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Converting torque measurements in a Cou-
ette rheometer to flow curve data, i.e. to the
shear stress versus shear rate plot, is an ill-posed
inverse problem, known as Couette inverse prob-
lem, which becomes more complicated in the
case of fluids with yield stress, due to the possi-
ble existence of an unsheared region at the fixed
cylinder [9]. In the past three decades, the issue
of the correct determination of the shear rate has
been addressed by various investigators, who
proposed some procedures to overcome certain
limitations. A nice review including early works
on the subject is provided by Estellé et al. [3]. It
should be noted that for the characterization of

Abstract:

The objective of this work is to study quantitatively the errors introduced by the standard Newtonian and power-law
assumptions used in the determination of the material properties of viscoplastic fluids from circular Couette experi-
ments. The steady-state circular Couette flow of a Herschel-Bulkley fluid is solved assuming that the inner cylinder is
rotating at constant speed while the outer one is fixed. Analytical solutions are presented for certain values of the
power-law exponent. It is shown that the error in the computed wall shear rate, which is insignificant when the diam-
eter ratio is closed to unity, may grow large depending on the diameter ratio and the material parameters.

Zusammenfassung:

Ziel dieser Arbeit ist eine quantitative Untersuchung der Fehler, die in die Ermittlung der Materialeigenschaften vis-
coplastischer Flüssigkeiten in Rotations-Couette Experimenten durch die üblichen Newtonschen und Potenz-
gesetzannahmen eingeführt werden. Der stationäre Rotations-Couette-Fluss einer Herschel-Bulkley Flüssigkeit wird
gelöst unter der Annahme, dass der innere Zylinder sich mit konstanter Geschwindigkeit dreht, während der Äussere
ruht. Für bestimmte Werte des Exponenten im Potenzgesetz werden analytische Lösungen angegeben. Es wird
gezeigt, dass der bei Durchmesserverhältnissen nahe Eins bedeutungslose Fehler in der berechneten Wandscherrate
in Abhängigkeit vom Durchmesserverhältnis und den Materialkonstanten große Werte annehmen kann.

Résumé:

L’objectif de ce travail est d’étudier quantitativement les erreurs présentées par les suppositions ordinaires newtoni-
ennes et de loi de puissance faites pour la détermination des propriétés matérielles des fluides viscoplastiques des
expériences circulaires de Couette. L’écoulement permanent de Couette circulaire d’un fluide de Herschel-Bulkley est
résolu supposant que le cylindre intérieur tourne à la vitesse constante tandis que le cylindre extérieur est fixe. Des
solutions analytiques sont présentées pour certaines valeurs de l’indice de loi de puissance. On montre que l’erreur
du taux de cisaillement calculé au paroi, qui est insignifiant quand le rapport de diamètre est proche de l’unité, peut
se développer grande selon le rapport de diamètre et les paramètres matériels.
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1 INTRODUCTION

Circular Couette flow is a standard, widely used
viscometric flow for many fluids including mate-
rials with yield stress, such as paints, cosmetics,
drilling fluids and aqueous bentonite suspen-
sions [1], liquid foods [2, 3], granular suspensions
[4], cement paste and fresh concrete [5], and
semisolid metal slurries [6]. An interesting arti-
cle discussing the origins of Couette rheometry
has been recently published by Dontula et al. [7].
Macosko [8] discusses the underlying assump-
tions as well as the possible sources of error, such
as end effects, wall slip, eccentricities, and vis-
cous heating. 



certain industrial suspensions, Couette viscome-
ters with large annular gap are often employed,
and, as a result, the narrow gap approximation
is not valid. As pointed out by Nguyen and Boger
[9], the shear stress and the shear rate are not
uniformly distributed within the gap, and more
detailed data analysis is required. Industrial sus-
pensions commonly contain a proportion of large
particles requiring larger gap sizes to eliminate
particle size effects [10]. According to Boger [11],
the gap needs to be ten times larger than the
largest particle to conduct successful measure-
ments and avoid particle wall friction. In order to
extract material parameters from the experi-
mental data, one also needs to pre-specify the
rheological constitutive equation. The most com-
monly used constitutive equations for materials
with yield stress are the Bingham plastic, the Her-
schel-Bulkley and the Casson models [12, 13].

Yeow and co-workers [2, 14] used the
Tikhonov regularization method to convert data
from wide- as well as narrow-gap Couette vis-
cometers into shear flow curve data for various
liquid foods. They concluded that Tikhonov reg-
ularization is a practical and reliable method of
processing Couette viscometry data and has the
advantages of not requiring the specification of
the constitutive equation and the narrow gap
approximation. The method is applicable to yield
stress fluids, but depends on the proper choice of
a regularization parameter. Moreover, the
extraction of the flow curve and the yield stress
value requires a slow iterative procedure [4].
Ancey [4] proposed a method based on a wavelet-
vaguelette decomposition for the recovery of the
shear flow curve of yield stress materials, such as
polymeric gels and granular suspensions. This
method does not require knowledge of the con-
stitutive equation and the narrow gap approxi-
mation and exhibits greater accuracy and faster
convergence than Tikhonov regularization, but
requires data filtering. Hoog and Anderssen [15]
generalized the Euler-Maclaurin sum formula
solution of the Couette viscometry equation
introduced by Krieger and Elrod [16] deriving sim-
ple and more accurate formulas which are exact
for Newtonian fluids and do not involve a numer-
ical differentiation. They also address the issue
of flow curve recovery from wide gap rheometry
measurements.

More recently, Estellé et al. [3, 17] proposed
a simpler procedure based on the Bingham

approximation and the use of the maximization
of the dissipation of energy to discriminate
between the partially sheared gap solution and
the fully sheared one, which does not require a
priori knowledge of the yield stress nor the eval-
uation of the flow field in the gap region. This
procedure was successfully applied for comput-
ing the shear flow curves of model and real flu-
ids for both the Herschel-Bulkley and the Casson
models from torque-rotational velocity data in a
Couette rheometer. Heirman et al. [5] proposed
an integration approach of the Couette inverse
problem in order to convert torque measure-
ments into shear flow curve data and describe
the Herschel-Bulkley behavior of self-compact-
ing concrete observed in a wide-gap Couette
rheometer. Kelessidis and Maglione [1,18] also
presented another series expansion methodolo-
gy to invert the flow equation of a Herschel-Bulk-
ley fluid in Couette concentric cylinder geometry,
thus enabling simultaneous computation of the
true shear rates and of the three Herschel-Bulk-
ley rheological parameters. 

The objective of the present work is to ana-
lyze from a different perspective the errors intro-
duced by the standard Newtonian and power-
law assumptions used in determining the
material properties of viscoplastic fluids from cir-
cular Couette viscometric data. For that purpose,
the Herschel-Bulkley constitutive equation is
employed. In an early study, Darby [19] showed
that the error involved in using the local power-
law approximation for the shear rate in a Cou-
ette viscometer for materials with a yield stress
depends upon the constitutive equation of the
material, as well as the gap width and the stress
level in the gap relative to the yield stress. He
found in particular that the error for the Casson
fluid is less than half that for the Bingham mate-
rial. Kelessidis and Maglione [1,18] also calculat-
ed the errors resulting from the commonly made
Newtonian shear rate assumption in the case of
narrow gap Couette viscometers. Their results
indicate that significant differences exist
between the yield stress and the flow behavior
index computed using the Herschel-Bulkley
shear rate versus the parameters obtained using
its Newtonian counterpart.

In Section 2, the governing equations and
some general results are presented. In Section 3,
we study the case of a partially yielded (i.e. par-
tially sheared) fluid and present numerical as
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well analytical results for certain values of the
power-law exponent. In Section 4, the case of a
fully-yielded (i.e. fully sheared) fluid is analyzed.
In Section 5, numerical results are presented for
the ratio of the (exact) wall shear rate to its
approximation under the power-law assump-
tion and the effects of the gap size, the yield
stress, and the power-law exponent are studied.
In agreement with previous works [18, 19], the
Newtonian and the power-law assumptions for
the shear rate lead to significant errors if the flu-
id obeys a viscoplastic constitutive equation,
such as the Herschel-Bulkley model. These errors
increase with the gap size and the yield stress val-
ue. The conclusions are summarized in Section 6.

2 GOVERNING EQUATIONS

We consider the circular Couette flow between
two co-axial long cylinders of radii R1 and R2 with
R1 < R2. The inner cylinder is rotating at a constant
angular velocity W and the outer cylinder is fixed,
as illustrated in Figure 1. We assume the follow-
ing: (a) the flow is steady, isothermal, and lami-
nar, (b) the flow is axisymmetric and end effects
are negligible or eliminated by geometrical
means, and (c) gravity is negligible. Under these
assumptions the flow in cylindrical coordinates
is one-dimensional and only the ı-component of
the velocity is nonzero, i.e. uq = uq(r). The govern-
ing q-momentum equation becomes

(1)

where c is a constant to be determined from the
boundary conditions. For a generalized-Newton-
ian fluid, the shear stress trq takes the form

(2)

where h is the shear-rate-dependent viscosity
and g· is the shear rate, given by:

(3)

(uq is a decreasing function of r). The Herschel-
Bulkley constitutive equation can be written in
the scalar form 

(4)

where t is the magnitude of the stress tensor, t0
is the yield stress, g· is the magnitude of the rate-
of-strain tensor, k is a consistency index and n is
the power-law exponent. With n = 1 the Bingham
fluid is recovered and with t0 = 0 one gets the
power-law model. Thus, for the Herschel-Bulkley
fluid, the viscosity is given by:

(5)

Thus, from Eqs. 1, 2, and 5 we get:

(6)

The governing equations are nondimensional-
ized scaling r by R1, uq by WR1, g

· by W, and t by t0.
For the sake of simplicity, the same symbols are
used for the dimensionless variables hereafter.
The dimensionless forms of Eqs. 4 and 6 are
respectively

(7)

and

(8)

where Bn is the generalized Bingham number
defined by
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Figure 1:
Geometry of circular
Couette flow.



(9)

Another assumption we made is that the no-slip
condition holds at the two cylinders. Integrating
Eq. 8 and applying the boundary condition uq(1) =
1 (at the rotating cylinder) lead to the general
solution 

(10)

The wall shear rate (on the rotating cylinder) is
given by 

(11)

The constant c is determined by applying the
remaining boundary condition. With fluids with
a yield stress, there are two possible cases for the
Couette flow. If the yield stress is exceeded every-
where in the gap, then all the fluid is sheared;
otherwise, only part of the fluid is sheared. In the
former case, c is calculated by applying the
boundary condition u(R2) = 0 at the outer cylin-
der. Otherwise, the boundary condition used is
u(r0) = 0, where r0 (1 < r0 < R2) is the yield point
beyond which the fluid is not sheared. The two
cases are examined separately in Sections 3 and
4. It can be easily shown that the ratios of the wall
shear rate for the Herschel-Bulkley fluid to its
power-law and Newtonian counterparts are:

(12)

and

(13)

3 PARTIALLY-YIELDED FLUID

We consider here the case where the fluid is par-
tially yielded in the region 1 £ r £ r0 < R2. At the
yield point, r0, both the shear rate and the veloc-
ity vanish. Since g· = 0, for r = r0 we get c = r0

2 from

Eq. 8 and the general solution becomes (1 £ r £ r0)

(14)

where

(15)

The ratios of the wall shear rate to its power-law
and Newtonian counterparts are respectively

(16)

and 

(17)

In the general case, for a given value of r0 with 1
< r0 < R2, one can use numerical integration to find
the corresponding Bingham number from Eq. 15
and then calculate the velocity profile from Eq.
14. For certain values of the power-law exponent
the integration can be carried out analytically.
The results for three such cases, i.e. n = 1 (Bing-
ham plastic), 1/2 and 1/3 are listed below. 

Bingham plastic (n = 1). In this case Bn ∫ t0/kW
and

(18)

for 1 £ r £ r0 with

(19)

The ratio of the wall shear rate to its Newtonian
counterpart is
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(20)

Herschel-Bulkley fluid with n = 1/2.
Here Bn ∫ t0/kW1/2 and

(21)

for 1 £ r £ r0 with

(22)

It turns out that

(23)

Herschel-Bulkley fluid with n = 1/3. The Bingham
number is defined by Bn ∫ t0/kW1/3 and

(24)

for 1 £ r £ r0 with

(25)

In this case, one gets:

(26)

In Figure 2, the Bingham number is plotted as a
function of the yield point r0 for three different
values of the power-law index: n = 0.2, 1 and 2. All
curves have been calculated numerically as

explained above. The results for n = 1 (Bingham
plastic) can also be obtained directly from Eq. 19.
It is clear in Figure 2 as well as from Eq. 15 or from
Eqs. 19, 22, and 25, that r0 and, thus, the size of the
unsheared region depends on the Bingham num-
ber and the power-law exponent. This region
increases in size as the Bingham number is
increased. As shown in Figure 2, the effect of the
power-law exponent changes depending on the
value of the Bingham number. We observe that
the curve corresponding to the shear thickening
fluid (n = 2) is above the other two curves (n = 0.2
and 1) only for radii ratios less than 6. In Figure 3,
the velocity profiles for four values of the power-
law index (n = 1, 1/2, 1/3, and 3/2) and various Bing-
ham numbers are shown. In the general case the
velocity profiles are calculated by numerical inte-
gration using Eq. 14. Here we use numerical inte-
gration only for n = 3/2. For n = 1, 1/2 and 1/3 we
have used Eqs. 18, 21, and 24, respectively. The
results for the wall shear rate will be discussed
below together with the results for the fully-
yielded flow.

4 FULLY-YIELDED FLUID

When all the fluid is yielded, the angular veloci-
ty is forced to vanish at r = R2. The velocity for 
1 £ r £ R2 is given by Eq. 10 where now

(27)
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Figure 2 (left):
The Bingham number as a
function of the dimension-
less yield point when the
fluid is partially yielded. 

Figure 3:
Velocity profiles for differ-
ent Bingham numbers when
the fluid is partially yielded:
(a) n = 1, (b) n = 1/2,
(c) n = 1/3, and (d) n = 3/2.



For a given Bingham number, one can find the
constant c by solving Eq. 40. The critical Bingham
number, Bncrit, below which the fluid is fully yield-
ed corresponds to c = R2

2. Hence, Bncrit is found
from

(28)

For the cases n = 1, 1/2 and 1/3 the critical Bing-
ham number can be calculated from Eqs. 19, 22,
and 25 by simply replacing r0 by R2. The results for
n = 1 and 1/2 are discussed below. (The problem
becomes very cumbersome for n = 1/3 and this
case is not considered.)

Bingham fluid (n = 1). In this case, one gets the fol-
lowing expression for the velocity

(29)

where

(30)

and

(31)

Herschel-Bulkley fluid with n = 1/2. In the case of
Herschel-Bulkley fluid with n = 1/2, 

(32)

where c is given by

(33)

The ratio of the wall shear rate to its power-law
counterpart is:

(34)

5 NUMERICAL RESULTS

In the general case of a fully-yielded fluid, for a
given Bingham number the constant c is found
by solving Eq. 27 using the bisection method
along with numerical integration, (Simpson’s
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Figure 4 (left):
Results for Bingham flow
(n = 1) with R2/R1 = 1.2: (a)
Wall shear rate ratio, g· w/g· N,
calculated from Eqs. 31 and
20. The dotted line shows
the critical Bingham num-
ber above which the fluid is
partially yielded. (b) Velocity
profiles corresponding to
points A, B and C (fully
yielded fluid) and D (partial-
ly yielded fluid).

Figure 5:
Results for Bingham flow
(n = 1) with R2/R1 = 1.05: (a)
Wall shear rate ratio, g· w/g· N,
calculated from Eqs. 31 and
20. The dotted line shows
the critical Bingham num-
ber above which the fluid is
partially yielded. (b) Velocity
profiles corresponding to
points A, B and C (fully yiel-
ded fluid) and D (partially
yielded fluid).



rule with 1001 points). Then, the angular velocity
uq(r) is calculated from Eq. 10 using again numer-
ical integration (for a given value of r).

Figures 4 and 5 show results for the wall
shear ratio, g· w/g· N, in the case Bingham-plastic
flow obtained with R2/R1 = 1.2 and 1.05, respec-
tively. In Figure 4a, the wall shear ratio is plotted
versus the Bingham number. The dotted line cor-
responds to the critical Bingham number (Bncrit =
26.54) beyond which the flow is partially yielded.
The left part of the curve corresponding to the
fully-yielded case (Bn £ Bncrit) was calculated
using Eq. 31, while for the right part correspond-
ing to the partially yielded case (Bn ≥ Bncrit) Eq. 20
was used. The yield point, r0, calculated from Eq.
19, is also plotted beyond Bncrit. We observe that
the wall shear rate ratio increases fast even for
small and moderate Bingham numbers below
Bncrit. At Bncrit the error is about 18%. In Figure 4b,
representative velocity profiles corresponding to
points A, B, C, and D of Figure 4a located in both
the fully- and partially yielded regimes are
shown, which were calculated using Eqs. 29 and
18, respectively. Similar results have been
obtained in the case of a smaller radii ratio R2/R1
= 1.05 which are shown in Figure 5. However, the
increase of the wall shear rate ratio becomes
slower as the ratio R2/R1 is decreased, in agree-
ment with previous reports [18,19]. 

Figures 6 and 7 show results obtained for a
Herschel-Bulkley fluid with n = 0.5. The calculat-

ed wall shear rate ratios, g· w/g· PL, for R2/R1 = 1.2
and 1.05 respectively are shown in Figures 6a and
7a and representative velocity profiles in both
the fully- and partially yielded regimes are given
in Figures 6b and 7b. Again the wall shear rate
ratio increases with the radii ratio. Of most inter-
est, however, is the fact that the wall shear rate
ratio increases as the power-law exponent is
reduced. 

6 CONCLUSIONS

We have solved the steady-state, one-dimen-
sional circular Couette flow of a Herschel-Bulkley
fluid assuming that the inner cylinder is rotating
at constant speed while the outer one is fixed.
Analytical solutions are presented for certain val-
ues of the power-law exponent. In the general
case, the momentum equation is integrated
numerically. In agreement with previous works
[17, 18], the Newtonian and the power-law
assumptions for the wall shear rate lead to sig-
nificant errors which increase with gap size and
yield stress. Our results show that the error in the
estimated viscosity, which is insignificant when
the diameter ratio is close to unity, may grow
large depending on the radii ratio, the yield
stress, and the power-law exponent. The com-
parison of the present theoretical results with
experimental data and/or data produced follow-
ing other methodologies is the subject of our cur-
rent work.
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Figure 6 (left):
Results for Herschel-Bulkley
flow (n = 0.5) with
R2/R1 = 1.2: (a) Wall shear
rate ratio, g· w/g· PL, calculated
from Eqs. 34 and 23. The
dotted line shows the criti-
cal Bingham (Bncrit = 9.658)
number above which the
fluid is partially yielded.
(b) Velocity profiles in both
the fully- and partially-
yielded regimes. 

Figure 7:
Results for Herschel-Bulkley
flow (n = 0.5) with
R2/R1 = 1.05: (a) Wall shear
rate ratio,  g· w/g· PL, calculat-
ed from Eqs. 34 and 23. The
dotted line shows the criti-
cal Bingham (Bncrit = 77.45)
number above which the
fluid is partially yielded.
(b) Velocity profiles in both
the fully- and partially-
yielded regimes.
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(b) 
 

Figure 6. Results for Herschel-Bulkley flow (n=0.5) with R2/R1=1.2: (a) Wall shear rate 

ratio, /w PL  , calculated from Eqs. (53) and (33). The dotted line shows the critical 

Bingham (Bn
crit

=9.658) number above which the fluid is partially yielded. (b) Velocity 

profiles in both the fully- and partially-yielded regimes.  
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Figure 7. Results for Herschel-Bulkley flow (n=0.5) with R2/R1=1.05: (a) Wall shear rate 

ratio, /w PL  , calculated from Eqs. (53) and (33). The dotted line shows the critical 

Bingham (Bn
crit

=77.45) number above which the fluid is partially yielded. (b) Velocity 

profiles in both the fully- and partially-yielded regimes.  
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