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Abstract We investigate the use of the Method of Funda-
mental Solutions (MFS) for solving inhomogeneous har-
monic and biharmonic problems. These are transformed
to homogeneous problems by subtracting a particular
solution of the governing equation. This particular solu-
tion is taken to be a Newton potential and the resulting
homogeneous problem is solved using the MFS. The nu-
merical calculations indicate that accurate results can be
obtained with relatively few degrees of freedom. Two
methods for the special case where the inhomogeneous
term is harmonic are also examined.

1
Introduction
Numerical methods for solving homogeneous elliptic
partial differential equations can be divided into domain
discretization methods and boundary methods. The main
advantage of boundary methods over domain discretiza-
tion methods is the reduction of the problem dimension
by one. Also, they are relatively easy to program and offer
program compactness. However, when boundary methods
are applied to inhomogeneous boundary value problems it
is necessary to evaluate a domain integral. The reduction
of the dimension of the problem is thus lost and there is a
considerable increase in the amount of work involved in
the solution of the problem.

In the MFS, which may be viewed as an indirect
boundary element method (Mathon and Johnston 1977,
Fairweather and Johnston 1982), the solution is approxi-
mated by a set of fundamental solutions of the governing
equation which are expressed in terms of sources located
outside the domain of the problem. The unknown coef®-
cients in the linear combination of the fundamental solu-
tions and the ®nal locations of the sources are determined
so that the boundary conditions are satis®ed in a least

squares sense. The method is relatively easy to implement,
is adaptive, in the sense that it takes into account sharp
changes in the solution and/or in the geometry of the
domain, and can easily incorporate dif®cult boundary
conditions. This has been demonstrated with its successful
application to various homogeneous harmonic and
biharmonic problems (Karageorghis and Fairweather
1987, Karageorghis 1992).

In a boundary method formulation of an inhomoge-
neous problem, the evaluation of the domain integral is
clearly of fundamental importance (Benitez and Wideberg
1996). In the case a direct numerical domain integration is
performed (Burgess and Mahajerin 1987), the computa-
tional cost is generally high. There are, however, two dif-
ferent schemes which resolve the domain integral problem.
In the ®rst, the domain integral is transformed to a series
of line integrals as in the dual reciprocity method (Par-
tridge et al. 1992). The approach of Atkinson (1985) is an
alternative to this scheme. In it, the inhomogeneous term
is eliminated by ®nding an appropriate particular solution,
constructed from the Newton potential which can be
evaluated numerically without having to discretize the
domain. The method assumes that the inhomogeneous
term can be extended smoothly to a suitable region con-
taining the original domain of the problem. In theory, this
is always possible for regions with a smooth boundary
(Atkinson 1985). In particular, the inhomogeneous equa-
tion Lu � f , where L is a linear elliptic partial differ-
ential operator, is transformed to the homogeneous
equation Lv � 0, by constructing a particular solution u0

and introducing the new variable v � uÿ u0. Golberg
(1995) compared this approach with the dual reciprocity
method by solving Poisson problems with Dirichlet
boundary conditions and showed that it gives more ac-
curate results. In both Burgess and Mahajerin (1987) and
Golberg (1995), the resulting Laplace equation is solved by
the MFS with ®xed sources.

The objective of this paper is to extend the MFS to the
solution of inhomogeneous elliptic problems, based on the
particular solution approach of Atkinson (1985). In Sec-
tion 2, we solve Poisson problems with mixed boundary
conditions. In Section 3, the method is extended to
biharmonic problems. Finally, in Section 4, we consider a
special class of Poisson problems in which the inhomo-
geneous term is harmonic. Two different methods are
examined; the ®rst is based on the particular solution
approach and the second is a direct application of the
MFS. In all cases, numerical results are presented for a
number of test problems. Accurate results are obtained
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with relatively few degrees of freedom. Our conclusions
are summarized in Section 5.

2
Inhomogeneous harmonic problems

2.1
Formulation
Consider the Poisson equation

r2u � f �x; y� in X ; �1�
subject to the boundary conditions

u � g�x; y� on oX1 ; �2�
and

ou

on
� h�x; y� on oX2 ; �3�

where r2 denotes the Laplace operator, u is the dependent
variable, f ; g and h are given functions, ou=on denotes the
outward normal derivative of u on the boundary, X is a
bounded domain and oX � oX1 [ oX2 denotes its boun-
dary. If u0 is a particular solution of (1), i.e.,
r2u0 � f �x; y�, then the function v � uÿ u0 satis®es the
Laplace equation

r2v � 0 in X ; �4�
subject to the modi®ed boundary conditions

v � g�x; y� ÿ u0 on oX1 �5�
and

ov
on
� h�x; y� ÿ ou0

on
on oX2 : �6�

The problem (4)±(6) can now be solved using the standard
MFS (Mathon and Johnston 1977, Fairweather and John-
ston 1982).

One technique for obtaining a particular solution of
Poisson's equation is based on the Newton potential (At-
kinson 1985, Kellog 1954, Gilbarg and Trudinger 1983,
Golberg and Chen 1994), which is given by the integral

u0�p� � 1

2p

Z
X

log jpÿ qjf �q� dV�q�;
p � �px; py� 2 X :

�7�

The dif®culties involved in the evaluation of this domain
integral can be avoided by using a method proposed by
Atkinson (1985). If X0 is a larger region containing
�X � X [ oX and f �q� can be extended smoothly to X0,
then

u0�p� � 1

2p

Z
X0

log jpÿ qjf �q� dV�q�; p 2 �X ; �8�

is another particular solution of (1). The region X0 is
chosen so that the calculation of the integral (8) is facili-
tated. Moreover, in order to avoid the singularity at q � p,
we use the following change of variables

q � p� R�b�h� ÿ p�; 0 � R � 1; 0 � h � 2p;

q � �qx; qy� 2 X0 ; �9�

where b�h� � �bx�h�; by�h�� 2 oX0. The Jacobian of the
transformation is given by

jJj � R H�p; h� ; �10�
where

H�p; h� � b0y�h��bx�h� ÿ px� ÿ b0x�h��by�h� ÿ py� ;
�11�

and Eq. (8) becomes

u0�p� � 1

2p

Z
X0

log R
��������������������������������������������������������
�bx�h� ÿ px�2 � �by�h� ÿ py�2

q� �
� R H�p; h� f0�p;R; h� dR dh ; �12�

where f0�p;R; h� � f �q�. For simplicity, we let X0 be an
ellipse with axes Rx and Ry, such that

b�h� � �Rx cos h; Ry sin h� ; �13�
and

H�p; h� � Rx Ry 1ÿ px

Rx
cos hÿ py

Ry
sin h

� �
: �14�

Then, Eq. (12) yields the following expression for
u0�p� �p 2 �X�

u0�p�� 1

2p

Z 2p

0

Z 1

0

log R
��������������������������������������������������������
�bx�h� ÿ px�2 � �by�h� ÿ py�2

q� �
� R H�p; h� f0�p;R; h� dR dh : �15�

The normal derivative of u0�p� �p 2 �X� is given by

ou0

@n
�p� � ÿ 1

2p

Z 2p

0

Z 1

0

�bx�h� ÿ px� opx

@n

� ��
��by�h� ÿ py�

opy

@n

� ��
� 1

�bx�h� ÿ px�2 � �by�h� ÿ py�2
� H�p; h� f0�p;R; h� dR dh ; �16�

where opx=on; opy=on
ÿ �

are the direction cosines at the
boundary point p. The integral in Eq. (16) is free of sin-
gularities and can be evaluated at any point p by standard
subroutines for double integrals. For this purpose, we use
the subroutine D01DAF, from the NAG library (NAG (UK)
Ltd 1991). This subroutine evaluates the double integral by
calculating two single integrals by the method of Patterson
(1968), which optimizes the number of points in Gauss
quadrature formulae. The subroutine requires the user to
specify a tolerance which is de®ned as the absolute accu-
racy to which the results are evaluated.

Equation (15) for u0�p� may also be written as follows:

u0�p� � 1

2p

Z 2p

0

H�p; h�
Z 1

0

R log R f0 �p;R; h� dR dh

� 1

4p

Z 2p

0

Z 1

0

log �bx�h� ÿ px�2 � �by�h� ÿ py�2
ÿ �

� R H�p; h� f0 �p;R; h� dR dh � I1 � I2 ; �17�
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where the inner integral of I1 contains a weak singularity
due to the term R log R. The particular solution u0�p� can
be calculated using a combination of NAG library sub-
routines, so that the weak singularity in the ®rst integral is
taken into account. For the inner integral of I1, we use
D01APF, a subroutine for single integrals with logarith-
mic-type end-point singularities. This subroutine starts by
bisecting the original interval and applying modi®ed
Clenshaw-Curtis integration of orders 12 and 24 on both
halves. Clenshaw-Curtis integration is then used on all
subintervals in which the end-points are included. On the
other subintervals, Gauss-Kronrod integration is carried
out. For the outer integral of I1 we use D01AHF, a standard
subroutine for single integrals based, as D01DAF, on the
method of Patterson (1968). Finally, for the double integral
I2 which is not singular we again use D01DAF. For com-
parison purposes, we set f �x; y� � 2exÿy and
�Rx; Ry� � �2:5; 1:5� and calculated u0�p� at various
speci®ed points using D01DAF for Eq. (15) and the com-
bination of the three NAG routines for the evaluation of
the integrals in Eq. (17). In Table 1, representative CPU
times required in both cases are tabulated. We observe
that D01DAF failed for tolerances less than 10ÿ10 as both
the outer and the inner integral failed to converge. The
combination of the three routines which proved less costly
was used hereafter.

Since the particular solution u0�p� and its normal de-
rivative on the boundary can be evaluated at any point, the
standard MFS can be applied for solving the homogeneous
problem (4)±(6). We assume that we have N sources
outside the domain X. Their coordinates
tj � �tjx

; tjy
�; j � 1; 2; . . . ;N , are unknown and must be

calculated as part of the solution. Along the boundary
oX; M ®xed points with coordinates pi � �pix

; piy
�,

i � 1; 2; . . . ;M; are also chosen. The solution v at a
boundary point pi is approximated by a linear combina-
tion of fundamental solutions of the Laplace equation, say
�vi:

�vi � �v�c; t; pi� �
XN

j�1

cj k�tj; pi� ; �18�

where c � �c1; c2; . . . ; cN �T is the vector of the unknown
coef®cients, t � �t1x

; t1y
; . . . ; tNx

; tNy
�T is the vector con-

taining the unknown coordinates of all the sources, and
k�tj; pi� � log rij is the fundamental solution of Laplace's

equation with rij �
�����������������������������������������������
�pix
ÿ tjx
�2 � �piy

ÿ tjy
�2

q
.

Since �vi is a solution of the differential equation (4), the
coef®cients cj and the positions of the sources tj are chosen
so that the boundary conditions are satis®ed in a least-
squares sense, namely by minimizing the nonlinear func-
tional

F�c; t� �
XM1

i�1

��vi ÿ gi � uoi
�2 �

XM

i�M1�1

o�vi

on
ÿ hi � ouoi

on

� �2

;

�19�
where M1 is the number of boundary points on oX1.

In order to minimize the functional F, we used the least
squares routine LMDIF from MINPACK (Garbow et al.
1980, see also Karegeorghis and Fairweather 1987). This
routine employs a modi®ed version of the Levenberg-
Marquardt algorithm, and minimizes the sum of squares
of M nonlinear functions in N variables. LMDIF termi-
nates when either a user-speci®ed tolerance is achieved or
the user speci®ed maximum number of function evalua-
tions is reached.

2.2
Numerical examples

2.2.1
Example 1
We ®rst considered the Poisson problem on a square do-
main,

r2u � f in X � �ÿ1; 1� � �ÿ1; 1� ; �20�
subject to the Dirichlet boundary condition

u � 4xy�1ÿ x��1ÿ y� on oX : �21�
The exact solution of the problem for

f � 8x�xÿ 1� � 8y�yÿ 1�
is

u � 4xy�1ÿ x��1ÿ y� :
The above problem was solved using the method described
in Section 2.1. The particular solution (17) was evaluated
on a circle, by setting Rx � Ry � R0. The domain X0 was
chosen to be a circle, in all the examples examined, due to
the symmetry of the domain X. When X0 was taken to be
an ellipse, we observed a slight deterioration in the accu-
racy of the solution as the eccentricity of the ellipse in-
creased. Results have been obtained for various values of
R0 and various numbers of sources N and function eval-
uations NFEV . The initial distance of the sources from the
boundary was taken to be d � 0:1.

In Table 2, we tabulate the maximum absolute errors in
the solution for various values of N , on a 0:25� 0:25 grid
on X with R0 � 2:0 and N F EV � 20 000. We observe that
the accuracy of the approximation improves as N is in-
creased. We also examined the effect of R0 on the maxi-
mum absolute error in the solution. As R0 becomes larger,
the calculated values of the particular solution become
larger and the absolute accuracy of the minimization
process is reduced. This is due to the fact that the mag-
nitude of the particular solutions in Eq. (17) ± and their
normal derivatives in Eq. (16) ± increases with R0. As a

Table 1. CPU times (in s) required by the integration routines

Tolerance D01DAF Combination of the
three NAG
subroutines

10)2 0.06 0.11
10)4 0.16 0.17
10)6 0.38 0.20
10)8 1.32 0.24
10)10 2.71 0.37
10)12 No convergence 0.46
10)14 No convergence 0.53
10)16 No convergence 0.64
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result, the quantities to be minimized in (19) also increase
in magnitude and this leads to a reduction in the absolute
accuracy of the minimization process (for a ®xed number
of function evaluations). On the other hand, we observed
that for values of R0 smaller than 2.0, i.e. when X0 is very
close to X, the integration routines failed to converge for
relatively high values of the tolerance. For instance, for
R0 < 2:0, the integration routines failed to converge for a
tolerance of 10ÿ10, but converged for larger values of the
tolerance. This is because as X0 tends to X, further sin-
gularities tend to appear in both integrals (16) and (17). In
Table 3, we give the maximum absolute errors in the so-
lution for N � 36 and various values of R0. In Table 4, we
tabulate the standard error of the MFS (based on the
boundary approximation where standard error is de®ned
as

����������
F=M

p
, where F is given in (19)) for R0 � 2:0;N � 36

and NFEV � 20 000. We observe, that the standard error is
essentially the same for tolerances, less than 10ÿ4. In all
subsequent results, the value of the tolerance was taken
equal to 10ÿ10.

2.2.2
Example 2
We subsequently solved the boundary value problem (20)±
(21) when some of the Dirichlet boundary conditions are
replaced by Neumann boundary conditions. In particular,
we considered the case

u � 4xy�1ÿ x��1ÿ y� on ÿ 1 � x � 1; y � ÿ1;

x � ÿ1; ÿ1 � y � 1

and

ou

@n
� �4y�1ÿ y��1ÿ 2x�� opx

@n

� �
� �4x�1ÿ x��1ÿ 2y�� opy

on

� �
on ÿ 1 � x � 1; y � 1; x � 1; ÿ1 � y � 1 ;

which has the exact solution of example 1.
The problem was solved for d � 0:1 and various values

of N;R0 and NFEV. As was the case in example 1, the
maximum absolute error in the solution decreases with N
(Table 2) and increases with R0 (Table 3), when R0 is
greater than 2.0.

3
Inhomogeneous biharmonic problems

3.1
Formulation
The formulation for Poisson problems presented in Sec-
tion 2.1 can be extended for the solution of inhomoge-
neous biharmonic problems. For example, consider the
problem

r4u � f �x; y� in X ; �22�
subject to either

u � g1�x; y�; ou

on
� h1�x; y� on oX ; �23�

or

u � g2�x; y�; r2u � h2�x; y� on oX ; �24�
where g1; g2; h1 and h2 are prescribed functions.

If u0 is a particular solution of (22), then v � uÿ u0

satis®es the homogeneous biharmonic equation

r4v � 0 in X ; �25�
subject to either

v � g1�x; y� ÿ u0;
ov
on
� h1�x; y� ÿ ou0

on
on oX ;

�26�
or

v � g2�x; y� ÿ u0; r2v � h2�x; y� ÿ r2u0 on oX :

�27�
A particular solution of Eq. (22) is given by (see Golberg
and Chen 1994)

u0�p� � 1

8p

Z
X
jpÿ qj2 log jpÿ qj f �q� dV�q�;

p 2 X : �28�
If f �q� can be extended smoothly to X0 which contains �X,
then

u0�p� � 1

8p

Z
X0

jpÿ qj2 log jpÿ qjf �q� dV�q�;

p 2 �X : �29�

Table 2. Maximum absolute errors in the solution for various
values of N; Poisson test problems, 0.25 ´ 0.25 grid, Ro = 2.0,
NFEV = 20 000

N Problem 1 Problem 2

28 0.87D-4 0.89D-3
32 0.23D-4 0.65D-3
36 0.84D-5 0.29D-4

Table 3. Maximum absolute errors in the solution for various
values of Ro; Poisson test problems, 0.25 ´ 0.25 grid, N = 36,
NFEV = 20 000

Ro Problem 1 Problem 2

1.8 0.18D-4 0.69D-4
2.0 0.84D-5 0.29D-4
3.0 0.71D-4 0.34D-3
4.0 0.34D-3 0.72D-3

Table 4. Effect of integration tolerance on the MFS standard error;
Ro = 2.0, N = 36, NFEV = 20 000

Integration tolerance MFS standard error

10)2 0.31D-03
10)4 0.98D-04
10)6 0.98D-04
10)8 0.98D-04
10)10 0.98D-04
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After using the change of variables (9), (29) becomes

u0�p� � 1

8p

Z
X0

�bx�h� ÿ px�2 � �by�h� ÿ py�2
ÿ �

� log R
��������������������������������������������������������
�bx�h� ÿ px�2 � �by�h� ÿ py�2

q� �
� R3H�p; h�f0�p;R; h� dR dh : �30�

In the case when X0 is an ellipse, from (13) we obtain

u0�p� � 1

8p

Z 2p

0

�bx�h� ÿ px�2 � �by�h� ÿ py�2
ÿ �

H�p; h�

�
Z 1

0

R3 log R f0�p;R; h� dR dh

� 1

16p

Z 2p

0

Z 1

0

�bx�h� ÿ px�2 � �by�h� ÿ py�2
ÿ �

� log �bx�h� ÿ px�2 � �by�h� ÿ py�2
ÿ �

� R3H�p; h�f0�p;R; h� dR dh ;

� I1 � I2 : �31�
Note that the inner integral of I1 has a R3 log R (mild)
singularity. The normal derivative and the Laplacian of
u0�p��p 2 �X� are given by

ou0

@n
�p� � ÿ 1

4p

Z 2p

0

�bx�h� ÿ px� opx

@n

� ��
� �by�h� ÿ py�

opy

on

� ��
H�p; h�

�
Z 1

0

R2 log R f0�p;R; h� dR dh

ÿ 1

8p

Z 2p

0

Z 1

0

�bx�h� ÿ px� opx

on

� ��
��by�h� ÿ py�

opy

on

� ��
� 1� log �bx�h� ÿ px�2 � �by�h� ÿ py�2

ÿ �� �
� R2H�p; h�f0�p;R; h� dR dh

� I01 � I02 �32�
and

r2u0�p� � 1

2p

Z 2p

0

H�p; h�
Z 1

0

R log R f0�p;R; h� dR dh

� 1

4p

Z 2p

0

Z 1

0

2� log �bx�h� ÿ px�2
ÿ�

� �by�h� ÿ py�2
��

RH�p; h�f0�p;R; h� dR dh

� I001 � I002 : �33�
The inner integrals of I01 and I001 contain R2 log R and
R log R (mild) singularities, respectively. These integrals
are evaluated using the combination of the three NAG
integration routines used for the Poisson problems in
Section 2.1, so that the singularities are taken into account.

Having evaluated the particular solution u0 and its
normal derivatives or its Laplacian at the speci®ed boun-

dary points from (31), (32) or (33), one can then solve the
homogeneous problem (25)±(27) using the biharmonic
MFS (Karageorghis and Fairweather 1987). The solution v
at a point pi is approximated by a linear combination of
fundamental solutions of both the Laplace and biharmonic
equations as follows:

�vi � �v�c; d; t; pi� �
XN

j�1

�cjk1�tj; pi� � djk2�tj; pi�� ;

�34�
where d � �d1; d2; . . . ; dN �T is the vector of the unknown
coef®cients of the biharmonic fundamental solution
k2�tj; pi� � r2

ij log rij. The approximation �vi of the solution
satis®es Eq. (25) and, therefore, the coef®cients cj; dj and
the positions of sources tj are determined so that the
boundary conditions are satis®ed. To achieve this, we
minimize one of the following two functionals

F�c; d; t� �
XM

i�1

��vi ÿ g1i
� uoi

�2 � o�vi

on
ÿ h1i

� ouoi

on

� �2
" #

�35�
and

F�c; d; t� �
XM

i�1

h
��vi ÿ g2i

� uoi
�2

� r2�vi ÿ h2i
�r2uoi

ÿ �2
i
; �36�

depending on the type of the boundary conditions. For
more details see Karageorghis and Fairweather (1987) and
Karageorghis (1992).

3.2
Numerical examples

3.2.1
Example 1
We consider the inhomogeneous biharmonic problem on
a square domain,

r4u � f in X � �ÿ1; 1� � �ÿ1; 1� ; �37�
where

f � 24�ex � ey� � �y2 ÿ 1�2ex � �x2 ÿ 1�2ey

� 8��3y2 ÿ 1�ex � �3x2 ÿ 1�ey� ;
subject to the boundary conditions

u � �y2 ÿ 1�2ex � �x2 ÿ 1�2ey on oX

and

ou

on
� �4x�x2 ÿ 1�ey � �y2 ÿ 1�2ex� opx

on

� �
� �4y�y2 ÿ 1�ex � �x2 ÿ 1�2ey� opy

on

� �
on oX :

The exact solution of this problem is

u � �y2 ÿ 1�2ex � �x2 ÿ 1�2ey.
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The particular solution (31) and its normal derivative
(32) were evaluated on a circle of radius R0. As with the
Poisson problems, the accuracy of the approximation
improves as N is increased (Table 5) and R0 is reduced
(Table 6), provided X0 is not too close to X.

3.2.2
Example 2
Consider Eq. (37) subject to the boundary conditions

u � y2 ÿ 1
ÿ �2

ex � x2 ÿ 1
ÿ �2

ey on @X

and

r2u � y2 ÿ 1
ÿ �2

ex � x2 ÿ 1
ÿ �2

ey � 4 3x2 ÿ 1
ÿ �

ey
�

� 3y2 ÿ 1
ÿ �

ex�� on oX :

Again, we evaluated u0�p� (31) and its Laplacian (33) on a
circle of radius R0. The results, shown in Tables 5 and 6,
are similar to those obtained in example 1.

4
Poisson problems with a harmonic inhomogeneous term
In this section, a special class of inhomogeneous harmonic
problems is considered, in which the inhomogeneous term
is harmonic. In this case, Atkinson (1985) showed that the
construction of a particular solution involves only the
calculation of single integrals for each point. We apply
Atkinson's method and also illustrate that problems with a
harmonic inhomogeneous term can be solved by direct
application of the MFS.

4.1
The method of Atkinson
In problem (1)±(3), suppose that f is harmonic, i.e.
r2f �x; y� � 0. Following Atkinson (1985), the particular
solution at a point p � �x; y� is assumed to be of the form:

u0�p� � 1
2xH�x; y� ;

where H�x; y� is harmonic and, therefore,

oH

ox
�x; y� � f :

Integrating gives

H�x; y� �
Z x

x0

f �s; y� ds� h�y� ; �38�

where the point x0 and the function h�y� are arbitrary.
Since, H�x; y� is harmonic, it follows that

h00�y� � ÿ of

ox
�x0; y� ;

and, therefore,

h�y� � ÿ
Z y

y0

�yÿ t� of

ox
�x0; t� dt : �39�

Combining (38) and (39), the following particular solution
can be obtained:

u0�p� � 1

2
x

Z x

x0

f �s; y� ds

�

ÿ
Z y

y0

�yÿ t� of

ox
�x0; t� dt

!
: �40�

The single integrals involved can be easily evaluated, e.g.,
by using the NAG subroutine D01AHF. The reference
point �x0; y0� is usually chosen to be at the center of the
domain. The evaluation of the particular solution from Eq.
(40), using a subroutine such as D01AHF, can be incor-
porated in the MFS which is used to solve the resulting
homogeneous problem.

4.2
Direct MFS application
In the case of harmonic f the Poisson problem (1)±(3) can
be transformed into the homogeneous biharmonic prob-
lem

r4u � 0 in X ; �41�
subject to

u � g�x; y� on oX : �42�
The solution u at a point pi is approximated by (34)

�ui � �u�c; d; t; pi� �
XN

j�1

�cj k1 �tj; pi� � dj k2 �tj; pi�� :

�43�
Since r2u � f , it follows that f can be approximated by

�fi � �f �d; t; pi� � r2 �ui �
XN

j�1

4 dj �1� log rij� : �44�

The functional to be minimized in the MFS is therefore

F�c; d; t� �
XM

i�1

��ui ÿ ui�2 � �r2 �ui ÿ fi�2
� �

: �45�

Table 5. Maximum absolute errors in the solution for various
values of N; Inhomogeneous biharmonic test problems,
0.25 ´ 0.25 grid, Ro = 2.0, NFEV = 20 000

N Problem 1 Problem 2

28 0.11D-1 0.45D-2
32 0.11D-3 0.98D-3
36 0.10D-3 0.43D-4

Table 6. Maximum absolute errors in the solution for various
values of Ro; Inhomogeneous biharmonic test problems,
0.25 ´ 0.25 grid, N = 36, NFEV = 20 000

Ro Problem 1 Problem 2

1.8 0.92D-3 0.10D-3
2.0 0.10D-3 0.43D-4
3.0 0.13D-2 0.25D-2
4.0 0.11D-1 0.19D-1
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4.3
Numerical examples

4.3.1
Example 1
In this example, we solve the Poisson problem with a
harmonic right hand side on a square domain

r2u � f in X � �ÿ1; 1� � �ÿ1; 1� ; �46�
with

f � ÿ26
3 xy ;

subject to the Dirichlet boundary condition

u � xy 1ÿ 4
9x2 ÿ y2

ÿ �
on oX :

The exact solution of this problem is
u � xy 1ÿ 4

9 x2 ÿ y2
ÿ �

. To solve the above problem we
applied two different methods. We ®rst applied the
method of Atkinson (1985) presented in Section 4.1, using
Eq. (40) to evaluate the particular solution and solving the
resulting homogeneous problem with the MFS. We also
solved the problem with the direct MFS formulation pre-
sented in Section 4.2. The maximum absolute errors in the
solution obtained with the two methods on a 0:25� 0:25
grid with N � 12 and N F EV � 2000 are illustrated in
Table 7. We observed that Atkinson's method performed
slightly better than the direct MFS.

4.3.2
Example 2
Similar results were obtained for the Poisson problem (46)
with harmonic f �x; y� on a square domain
�ÿ1; 1� � �ÿ1; 1� with

f � x2 ÿ y2 � x� y ;

subject to the Dirichlet boundary condition

u � x4 ÿ y4

12
� x3 ÿ y3

6
on oX :

The exact solution of the problem is

u � x4 ÿ y4

12
� x3 ÿ y3

6
:

The maximum absolute errors in the solution obtained on
a 0:25� 0:25 grid with N � 12 and N F EV � 2000 are
tabulated in Table 7.

4.3.3
Example 3
Finally, we solved the Poisson problem (46) on a square
domain �ÿ1; 1� � �ÿ1; 1� with

f � ex cos y ;

subject to the Dirichlet boundary condition

u � 1
2x ex cos y on oX :

The exact solution of this problem is u � 1
2 x ex cos y. The

maximum absolute errors obtained in the solution with
the two methods on a 0:25� 0:25 grid with N � 12 and
NFEV � 2000 are presented in Table 7. Also, the CPU
times required by the two methods for different tolerances
with N � 12 are tabulated in Table 8. We observe that
Atkinson's method is considerably faster. This is to be
expected since in the case of the direct MFS application, we
are essentially transforming a second order problem into a
fourth order problem, which is then solved with the MFS.
The direct MFS application is, however, much easier to
implement.

5
Conclusions
In this work, we present extensions of the MFS for solving
inhomogeneous harmonic and biharmonic problems. The
problems are transformed into homogeneous ones after
constructing particular solutions, based on the Newton
potential, and subtracting them from the solution. The
resulting homogeneous problems are solved using the
MFS. The numerical calculations indicate that accurate
results can be obtained with relatively few degrees of
freedom. Two methods for the special case of Poisson
problems where the inhomogeneous term is harmonic are
also examined. The ®rst is based on the particular solution
approach and the second on the direct application of the
MFS. The latter is computationally more costly but easier
to implement.

The methods described in this paper can be extended to
any elliptic boundary value problem governed by a linear
inhomogeneous equation of the form Lu � f , if the fun-
damental solution of L is known. This is extremely im-
portant as the method could then be applied to nonlinear
problems, the solution of which could be obtained by
solving a sequence of inhomogeneous linear elliptic
boundary value problems.
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