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A study of various factors affecting Newtonian extrudate swell
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a b s t r a c t

Finite-element simulations have been undertaken for the benchmark problem of extrudate swell pres-
ent in extrusion. Both cases of planar and axisymmetric domains were considered under laminar, iso-
thermal, steady-state conditions for Newtonian fluids. The effects of inertia, gravity, compressibility,
pressure-dependence of the viscosity, slip at the wall, and surface tension are all considered individ-
ually in parametric studies covering a wide range of the relevant parameters. The present results
extend previous ones regarding the shape of the extrudate and in particular the swelling ratio. In
addition, the excess pressure losses in the system (exit correction) were computed. The effect of
the domain length is also studied and is found to be of importance in all cases, except for slip and
surface tension effects. The effect of the extrudate length is particularly important for inertia and
gravity flows. Inertia reduces the swelling down to the asymptotic theoretical values at infinite Rey-
nolds numbers. Gravity acting in the direction of flow also reduces exponentially the swelling. When
the flow is creeping and gravity is zero, surface tension, slip at the wall, and pressure-dependence of
viscosity, all decrease the swelling monotonically, while compressibility increases it after a small ini-
tial reduction. The exit correction decreases monotonically with inertia, gravity, and slip, increases
monotonically with compressibility and pressure-dependence of the viscosity, and is not affected by
surface tension.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Extrudate swell (‘‘die swell’’) is a well-known phenomenon
exhibited by viscous fluids exiting long slits or capillary dies [1].
Within the context of non-Newtonian fluid mechanics, this type of
flow is of interest in polymer processing, and in particular in the flow
of polymer melts in extrusion [2]. Numerical solutions of the extru-
date-swell problem were provided in the mid-1970s by a number of
researchers [3–5], starting with the pioneering work of Tanner [3],
who for the first time calculated correctly the extrudate position.
These works dealt primarily with Newtonian fluids and showed
how the extrudate surface develops under various conditions, in
agreement with experiments [3–6]. The 1980s and 1990s saw a
major effort to calculate extrudate swell with viscoelastic models,
and these efforts are summarized in various review papers and
monographs [1,7–9].

Although the problem is well understood from the physics and
fluid mechanics points of view, it has become evident from avail-
able numerical simulations that the flow changes considerably
when using different constitutive equations or domain geometry
(planar vs. axisymmetric). Changing the constitutive equation

may lead to a flow that is dramatically different, in very interesting
and unpredictable ways [10–14]. The same is true for other param-
eters influencing the fluid mechanics of extrudate swell flow, rang-
ing from inertia [6,15,16], to gravity [17], to surface tension
[6,15,18,19], etc.

A key work by Georgiou et al. [20], which appeared as a short
note, showed both computationally and in comparison with exper-
iments that inertia, gravity and surface tension have a pronounced
effect on the extrudate shape, reducing it appreciably when gravity
acts in the flow direction. Subsequently, Georgiou and co-workers
[21–25] have addressed the influence of some standard fluid
mechanics parameters on extrudate swell, but again not in full
parametric studies. Furthermore, the discussion of pressure results,
and hence the excess pressure losses associated with exit flow,
which are an integral and important part of the solution, have been
neglected.

It is, therefore, the purpose of the present paper to revisit the
steady-state Newtonian extrudate-swell problem in both planar
and axisymmetric geometries for a full parametric study of the
effects of inertia, gravity, compressibility, a pressure-dependent
viscosity, slip at the wall, and surface tension on the free surface.
The range of parameters will be from the base case of creeping flow
without any other effects to the other extreme dictated either from
physical arguments or loss of convergence. The emphasis will be
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on providing detailed results both for the free surface location
(extrudate swell) and the excess pressure losses in the system (exit
correction) as a function of the relevant fluid mechanics dimen-
sionless parameters, as it was done recently for the benchmark
fountain flow problem in injection moulding [26].

2. Mathematical modelling

2.1. Governing equations

The geometry of the axisymmetric extrudate-swell problem is
shown schematically in Fig. 1, along with the boundary conditions.
Cylindrical coordinates are the natural choice, and the gravitational
acceleration vector, �g, is assumed to be in the direction of flow.
Moreover, the flow is assumed to be isothermal and steady-state
[1,27,28]. The flow is governed by the continuity and momentum
equations:

r � ðq�uÞ ¼ 0; ð1Þ

q�u � r�u ¼ �rpþr � ��sþ q�g; ð2Þ

where q is the density, �u is the velocity vector, p is the pressure, and
��s is the extra-stress tensor. Assuming that the fluid is dense with a
zero dilatational (bulk) viscosity [1,2], the viscous stress tensor for a
compressible Newtonian fluid is given by:

��s ¼ lðr�uþr�uTÞ � 2l
3
ðr � �uÞI; ð3Þ

where l is the viscosity and I is the unit tensor. Both the density and
the viscosity are assumed to be pressure-dependent. The following
linear equation of state is considered [29]:

q ¼ q0½1þ bðp� p0Þ�; ð4Þ

where b is the isothermal compressibility assumed to be constant,
and q0 is the density at the reference pressure p0.

Similarly, the viscosity can be a function of pressure, either lin-
ear or exponential [30,31]. In the present work, the latter form is
employed:

l ¼ l0 exp½bpðp� p0Þ�; ð5Þ

where bp is the constant pressure-shift coefficient, and l0 is the vis-
cosity at the reference pressure p0.

The constitutive equation for Newtonian fluids (Eq. (3)) is
substituted into the momentum equations (Eq. (2)), and the equa-
tion of state (Eq. (4)) into both the continuity (Eq. (1)) and momen-
tum equations. The resulting system of partial differential
equations is closed by appropriate boundary conditions.

2.2. Boundary conditions

As already mentioned, the solution domain and boundary con-
ditions for the axisymmetric geometry are shown in Fig. 1. The
boundary conditions are as follows:

(a) Along the axis of symmetry AB, we take the standard sym-
metry conditions of zero radial velocity and shear stress
(ur = 0, srz = 0).

(b) Along the wall DS we assume that the normal velocity is zero
(no penetration) and that the tangential velocity obeys a lin-
ear slip equation [21,32], i.e.,

�n � �u ¼ 0; �t � �u ¼ bslð�t�n : ��sÞ; ð6Þ

where bsl is the slip coefficient, and �n and �t are the normal and tan-
gential unit vectors to the wall. For straight walls used here, these
conditions translate to the radial velocity being zero (ur = 0) and
the axial velocity being proportional to the wall shear stress sw

(uz = bslsw). It should be noted that the no-slip case (uz = ur = 0) is
recovered as bsl goes to zero.

(c) Along the free surface SC (becoming SC0) the kinematic con-
dition �n � �u ¼ 0 ensures that the free surface is a streamline.
Moreover, the tangential stresses vanish (ð��r � �nÞ � �t ¼ 0),
while the normal stresses satisfy a force equilibrium accord-
ing to [23–25]:

ð��r � �nÞ � �n ¼ �2Rcc� p0; ð7Þ

where ��r ¼ �pI þ ��s is the total stress, c is the surface tension, p0 is
the reference pressure (set to 0), and 2Rc is the mean curvature of
the free surface given by [23–25]:

�2Rc ¼
hzz

½1þ h2
z �

3=2
� a

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h2

z

q : ð8Þ

In the above, the subscripts z and zz denote first- and second-or-
der differentiation of the free surface location h with respect to z,
and r is the local radius. The parameter a is an auxiliary one, being
0 for planar flows and 1 for axisymmetric flows. Thus, the second
term is 0 in planar flows. It is also clear that in the case of zero sur-
face tension, the normal stress on the free surface vanishes.

(d) Along the outflow plane BC (becoming BC0), taken suffi-
ciently far downstream from the exit so that the flow is uni-
form, the radial velocity is zero (ur = 0) and the normal stress
is given by

rzz ¼ �
ac
hf
; ð9Þ

where hf is the final radius at the outlet (distance BC0). Note that the
normal stress in the case of planar flow is zero (i.e., the surface ten-
sion has no effect on the normal stress on the outflow plane).
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Fig. 1. Schematic diagram of flow domain and boundary conditions for extrusion flow from a die and the accompanying phenomenon of extrudate swell. The constant a = 0
for the planar case and a = 1 for the axisymmetric one.
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(e) Finally, the inlet plane AD is taken sufficiently far upstream
from the exit so that the flow is fully developed; the radial
velocity is zero (ur = 0), and the axial velocity is given by
the Poiseuille incompressible flow solution (with slip in
the general case) corresponding to a unit average velocity
U [21]. Thus, the inlet profile is not corrected for compress-
ibility or a pressure-dependence of the viscosity.

Previous numerical experiments [26] for setting a reference
pressure as a boundary condition showed that the best solution is
obtained by not specifying anywhere a reference pressure. Espe-
cially, in the case of surface tension effects (see below), setting
p = 0 at C0 or B leads to highly polluted results. However, in the
equations the reference pressure p0 is set to 0.

2.3. Dimensionless equations

To render the Navier–Stokes equations dimensionless, lengths
are scaled with the radius R of the tube (or the slit half-width, H,
in the planar case), the velocity with the average velocity at the in-
let U, and all pressures and stresses with lU/R (or lU/H in the pla-
nar case). Furthermore, the density q is scaled with q0 and the
viscosity l is scaled with l0. The unit vector in the flow direction
is denoted as �e.

Then the governing equations and boundary conditions
become:

r � ðq�uÞ ¼ 0; ð10Þ

Re�u � r�u ¼ �rpþr � ��sþ St�e; ð11Þ

��s ¼ r�uþr�uT
� �

� 2
3
ðr � �uÞI; ð12Þ

��r ¼ ðr�uþr�uTÞ � pI; ð13Þ

q ¼ 1þ Bp; ð14Þ

l ¼ expðBppÞ; ð15Þ

�t � �u ¼ Bslð�t�n : ��sÞ; �n � �u ¼ 0; ð16Þ

ð��r � �nÞ � �n ¼ �2Rc=Ca; ð��r � �nÞ � �t ¼ 0; ð17Þ

rzz ¼ �
a

Cahf
: ð18Þ

Therefore, four dimensionless numbers appear in the governing
equations and another two in the boundary conditions:

(1) The Reynolds number, Re, is a measure of inertia forces over
viscous forces:

M1 

M2 

M3

M5

(a) 

(b) 

(c) 

M5 

(d) 
Fig. 2. Finite element meshes used in the current computations: (a) M1, (b) upper half shows M2, while lower half shows M3, (c) M5, (d) blow-up near the die exit of M5. The
size of the corner element at the die exit is progressively smaller, being 0.001 for M5. The meshes shown use a flat surface as an initial guess for the extrudate free surface.
Table 1 gives the various mesh characteristics.
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Re ¼ qUR
l

: ð19Þ

When Re = 0, we have inertialess flow.
(2) The Stokes number, St, is a measure of gravity forces over

viscous forces:

St ¼ qgR2

lU
: ð20Þ

When St = 0, we have no gravity effects.
(3) The compressibility coefficient, B, is a measure of fluid

compressibility:

B ¼ blU
R

: ð21Þ

When B = 0, we have incompressible flow.
(4) The pressure-shift coefficient, Bp, is a measure of pressure-

dependence of the fluid viscosity:

Bp ¼
bplU

R
: ð22Þ

When Bp = 0, we have no pressure-dependence of the viscosity.
(5) The slip coefficient, Bsl, is a measure of fluid slip at the wall:

Bsl ¼
bsll

R
: ð23Þ

When Bsl = 0, we have no-slip conditions. When Bsl � 1, we have
macroscopically obvious slip.

(6) The capillary number, Ca, is a measure of viscous over sur-
face tension forces:

Ca ¼ lU
c
: ð24Þ

When Ca ?1, viscous forces dominate, as is the case with very vis-
cous fluids. When Ca ? 0, surface tension dominates, as is the case
with very low-viscosity fluids.

It should be emphasized that in the above the viscosity l is a
constant in all cases except in the case of a pressure-dependence
of the viscosity, where it is given by Eq. (15).

3. Method of solution

The above system of governing equations and boundary condi-
tions is solved numerically with the Finite Element Method (FEM),
using as primary variables the two velocity components (u and v),
the pressure (p), and the free-surface location (h). This is a standard
u–v–p–h formulation [20], employing biquadratic basis functions
for the velocities, quadratic for h, and bilinear for the pressure.
Regarding the iterative algorithms, we have used both Picard (di-
rect substitution) and full-Newton (Newton–Raphson) schemes.
The initial mesh configuration was that of a rectangular domain
with the exit at 0 plus the extra elements making up the extrudate
region.

The domain discretization into finite elements was based on
previous experience with extrudate swell calculations and the
knowledge that the results for Newtonian fluids converge even
with relatively sparse grids [23]. Thus, we have used the grids
shown in Fig. 2, designated as M1, M2, M3, M5, with their charac-
teristics given in Table 1, regarding number of nodes on the free

surface, elements, nodes and degrees of freedom (dof). Meshes
M4 and M5 were carefully refined in the neighbourhood of the sin-
gularity, with the size of the smallest element being 0.0025 and
0.001, respectively. FEM results for surface tension were also
obtained with the M4 and M5 meshes, which employ a geometric
ratio in sizing elements away from the exit singularity. M1 was
used here for early trial runs to check the results and gain experi-
ence with the different flow parameters. All meshes have an entry
length L1 = 5R, which is quite adequate for Newtonian flows to
accommodate nonlinear phenomena, that need some length to de-
velop (such as convective flows). The exit is set at 0 for ease of
reporting the extrudate location. The adequacy of the entry length
was also checked at each run by plotting the centerline velocity
profile and observing its levelling off in the region near the entry.

For all of the above cases, we have used a direct substitution
iterative scheme (Picard iterations) with a zero-order continuation
in a parameter (Re, St, B, Bp, Bsl, Ca). The domain lengths used in the
simulations, together with their significance, are given in Table 2
for the various parameter ranges. The criteria for termination of
the iterative process were for both the norm-of-the-error and the
norm-of-the-residuals <10�3, and for the maximum free surface
change <10�5. For the case of surface tension effects, results were
also obtained with another code [20] using the Newton–Raphson
iterative scheme, which shows a quadratic convergence within
4–5 iterations/Ca.

The solution for extended ranges of parameters needed a careful
continuation strategy. Namely, when a parameter step was too big,
convergence was lost and we had to use a smaller step to achieve
convergence. With this strategy, we were able to reach extended
ranges of the relevant parameters. The number of iterations for
the Newtonian, creeping, incompressible, base case was 9 (planar)
and 10 (axisymmetric) with no under-relaxation used when using
the Picard scheme, while with Newton–Raphson the number of
iterations were 4–5 to reach machine accuracy. Convergence for
most runs was fast and good for a wide range of parameters as
shown in Table 3, except near the limiting values, as will be dis-
cussed below, especially for surface tension effects.

4. Results and discussion

In order to investigate the effects of the different parameters,
we set as the base the flow for Re = St = B = Bp = Bsl = 0 and

Table 1
Finite element mesh characteristics used in the simulations and Newtonian base results for the extrudate swell ratio, v, and the exit correction, nex.

Mesh No. of FS nodes No. of elements No. of nodes No. of dof v (planar) nex (planar) v (axisym) nex (axisym)

M1 (�5,+8) 41 400 1701 3670 1.198 0.153 1.137 0.238
M2 (�5,+16) 201 1200 5061 11,270 1.192 0.151 1.132 0.236
M3 (�5,+16) 401 4800 19,721 44,140 1.191 0.150 1.125 0.232
M4 (�5,+20)* 129 2415 10,063 22,548 1.187 0.146 1.127 0.227
M5 (�5,+20)* 147 3325 13,765 30,866 1.186 0.146 1.127 0.227

* M4 and M5 used with Newton–Raphson iteration.

Table 2
Domain lengths used in the simulations for different parameters in extrudate swell of
Newtonian fluids.

Dimensionless number Domain lengths for different parameters

[L1,L2] Significancea

Re [�5, + 20], [�5, + 100], [�5, + 500] L1 NVS, L2 VS
St [�5, + 100] L1 NVS, L2 VS
B [�5, + 16] L1 VS, L2 NVS
Bp [�5, + 16] L1 VS, L2 NSV
Bsl [�5, + 16] L1 NVS, L2 NVS
Ca [�5, + 16] L1 NVS, L2 NVS

a NSV = not very significant, VS = very significant.
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Ca =1. The results are given in terms of the (dimensionless) extru-
date swell ratio, v, defined by

v ¼ hf

R
or v ¼ hf

H
: ð25Þ

and the dimensionless pressure or exit correction, nex, defined by

nex ¼
DPw � DP0

2sw
; ð26Þ

where DPw is the overall pressure drop in the system calculated at
the wall, DP0 is the pressure drop based on the fully developed flow
in the tube (channel) without the extrudate region, and sw is the
shear stress for fully developed Poiseuille flow at the tube (channel)
wall.

The reasons why these two quantities have been traditionally
used for reporting the results are that the extrudate swell ratio is
of importance in extrusion for the practitioners, while the excess
pressure losses are an indication of how much extra pressure is
needed in extrusion due to exit flow [1,2]. Numerically, these val-
ues are also a test of the various numerical algorithms used in
polymer processing [1].

Tanner [1] provided a selection of v values from the literature
and estimated the extrapolated values as: v = 1.190 ± 0.002 (pla-
nar) and v = 1.127 ± 0.003 (axisymmetric) for an infinite numbers
of dof. The converged results obtained by Georgiou and Boudouvis
[23] are 1.186 and 1.127. The exit correction nex is obtained from
the wall pressure values given by the simulations at the entry of
the domain upstream according to Eq. (26). This is a very sensitive
quantity and reflects the adequacy of the domain length, the im-
posed entry profile, and the finite element mesh used [29]. The
creeping values are 0.146 (planar) and 0.227 (axisymmetric) [29].
The present results with different grids are listed in Table 1.

4.1. Inertial flows – effect of Re

The calculations are pursued for increasing Reynolds numbers
up to the limiting values of the laminar regime (0 6 Re 6 2000),
in both planar and axisymmetric geometries. Convergence was
good and fast for all cases and no under-relaxation was necessary.
However, the problem with inertia flows is the domain length L2 in
the extrudate region, which must be increased accordingly as Re
increases. As indicated by Georgiou et al. [20], L2 = 25 was ade-
quate for Re 6 20, L2 = 100 for Re 6 100, and L2 = 500 for
Re 6 2000. However, in the course of the current work a better rule
was found that L2 = Re for truly adequate lengths. The adequacy of
the domain length is shown in Fig. 3, where for the planar geome-
try, L2 = 100 is adequate for Re = 100 but not so for Re = 200, as evi-
denced by the axial velocity ux plotted along the centerline and the
extrudate surface, which do not coincide for Re = 200, as they
should. Similar graphs were checked for the whole Re range. Inad-
equate domain lengths gave wrong exit corrections, namely values
that would not level off but increase as Re increased.

An interesting development occurred during the course of the
current work with the free or open boundary condition (FBC) of

Papanastasiou et al. [33]. The FBC allows the use of truncated do-
mains giving the same results obtained with very long domains.
It was applied successfully to this problem and gave results up to
Re = 10,000, with a L2 = 6 [34]. The results for the exit correction
up to Re = 200 were identical with those from the long domain
(L2 = 200), but above that the FBC gave much better and consistent
exit correction results, meaning a continuous drop in the exit cor-
rection with increasing Re. Of course, the swell ratio results are
only correct with FBC up to the truncated length, for they continu-
ously drop beyond that truncated domain, and their ultimate value
is not known when using FBC.

The free surface shapes are given in [20] and are not repeated
here. It is interesting to note that the previous results, although

Table 3
Range of simulations for different parameters in extrudate swell of Newtonian fluids.

Dimensionless number Limits of parameter range

Planar Axisymmetric

Re [0–2000] [0–2000]
St [0–0.07] [0–0.07]
B [0–0.12] [0–0.24]
Bp [0–0.05] [0–0.02]
Bsl [0–100] [0–100]
Ca [1–10�5] [1–10�5]
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Fig. 3. Axial velocity distribution along the centreline and the free surface for
Re = 100 and 200. For Re = 100, the extrudate length L2 = 100 is adequate and the
velocities coincide near the end, while for Re = 200, the extrudate length is
inadequate and the velocities do not match near the end.
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Fig. 4. Extrudate swell ratio v as a function of the Reynolds number Re. Symbols are
put here and in the following to show the parameter-continuation steps.
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obtained with few elements (222 at most), still give virtually (or
visually) the same results as with the current 4800 elements (mesh
M3). The results for the extrudate swell ratio v are shown in Fig. 4,
where symbols are put here and in the following graphs to show
the parameter-continuation steps. Inertia decreases the v-values,
reaching asymptotically the theoretical limits at infinite Re [20].
At Re � 17, planar and axisymmetric flows have the same
v = 0.933. Below that Re value, the planar geometry has a higher
swell, and the opposite is true beyond the cross-over point. For
the planar geometry, v = 1 for approximately Re = 9, and 0.835
for Re = 2000, approaching the theoretical limit 5/6 (0.833) at infi-
nite Re; for the axisymmetric geometry, v = 1 for approximately
Re = 7.3, and 0.867 for Re = 2000, approaching the theoretical limitffiffiffi

3
p

=2 (0.866) for infinite Re (see Ref. [20] and references therein).
The results for the exit correction nex are presented in Fig. 5. The

effect of inertia is to reduce the nex-values monotonically and sub-
stantially when moving away from the inertialess behaviour. At
Re � 2.2, the planar flows show no extra pressure losses, after
which inertia creates a sub-pressure in the field. The same occurs
for axisymmetric flows at Re � 3. The results for Re P 200 have
been obtained with the FBC [34] and show a continuous decrease
in values (although this is very small) even going up to
Re = 10,000 (not shown).

Therefore, the effect of inertia in the laminar flow range is to de-
crease monotonically both the extrudate swell and the exit correc-
tion in a sigmoidal form, which physically means that inertia forces
thrust out the material preventing any swelling and reducing the
pressure losses needed for the flow to occur.

4.2. Gravity flows – effect of St

The calculations are then pursued for gravity flows, when grav-
ity acts in the direction of flow (St+). A similar case was studied by
Georgiou et al. [20] (albeit with an added Re = 0.00725), who
showed that gravity drastically reduces the flow front in agree-
ment with experiments [17], reaching values as low as v � 0.543
at z/R = 20 for St � 0.02125. What is not mentioned in the previous
simulations is the domain length L2, which in the experiments was
71.2R [17], and which is a crucial parameter in gravity flows. This
subject has been taken up by Housiadas et al. [24] for the annular
extrudate-swell problem, who have shown that true results for the
extrudate shape are taken only in the first 20–25% of the extrudate

length assumed. This comes as a consequence of using a plug
velocity profile at exit as a boundary condition, plus the fact that
gravity constantly applies an axial force on the fluid, which keeps
changing its shape.

Here all results have been obtained with L2 = 100 and are given
for this particular extrudate length. The results for the free surface
shape for St = 0.02125, given in Fig. 5 of [20], were faithfully repro-
duced in the first 20R by using a length L2 = 100 (not shown here).
The results for the extrudate swell at L2 = 100 as a function of the
Stokes number St are given in Fig. 6 for the two geometries. There
is an exponential decrease for both cases, where v reaches low
values for relatively low St numbers (much lower for the planar
case). Convergence for the whole range of simulations was good
but relatively slow (slower for the planar case) due to the very long
domain used. Severe under-relaxation was needed for the free-sur-
face movement, due to its drastic changes along the extrudate. For
the easier axisymmetric case, about 14 iterations at a given St were
used for St up to 0.07 with under-relaxation x = 0.2. The planar
case was much more demanding and needed x as low as 0.05.
The runs were terminated at St = 0.07 due to lack of interest.

The results for the exit correction nex as a function of the Stokes
number St are given in Fig. 7 for the two geometries. The exit cor-
rection decreases monotonically for both cases, more so for the
planar case, for which at St = 0.05, nex becomes zero. After that,
there is a negative excess pressure loss, meaning that gravity flow
has counteracted the pressure-driven flow in the slit die.

It should be noted that when gravity acts in the opposite direc-
tion (St�), a fountain flow occurs at the front, which throws the
fluid backwards and is a much more difficult problem to solve
[26]. This problem has not been treated here.

It is worth noting here that the FBC is not suitable for gravity
flows and is not valid, because the flow phenomena depend always
on the domain length, where the gravity force is added [34]. Thus,
gravity pulling in the direction of flow always reduces the extru-
date swell exponentially and the exit correction substantially, thus
requiring less pressure for flow to occur.

4.3. Compressible flows – effect of B

The calculations are then pursued for creeping compressible
flows. It should be noted that compressibility has been included
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Fig. 5. Exit pressure correction nex as a function of the Reynolds number Re.
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Fig. 6. Extrudate swell ratio v as a function of the Stokes number St when gravity
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in previous extrudate-swell studies [21,22,29]. Here these results
are checked and new results are given for the exit correction based
on wall values, which is the customary way of presenting the exit
correction (pressure-measuring transducers are placed flush with
the wall in practice).

The compressible flow field depends on the domain length L1,
and the results shown here have been produced with a length of
5R, which is rather short. Different L1 lengths have been studied
in [29] and are not repeated here. The extrudate domain length
is not very important, and a length of L2 = 16 is adequate, at least
for a weakly compressible flow [29]. The results for the extru-
date-swell ratio v as a function of the compressibility coefficient
B are given in Fig. 8 for the two geometries. There is a minimum
for both cases (around B = 0.045 for the planar flow and B = 0.025
for the axisymmetric one), after which v reaches quickly high
values. There is a cross-over point at B = 0.06, where v = 1.17.

The axisymmetric case exhibits lower values than the planar one
before the cross-over point, after which the opposite holds. Con-
vergence was good and fast (3–7 iterations needed) except for
the higher range of B, where it was slow and difficult and reached
a limiting value of Blim = 0.12 (axisymmetric) and 0.24 (planar).

The results for the exit correction nex as a function of B are given
in Fig. 9 for the two geometries. The exit correction in the present
case has been calculated with pressure values at the wall and by
subtracting the pressure drop DP0 in the die calculated without
compressibility. Then, the exit correction rises quadratically for
both cases to fairly high values, reaching 4 for the axisymmetric
case for B = 0.12. This was not the case in [26], where DP0 in the
die was calculated at the same level of compressibility, thus result-
ing in much lower nex values. For completeness, the centreline val-
ues of [29] are also presented in Fig. 9. In compressible flows the
difference between wall and centreline values is substantial, which
is not the case for inertia or gravity flows.

Thus, compressibility has the opposite effect from inertia and
gravity, as it serves to increase the extrudate swell and the exit cor-
rection substantially. These effects are a consequence of the pres-
sure-dependence of density, which changes appreciably as B
increases, and the material swells more upon exiting to release
the normal forces and it also needs extra pressure to be pushed
out of the die.

4.4. Flows with a pressure-dependent viscosity – effect of Bp

The calculations are then pursued for creeping flows with a
pressure-dependent viscosity. Studies with pressure-dependent
viscosity have been done before [26,30,35,36], realizing the fact
that under high pressures exerted in extrusion, the pressure effect
on the viscosity cannot be ignored [31,35]. Also in the field of lubri-
cation, this effect is important [30]. However, this is the first time
that the effects of the pressure-dependence of the viscosity are
investigated in extrudate swell.

As with compressible flows, the results depend on the domain
length L1. Those shown here have been produced with a length
of 5R. The extrudate length L2 is not very significant and has been
set to 16R. The inlet Poiseuille velocity profile is set as the parabolic
one for a unit mean velocity. The results for the extrudate-swell
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Fig. 7. Exit correction nex as a function of the Stokes number St when gravity aids
the flow.
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ratio v as a function of the pressure-shift coefficient Bp are given in
Fig. 10 for the two geometries. There is a linear decrease for both
cases, at least in the range of Bp-numbers studied. For the range
of our simulations, the axisymmetric case always exhibits mark-
edly lower values than the planar one. Due to the exponential nat-
ure of the pressure-dependence of the viscosity (Eq. (5)),
convergence was lost suddenly at low values of Bp (Bp = 0.05 for
the planar and Bp = 0.02 for the axisymmetric case. The longer
the L1 the lower these limiting values become. Up to those Bp-lim-
iting values, convergence was good and fast (four Picard iterations
were sufficient for most of the runs). Similar trends were found in
the fountain flow problem [26,30].

The results for the exit correction nex as a function of Bp are gi-
ven in Fig. 11 for the two geometries. It should be mentioned that
the values of DP0 and sw appearing in Eq. (17) are those for fully-

developed Poiseuille flow with no pressure-dependence of the vis-
cosity. The exit correction rises exponentially for both cases, with
the axisymmetric case rising much faster for the same Bp-number.

Thus, for a pressure-dependence of viscosity, the extrudate
swell decreases while the exit correction rises exponentially, and
this latter behaviour is similar to the compressibility effect. How-
ever, the decrease in swell occurs because of the varying viscosity
of the material in the flow field according to pressure; namely a
lower viscosity in the outer layers of the fluid leads to a decrease
in swelling and eventually to a contraction, as has been explained
by Tanner [37] and Mitsoulis [38].

We now turn our attention to the effect of dimensionless
parameters as they arise from the flow along or across the domain
boundaries. These include slip at the solid channel or tube walls
(hence the effect of slip parameter, Bsl) and surface tension (hence
the effect of capillary number, Ca) on the extrudate flow.
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Fig. 10. Extrudate swell ratio v as a function of the pressure-shift coefficient Bp.
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Fig. 11. Exit correction nex as a function of the pressure-shift coefficient Bp.
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Fig. 12. Extrudate swell ratio v as a function of the slip coefficient Bsl.
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Fig. 13. Exit correction nex as a function of the slip coefficient Bsl.
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4.5. Flows with slip at the wall – effect of Bsl

The calculations are then pursued for creeping, incompressible
flows with slip at the wall. This case has been studied adequately
before [15,21,29,32], and it is repeated here for completeness.

The simulations have been pursued for a wide range of Bsl-val-
ues from 0 (no slip) to 100 (approaching perfect slip for which
Bsl ?1). Convergence for this problem was always good and fast,
requiring at most 14 Picard iterations in the middle range of Bsl–
values, where the changes were bigger. No under-relaxation for
the free-surface movement was necessary. The results do not
depend appreciably on the domain length, so we have used the
standard lengths of L1 = 5 and L2 = 16.

The results for the extrudate-swell ratio v as a function of the
slip coefficient Bsl are given in Fig. 12 for the two geometries. There
is a typical sigmoidal decrease for both cases in the range of Bsl-val-
ues. Most of the changes occur in the range 0.01 < Bsl < 1. The axi-
symmetric case exhibits always markedly lower values than the
planar one for the whole range of simulations. As Bsl increases
approaching perfect slip (Bsl ?1), the extrudate swell reaches
an asymptotic no swell value (v = 1), due to the fact that the flow
is a plug everywhere.

The results for the exit correction nex as a function of Bsl are gi-
ven in Fig. 13 for the two geometries. It should be mentioned that
the values of DP0 and sw appearing in Eq. (26) are those for fully-
developed Poiseuille flow with slip according to the analytical
solutions based on a linear slip law [29]. The exit correction follows
the sigmoidal behaviour of the extrudate swell for both cases, with
the axisymmetric case giving always higher values for the same Bsl-
number. Eventually all values go to 0, as the fluid slips perfectly
along the solid walls.

Thus, slip at the wall serves to reduce both the extrudate swell
and the exit correction monotonically, and in both cases the values
reach asymptotically zero (no swell, no excess pressure losses) for
perfect slip, as the material does not adhere to the die walls and
flows out with a plug velocity profile.

4.6. Flows with surface tension – effect of Ca

The calculations are then pursued for creeping, incompressible
flow of fluids having non-negligible surface tension. This case has
been the object of major studies starting with the work by Reddy
and Tanner [6] and continued with Omodei’s works [18,19], and
Silliman and Scriven’s [15]. All these works used Picard iterations
(successive substitution) and the kinematic boundary condition
(KC) ð�n � �u ¼ 0Þ to solve the system of equations and were plagued
by early loss of convergence (for Ca < 0.5). This led to some contro-
versies regarding which free-surface boundary conditions to iter-
ate on, namely the kinematic condition vs. the normal stress

condition (NSC) (Eq. (17)), with the latter being much better for
Ca < 0.5 leading to results down to Ca = 0.01 [15]. The issue was
settled by Ruschak’s work [39], who employed a clever integration
by parts of the surface tension term in Eq. (17), thus eliminating
the explicit appearance of surface curvature in Eq. (8), and allowing
a piecewise linear approximation of the surface shape even when
surface tension effects are important (see [20] for FEM details).
Ruschak [39] used for the first time the Newton–Raphson iterative
scheme and was able to get results down to Ca = 0.01, with few
iterations (4–5) for each Ca number.

Ruschak’s method was applied by Georgiou et al. [20], who
went down to Ca = 10�5 for the extrudate swell problem and
reproduced Richardson’s analytical results for the planar stick–slip

Table 4
Simulations results for different Ca numbers in extrudate swell of Newtonian fluids
(results from meshes M4 and M5 with the Newton–Raphson iteration).

Ca Planar Axisymmetric

v nex v nex

10+5 1.186 0.146 1.127 0.227
100 1.186 0.147 1.126 0.227
50 1.185 0.147 1.126 0.227
10 1.180 0.146 1.121 0.227
5 1.173 0.146 1.116 0.226
1 1.129 0.145 1.085 0.224
0.5 1.096 0.144 1.064 0.223
0.1 1.031 0.143 1.021 0.221
0.05 1.016 0.143 1.011 0.222
0.01 1.004 0.143 1.002 0.222
0 (stick–slip) 1.000 0.143 1.000 0.222

Capillary Number, Ca = μU/γ 
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Fig. 14. Extrudate swell ratio v as a function of the capillary number Ca. N–
R = Newton–Raphson iteration, P = Picard iteration, KC = kinematic condition,
NSC = normal stress condition.
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problem (zero swelling). Since then, Georgiou and his co-workers
have applied successfully this method to other cases of extrudate
swell with high surface tension effects [23–25]. However, none of
these works has addressed the issue of pressure, and hence results
for the exit correction are lacking. Also, in previous works the

influence of surface tension was sometimes masked by coupling
it with gravity and inertia, and therefore its effect was not clear.
Here a thorough well-documented range of simulations is under-
taken. As was the case with slip, the results do not depend on
the domain length, so we have used the standard lengths of

axisymmetric

|u| p |τ| 
Re=0 
St=0 
B=0 
Bsl=0 
Bp=0 

Ca=

St=0.07

B=0.12 

Bp=0.02

Bsl=100

Ca=0.10

Re=100

Fig. 16. Contour variables for axisymmetric extrudate swell flow of Newtonian fluids: left column, juj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

r þ u2
z

p
= UBAR, middle column, pressure P, right column,

jsj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2 ð��s : ��sÞ

q
= TBAR. The maximum values correspond to the highest number in the legend (red). The minimum values correspond to the lowest number in the legend

(blue). Each row represents the parameter effect shown on the right, which is near the limiting value of the parameter range used in the simulations. The graphs are drawn to
scale for easy comparisons with the base case (1st row). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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L1 = 5 and L2 = 16, and repeated the runs with L2 = 20 (meshes M4
and M5) with no discernible differences found.

The simulations have been pursued for a wide range of Ca-val-
ues from 1 (or a big number, say 100,000) (no surface tension) to
10�5 (strong surface tension effects). Ruschak’s method has been

used for treating the surface tension terms of Eq. (17). Results have
been obtained independently with both Picard (P) and Newton–
Raphson (N–R) iterations. The continuation steps for each method
are given in the respective graphs. Convergence for this problem
with N–R was good and fast, requiring usually around 5–6

planar
|u| p

Re=0 
St=0 
B=0 
Bsl=0 
Bp=0 
Ca=

|τ| 

B=0.22 

Bp=0.05

Bsl=100

Re=100

St=0.07

Ca=0.10

Fig. 17. Contour variables for planar extrudate swell flow of Newtonian fluids: left column, juj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

x þ u2
y

q
= UBAR, right column, pressure P, right column,

jsj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2 ð��s : ��sÞ

q
= TBAR. The maximum values correspond to the highest number in the legend (red). The minimum values correspond to the lowest number in the legend

(blue). Each row represents the parameter effect shown on the right, which is near the limiting value of the parameter range used in the simulations. The graphs are drawn to
scale for easy comparisons with the base case (1st row). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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iterations per step. Using the Picard method with the kinematic
condition and starting with zero surface tension (Ca ?1), it was
possible to go down to Ca = 0.02 (planar) and Ca = 0.04 (axisym-
metric). However, this was possible using careful continuation
steps, many iterations, and severe under-relaxation for the low val-
ues of Ca (starting from x = 1 and going down to x = 0.01 of the
free-surface movement). Furthermore, the results were not accu-
rate for Ca < 1. On the other hand, using the Picard method with
the normal-stress boundary condition and starting from the
stick–slip flow (Ca = 0), it was possible to obtain results fast in
the other extreme of the range (low Ca values, Ca < 1), thus corrob-
orating Silliman and Scriven’s findings [15]. In general, using the
Picard scheme for this problem proved to be a difficult process,
especially around Ca = 1, much more difficult than with any of
the other five (5) fluid-mechanics parameters studied. It should
be emphasized that this was not the case when using the N–R
scheme, which showed good and fast convergence for the whole
range of Ca values.

An important finding, that is particularly valid in the axisym-
metric case and which has never been touched upon before, is
the necessity of not having set P = 0 at any node in the system. If
the pressure is set to 0 at, say, the outlet corner, point B or C in
Fig. 1, then the axisymmetric case produces highly polluted results
for the pressure, the radial and axial velocity components, and the
components of the stress tensor. Then the calculation of the exit
correction becomes useless. The pressure is not zero at the outlet,
but it takes values which depend on the surface tension (see out-
flow boundary condition of Eq. (18) and Fig. 1). For example, at
Ca = 10�2, Pin = 141.535 and Pout = 99.758, giving an exit correction
of nex = 0.222! This is not the case for planar flows, where P = 0 at
outlet and also for any other of the fluid-mechanics parameters
studied.

The results for the extrudate-swell ratio v as a function of the
capillary number Ca are given in Fig. 14 for the two geometries.
The two codes give essentially the same results (with both meshes
M4 and M5). Numerical values are also given in Table 4 for refer-
ence purposes. There is a typical sigmoidal decrease for both cases
in the range of Ca-values studied. This typical behaviour has been
also observed in the fountain flow problem [26]. The axisymmetric
case exhibits always markedly lower values than the planar one for
the whole range of simulations. As Ca decreases approaching zero
(strong surface tension effects), the free surface tends to go to zero
swell, due to a strong surface tension which does not allow the
fluid to swell. The results for the free surface shape and for differ-
ent Ca numbers are given in [20] (their Fig. 2a), and they are not
repeated here.

The new results for the exit correction nex as a function of Ca are
given in Fig. 15 for the two geometries, and in Table 4 in numerical
form for reference purposes. A rather interesting and unexpected
phenomenon occurs. The exit correction remains almost constant
for both cases, starting from the corresponding results of zero sur-
face tension (0.227 for the axisymmetric case and 0.147 for the pla-
nar one), and reaching for Ca = 0 (stick–slip case) the values of
0.222 and 0.143, respectively. It should be noted that any numer-
ical errors near the singularity manifest themselves in rapidly
decreasing exit correction values, while the extrudate swell re-
mains basically unaffected. This is the case with the Picard method
when using inappropriate free-surface boundary conditions to iter-
ate upon.

Thus, surface tension reduces the swelling to the case of
stick–slip (no swell) as the material is strangled in a sense by se-
vere compressive forces as it comes out of the die. On the other
hand, the exit correction remains constant, since these capillary
forces are balanced by the pressure forces in the fluid, and there-
fore no extra pressure drop is needed in the die to extrude the
fluid.

4.7. Flow fields

It is instructive to show results for the primary field variables
for the various fluid mechanics parameters studied above. This is
done in the form of contours in Figs. 16 and 17 (axisymmetric
and planar, respectively) for the magnitude of the velocity vector
juj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

r þ u2
z

p
= UBAR, the pressure P (isobars), and the magnitude

of the extra stress tensor jsj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2 ð��s : ��sÞ

q
= TBAR. The graphs are

drawn to scale for easy comparisons. In each case, the limiting va-
lue is chosen for depiction, just before divergence occurred or the
runs were stopped. The comparisons are made with the base case
of (Re = St = B = Bp = Bsl = 0, Ca =1), which is given in the first row
of Figs. 16 and 17, respectively. In each of these two figures are gi-
ven the cases of Re, St, B, Bp, Bsl, and Ca.

A detailed study of the contours for each case reveals interesting
trends, which are not always anticipated. We see, for example, that
both inertia (effect of Re, 2nd row of Figs. 16 and 17) and gravity act-
ing in the direction of flow (effect of St, 3rd rows) reduce the free sur-
face substantially, but apart from that the flow field does not show
any surprises. Compressibility (effect of B, 4th rows) accelerates
the flow towards the die exit and increases the swelling. A pres-
sure-dependent viscosity (effect of Bp, 5th rows) bends the isobars
and influences the stresses but not the velocity contours. Slip at
the wall (effect of Bsl, 6th rows) reduces drastically the changes in
the velocity field (almost plug flow), while the pressure and stress
values become very small. Surface tension (effect of Ca, 7th rows)
shows a shear flow almost up to the die exit, but the pressures and
stresses are very high on the free surface, suppressing the swelling.

5. Conclusions

Finite element solutions have been obtained for both the planar
and axisymmetric extrudate-swell flows of Newtonian fluids under
the individual influence of inertia, gravity, compressibility, slip at
the wall, surface tension and pressure-dependence of the viscosity.
A linear slip law was assumed. Emphasis was given on calculating
the extrudate-swell ratio and the pressure exit correction. The base
cases of creeping flow results are highly altered when different
forces are at play. Inertia reduces rapidly the swelling as Re in-
creases, and reduces the exit correction. Gravity forces acting in
the flow direction cause an even more rapid decrease of extrudate
swell for relatively small values of St, while the exit correction also
decreases. Compressibility serves to reduce at first the swelling
and then increase it substantially, while it increases monotonically
the exit correction. An exponentially pressure-dependent viscosity
serves to decrease the extrudate swell linearly and increase the
exit correction exponentially.

Boundary effects include slip at the wall and surface tension at
the free surface. As the slip coefficient Bsl increases, both swelling
and the exit correction decrease in a sigmoidal fashion and go to
0 as slip becomes dominant. The sigmoidal behaviour is also evi-
dent for the extrudate swell as Ca decreases (strong surface tension
effects) with the extrudate swell going to unity, while the exit cor-
rection remains constant. This last finding is a strong indication of
accurate calculations with surface tension effects, since any
numerical inaccuracies lead to rapid negative corrections. The best
method to calculate flows with surface tension is the FEM with N–
R iteration, while FEM with Picard iteration needs careful consider-
ation of the boundary condition to iterate upon (kinematic condi-
tion for Ca > 2 and normal stress condition for Ca 6 2) [15].

Although the present results are limited to Newtonian fluids,
the effects discussed apply at least qualitatively to all fluids. Since
a variety of fluids undergo extrusion under a wide range of condi-
tions, it is hoped that the present results may be of interest to prac-
titioners in the field of fluid mechanics.
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