 | 1551,28 | 1563,47 | 1551,12 | 1551,59 | 1562,36 | 1551,8 | 1551,34 | 1551,51
FBG b - Center
Wavelength (nm) 1551,32 | 1551,26 | 1530,14 | 1551,65 | 1551,52 | 1551,82 | 1551,4 | 1551,89 | 1551,39
FBG a — Reflectivity
(%) 99 98 97,8 98,6 98,8 97,1 99,3 98,9 97,6
FBG b - Reflectivity
(%) 97,5 98,75 32,9 98,4 98,9 97,9 93 98,75 98,8

Table 2: Specimen type III details

The data acquisition during the fatigue loading of specimens type III, was based on the following technique:

e Measurement of crack length at 10K cycles and every 2.5K cycles with simultaneous sensor wavelength
shift recording

e  Measurement of debond area using C-Scan NDI every 10K cycles

e Ramp type tensile loading (figure 4) every 10K cycles with simultaneous sensor wavelength shift

recording

S

Figure 4: Ramp type loading of specimens type I1I

EXPERIMENTAL RESULTS - SPECIMENS TYPE I & 11

The results of the tensile loading of specimens type I are presented in figure 4. It is shown that the
repeatability of measurements is very satisfying and the strain measuring capability of the sensor is accurate,
therefore the sensors were appropriate for the experiment.

L cading Results | — Strain 5KN Tr1
i — Strain 5KN Tr2

Strain 5KN Tr3

Strain 10KM Tr1

— Strain 10KM Tr2

— Strain 10KM Tr3

— Strain 18KM Tr1

Strain

)
— Strain 15KH Tr2
-

Strain 15KM Tr3
Strain 20KM Tr1

Strain 20KM Tr2
Strain 25KM Tr1

Strain 25KM Tr2

Load

Figure 5: Load vs Strain results during the repeatability test series

It was also found that during the initial tensile loading, compressive loads are developed near the crack
tip, due to the fact that the specimen has a resulted curvature from the curing process because of the thermal
coefficient mismatch of the patch and the aluminum material.

The results of the specimen type II loading, with respect to crack extension, are presented in figure 5.
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Figure 6: Crack extension of specimens type II

Moreover, C-Scan NDI was performed on these specimens in order to check the debond propagation
due to the fatigue loading. From the results of the studies it was found out that the crack propagated faster on the
specimen type II-3 compared to the specimen type II-1 or 2. From these results it was obvious that specimens
type 1I-3 were more prone to damage compared to the other two specimens. These results are self explanatory
since the position of the debond of specimen type II-3 results in a more stress intensive crack tip area as
compared to the other specimens, due to the fact that all loads are undertaken by the structure and not the patch
at the specific area.

EXPERIMENTAL RESULTS - SPECIMENS TYPE III

Following the above described test procedure, various results were taken form the fiber optic sensors during the
testing of specimens type III. The results are split in two major categories: results related to the debond extension
and results related to the crack propagation.

Debond Extension

The measured results for each specimen of Table 2, in accordance with the bond extension monitoring, are
presented in figure 7.

—e—Strain a (yg) —=— Strain b (pe) Strain a (ue)

Strain

02
Load
0.0 +—

O0KN 3KN 5KN TKN 8KN 9KN 12KN 15KN 20 KN
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—— Strain a - 25K —=— Strain b - 25K

Strain

Load

OKN 3KN 5KN KN 8KN 9KN 10KN 12KN

—— Strain a - 20K —#— Strain b - 20K

Strain

OKN 3KN 5KN TKN 8KN 9KN 10KN 12KN

—e— Strain a - 10K —=— Strain a - 20K

Strain

Load

OKN 3KN 5KN 7KN 8KN 9KN 10KN 12KN 15KN 20KN
14
3 —e— Strain a - 20K —=— Strain b - 20K
1248 Strain a - 27,5K Strain b - 27,5K

Strain

OKN 3KN 5KN 7KN 8KN 9KN 10KN 12KN 15KN 20KN

Figure 7: Debond extension monitoring and final debond area for specimens type IIl A, B, C, E and G

From the above results it is obvious that, during the ramp loading, there is a shift in strain measurement due to
the fact that the debond has propagated and resulted in a field alternation near the fiber optic sensors. The
amount of debond extension determines the strain shift for the sensors.

Crack Propagation

The measured results for each specimen of Table 2, in accordance with the crack propagation monitoring, are
presented in figure 8.
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Figure 8: Crack Propagation monitoring for specimens type III B, C, D, E, F and G

From the above results, a strain increment is obvious during the crack propagation. Moreover, for the sensor “b”
of each specimen, a sudden strain increment was noticed when the crack was passing through the vertical level
of the sensor.

RESULT ANALYSIS
Taking into account the above results, a study was made to relate the measured results with the propagating
failure. Considering the crack propagation as the major failure that could lead to the degradation of the repair
strength and the final structure failure, the above data were further analyzed, assuming that:

e A: strain of sensor a

e  B: strain of sensor b

e AA: strain increase of sensor a

e AB: strain increase of sensor b

e Aa: crack length increase
Using this notation, the test results for the crack propagation failure case, are presented in figure 9.
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Figure 9: Strain increment due to crack propagation for specimens type III B, C, D and G

From the above figure, it is obvious that during the crack propagation and when the crack “passes” from the
sensor “b”, the increment curves of the two sensors cross each other, giving a notion of the crack length on that
time. Relevant curves can be developed for the case of the debond propagation, presenting the capability of the
sensors to trace a failure propagation in the repaired structure.

CONCLUSIONS

Following the here presented experimental analysis, it was found out that optical fiber sensors can be used
efficiently to monitor the health of a composite patch repaired structure. The sensors presented very good
measurement stability, great sensitiveness and the capability to trace effectively propagating failures in the
repaired area.
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Abstract. A fiber model algorithm for the analysis of arbitrary cross sections under biaxial bending and axial
load is presented. The method can be applied to complex cross sections of irregular shape and curved edges,
with or without openings and consisting of various materials. The only assumption is that plane sections remain
plane. The cross section is described by curvilinear polygons. The material properties are user — defined; the
stress — strain diagrams of all materials consist of any number of consecutive polynomial segments (up to cubic).
Various effects such as concrete confinement, concrete tensile strength, strain hardening of the reinforcement
etc. may be taken into account. Apart from ultimate strength analyses of cross sections, the algorithm can be
applied to other problems in which the Bernoulli — Euler assumption is valid. Based on the proposed algorithm,
a computer program with full graphical interface was developed.

1 INTRODUCTION

The analysis of an arbitrary cross-section under biaxial bending and axial load has received extensive
attention in the literature lately [6], [4], [9]. With the advent of inexpensive computer systems, the generation of
the failure surface has been made possible using the “fiber” approach. This approach produces consistent results
that agree closely with experimental results [2].

The failure of the cross section corresponds to the top of the moment — curvature diagram. However, the
conventional failure, defined by design codes, occurs when any of the materials reaches its predefined maximum
allowable compressive or tensile strain.

The results of such an analysis are important as they can be used in non-linear analyses of structures where
the plastic deformations of a structural element are functions of the load history and the distance of the load
vector from the surface. Moreover, it provides grounds for the damage analysis of the cross section.

2 GENERATION OF FAILURE SURFACE

There exist three different techniques to generate the failure surface of an arbitrary cross section: (1)
interaction curves for a given bending moments ratio, (2) load contours for a given axial load and (3) isogonic or
3D curves.

The first two techniques require the calculation of the exact position of the neutral axis. The set of
equilibrium equations are non-linear and coupled and an iterative approach such as the quasi-Newton method is
needed to determine the position of the neutral axis, as proposed by Yen [10]. These procedures are not
straightforward to implement and, in many cases, are sensitive to the selection of the origin of the reference
system. Moreover, these algorithms usually become unstable near the state of pure compression.

On the other hand, the third technique, which is used in the method presented, is more direct because the
direction of the neutral axis is assumed from the very beginning. The produced points describe a more complex
3D plot, because the meridians of the failure surface, in general, are not plane. This is due to the asymmetry of
the cross section, as described later.

3 CROSS SECTION

The curvilinear polygon is the only type of graphical entity that is used for the description of all cross
sections. A curvilinear polygon has edges that may be straight lines and/or circular arcs. Since these polygons can
be nested in any depth, it is obvious that almost any cross section can be described accurately. Circles are taken
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into account as two-sided curvilinear polygons with curved edges. Notice that even small objects, such as the
reinforcement bars, are treated as actual graphical entities and not dimensionless individual fibers.

In order to significantly reduce the expensive calculations required to identify the various regions in a
complex cross section with several materials, each curvilinear polygon is treated separately. Two material
properties are defined: the “foreground” material and the “background” material. The foreground material is
taken into account with a positive sign, whereas the background material is taken into account with a negative
sign. Therefore, almost any cross section can be described, as shown in the example of Figure 1:

Entit Number Foreground Background
y of Nodes material material
| 5 Unconfined None
(outer) concrete
) 5 Confined Unconfined
(inner) concrete | (outer) concrete
Structural Confined
3 16 .
steel (inner) concrete
4 ) None Structural
steel
Structural Confined
5 2 .
steel (inner) concrete
. Confined
6-22 2 Reinforcement .
(inner) concrete
23 -41 2 Reinforcement Unconfined
(outer) concrete

Figure 1. Example of complex cross section consisting of various materials

4 MATERIAL PROPERTIES

The stress — strain diagrams of all materials are composed of any number of consecutive segments. Each
segment is a polynomial expression (up to cubic), which is automatically defined by an appropriate number of
points; for example, a cubic segment is defined by four consecutive points. Therefore, the stress strain diagrams
of a certain kind of concrete and steel may be defined as shown in Figure 2:

linear A gress

cubic | & stress

— — — — parabolic

\

strain

(a) Example of stress - strain diagram (concrete) (b) Example of stress - strain diagram (steel)

Figure 2. Example of stress — strain diagrams (tension positive)

5 CALCULATIONS

5.1 Rotation

We assume that the X axis is parallel to the central axis of the element. Any convenient point may be used as
the origin for the calculations. Since the direction of the neutral axis is assumed from the beginning, it is
convenient to express all coordinates in another YZ Cartesian system with Y axis parallel to the chosen direction
of the neutral axis. Therefore, the Cartesian system is rotated counter-clockwise around the origin by an angle 6,
as shown in Figure 3. In this way, the strains and therefore the stresses vary only in Z axis.
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Figure 3. Rotation of cross section

5.2 Decomposition of curvilinear polygons

The next step is the decomposition of all curvilinear polygons into curvilinear trapezoids. The top and bottom
edges of the curvilinear trapezoids are straight lines parallel to the neutral axis whereas the left and right edges
may be straight lines or arcs. This procedure is required only once for every direction of the neutral axis; this
basic set of trapezoids may be stored in memory and retrieved when needed.

Figure 4 shows an example of decomposition of a steel section and some of the produced curvilinear
trapezoids. Note that the section is described exactly by a 16-node curvilinear polygon:

Figure 4. Decomposition of a steel section into curvilinear trapezoids

For reasons of simplicity we will drop the term “curvilinear” for both the curvilinear polygons and the
curvilinear trapezoids.

5.3 Calculation of integrals

The next step is the calculation of the basic integrals of the trapezoids. These integrals are of the form y™z",
where m, n, are specific integers (equation (1)). All expressions for the integrals are analytical. Again, the
integrals need to be evaluated only once for every direction of the neutral axis and the results can be stored in
memory for later use. Therefore, the overhead for using analytical expressions is minimal.

L= ] (<)

trapezoid j (1 )

(m.n)=(0,0.4), (L1.4)

This method is also used for the exact calculation of cross sectional properties, such as area, first moments of
area, centroids, moments of inertia, products of inertia, principal axes etc.

5.4 Strain distribution

As mentioned before, the main assumption is that plane sections remain plane. Therefore, three parameters
are needed to define the deformed plane, namely the direction of the neutral axis (angle 0), the curvature k and
the strain g at the origin, as shown in Figure 5:
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Figure 5. Deformed plane (expressed in terms of strains)

Since the Cartesian system has been rotated by an angle 6, the strain is a function of z only (equation (2)):
g(z)=8(,+k~z 2)
Given k, g, the neutral axis is defined as the line parallel to the Y axis at a distance given by equation (3):

&)
= —— 3
Za . 3)

5.5 Calculation of stress resultants

The calculation of stress resultants will take place for an imposed deformed configuration defined by a set of
given values of the parameters 0, k, &. In general, we assume that the segment of the stress — strain diagram
covering the specific trapezoid is a cubic polynomial expression of the following form:

o(e)=3(a, &) o)

i=0
The coefficients o; are known from the properties of the material. Substituting relation (2) into (4) we obtain:
3 .
o(k,&,2)= Z(bl. -z‘)
i=0

_ 3 2
by=a,-¢,7 +a,-& +a,-& +aq,

b =3a,-& k+2-a,-& k+ta, -k (5)
b,=3-a,-&k’+a, k’
b, =a,-k’

The stress resultants of trapezoid j are calculated by integration of equation (5) as:

M= | (B0 Sa [ @S n) ©

i=0 i=0 trapezoid j i=0
3 3 3
wie I (B ga 1) B o
trapezoid j \ i=0 i=0 trapezoid j i=0
w= [ (S Eee [ e))-So) ®
trapezoid j \ i=0 i=0 trapezoid j i=0

Note that the integrals I(m_n)j have already been calculated and are independent of k, g. By a simple
summation of the stress resultants of all trapezoids, the overall forces and bending moments required to impose
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the specific deformed configuration are obtained. Therefore, the steps to calculate the stress resultants are as
follows:

o Pickk, g
o  For trapezoid j:

Calculate b; as functions of o; (equations (5))

Calculate the stress resultants using the known values of I(m,n)j (equations (6) to (8)).
e Sum the results from all trapezoids to obtain overall stress resultants Ny, My, Mz.

6 CONSTRUCTION OF MOMENT-CURVATURE DIAGRAM

For a specified axial load and direction of neutral axis (angle 0), a full moment — curvature diagram can be
constructed. After the initialization (rotation of cross section, decomposition of polygons into trapezoids,
calculation of the basic integrals of the trapezoids), small increments of Ak are applied as imposed curvature.
Since 0, k are given, the deformed plane is only a function of strain g, at the origin. The algorithm calculates an
upper and lower bound of g, and uses a fast Van Wijngaarden — Dekker — Brent method to calculate g, in order to
achieve axial equilibrium to a specified accuracy.

As the curvature increases, the neutral axis moves perpendicular to its direction. This incremental procedure
continues until the moment reaches a maximum (failure), or until one of the materials reaches the maximum
compressive or tensile strain specified by the user (conventional failure). Thus, the complete moment — curvature
diagram can be obtained, both for the primary moment My and for secondary moment M. In general, the
secondary moment My, expressed by equation (8), is small as compared to the primary moment My. Finally, the
moments can be expressed in the global reference system with an inverse rotational transformation.

The algorithm uses a variable curvature step which is adjusted automatically; therefore, the final result is

independent of the initial curvature step (specified by the user). A small initial curvature step produces a smooth
moment — curvature diagram.

7 CONSTRUCTION OF INTERACTION CURVES AND FAILURE SURFACES

By repeating the procedure described previously for different directions  of the neutral axis in the range of 0°
— 360°, we are able to construct the interaction curve for a given axial load. In addition, by constructing

interaction curves for various axial loads, we are able to construct the full failure surface of the cross section
equator — by — equator.

8 DEFORMED CONFIGURATION UNDER GIVEN LOADS

The algorithm can also be used for calculating the deformed configuration of a cross section under given
loads. The calculation is a trial and error procedure (Figure 6). The task is to calculate the parameters 0, k, g of
the deformed plane for which the cross section is in equilibrium with the external loads NXCT, MYCT, MZCT.

Ay (M;,M;) (i)
N=Nj.

Figure 6. Calculation of deformed configuration under given loads
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All calculations are performed with axial load equal to Ny.'. The origin can be any point; therefore, we first
have to calculate the bending moments MYCO, MZCO required for a deformed plane with no curvature (k=0). Since
curvature is always increased from zero until failure, this bending moment vector is the first result for any
direction 0 of the neutral axis. Therefore, the paths of all analyses stem from (MYCO, MZCO). The target vector T
connects (My.’, Mz.%) with (My.", Mz D).

As first attempt (I), we set the direction 8' of the neutral axis equal to the direction of the target vector T. As
curvature is increased, the path of the analysis deviates because of the secondary moment Mz; when the norm
reaches the norm of the target vector, the analysis stops and the result (My.', M) may differ from the target
values (MYCT, MZCT). The direction of the neutral axis is then corrected by the difference A®' found in the first
iteration. In the second attempt, the results (MYC”, MZC”) are much closer to the target values. The procedure
stops when a specified accuracy is achieved.

8 COMPUTER IMPLEMENTATION

A computer program, called myBiAxial, which implements the method proposed, has been developed. The
program features a full graphical interface. Some screen shots are shown in Figure 7:
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Figure 7. MyBiAxial computer program

9 VALIDATION - EXAMPLES

9.1 Example 1

Eurocode 2 provides design charts for common reinforced concrete cross sections. These charts provide
combinations of axial loads and their respective ultimate bending moment capacities for a range of longitudinal
reinforcement expressed by the mechanical reinforcement percentage ®.

The axial load and bending moment are in a non-dimensional form with respect to the concrete properties and
the cross sectional dimensions; therefore, a single chart covers all cases for a certain steel grade.

Eurocode 2 specifies the value of 0.020 as the ultimate strain limit for longitudinal steel reinforcement. Also,
for large compressive axial loads, it reduces the ultimate curvature capacity by imposing the rotation of the strain
profile around point C which is located at a distance 3/7-h from the most compressed fiber and has a strain of gy=-
0.002. This restriction is included easily in the algorithm; however, it is of little practical interest since large
compressive axial loads in concrete cross sections must be avoided for other reasons i.e. creep.

The developed computer program was used to calculate pairs of axial loads and bending moments for the
rectangular cross section of Figure 8a. The characteristic strengths and partial safety factors for concrete and
reinforcement bars were taken as follows: f4=20MPa, y.=1.5, f,=500MPa, y,=1.15.

Five different cases of longitudinal reinforcement were considered, i.e. ®=0.00, 0.50, 1.00, 1.50, 2.00. The
computed results follow the corresponding curve exactly, as shown in Figure 8c.
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Figure 8. (a) Rectangular reinforced concrete cross section (distances in mm) (b) Corresponding EC2 design
chart (steel grade S500) (c) Results from proposed algorithm superimposed over the design chart

9.2 Example 2

This is an example presented by Chen et al. [2], which invokes the polygonal composite column cross section
of Figure 9. The cross section consists of a concrete core, an asymmetrically placed H — shaped steel section, 15
reinforcement bars of diameter 18mm and a circular opening.

|

400

Figure 9. Composite column cross section

Chen et al. use a quasi — Newton method [10] to analyze the cross section. However, the convergence of the
iterative process invoked by this algorithm cannot be guaranteed when dealing with large axial loads i.e. loads
that approach the axial load capacity under pure compression. In order to ensure the stability of Chen’s
algorithm, the plastic centroid must be used as the origin of the Cartesian system. In this case, the coordinates of
the plastic centroid with respect to the bottom left corner are [2] Y,=292.2mm, Z,=281.5mm.

The stress — strain curve for concrete (CEC 1994) which consists of a parabolic and a linear (horizontal) part
was used in the calculation, with f..=0.85-f/y., €=0.002 and ¢,=0.0035. The Young modulus for all steel
sections was 200GPa while the maximum strain was g,=+0.010. The characteristic strengths and partial safety
factors for concrete, structural steel and reinforcement bars were taken as follows: f;=30MPa, y.=1.5,
f=355MPa, y&=1.1, £,=460MPa, y,=1.15. The analysis was carried out with an angle step of 5 degrees and an
initial curvature step of le-05.

Figure 10a shows the interaction curve produced by the proposed algorithm for compressive axial load
4120kN. The image is superimposed over the results taken from [2]; it is obvious that the curves almost coincide.
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The same figure also shows the paths of the analyses and the directions of the neutral axes that correspond to
each spike. Note that the data for each spike becomes denser near failure; this is because the curvature step is
decreased in order to achieve accuracy. By repeating this procedure for various axial loads we obtain the
complete failure surface of Figure 10b.

My - Mz interaction curve (compressive axial load Nx = 4120 kN)
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Figure 10. (a) Interaction curve for compressive axial load 4120 kN (b) Complete failure surface

10 CONCLUSIONS

A generic algorithm for the analysis of arbitrary cross sections under biaxial bending and axial load is
presented. The algorithm has some unique features as compared to the literature. The cross section is described
by curvilinear polygons, i.e. closed polygons with straight or curved edges; the material stress — strain diagrams
are fully user — defined as piecewise functions of polynomial segments; the integration of the stress field is
analytical. Apart from producing interaction curves and failure surfaces, the algorithm can be used for the
calculation of the deformed state of the cross section under given loads.

The algorithm has proved to be very stable and fast, while providing accurate results for non-linear analysis.
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Abstract. Based on the two theorems of plasticity, direct methods of limit analysis provide a better alternative
than time stepping procedures for the estimation of the strength of a structure. Two methods, based on the upper
bound theorem, are considered in the present work and are applied to plane structures. The first method
considers lumped plastic deformation along the edges of rigid finite elements. With a linearised von Mises yield
criterion the problem is converted to a linear programming problem. On the other hand, a nonlinear
optimization problem must be solved with the yield criterion in its proper nonlinear form. Both programs are
solved using a nonlinear programming algorithm, which given a good initial guess, converges rapidly. The
second method determines the limit load by a sequence of linear elastic solutions. Within an elastic solution, the
stresses in regions of the body exceed the yield condition. The stresses in such locations are then reduced to a
yield value by changing the elastic properties, assuming the strain field remains unchanged. A new resolution
then may take place since the new stress field does not satisfy equilibrium. The procedure results to a sequence
of load factors which converge to the true one. Examples of application are included in the paper.

1 INTRODUCTION

Plastic analysis of structures is nowadays an important tool in civil engineering used to accomplish precise
predictions of the limit load carrying capacity which contributes to the economy of a structure. For planar
structures in particular, these types of problems occur in the plastic analysis of discs, in soil mechanics for the
load carrying capacity of footings, etc.

Usually plastic analysis is carried out through the cumbersome time-stepping finite element method. There
are however methods depending on the kinematic theorem of plasticity for determining the upper bound of the
limit load of a structure!™*! (called direct methods), which may give a very good approximation to the true limit
load. These methods need much less computing time and also give a better insight to the inelastic behaviour of
structures.

In this work two classes of direct methods are investigated. In the first part (sections 2-3), the direct methods
which are based on the minimization of the load factor through a sequence of compatible modes of collapse are
investigated. The methods are applied to a 2D structure. In section 4 an alternative method based on an iterative
procedure which updates the modulus of elasticity, at each iteration, so that the stresses lie within the yield
surface is presented. An application of the method to a simple 1D example is also included.

2 DIRECT METHODS

2.1 Kinematical equations

The plane structure is divided into an adequate number of elements, (triangular or quadrateral), whose
common edges may serve as possible yield lines of the structure. It is assumed that these elements have the
capability of motion and not rotation i.e. they have the capability to move like rigid bodies in the plane without
rotating round their mass axis. Every possible collapse mechanism of the structure may be described by the
velocity rate of the horizontal and perpendicular component of displacement on the yield line. It is also assumed
that the total plastic deformation of the structure is concentrated between adjacent elements and there are no gaps
or overlaps between these elements!*>’.

The collapse mechanism is kinematically acceptable if the adjacent to the yield line elements may be
separated either tangentially or perpendicularly or finally by a combination of both. The perpendicular and
tangential relative velocity between elements i and j which are separated by the line m are described through the
displacement rate of the two elementsu,, v,, U i and v ; and are given by the following relation:
¢, =—(u;—u;)-sina+(v;—v,)-cosa (1)

n

¢, =(U;—u;)-cosa+(v;—v,)-sina 2
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where a is the angle between the horizontal principle axis and the common edge of the two elements, (Fig. 1).
Grouping all the above kinematical equations for all the elements which constitute the structure we may
obtain the following matrix equations:

X,u

Figure 1. Plasticity lumped along common edges.
¢, =B, -d 3)
6 =B, .d 4)

The vectors €, and €, contain the vertical and tangential rates of the relative displacements. The vector d
contains the rate of the displacements.

2.2 Yield criterion
The direct method uses the von Mises yield criterion which is expressed for plane structures as:

F:Gi+3-rﬁ1:csy2 (5)

where 6 is the normal stress, 7, is the shearing stress along a yield line and o is the yield stress of the

material.

2.2.1 Linearization of the yield criterion
If we replace 6, =X, NEY 7, =Y and 6, =R the above equation is transformed to an equation of a circle

whose center lies at the start of the principal axes o, and 1, . Instead of using the full circle one may use the
circumscribed polygon. The coordinates of the vertices of this polygon are given by the following equations:

x, = Reeos@ =P) 6)
cosf
X, = Recos@ +P) (7)
cosp
y, - Rsin@, =P) ®)
cosf
y, , - Rosin@, +B) ©)

cosp

with a, =2 k-7, k=12,...K, B=%
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K is the total number of the sides of the circumscribed polygon.
With the help of the above equations we obtain the following relation which is actually the equation which
describes each side of the polygon.

cosa, -X+sina, - Y =R (10)
Therefore the linearized yield criterion is expressed by the following equation:

F =cosa, -6, ++/3-sina, -1, =0, 11
The components of the plastic flow rate on the sides of the linearized equation are obtained by differentiating

the above equation with respect to the normal and shearing stresses respectively which results to the following
relations:

. F .

€0 :K;-;Tk:k;-cosak (12)
.. OF . .

€ =7»:;~—ark =\/§~k‘;}~smak (13)

m

2.2.2 Nonlinear yield criterion
In this case, the components of the plastic flow rates are derived straight away by differentiating (5) with
respect to the normal and shearing stresses and so the following equations are obtained:

énm =).\‘m' o =2'}'\‘m'cm (14)
’ oo,

. . OF .

et,m :}\‘m.a_r :6.7\‘1n.rm (15)

3 GOVERNING EQUATIONS
Denoting herein with bold letters vectors and matrices, the rate of the work produced by the external forces
which act on the structure is given by the following equation:

W=u-f -d (16)

where p is the load factor and f is the vector of the external loads. The rate of dissipation of the plastic
work along the common lines of adjacent elements is given by the relation:

DY [0 b+ Al =3[ (0 T e M, (17)
m=1 m=1

where 1 denotes the length of a common edge, M is the total number of the common edges. Using the
linearized von Mises yield criterion, the above equation is transformed to the following relation:

K M . .
o (O €y + Ty "€ )L, = ;ZJ{: (6, -AL -cosa, +71,, \/gk:‘n -sina, )dl <

D=y Y [ (cosa, o, ++/3 sina, -, )dl,, = > [ oy, < (18)
' k=1 m:Kl N . l . ' k=1 m=1
@D:cy-22x;-jomd1m:oy-ZZx;-lm
k=1 m=1 k=1 m=1

Equating (16) to (18) and requiring the extra constraint fld=1 , so that plastic mechanisms may exist, the
problem is converted to a linear programming problem:
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K M |
Minp:0y~ZZX;-lm

g
Subjectto &, —B_-d=0

¢, -B,-d=0 (19)
f.d=1
A >0

The elements of €_, &, are given by equations (12) and (13) respectively. Thus the variables of the program

are the rate of displacements 1, and Vv, and the plastic multipliers A¥ .
When using the von Mises yield criterion in its proper form, the rate of the plastic work dissipation becomes:

Sy [0 €0+, €)1, = > [" @, 24,0, +1,-6:4, 1,)dl, &
m=1 m=1

eD=Y2i, [ (0,7 31,1, =2 S, ["opd, = (20)
m=1 m=1

M .
Dk 1y

m=1

. M 1
_ 2 ['m _ 2
©D=2)%,-0}["dl, =20,
m=1
In this case the problem is converted to a nonlinear program with a linear objective function and with

constraints both linear and nonlinear:

M .
Min p=2 'cyz -me -1,

m=1
Subjectto ¢ —B_-d=0

¢, -B,-d=0 1)

2 2__ 2
o, t3-1,7=0,

fd=1
A, 20
The elements of &, , €, are this time given by equations (14) and (15) respectively. The variables of the

program are the quantities Xm ,0,.,T,, along the yield lines and the rates of the displacements u,, v, .
3.1 SOLUTION OF THE MATHEMATICAL PROGRAMS

A critical issue is the amount of computing time for the solution of any of the two programs described above.
Non-linear optimization techniques are used in this work, even for the linear program, since when using a good
starting solution we get a quick convergence. An alternative method for the linear programming problem (19),
the simplex method, despite its convergence in a finite number of steps, a lot of extra (artificial) variables must
be introduced, for its solution, at the expense of extra computing time.

A software package!'® is used to solve the generally constrained minimization problem:

Min f(x)
Subject to the general (possibly nonlinear) constraints
c,(X)=0, 1<r<m (22)

And the simple bounds
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Here f and c, are assumed to be twice-continuously differentiable and any of the above bounds may be
infinite. In our problem the bounds of our variables are either 0, or they are unbounded.

To solve the above problem the objective function and the general constraints are combined into a composite
function which is called the augmented Lagrangian function,

B(X,,5.) :f(x)+ivici(xwziisﬁ[ci(x)]z 23)
i=1 q =1

where the components v; are the Lagrange multipliers estimates, the entries s; are positive scaling factors, and
q is known as the penalty parameter.

An iterative scheme is employed to accomplish the minimization of this function. This iterative scheme is
(6))

made up of three steps. At the start of the j+1 iteration, Lagrange multipliers estimates v,”, constraint scaling

factors si(ij) and a penalty parameter q" are given. The steps performed may be summarized, in order, as follows:

1. Test for convergence: The derivative of the Lagrangian function and the constraints are checked against
some tolerances:

[v.Lo] <,
And (24)

ex)| <.

where L(X,v) =f(X)+ Z v.c;(X) is the Lagrangian function.
i=1

2. A quadratic model of the, generally, nonlinear objective function ®(X) is built. This model contains the

function, its derivative and the Hessian matrix. A trust region is also used within which we trust that the
values of the quadratic model and the function will generally agree.

The convergence of the augmented Lagrangian is guaranteed if the penalty parameter is gradually
reduced to zero, almost regardless of the values of the Lagrange multiplier estimates. We may arrive at a

good estimate of X" if:

is satisfied for some tolerance ®"”. A further test then occurs whether

vV, o) <0V 25)

||c(x(j*”)|| <n? (26)

holds for some other tolerance . If (26) is satisfied, the penalty parameter is left unchanged but the

Lagrange multiplier estimates are updated. Otherwise the penalty parameter is reduced while leaving the
Lagrange multipliers estimates as they are.

3. Update the Lagrange multipliers.

3.2 NUMERICAL EXAMPLE

The procedure is applied to the limit analysis of a square plate with a circular hole of diameter of 1/10 of the
side of the square.

The dimensions of the plate are 20m x 20 m x 1m. Two uniformly distributed loads parallel to the horizontal
and to the vertical axes having a maximum value equal to P1=P2=c are applied at the far ends of the plate. Due

to the symmetry of the problem, only a quarter of the plate was discretized with 98 quadrilateral elements (Fig.2).
The relevant boundary conditions along the two sides can be seen in the same figure.

The sequence of loading is the following: First P1 is applied as a whole with its maximum value. After that,
loading P2 is augmented every time by 10% of the maximum value until it also reaches its maximum value. P1
is then decreased by portions of 10% of its maximum value until it is zeroed.

It can be seen from Fig.3 that there is little difference in the results of the two programs (19) and (21). It must
be noted, nevertheless that the non-linear program (21) uses fewer amounts of variables and constraints and
therefore needs less computing time. The program (19), however, seems to converge from any starting point (e.g.
null variables). This is not the case for the program (21) for which some of the variables may be chosen so as to
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satisfy the yield constraint in an arbitrary way, i.e. all the normal stresses are put equal to ¢, and all the other

variables are zeroed.

P1
e 2
[
IS L]
Figure 2. Finite element dicretization of the plate.
1,00
//—_
0,80
——Collapse
0,60 — Yield
P2/o
y | _—] Direct Method, (Linearized
0,40 Yield Criterion)
Direct Method, (Nonlinear
Yield Criterion)
0,20
0,00
0,00 0,20 0,40 0,60 0,80 1,00
P1/0‘y

Figure 3. Results for the plate problem.

Results were compared (Fig. 3) against a time-stepping program (ABAQUS!) which uses an arc-length
method. The same discretization was employed for both methods but the running time was approximately 80
times less for the direct methods. The difference in the value of the limit load as compared with the one of the
time-stepping procedure varied between 3.7% and 12.0%. This discrepancy is expected due to the fact the direct
method pre-assumes a collapse mode along the edges of the elements whereas the time-stepping method takes
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into account plastification inside the elements. This discrepancy is expected to decrease with more refined
discretization.

4 AN ALTERNATIVE DIRECT METHOD

There has been some interest in the recent structural engineering literature to another class of direct methods
of computing limit load solutions to plasticity. These methods are also based on the kinematical theorem of
plasticity and produce a sequence of lower bounds of increasing accuracy. The main essence is to adjust the
elastic modules within a finite element scheme so that the stresses are brought within the yield condition at a
fixed strain distribution. The elastic problem is then resolved using the new spatial distribution of elastic moduli.
At each stage, a lower bound on the limit load can be found by scaling the solutions so that the stresses lie within
yield for the current elastic solution. Experience has shown that a monotonically increasing sequence of lower

bounds is usually obtained!®..

4.1 Illustrative example

Consider the simple problem shown in Fig. 4 where a uniaxial rod of 21 consists of two sections of length 1
with cross sectional areas of 2A and A and of common Young’s module. The problem is treated as a
displacement boundary condition and it is assumed that the total deflection rate o is fixed. The problem has a
single degree of freedom u.

.
1,2A 1
+ -
u
2,A 1
~ N\,

P

Figure 4. Geometry of the rod.
The strains for the two sections are given by:
g,=u/l, &,=(6-u)/l (22)

and for an arbitrary u, through the principle of virtual work, the upper bound of the critical load for 6>0 is
given by:

p_. :[Z.A.l.oy (W/1y+A 1o, - ((B-w)/1) 5>u} o)

2-A-l-o, -(u/)+A-1-0, -((-8)/1) d<u

Employing the procedure described above, the modules of elasticity have to change in every iteration. If we
denote by E} and E] the Young’s modules in the kth iteration in section 1 and 2 respectively, we obtain the
following relations:

cl=2.5/. Eif'=E! & Eif'=E] & (24)
2 1> 1 Vg’ 2 2

j
1 P!

With the help of the above equations we obtain:
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Ej+l Ej
2 @)
EZ EZ
E/ :
Since E}=E) =E then — =2’
EJ
2
The full elastic solution at the j™ iteration is given by:
) i ) i
sf+s%:§,2-cf=ci=3,a{=0—]. and & =22 (26)
1 A E; E}
This may be solved to give:
. 1 )3 . 27 )8
8{ = (WJ T and 8‘; = (WJ T (27)
So the j™ limit load upper bound is given by:
) 2+2j+1

If j— oo then P}, > Ao,

The convergence is geometric and the error is reduced in each iteration by 50%.

The above described method seems to be a good alternative to the orthodox direct methods which are based
on mathematical programming techniques as it concerns only with the solution of a sequence of elastic problems.
The applicability of the method to general structures must be further investigated.

5 CONCLUSIONS

The numerical implementation of the direct methods to the limit analysis of plane structures is investigated.
These methods offer a good alternative to the time consuming step-by-step methods, whenever one only requires
an estimate of the strength of a structure.

The first class of these methods use a rigid finite element formulation with the plasticity lumped along the
edges of the elements. Employing a nonlinear von Mises yield criterion, two different formulations are presented:
one using the yield criterion in its proper form and one using it in its linearised form. Both formulations are
being solved with the aid of a non-linear programming algorithm. The first formulation needs for convergence a
different from the null starting solution, whereas the second one may converge from any starting solution.

The second class of direct methods is based on an iterative procedure which updates the elastic modulus at
any part of the structure by the amount that the von Mises stress exceeds the yield stress under a fixed strain
distribution. This approach has been applied to a simple one-dimensional structure and has shown a geometric
convergence. Further investigation will be needed to clarify its applicability to general structures.
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Abstract: We present results concerning bubble deformation in Newtonian filaments confined between two disks
and undergoing stretching by pulling the upper disk along its axis with a constant velocity. The governing
equations consist of the momentum, continuity and constitutive equations and the free surface boundary
conditions at the bubble-liquid and liquid-air interfaces. These are solved by a finite element/Galerkin method
coupled with an implicit Euler for the time integrations. In addition, a robust mesh generation scheme that
solves a set of partial, elliptic differential equations for the nodal point is used, which has allowed us to study
multiple bubbles simultaneously deforming in the stretched filament. At each time step the flow equations are
solved with the mesh equations using Picard iterations. Numerical results are presented concerning the
dependence of bubble growth and deformation on the dimensionless numbers of the problem (i.e. Ca), the
geometry aspect ratio, relative bubble size, and bubble-bubble separation. We also report results for the case
where deforming bubbles are traveling close enough to each other to coalesce into a single bubble, and the
progressive evolution of the emerging bubble.

1. INTRODUCTION

In the bulk of materials made up by block copolymers (such as those based on styrene-isoprene
triblocks or acrylates) that are extensively used nowadays as pressure sensitive adhesives (PSAS), or at their
interface with a substrate, small cavities or air bubbles often develop. In real-life applications where PSA’s
undergo large deformations (corresponding to large values of adhesive energies), such cavities propagate along
the material and, at high deformation levels, can cause fracture. Understanding therefore how these cavities
affect the rheological response of the material to an imposed flow field is critical in our ability to design new
polymeric materials with optimal tacky properties.' ! We recently addressed!” the issue of single bubble growth
in a Newtonian or viscoelastic medium undergoing stretching through a numerical algorithm based on the finite-
element/Galerkin method and an algebraic transformation of the physical domain to the computational space. In
the present study, the analysis is extended to filaments containing more (than one) bubbles closely spaced along
the filament axis to allow for bubble-bubble interactions to develop during the flow. Our aim is to investigate
how this interaction affects the rheological response to the imposed stretching flow, especially in filaments
characterized by small aspect ratios as encountered in practice.

To account for the multiple moving boundaries accompanying the presence of a large number of
bubbles in the filament, a robust coordinate transformation has been used, based on the solution of a set of
elliptic partial differential equations.®'®"'% The method is capable of generating a discretized mesh that
optimally conforms to an entire domain that undergoes large deformations in primarily one direction (anisotropic
deformations), thus producing exceptionally smooth mappings and practically quasi-orthogonal grids; further, it
gives us the freedom to concentrate the coordinate curves in regions of interest where special resolution is
needed. By combining the new technique with the mixed finite element method, a robust algorithm is formulated
for the solution of moving boundary flow problems undergoing large deformations, such as those associated with
the deformation of interacting bubbles in media subject to stretching addressed here. At the present stage of the
study, the analysis is restricted to bubbles growing in Newtonian liquids.

713



Katerina Foteinopoulou, Vlasis G. Mavrantzas, John Tsamopoulos.

2. PROBLEM FORMULATION- GOVERNING EQUATIONS
The mathematical formulation of the problem is described in the next figure:

A
V4 - -—
U0 F N _
—T N~ = - - N\
-, _ I c()—;’\_
Ry Z%0
\2 i H(o
L
H0 Zl 12,0
hoz Rhﬂl b,O é
01 0
7 7, ~
~ ) _
r
(a) (b)

Figure 1: Geometric illustration of the system considered in this work containing two bubbles in the liquid
filament: a) before stretching (t=0), b) after stretching (t>0).

The liquid filament is assumed to have initially a cylindrical outer surface with a uniform radius R and
be confined between two solid and coaxial disks, of radius also R., separated initially by H,. The filament
undergoes deformation by pulling the upper disk with a constant velocity U,, while the lower disk, onto which
the filament is permanently bonded, remains always stationary. Inside the filament, we assume the existence of N
bubbles having initially the shape of a sphere of radius Ry10 , Ry . ..., Reno, @nd located at distances /gy, Agp , -,
how, above the solid substrate, respectively. The corresponding successive, initial separations of the bubbles are
denoted as L;,, iy=1,2,.., N, with i=j. Based on the above definitions, the following geometric dimensionless
numbers arise: e;=Ryio/R.0, €;=Rpiol Rpjo, and h=holHy, a;= Ryi/Hy, i=1,2,...N. A filament aspect ratio A=Hy/R IS
also defined. Due to the assumption of axial symmetry (see below), all N bubbles are assumed to lie along the
axis of symmetry of the filament. A schematic of the system considered is provided in Fig. 1.

As the upper plate is being pulled, the height H(z) of the filament increases, the bubbles (following the
deformation of the surrounding medium) deform or translate along the filament axis, and all (bubble-liquid and
liquid-air) interfaces are distorted. The largest deformations are anticipated to appear in the regions closest to the
two disks (in particular, near the corners) and around the surfaces of the bubbles. The problem is formulated in
cylindrical coordinates (r,0,z) with the centre of the coordinate system placed at the centre O of the lower disk of
the cylinder.

The governing equations consist of the conservation equations for the filament momentum and mass, and
the evolution or constitutive equation for the stress tensor. In dimensionless form and under the assumptions of
negligible gravitational forces and fluid incompressibility, they are written as:

V-u=0 1)

Re (Z—u +u- Vuj =-VP+V-1 (2)
t
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1=Vu+(Vu)' (3)
where T denotes the deviatoric part of the total stress tensor ¢ (6 = - PI+ 1), and Re is the Reynolds number.
The above set of equations is closed with the specification of the appropriate set of initial and boundary
conditions. The shapes of the moving boundaries are determined by invoking the kinematic condition:
M-i—wVR(Z,t):u 4)
where R(z,f) describes either the bubble or the liquid-air free surfaces. At the bubble-liquid and liquid-air
interfaces, a normal force balance results into:
n-(z;-7,)=—(2R/Ca) n+(P, -P,) n (5)
where # denotes the curvature of the free surface, n is the unit vector normal to the free surface, while
Ca=(nUy)lo is the capillary number (o: surface tension, »: medium viscosity, Uy: pulling velocity). Initially, we
assume that the liquid and the gas in the bubbles are under conditions of hydrostatic and thermodynamic
equilibrium.
An equation of state describing a reversible adiabatic axpansion is also assumed for the state of the gas
inside the bubble:
P, V7 =const. (6)

3. NUMERICAL METHOD
In the framework of the elliptic grid generation scheme, the two dimensional time-varying physical
domain (r,z,r) is mapped onto a constant computational domain(&,n,t) which is chosen to be the volume
occupied by the fluid in a filament of radius R, and height H, in the absence of any bubbles (0<E< R, 0<n<
H,). Following Dimakopoulos and Tsamopoulos™ this mapping is achieved by solving at each time step the
following PDEs:
V-V&=0 (equation generating the #-curves) @)
2

ri+z
Vg, |-5—5 +({@-¢)|Vn=0 (equation generating the -curves) (8)
ro+z,

The Q term in equation (7) is used to densify the mesh in the regions near the bubbles. The mesh equations (7)
and (8) are solved with appropriate boundary conditions that can also affect the quality of the generated mesh.
The above transformation equations generates a duscretization mesh that optimally conforms to an entire
physical domain that undergoes large anisotropic deformations.

To decouple flow (1)-(3) and mesh equations (7)-(8), a Picard type Gauss-Seidel iterative method was
used with each sub-problem being solved with Newton-Raphson iterations and a 10 tolerance for the absolute
norm of the residual vector. The tolerance in the Gauss-Seidel technique was set to 10®. Implicit Euler was
employed for the time integration, whose time step was adapted in the course of the calculations based on the
estimate of the local truncation error (defined by the difference between accurately approximated and explicitly
predicted values). The flow and mesh equations are discretized by a mixed Galerkin finite element method, in
the sense that the velocity field is approximated by using biquadratic, the pressure field bilinear and the position
vector (r,z) at each nodal point linear Langrangian basis functions.*"

4. RESULTS

With the numerical method described above, numerical results have been obtained™? concerning the time
evolution of the bubbles and the filament as a function of the parameters defining the kinematics of the imposed
flow, such as the aspect ratio of the geometry, the value of the capillary number, etc. It was observed that for
large enough aspect ratios, the bubbles experience large deformations mainly along the axial direction,
deforming into fibrils. At moderate aspect ratios (A~0.5), in addition to axial deformation, a weak radial
expansion is also observed. In fact, as the aspect ratio is decreased to rather small values (A<0.2) large bubble
deformations are recorded both radially and axially. This result, which is also confirmed experimentally,® is
explained in terms of the high values of the lateral stress o,,. developing in filaments with small aspect ratios.
Typical instantaneous snapshots obtained from the present simulations with a system containing 5 bubbles in a
filament with aspect ratio A=0.5 are shown in Fig. 2. The corresponding force-vs.-time profile required to
maintain the imposed flow is shown in Fig. 3.
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Figure 2. Typical plots of the instantaneous bubble-liquid and filament-air interfaces as obtained from the
present calculations with a system containing 5 bubbles. In all cases: A=0.5, Ca = 10, a;=a,= ...=as=0.0625,
Re=0.
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Figure 3. Time profile of the axial force on the upper disc required to keep the flow field discussed in Figure 2.

At rather high values of the applied pulling velocity, neighboring bubbles are observed to come so close that they
usually coalesce to form a single, larger bubble. B! 1n our computational experiments, bubble coalescence
was allowed only for bubbles whose separation L; in the course of the “experiment” attained values smaller than
about 0.2L;0, Where Ly is their initial separation. Once two bubbles are united, the corresponding nodes in the
physical domain are reconstructed by solving the mesh equations (7)-(8), together with appropriate boundary
conditions. The new value of the pressure in the daughter bubble was calculated by invoking the assumption of
isothermal expansion for ideal gases.

— })blVlJr})bZVZ (9)
("+72)

A typical example of bubble coalescence is shown in Fig. 4. How the emerging bubble evolves evolves is also
shown in the figure.

b
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Figure 4: Time evolution of a system containing two (N=2) bubbles before and after bubble coalescence [Ca=1,
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5. CONCLUSIONS

We have developed an efficient and robust numerical algorithm, based on the solution of a set of elliptic
partial differential equations for the mesh discretization and a mixed finite element method for the solution of the
discrete equations, that has allowed us to address multi-bubble growth and dynamics in Newtonian liquids
undergoing stretching, under the assumption of axial symmetry (two-dimensional flow). The method has
allowed us to address important issues governing or connected with bubble dynamics, such as the effect of the
geometry aspect ratio. For a given value of the capillary number, a characteristic value of the aspect ratio is
calculated below which bubbles exhibit significant deformations not only axially (along the axis of pulling) but
also radially. As the filament aspect ratio decreases, the adhesion strength, quantified, e.g., by the maximum in
the force measured on the upper plate, exhibits a substantial increase.

We have also investigated issues related to bubble interaction and bubble coalescence during stretching
and how this affects their growth and the measured force. Interestingly enough, the presence of more than one
bubble in the filament was not seen to affect the force needed to maintain the flow. The force-versus-time
profiles were also seen to be insensitive to bubble coalescence. Whether or not this persists in viscoleastic liquids
too and/or is an artifact of the axial symmetry assumption (that renders the flow two-dimensional) will be
addressed in a future work. Relaxing the assumption associated with the symmetry with respect to the azimuthal
direction, in particular, requires the development of parallel computational methodologies,*"™*® and will also be
left as a future plan.
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Abstract. A computational package, the FE-BUI, is introduced for automated parallelization of finite element
codes. The package has been developed at the Computer Center of the School of Chemical Engineering of
NTUA. Its scope is to provide the ability for parallel execution of serial codes on Beowulf clusters, in an easy
and efficient way.

1 INTRODUCTION

The main computational cost of the finite element codes comes from the solution of large linear algebraic
equation systems. Direct (e.g. frontal-type) solvers require large memory and computational cost, and most
importantly, their serial parts lack the advantage of exhibiting appreciable parallel efficiency. Recent products of
the development of parallelization tools for finite element codes are freely available packages such as the
partitioner parMETIS!"! and the solvers Aztec® and PETScP!. Even with these tools, the effort and cost required
for parallelization of a serial code might be prohibitively high. The other alternative, the automated
parallelization of serial codes with parallel compilers, yields no more than 10% reduction of the computational
cost.

In this paper is presented a new, homemade, parallel package for the solution of finite element problems.
This package offers convenience and effectiveness in doing large scale computations since there is no need for
the user to learn and implement suitable solvers and communication protocols in parallel computer architectures.
The user simply calls, from the serial code, the parallel solver, which takes care of the mesh partitioning, of the
load assignment to the available processors and of the parallel solution of the resulting linear systems. The
package uses parallel iterative solvers that are based on Krylov projection methods! and exploits the
architecture of Beowulf clusters using the MPI (Message Passing Interface)®’ for the processors communication.
Typical runs with 3D finite element problems on a small, 4-processor cluster yield a reduction of the
computational cost by a factor of 3.

2 BEOWULF CLUSTERS

The outcome of the evolution, during the last decade, of the hardware of the personal computers (PCs),
mainly in processors, driven by the major companies in this field, Intel and AMD, but also in motherboards and
memories, is low-cost and high-performance personal computing. Moreover, commodity computer networks
offer high bandwidth and low latency, like Fast Ethernet, Gigabit Ethernet and the more advanced networks
Myrinet (http://www.myri.com) and SCI (http://www.dolphinics.com). This progress in conjunction with the
development of Linux (http://www.linux.org), a freely available, stable and reliable operating system, enables
large scale computations on Beowulf clusters (http://www.beowulf.org). These clusters are computational
systems that consist of PCs which are interconnected with a private network.

Beowulf clusters are distributed memory parallel computers, where each processor has a private memory and
does not have direct access to the memory of the other processors. Thus, a two-processor communication is
required when a processor needs data residing in the memory of another processor. This communication can be
done with the MPI, which is a library of subroutines that a programmer calls from a C or a Fortran code. In this
case, the parallel execution of a serial code on Beowulf clusters needs the explicit programming of the
communication between the processors. This is the main obstacle for the user in converting a serial code to a
suitable, for Beowulf clusters, parallel code.
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3 THE FE-BUI PACKAGE

The FE-BU is programmed in Fortran 77. Its installation requires the freely available libraries: BLAS!,

LAPACK"! and MPICH™ or LAM/MPI"!. The main components are shown in Figure 1.

Partitioner |«—— Juerapped

Domains

<« GMRES(m)

Krylov solvers < BICGSTAB
+—CG

Preconditioning < Deflation

<4 Differences
< CSR format

Matrix Vector
Multiplication

BLAS, LAPACK
MPI

Figure 1. The FE-BUI components

< Element by Element

3.1 KRYLOV ITERATIVE SOLVERS

The computational kernel of the FE-BUI is based on the preconditioned Krylov iterative solvers for the
solution of large and sparse linear systems, such as the GMERS(m), BICGSTAB and CG; currently, only the
GMRES(m) solver is employed.

The GMRES is preferred for the iterative solution of large algebraic equation sets with non-symmetric
matrices, on the basis of its parallel efficiency!'”. Starting from an initial guess, X, , of the solution of the linear

system:
Ax=b (1

where A € R™ andx,b e R™, GMRES uses Arnoldi’s method!""), combined with an orthogonalization

technique — the Modified Gram-Schmidt method is used here — to construct an orthonormal basis V,, e R™™ of
the m-dimensional Krylov subspace

K, (Av)= span{v,AV,AZV,...,A"HV} 2)

where v=r/|r,|,, 1, =b—Ax, . The new approximation of the solution is
Xm = X() + VmYm (3)

where y_ is a vector of size m and it is computed from the solution of the least squares problem

y, = argmin"ﬁel —~H,y ;Y€ R™ 4)
y

Ineq. (4), B=|r,|,.¢ = [1,0,...,0]" and H_ € R™"™™ is an upper Hessenberg matrix, such as
AVm = Vm+lﬁm = VlIAVm = Hm (5)

H, € R™™ is an upper Hessenberg matrix obtained from the H,_ by deleting its last row. The least squares

problem (4) is solved by transforming H,, into an upper triangular matrix R, € R™" using plane rotations'".

The storage requirements and the computational cost of Arnoldi’s method increase rapidly with m and, thus,
a restarting variant of the GMRES — the GMRES(m) — is used in practice. When m reaches a certain preset
value, the algorithm restarts, using the last approximation x, from eq. (3) as a new initial guess. Thus, two

iterations are performed: the “inner” m iterations and the “outer” iterations that correspond to the restarts of the
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GMRES(m).

3.2 PRECONDITIONING

A preconditioner is essential in enhancing the convergence rate of a Krylov iterative solver. Thus, the
original linear system (1) must be transformed to an equivalent one that has better convergence properties. In the
FE-BUI the linear system (1) is preconditioned from the right

AM'z=b, x=M"'z (6)

In eq. (6), z is a vector of size N and M~ € R™" is the preconditioner matrix which is constructed from a
deflation technique!'?’ and it is given by

M =1 + Ut -1)U" (7

where peR is the largest eigenvalue of the matrix A, I, € R™,I, € R™ are identity matrices, U € R™ is an
orthonormal basis of the r-dimensional invariant subspace, P,, corresponding to the r smallest eigenvalues (in

terms of the absolute value of their real parts) of the matrix A and T € R™ such as
T=U"AU ®)

The largest eigenvalue and the Schur vectors of the matrix A, needed in eq. (7), are approximated by those of
the Hessenberg matrix H . Thus, at each restart of the GMRES(m), a Schur decomposition of the Hessenberg

matrix is performed to approximate the largest eigenvalue and the Schur vectors corresponding to the smallest
eigenvalues of the matrix A. These vectors are added toP , increasing its dimension. In order to save on

computational cost and memory requirements arising from the preconditioning operations, an upper limit, r,,

on r is set; when it is reached, the update of the preconditioner stops and the GMRES(m) continues with the
same preconditioner. The key idea of this preconditioning technique is to remove by deflation the smallest
eigenvalues of the matrix A that cause slow or no convergence of the GMRES(m)!"*,

3.3 PARTITIONING

The partitioner of the FE-BUI package is based on an overlapped domains!'* partitioning technique. The
original domain, tessellated by the finite element method, is divided into subdomains. A subdomain is defined as
a separate group of elements and it is assigned to a processor.

—— e e

I 5 10 15 I | 25 30|

: =~ s - Y ) )

| l !

4 9 14 19 24 29
(3) (7) 1 (15) (19)

| o | >

|3 g 13 18] 23 28|
(2) 10 14) 18

| (1

I 2 7 12 17 I 22 27

I 1) (s) ( I(13) 17

I L |

L 6 1 16 21 26

— — — -— Er—ur—uvzr—<uxt

Figure 2. A sample 2D finite element mesh assigned to 2 processors. Dashed and solid lines depict the 2
overlapped subdomains.

In Figure 2 is shown a 2D finite element mesh that is assigned to 2 processors. According to this partitioning
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technique, each processor takes 15 nodes, i.e. 15 rows of the matrix A, 1 to 15 for the first processor and 16 to
30 for the second processor. Each processor in order to fully assemble every local node contribution to the
matrix A, makes some extra computations to the common elements 9 to 12. The nodes of these elements are
called communication nodes.

Thus, in FE-BUI the decomposition of the finite element mesh corresponds to the distribution of the matrix
A rows to the processors. It is known that this technique leads to smaller parallel efficiency than that of other
domain decomposition techniques!" ! (see also section 5), but offers flexibility and usage convenience to the
FE-BUI package.

3.4 PARALLEL OPERATIONS IN THE FE-BUI

The basic operations of the GMRES method are: (i) Vector updates, (ii) inner products, (iii) matrix-vector
products. Moreover, preconditioning operations are needed for the preconditioned GMRES(m). The
performance of these operations depend on the choice of the preconditioner. The deflation preconditioning
technique can be analyzed in the same basic operations as the GMRES method. All these operations can be
decomposed in tasks and each task can be independently executed on each processor. More details about the
parallel implementation of these operations on Beowulf clusters are available in [10]. Briefly, vector updates can
be done in parallel without communication between the processors. In order to compute an inner product each
processor computes a local inner product. The latter operation is completed through a global communication
between the processors to sum up the calculated local inner products. During the global communication, the
processors exchange data of length of 8 bytes (the scalar local inner product). For the matrix-vector product, a
communication between its processor and its neighbors is required. During the neighboring communication the
processors exchange arrays of length equal to the communication nodes. For example, with reference to figure 2,
the processors exchange data of length of 5-8 =40 bytes.

In FE-BUI the matrix-vector product can be done using three methods: a) Compressed Sparse Row Format
(CSR) were only the nonzero elements of the matrix A are stored. b) The element-by-element matrix-vector
product and ¢) With a matrix-free approach!'”, that is by approximating the elements of A by differencing; this
is often the case in nonlinear problems, where A is the Jacobian matrix corresponding to the discretized
equations.

4 USAGE OF THE FE-BUI

As a first step with the FE-BUI package, the new user can simply call from his/her serial code the driver
subroutine FEBUIdrv replacing the serial solver call. This driver takes care of the solution of the linear system
by calling the default partitioning and solver subroutines. At a more advanced level, the user can call selectively
the appropriate subroutines.

The required input data of the FEBUIdrv are already computed in most finite element codes. Typical input
data are:

a) the total number of the nodes (NN) and the elements (NE) of the mesh,

b) the array NpE of dimension NE — NpE(NE) — that contains the number of nodes of each element,

¢) the array NOP(NE,max(NpE)) that associates the local (element level) and global (mesh level) numbering of
nodes,

d) the arrays NCOD(NN) and BC(NN), for distinguishing nodes bearing Dirichlet boundary conditions,

e) an approximation to the solution u(NN), in case of nonlinear equation systems.

Also the user must supply the subroutine that computes the element contributions and the right hand side of

the linear system.

5 RESULTS

The parallel efficiency of an algorithm is measured by the parallel speedup!*!'% S, which indicates how
faster the algorithm runs using p processors compared to the performance on one processor:

Execution time on 1 processor

§= (€]

Execution time on p processors

Ideally, a parallel algorithm must run p times faster when executed on p processors. However, the speedup is
limited by the ever-present serial tasks in a parallel algorithm, by the load balancing and by the communication
between the processors that is the main factor of a reduced parallel speedup.

The FE-BUI has been tested on the solution of a three-dimensional, nonlinear and free boundary problem of
intefacial magnetohydrostatics!'”). The achieved speedup of the preconditioned GMRES(m) is shown in table 1
for two cases:
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(i) parallel computations with FE-BUI,

(i1) parallel computations with a parallel code that was developed in [18].
The computations were done on a linear system of 254,857 nodes at a small Beowulf cluster of 4 nodes
(http://www.chemeng.ntua.gr/yk/cluster)

CPUs | Case (i) | Case (ii)
1 1 1
2 1.8 1.9
3 2.7 -
4 34 3.9

Table 1: Parallel speedup

The achieved speedup is smaller than the ideal, in both cases, due to the communication between the 4
processors. The speedup in (i) is smaller than in (ii) since FE-BUI “ignores” particular aspects''®! of the mesh,
resulting in a slightly unbalanced distribution of the mesh to the available processors; in such a case, the under-
loaded processors have to remain idle until the over-loaded processors finish their tasks.

Iterations
0 1000 2000 3000 4000 5000
1.E-01
1.E-02 -
GMRES(100)
81.603 1
GMRES(200)
1.E-04 -
DEFLGMRES(100)
1.E-05

Figure 3. The convergence of the GMRES(m), m = 100, 200 and the DEFLGMRES(100), 1,,,x = 20.

In Figure 3 is shown the convergence of the GMRES(m) and the preconditioned GMRES(m) by deflation —
DEFLGMRES(m). The horizontal axis is the product of m by the restarts of the GMRES(m) or
[b-Ax.|,

o1,

Another important feature of the preconditioner of the FE-BUI is that the additional communication load
coming from the extra preconditioning operations, has no appreciable effect on the speedup of the GMRES(m) —
a significant advantage of the chosen preconditioner compared to a commonly used ILU-type preconditioner!'”’.

The achieved speedup versus the number of processors for two problem sizes, N=68,377 and N=254,857 is
shown in figure 4. The speedup increases with the number of processors significantly faster in big problems than
in smaller ones, because in the former case the computational time increases faster than the communication time,
as it is noticed also from figure 5. The latter figure shows the relative communication (global and neighbouring)
and computational time as percentages of the total execution time of the parallel preconditioned GMRES(m)
versus the problem size, when the solver runs on 4 processors.

DEFLGMRES(m). The vertical axis is the residual Res =
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Figure 4. Parallel speedup versus the number of processors for two problem sizes.

The main network overhead comes from the global communication time, although the message length is too
small. This is due to the high latency of the Ethernet network of our cluster. The time (tomm) that is spend for a

message of n bytes in length is given from:

tcomm :a+b‘n (10)
where a is the latency of the network and b is the time for sending 1 byte. Thus, two network related factors
limit the communication time: the latency and the bandwidth. Latency limits the exchange of small messages,
mainly required in global communication whereas bandwidth limits the exchange of large messages, as happens
in the neighboring communication. Thus, for finite element parallel computations with iterative Krylov solvers,

a network with small latency is strongly preferred.

m Neighboring Communication
O Global Communication
0O Computational Time

80% -

60%

Total Time

20% -

0%
N=15,599 N=68,377 N = 254,857

Figure 5. Computational vs Communication time.

More information about the wusage and the availability of the FE-BUIL, is available at
http://www.chemeng.ntua.gr/yk/cluster.

ACKNOWLEDGMENTS

Financial support for this work was provided by the Ministry of Education through the Research Program
“Pythagoras” and by the General Secretariat for Research and Technology through the “ENTEP” Program.



Antony N. Spyropoulos, Athanasios G. Papathanasiou, John A. Palyvos, and Andreas G. Boudouvis.

REFERENCES

[17 http://www-users.cs.umn.edu/~karypis/metis/index.html

[2] http://www.cs.sandia.gov/CRF/aztec1.html

[3] http://www-unix.mcs.anl.gov/petsc/petsc-2

[4] Saad, Y. (1996), Iterative methods for sparse linear systems, PWS Publishing Company.

Available to http:// www-users.cs.umn.edu/~saad/books.html

[5] http://www-unix.mcs.anl.gov/mpi/

[6] http://www.netlib.org/blas

[7] http://www.netlib.org/lapack

[8] http://www-unix.mcs.anl.gov/mpi/mpich

[9] http://www.lam-mpi.org

[10] Spyropoulos, A. N., Palyvos, J. A. and Boudouvis, A. G. (2000) "Finite element computations on cluster of
PC’s and workstations." In Proceedings of the 8" Euromicro Workshop on Parallel and Distributed
Processing — EURO-PDP’2000, pp. 56-61, Rhodos, Greece, January 2000 (IEEE Computer Society, Los
Alamitos, CA, USA).

[11] Arnoldi, W.E. (1951), “The principle of minimized iterations in the solution of the matrix eigenvalue
problem”, Q. Appl. Math., Vol. 9, pp. 17-29.

[12] Erhel, J., Burrage, K. and Pohl, B. (1996), “Restarted GMRES preconditioned by deflation”, J. Comput.
Appl. Math., Vol. 69, pp. 303-318.

[13] Van der Vorst, H.A. and Vuik, C. (1993), “The superlinear convergence behaviour of GMRES”, J.
Comput. Appl. Math., Vol. 48, pp. 327-341.

[14] Smith, B., Bjorstad, P. and Gropp, W. (1996), Domain Decomposition. Parallel multilevel methods for
elliptic partial differential equations, Cambridge University Press.

[15] Dennis, J. E. and Schnabel, R. B. (1996), Numerical methods for unconstrained optimization and nonlinear
equations, STAM, Classics in Applied Mathematics, 16, Philadelphia.

[16] Buyya, R. (ed.) (1999), High Performance Cluster Computing: Programming and Applications, Vol. 2,
Prentice Hall, NJ, USA.

[17] Spyropoulos, A. N., Palyvos, J. A. and Boudouvis, A. G. (2004), “Bifurcation detection with the
(un)preconditioned GMRES(m)”, Comput. Methods Appl. Mech. Engrg., Vol. 193, pp. 4707-4716.

[18] Spyropoulos, A. N. (2003), Large scale computations with parallel processing methods in nonlinear
problems of interfacial magnetohydrostatics, Doctoral Thesis (in Greek), NTUA.

727






5" GRACM International Congress on Computational Mechanics
Limassol, 29 June — 1 July, 2005

ON THE COMPUTATION OF SELF-SIMILAR AND “COARSE” SELF-SIMILAR
SOLUTIONS

Michail E. Kavousanakis®, Constantinos I. Siettos’, Andreas G. Boudouvis™ and loannis G. Kevrekidis*

*School of Chemical Engineering
National Technical University of Athens
9 Heroon Polytechniou St., Zografos, Athens, Greece, GR-15780

School of Applied Mathematics and Physics
National Technical University of Athens
9 Heroon Polytechniou St., Zografos, Athens, Greece, GR-15780

*Department of Chemical Engineering & Program in Applied and Computational Mathematics
Princeton University
Princeton, NJ 08544, USA

Keywords: dynamic renormalization, coarse self-similar, template function method, pinning condition

Abstract. We present and discuss a computational approach to the study of partial differential equations with
self similar solutions. The solutions of such equations can explode or decay preserving a constant (rescaled)
shape. The key idea is to introduce a “dynamic pinning condition” through the use of which the solutions are
studied in a co-exploding, or a co-collapsing frame and self-similarity can be factored out™”. We show how to
construct dynamic renormalization algorithms for the location of self similar solutions and the corresponding
similarity exponents'”. The dynamic renormalization algorithm can be implemented in system models at a
microscopic level (kinetic Monte Carlo, Molecular Dynamics, Brownian Dynamics, Cellular Automata), where
the statistics of the problem satisfy a macroscopic equation with self-similar solutions'*”. The template based
approach for