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Chapter 1

VECTOR CALCULUS

The physical quantities encountered in fluid mechanics can be classified into three
classes: (a) scalars, such as pressure, density, viscosity, temperature, length, mass,
volume and time; (b) vectors, such as velocity, acceleration, displacement, linear
momentum and force, and (c) tensors, such as stress, rate of strain and vorticity
tensors.

Scalars are completely described by their magnitude or absolute value, and they
do not require direction in space for their specification. In most cases, we shall
denote scalars by lower case lightface italic type, such as p for pressure and p for
density. Operations with scalars, i.e., addition and multiplication, follow the rules of
elementary algebra. A scalar field is a real-valued function that associates a scalar
(i.e., a real number) with each point of a given region in space. Let us consider,
for example, the right-handed Cartesian coordinate system of Fig. 1.1 and a closed
three-dimensional region V occupied by a certain amount of a moving fluid at a
given time instance ¢. The density p of the fluid at any point (z,y,z) of V defines a
scalar field denoted by p(z,y, z). If the density is, in addition, time-dependent, one
may write p=p(z,y, z,1).

Vectors are specified by their magnitude and their direction with respect to a
given frame of reference. They are often denoted by lower case boldface type, such
as u for the velocity vector. A vector fieldis a vector-valued function that associates
a vector with each point of a given region in space. For example, the velocity of
the fluid in the region V of Fig. 1.1 defines a vector field denoted by u(z,y,z,t). A
vector field which is independent of time is called a steady-state or stationary vector
field. The magnitude of a vector u is designated by |u| or simply by u.

Vectors can be represented geometrically as arrows; the direction of the arrow
specifies the direction of the vector and the length of the arrow, compared to some
chosen scale, describes its magnitude. Vectors having the same length and the same
direction, regardless of the position of their initial points, are said to be equal. A
vector having the same length but the opposite direction to that of the vector u is
denoted by —u and is called the negative of u.
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Figure 1.1. Cartesian system of coordinates.

The sum (or the resultant) u4v of two vectors u and v can be found using the
parallelogram law for vector addition, as shown in Fig. 1.2a. Extensions to sums
of more than two vectors are immediate. The difference u-v is defined as the sum
u+(—v); its geometrical construction is shown in Fig. 1.2b.
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(b)
Figure 1.2. Addition and subtraction of vectors.

The vector of length zero is called the zero vector and is denoted by 0. Obviously,
there is no natural direction for the zero vector. However, depending on the problem,
a direction can be assigned for convenience. For any vector u,

u+0=04+u=nu

and

u+ (—u) =0.

Vector addition obeys the commutative and associative laws. If u, v and w are
vectors, then



ut+tv=v-+nu Commutative law
(u+v)+w=u+ (v+w) Associative law

If u is a nonzero vector and m is a nonzero scalar, then the product mu is defined
as the vector whose length is |m| times the length of u and whose direction is the
same as that of u if m > 0, and opposite to that of u if m < 0. If m=0 or u=0,
then mu=0. If u and v are vectors and m and n are scalars, then

mu = um Commutative law
m(nu) = (mn)u Associative law
(m+n)u = mu + nu Distributive law
m(u+4v) = mu 4+ mv Distributive law

A unit vector is a vector having unit magnitude. The three vectors i, j and
k which have the directions of the positive z, y and z axes, respectively, in the
Cartesian coordinate system of Fig. 1.1 are unit vectors.
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Figure 1.3. Angle between vectors u and v.

Let u and v be two nonzero vectors in a two- or three-dimensional space posi-
tioned so that their initial points coincide (Fig. 1.3). The angle 8 between u and v
is the angle determined by u and v that satisfies 0 < # < w. The dot product (or
scalar product) of u and v is a scalar quantity defined by

u-v = uv cosf. (1.1)

If u, v and w are vectors and m is a scalar, then

-u Commutative law

u-v-=y
u-(v+w)=u-v+uw Distributive law
v
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Moreover, the dot product of a vector with itself is a positive number that is equal
to the square of the length of the vector:

vu=1uv < u= uu. (1.2)

If u and v are nonzero vectors and

then u and v are orthogonal or perpendicular to each other.
A vector set {uy,ug,---,u,} is said to be an orthogonal set or orthogonal system
if every distinct pair of the set is orthogonal, i.e.,

u-u; =0, 1#£7.

If, in addition, all its members are unit vectors, then the set {uy, uy,---,u,} is said
to be orthonormal. In such a case,

u; -u; = ;5 1.3
j i (1.3)

where 6;; is the Kronecker delta, defined as

o)L=y
§; = { o iz (1.4)

The three unit vectors i, j and k defining the Cartesian coordinate system of Fig. 1.1
form an orthonormal set:

(1.5)

ij=j-k=ki=0

The cross product (or vector product or outer product) of two vectors u and v is
a vector defined as
uxv = uvsinfn, (1.6)

where n is the unit vector normal to the plane of u and v such that u, v and n
form a right-handed orthogonal system, as illustrated in Fig. 1.4. The magnitude of
u X v is the same as that of the area of a parallelogram with sides u and v. If u
and v are parallel, then sin §=0 and u X v=0. For instance, u X u=0.

If u, v and w are vectors and m is a scalar, then



Figure 1.4. The cross product u X v.

uxXxv = -—-vxu Not commutative
X(v+w) =uxv+uxw Distributive law
(u><v) (mu) X v = ux (mv) = (uxv)m

For the three unit vectors i, j and k one gets:

ixi=jxj=kxk=0,
ixj=k, jxk=1i, kxi-=]j, (L.7)

jxi= -k, kxj=-i, ixk=-j.

Note that the cyclic order (i, j, k,1,j,- ), in which the cross product of any neighbor-
ing pair in order is the next vector, is consistent with the right-handed orientation
of the axes as shown in Fig. 1.1.

The product u- (v x w) is called the scalar triple product of u, v and w, and is
a scalar representing the volume of a parallelepiped with u, v and w as the edges.
The product u x (v X w) is a vector called the vector triple product. The following
laws are valid:

(u-v)w # u(v-w) Not associative
ux (vxw) # (uxv)x Not associative
ux (vxw) = (u- )V—(u-v)w
(uxv)xw = (u-w)v - (v-w)u

u-(vxw)=v-(wxu) = w-(uxv)

Thus far, we have presented vectors and vector operations from a geometrical view-
point. These are treated analytically in Section 1.2.



6 Chapter 1. Vector Calculus

1.1 Systems of Coordinates

A coordinate system in the three-dimensional space is defined by choosing a set of
three linearly independent vectors, B={e;, ey, e3}, representing the three fundamen-
tal directions of the space. The set B is a basis of the three-dimensional space, i.e.,
each vector v of this space is uniquely written as a linear combination of e{, e5 and
€3

v=ue + e + v3es. (1.8)

The scalars vy, vy and w3 are the components of v and represent the magnitudes of
the projections of v onto each of the fundamental directions. The vector v is often
denoted by v(v1, vz, v3) or simply by (v1,v2,vs).

In most cases, the vectors e, e; and ez are unit vectors. In the three coordinate
systems that are of interest in this book, i.e., Cartesian, cylindrical and spherical
coordinates, the three vectors are, in addition, orthogonal. Hence, in all these
systems, the basis B={ey,es, e3} is orthonormal:

e e = 0. (1.9)
(In some cases, nonorthogonal systems are used for convenience; see, for example,
[1].) For the cross products of e1, e; and es, one gets:

3

e Xe; = Z €5k €k (1.10)
k=1

where ¢;;;, is the permutation symbol, defined as

1, if ijk=123, 231, or 312 (i.e, an even permutation of 123)
€ijk = -1, if ijk=321, 132, or 213 (i.e, an odd permutation of 123)  (1.11)
0, if any two indices are equal

A useful relation involving the permutation symbol is the following:

ap az as 3 3
bl bg b3 = Z Z €k aib]‘Ck . (112)
cq Co C3 =1 7=1k=1

The Cartesian (or rectangular) system of coordinates (z,y, z), with
—xo<r<oo, —oo<y<oo and —ow0<z<o0,

has already been introduced, in previous examples. Its basis is often denoted by
{1,j,k} or {e;,e,,e.}. The decomposition of a vector v into its three components
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(2,9,2)

Figure 1.5. Cartesian coordinates (z,y,z) with —oco < & < 00,

-0 <z < 0.

(r,0,z) — (2,y,2) (z,y,2) — (r,0,2)
Coordinates
x = rcosf
arctany x>0, y>0
y=rsind 7r—|—arctan— x <0
27r—|—arctany x>0, y<o0
z=z =z
Unit vectors
i—cosfle, —sinfle; | e, = cosfi+sindj
j—sinfe, +cosfes | eg = —sinfi+ cosh]
k=e, e, =k

Table 1.1. Relations between Cartesian and cylindrical polar coordinates.

—00 <y < oo and
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Figure 1.6. Cylindrical polar coordinates (r,0,z) with r > 0, 0 < 0 < 27 and
—00 < 2 < o0, and the position vector r.
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Figure 1.7. Plane polar coordinates (r,8).
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Figure 1.8. Spherical polar coordinates (r,0,¢) with r > 0, 0 < ¢ < 7 and
0 < 0 < 27, and the position vector r.
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(T707¢) - ($,@/,Z) ($,@/,Z) - (T707¢)
Coordinates
x = rsin¢cosf r=+/x?+ y? + 22
2 2
arctan x;y, z>0
y = rsin¢sind p=9 3, z=0
2_|_2
T + arctan xzy, z <0
arctan £, x>0, y>0
zZ=7Tcosd =< m4arctanZ, <0
27 +arctan?, >0, y <0
Unit vectors
i=sin¢cosfe, +cospcosfes —sinfey | e, =singpcosfi+singsingdj+cosok
J=sin¢sinfe, +cos¢psinfey + cosfey | ey =cospcosfi+ cosgpsingj—singk
k=cosgpe, —singey eg— —sinfi+ cosbj

Table 1.2. Relations between Cartesian and spherical polar coordinates.

(v, vy, v,) is depicted in Fig. 1.5. It should be noted that, throughout this book,
we use right-handed coordinate systems.

The cylindrical and spherical polar coordinates are the two most important or-
thogonal curvilinear coordinate systems. The cylindrical polar coordinates (r, 8, z),
with

r>0, 0<6<2r and —-o0<z< 0,

are shown in Fig. 1.6 together with the Cartesian coordinates sharing the same
origin. The basis of the cylindrical coordinate system consists of three orthonormal
vectors: the radial vector e,, the azimuthal vector ey, and the axial vector e,. Note
that the azimuthal angle # revolves around the z axis. Any vector v is decomposed
into, and is fully defined by its components v(v,, vg, v,) with respect to the cylindri-
cal system. By invoking simple trigonometric relations, any vector, including those
of the bases, can be transformed from one system to another. Table 1.1 lists the for-
mulas for making coordinate conversions from cylindrical to Cartesian coordinates
and vice versa.

On the zy plane, i.e., if the z coordinate is ignored, the cylindrical polar coor-
dinates are reduced to the familiar plane polar coordinates (r,8) shown in Fig. 1.7.
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The spherical polar coordinates (7,8, ¢), with
r>0, 0<¢<7wm and 0<6<2r,

together with the Cartesian coordinates with the same origin, are shown in Fig. 1.8.
It should be emphasized that r in cylindrical and spherical coordinates is not the
same. The basis of the spherical coordinate system consists of three orthonormal
vectors: the radial vector e,, the meridional vector ey, and the azimuthal vector eg.
Any vector v can be decomposed into the three components, v(v,, vg, v4), which are
the scalar projections of v onto the three fundamental directions. The transforma-
tion of a vector from spherical to Cartesian coordinates (sharing the same origin)
and vice-versa obeys the relations of Table 1.2.

The choice of the appropriate coordinate system, when studying a fluid mechan-
ics problem, depends on the geometry and symmetry of the flow. Flow between
parallel plates is conveniently described by Cartesian coordinates. Azisymmetric
(i.e., azially symmetric) flows, such as flow in an annulus, are naturally described
using cylindrical coordinates, and flow around a sphere is expressed in spherical
coordinates. In some cases, nonorthogonal systems might be employed too. More
details on other coordinate systems and transformations can be found elsewhere [1].

Example 1.1.1. Basis of the cylindrical system

Show that the basis B={e,,eg,e.} of the cylindrical system is orthonormal.

Solution:

Sincei-i=j-j=k-k=1landi-j=j-k=k-1=0, we obtain:

e e = (cosfi+sindj) (cosfi+sinfj) = cos?6+sin?6=1
egreg = (—sinfi+cosfj)-(—sinfi+cosfj) = sin?f+ cos?6 =1
e,-e, = k-k=1

e e = (cosfi+sinfj)-(—sinfi+cosfj) =0

e -e, = (cosfi+sinfj)-k =0

€ e, (—sinfi+cosfj)-k =0

O
Example 1.1.2. The position vector
The position vector r defines the position of a point in space, with respect to a
coordinate system. In Cartesian coordinates,

r=zxz1+y]j+ zk, (1.13)
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r—zit+yj+zk

Figure 1.9. The position vector, r, in Cartesian coordinates.

and thus )
|I'| = (r-r)? = \/$2+y2—|—2’2. (114)

The decomposition of r into its three components (z,y, z) is illustrated in Fig. 1.9.
In cylindrical coordinates, the position vector is given by

r=re. + ze, with |r|] = Vr2+422. (1.15)

Note that the magnitude |r| of the position vector is not the same as the radial
cylindrical coordinate r. Finally, in spherical coordinates,

r =re, with || =r, (1.16)

that is, |r| is the radial spherical coordinate r. Even though expressions (1.15) and

(1.16) for the position vector are obvious (see Figs. 1.6 and 1.8, respectively), we will

derive both of them, starting from Eq. (1.13) and using coordinate transformations.
In cylindrical coordinates,

r — i1+ yj+ zk
rcosf (cosfe, —sinfey) + rsinf (sinfe, +cosbey) + ze,

r(c0520—|—sin20)eT + r(—sinfcosf +sinfcosf)es + ze,

= re, + ze,.
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In spherical coordinates,

r — i+ yj+ zk
= rsin¢cosf (singcosfe, +cospcosfey, —sinfey)
+ rsin ¢sin @ (sin ¢sinf e, + cospsinf ey + cosb ey)
+ rcos ¢ (cospe, —singpey)
= r[sin2¢(c0520—|—sin2 6) + cos? ol e,
+ 7sin ¢ cos ¢ [(cos2 6 4 sin? §) — 1] ey
+ 7sin ¢ (—sin # cos# + sin § cos 0) eg

= re,.

O
Example 1.1.3. Derivatives of the basis vectors
The basis vectors i, j and k of the Cartesian coordinates are fixed and do not change
with position. This is not true for the basis vectors in curvilinear coordinate systems.
From Table 1.1, we observe that, in cylindrical coordinates,

e, —cosfi+sinfj and e;— —sinfi+coshj;

therefore, e, and ey change with 8. Taking the derivatives with respect to 6, we

obtain:

8;; = —sinfi+ cosfj — ey
and

deg . ..

28 = —cosfi—sinfj = —e,.

All the other spatial derivatives of e, eg and e, are zero. Hence,

der _ deg _ de: _
87’_0 87’_0 87’_0
der _ oey _ _ de; _
% — € 55 = —¢ S5 =0 (1.17)
der _ oeg _ de; _
82_0 82_0 82_0
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Similarly, for the spatial derivatives of the unit vectors in spherical coordinates,

we obtain:
der _ ey _ dep
ar 0 ar 0 ar 0
o€y e % _ _g 9eq 0
EP) ¢ 3 U ¢
der __ . €y __ dep __ :
Sa singpey —~ = cospey; L —singe, — cospey

(1.18)

Equations (1.17) and (1.18) are very useful in converting differential operators from

Cartesian to orthogonal curvilinear coordinates.

a
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