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Abstract In this work, the use of the Method of Funda-
mental Solutions (MFS) for solving elliptic partial differ-
ential equations is investigated, and the performance of
various least squares routines used for the solution of the
resulting minimization problem is studied. Two modi®ed
versions of the MFS for harmonic and biharmonic prob-
lems with boundary singularities, which are based on the
direct subtraction of the leading terms of the singular local
solution from the original mathematical problem, are also
examined. Both modi®ed methods give more accurate
results than the standard MFS and also yield the values of
the leading singular coef®cients. Moreover, one of them
predicts the form of the leading singular term.

1
Introduction
Standard numerical methods for solving elliptic boundary
value problems perform poorly in the neighbourhood of
boundary singularities. The accuracy is, in general, low
and the convergence with mesh re®nement slow. Special
methods taking into account the local form of the singu-
larity appear to give much better results and have thus
received considerable attention in the past years (Symm
1973; Kelmanson 1983; Li et al. 1987; Mason et al. 1984;
Olson et al. 1991; Nagarajan and Mukherjee 1993;
Guiggiani 1995). The form of the singularity for the Laplace
or the biharmonic equation is obtained locally using sep-
aration of variables techniques. For the two-dimensional
case, the asymptotic solution in polar coordinates �r; h�
centered at the singular point is given by:

u�r; h� �
X1
j�1

ajr
kj fj�h�; �r; h� 2 X ; �1�

where u is the dependent variable, aj are the singular co-
ef®cients, kj are the singularity powers which in bihar-
monic problems might be complex, fj�h� represent the h
dependence of the eigensolution, and X is the bounded
domain of the problem. The values of the singular coef®-
cients aj depend on the global problem and they are often
useful in many applications. For example, in fracture
mechanics, the ®rst singular coef®cient is the stress in-
tensity factor, a measure of the stress at which fracture
occurs.

Boundary methods have become popular in recent years
due to their computational ef®ciency. This is a conse-
quence of the fact that only the boundary of the domain
needs to be discretised. The dimension of the problem is
therefore reduced by one. The Method of Fundamental
Solutions (MFS), which can be viewed as an indirect
boundary element method, has found extensive applica-
tion in computing solutions to a broad range of problems
(Mathon and Johnston 1977; Karageorghis and Fair-
weather 1987, 1989; Karageorghis 1992a,b). The basic idea
is to approximate the solution in terms of a set of funda-
mental solutions of the governing equation. These depend
on the position of a ®xed number of sources located
outside the domain of solution. The coef®cients in the
linear combination of the fundamental solutions and the
®nal location of the sources are calculated in order to
satisfy the boundary conditions in some optimal sense.
Two of the advantages of the method are its relatively easy
implementation and, since it takes into account sharp
changes in the geometry of the domain, its adaptivity. Like
other boundary methods, the MFS, in its present form, is
applicable to any elliptic boundary value problem, pro-
vided the fundamental solution of the governing equation
is known.

One drawback of the MFS is its high computational cost
resulting from the use of a non-linear least squares mini-
mization routine (Mathon and Johnston 1977; Kara-
georghis and Fairweather 1987). In order to improve the
ef®ciency of the method, the use of two sets of least
squares routines is investigated. For the routines in the
®rst set, the Jacobian is evaluated internally by a ®nite-
difference scheme whereas in the second set the Jacobian
must be provided by the user. The routines are tested on
simple harmonic and biharmonic problems, the analytical
solutions of which are known. Subsequently, two modi®ed
versions of the MFS for solving two elliptic problems with
boundary singularities, namely, the Motz problem (Symm
1973) and the stick-slip problem (Richardson 1970), are
examined. Both methods incorporate the singular behav-
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iour of the problem under investigation and are based on
the subtraction of the leading terms of the singularity. The
®rst one was developed by Karageorghis (1992b). The
second one is new and allows the prediction of the nature
of the leading singular term. This is particularly useful
when the analytic behaviour of the singularity is not
known a priori.

In Sect. 2, the MFS formulations for harmonic and
biharmonic problems are presented. In Sect. 3, the de-
scription of the two test problems and a discussion of the
computational ef®ciency of the various minimization
routines are given. In Sect. 4, results obtained with the
modi®ed MFS of Karageorghis (1992b) are presented, and
a new modi®ed MFS, that predicts not only the ®rst sin-
gular coef®cient but also the radial and angular depen-
dence of the leading singular term in the Motz and the
stick-slip problems, is developed. The conclusions are
summarized in Sect. 5.

2
MFS formulation

2.1
Harmonic problems
Consider the problem

r2u � 0 in X ; �2�
subject to the boundary condition

u � g�x; y� on oX ; �3�
where r2 denotes the Laplace operator, g is a given
function, X is a bounded domain in the plane, and oX
denotes its boundary. In the MFS, N sources, the coordi-
nates of which are to be calculated, are placed outside the
domain X, and M ®xed points are chosen along the
boundary oX. Let tj � �tjx; tjy� denote the coordinates of
source j and pi � �pix ; piy� be the coordinates of boundary
point i. The vector t contains the unknown coordinates of
all the sources, t � �t1x ; t1y ; t2x ; t2y ; . . . ; tNx ; tNy �T . Let �u be
the approximation of the solution and �ui be its value at the
point pi:

�ui � �u�c; t; pi� �
XN

j�1

cjk�tj; pi� ; �4�

where c � �c1; c2; . . . ; cN �T is the vector of the unknown
coef®cients and k�tj; pi� � log rij is the fundamental solu-
tion of Laplace's equation with

rij �
�����������������������������������������������
�pix
ÿ tjx
�2 � �piy

ÿ tjy
�2

q
:

Because �u satis®es the differential equation (2), the
coef®cients cj and the positions of the sources tj are chosen
so that the boundary conditions are satis®ed in a least-
squares sense, i.e. by minimizing the nonlinear functional

F�c; t� �
XM

i�1

��ui ÿ g�pi��2 : �5�

2.2
Biharmonic problems
Consider the problem

r4u � 0 in X ; �6�
subject to either

u � g1�x; y�; ou

on
� h1�x; y� on oX ; �7�

or

u � g2�x; y�; r2u � h2�x; y� on oX ; �8�
where ou=on denotes the outward normal derivative and
g1; g2; h1 and h2 are prescribed functions.

As in Karageorghis and Fairweather (1987), the solution
at point pi is approximated by a linear combination of
fundamental solutions of both the Laplace and biharmonic
equations:

�u�c; d; t; pi� �
XN

j�1

cjk1�tj; pi� �
XN

j�1

djk2�tj; pi� ; �9�

where d � �d1; d2; . . . ; dN �T is another vector of unknown
coef®cients, and k2�tj; pi� � r2

ij log rij is the fundamental
solution of the biharmonic equation.

As with harmonic problems, the approximation �u of the
solution satis®es the differential equation (6), and the
coef®cients cj; dj and the positions of the sources tj must
be chosen so that the boundary conditions are satis®ed. To
achieve this, the following functional is minimized

F�c; d; t� �
XM

i�1

�
��ui ÿ g1�pi��2

� o�ui

on
ÿ h1�pi�

� �2�
; �10�

or

F�c; d; t� �
XM

i�1

��ui ÿ g2�pi��2 ��r2 �ui ÿ h2�pi��2
� �

;

�11�
depending on the type of the boundary conditions.

3
Efficient implementation of the MFS algorithm
The minimization of the functional F for both harmonic
and biharmonic problems is performed using existing least
squares algorithms. The routines LMDIF and LMDER
from MINPACK (Garbow et al. 1980) were ®rst used. Both
routines minimize the sum of the squares of M nonlinear
functions in N variables by a modi®cation of the Leven-
berg-Marquardt algorithm and require the user to provide
a subroutine that calculates the values of �u. LMDIF eval-
uates the Jacobian internally by a forward-difference ap-
proximation, whereas LMDER requires the user to provide
a subroutine that evaluates the Jacobian analytically. The
subroutine E04UPF from NAG (see NAG 1991) was also
used. This subroutine employs a sequential quadratic
programming algorithm and minimizes a functional con-
sisting of a sum of squares. In our case, this functional is
given by Eqs. (5) and (10) or (11). The subroutine can be
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used either for unconstrained or constrained optimization.
The user must provide subroutines that de®ne the function
values of �u and nonlinear constraints and as many of their
®rst partial derivatives as possible, or the exact Jacobian.
Unspeci®ed derivatives are approximated by ®nite-differ-
ences. The computational effort is measured in terms of
the CPU time required by the routine to converge to a
user-speci®ed tolerance �, that is, juÿ �uj � �.

The initial placement of the moving sources and the
positioning of the ®xed boundary points greatly affect the
convergence of the least squares procedure. Customarily,
the sources are distributed uniformly at a ®xed distance
from the boundary (Karageorghis and Fairweather 1987),
and the boundary points are placed uniformly on the
boundary. The number M of boundary points is chosen to
be approximately three times the number of unknowns, as
recommended in the literature (Mathon and Johnston
1977; Karageorghis and Fairweather 1987). The tendency
of the sources to move to the interior of the domain X is
overcome by an internal check of the position of singu-
larities during the iterative process. If a source is found
inside X it is repositioned at the exterior of the domain
(Karageorghis and Fairweather 1987; Karageorghis
1992a,b).

The computational ef®ciency of LMDIF, LMDER and
E04UPF was investigated when solving the harmonic test
problem shown in Fig. 1:

r2u � 0 in X � �ÿ1; 1� � �ÿ1; 1� ; �12�
subject to u�x; y� � x on oX. The exact solution is u � x.

The sources were initially placed at (uniformly) selected
points, at a ®xed distance d from the boundary. The MFS
converges for a wide range of values of d. In all the results
of this section, d � 0:1. All computations were performed
in double precision on an IBM AIX RISC 6000 computer.

In Table 1, the computational performance of all subrou-
tines is presented, for different values of the tolerance �. It
was observed that when providing the Jacobian (i.e., with
LMDER and the corresponding option in E04UPF) the
CPU times needed to reach a given tolerance were very
similar. When the Jacobian is evaluated internally, it was
observed that LMDIF performed much better than the
corresponding version of E04UPF. The CPU times re-
quired by LMDIF and LMDER versus the number of
sources are plotted in Fig. 2. In general, the latter requires
much less CPU time than the former to reach a given
tolerance.

Similar results were obtained for the following simple
biharmonic test problem:

r4u � 0 in X � �ÿ1; 1� � �ÿ1; 1� ; �13�
subject to u�x; y� � x2 and r2u�x; y� � 2 on the boundary
(Fig. 3). The exact solution is u � x2.

Fig. 1. Harmonic test problem

Table 1. CPU times (in s) re-
quired by the least squares
minimization routines for the
harmonic test problem

� N M LMDIF LMDER E04UPF
Jacobian
evaluated
internally

E04UPF
Jacobian
provided
by the user

10)1 6 56 1.1 0.5 1.3 0.1
7 64 0.6 0.3 0.8 0.1
8 72 0.7 0.3 10.0 0.3
9 84 0.8 0.4 61.2 1.1

10 92 1.0 0.6 83.9 1.0

10)2 6 56 1.1 0.6 1.4 0.2
7 64 2.3 1.2 1.3 0.2
8 72 3.7 2.0 93.1 0.4
9 84 3.4 1.9 141.2 1.3

10 92 3.5 3.3 151.8 1.1

10)3 6 56 1.1 0.7 2.6 1.6
7 64 20.1 1.8 4.3 0.7
8 72 18.6 10.2 129.6 3.9
9 84 22.4 12.6 243.4 6.1

10 92 22.3 15.6 260.0 8.3

10)4 6 56 3.3 0.8 3.7 1.9
7 64 56.8 56.0 60.3 10.5
8 72 159.7 93.4 339.9 46.7
9 84 398.6 146.3 506.4 95.3

10 92 463.3 178.3 617.7 110.4
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Comparison of the performance of all subroutines of
interest leads to the same observations as with the har-
monic test problem. The computational performance of all
subroutines is shown in Table 2, for different values of the
tolerance �. In Fig. 4, the CPU times required are plotted
versus the number of sources. Again, the CPU time re-
quired by LMDER to reach a speci®ed tolerance is much
less than that required by LMDIF.

4
Modified versions of the MFS
In Karageorghis (1992b), a modi®ed MFS is presented
which is based on the direct subtraction of the leading
terms of the singularity from the solution, as suggested by
Symm (1973). The method has been applied to standard

Fig. 2. CPU times required by LMDIF and LMDER
for the harmonic test problem

Fig. 3. Biharmonic test problem

Table 2. CPU times (in s) re-
quired by the least squares
minimization routines for the
biharmonic test problem

� N M LMDIF LMDER E04UPF
Jacobian
evaluated
internally

E04UPF
Jacobian
provided
by the user

10)1 6 72 2.5 1.3 4.9 1.3
7 84 1.8 1.0 8.4 1.4
8 96 6.1 3.0 19.5 2.8
9 108 6.5 3.4 94.8 3.5

10 120 8.3 4.2 115.3 3.7

10)2 6 72 3.2 1.7 51.4 1.5
7 84 7.5 4.0 69.2 1.5
8 96 8.2 4.1 146.7 3.3
9 108 9.8 5.1 343.2 4.6

10 120 12.1 6.2 467.9 4.5

10)3 6 72 27.9 15.4 89.4 9.6
7 84 53.3 30.2 159.7 21.7
8 96 78.7 39.2 462.6 26.4
9 108 125.7 64.4 767.3 53.9

10 120 120.9 60.0 957.4 62.7

10)4 6 72 411.8 352.8 461.4 255.4
7 84 860.4 274.4 735.6 310.8
8 96 829.2 427.2 920.7 422.3
9 108 1153.1 637.2 1541.2 546.4

10 120 2235.3 544.5 2462.4 601.9

Fig. 4. CPU times required by LMDIF and LMDER for the
biharmonic test problem
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harmonic and biharmonic problems yielding accurate es-
timates of the leading singular coef®cients (Karageorghis
1992b). Compared to other numerical methods which take
the leading terms of the singularity into account, the
method is easy to implement.

In this study, another modi®ed MFS, in which the un-
knowns are not restricted only to the coef®cients of the
leading singular terms but also include the form of the
singularity, is developed. This means that the radial and
angular dependence of the singularity are considered as
unknowns. These new unknowns are naturally incorpo-
rated in the nonlinear least squares minimization scheme
of the MFS. As mentioned in the introduction, this mod-
i®cation of the MFS is particularly useful when dealing
with problems in which the nature of the singularity is
unknown.

The objective of this section is to study the accuracy
achieved with the above two modi®ed versions of the MFS.
All the problems examined were solved with all four
subroutines. For comparison purposes with previous
work, the results obtained with LMDIF are presented.

The ®rst problem examined is the harmonic problem
shown in Fig. 5, known as the Motz problem (Symm 1973):

r2u � 0 in X � �ÿ7; 7� � �ÿ3:5; 3:5� ; �14�
which has a boundary singularity at the point O where the
boundary condition suddenly changes from u � 500 to
ou
oy � 0. The solution u in the neighbourhood of the sin-
gularity is of the form:

u �
X1
j�1

ajr
�2jÿ1

2 � cos
2jÿ 1

2

� �
h

� �
: �15�

This is considered as a benchmark problem for testing
various singular numerical methods. Many special nu-
merical schemes have been proposed for the solution of
this problem. Symm (1973) developed a modi®ed boun-
dary integral method using a singularity subtraction
technique. Li et al. (1987) employed a boundary approxi-
mation method using particular solutions to approximate
the boundary conditions as best as possible in a least-
square sense. Karageorghis (1992b) employed a modi®ed
MFS yielding accurate estimates of the leading singular
coef®cients. More recently, Georgiou et al. (1996) devel-
oped a singular function boundary integral method based
on the approximation of the solution by the leading terms
of the local solution expansion. The results obtained are in

close agreement to the exact values obtained by Rosser and
Papamichael (1975) using a conformal transformation
technique.

In the modi®ed MFS of Karageorghis (1992b), the so-
lution u consists of two components. The ®rst component
approximates the `singular' part of the solution us and the
second approximates its `regular' part ur . As with the MFS,
ur is approximated by a set of fundamental solutions:

�u � �us � �ur � �us �
XN

j�1

cj log rij : �16�

In contrast to the above modi®ed MFS, in which the ®rst
two terms were included (Karageorghis 1992b), in the new
modi®ed version of MFS proposed here, �us includes only
the ®rst singular term. The radial and the angular depen-
dence of the singularity are determined by the unknown
parameter b1:

�us � a1rb1 cos�b1h� ; �17�
where a1 is the unknown singular coef®cient (the exact
value of b1 is 0.50). From Eqs. (16) and (17), we can write

�u�a1; b1; c; t; pi� � a1rb1 cos�b1h� �
XN

j�1

cj log rij : �18�

The problem was solved for various numbers of func-
tion evaluations (NFEV) with the sources initially placed
outside the domain at different distances d from the
boundary, as before. As with the test problems of the
previous section, the accuracy of the approximation im-
proves with NFEV and the number of sources N (and the
corresponding number of boundary points M). Because of
the nonlinearity of the resulting problem in the new
modi®ed method, convergence was achieved only for a
restricted range of values of d. It was observed that the
new modi®ed MFS failed to converge for values of d less
than 0.4. In Table 3, comparisons are made between the
exact solution near the singularity and the approximations
obtained for N � 7;M � 66 and NFEV � 4000 with the
following four methods: (a) MFS; (b) Modi®ed MFS with
a1 as the only additional unknown; (c) Modi®ed MFS with
a1 and b1 as additional unknowns; and (d) Modi®ed MFS
with a1 and a2 as unknowns (Karageorghis 1992b). We
observe that the accuracy is improved as we move from (a)
to (d). Surprisingly, the solution is more accurate when the
form of the leading singular term is considered as un-
known, case (c), than when the exact value of b1 is used,
case (b). The results of Karageorghis (1992b), however,
who considered only the two leading singular coef®cients
as unknowns, are the most accurate. The calculated values
of a1 and b1 are given in Table 4 for different values of the
initial distance of the moving sources from the boundary.
These are in good agreement with the exact values of
Rosser and Papamichael (1975).

The modi®ed MFS was then applied to the biharmonic
problem shown in Fig. 6. This is known as the stick-slip
problem and corresponds to the Stokes ¯ow out of a
channel of ®nite thickness and in®nite width at in®nite
surface tension (Richardson 1970). Taking into accountFig. 5. Geometry and boundary conditions for the Motz problem
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the symmetry of the problem the governing equation in
terms of the streamfunction u is

r4u � 0 in X � �ÿ3; 3� � �0; 1� : �19�
The boundary conditions are shown in Fig. 6. The velocity
pro®le is parabolic at the inlet and plug at the exit plane.
The problem has a boundary singularity at the point O
where a boundary condition suddenly changes from no-
slip, ou= ox � 0, to perfect slip, r2u � 0. The analytic
nature of the singularity is given by Richardson (1970) as

u � 1�
X1
j�1

ajr
�bj�1�fj�h; bj� ; �20�

with two possible sets of solutions for fj�h; bj�:

fj�h; b� � cos�b� 1�h
ÿ cos�bÿ 1�h for b � 1

2;
3
2;

5
2; � � � �21�

fj�h; b� � �bÿ 1� sin�b� 1�h
ÿ �b�1� sin�bÿ1�h for b�2; 3; 4; . . . �22�

The stick-slip problem was solved analytically by Rich-
ardson (1970) using the Wiener-Hopf technique. Kel-
manson (1983) employed a direct modi®ed biharmonic
boundary integral equation method to solve it. Georgiou
et al. (1991) used the Integrated Singular Basis Function
Method obtaining good estimates of the leading coef®-
cients. Karageorghis (1992b) obtained accurate estimates
of the ®rst two singular coef®cients using a modi®ed MFS.

In the present modi®ed MFS for the biharmonic prob-
lem, the solution is approximated as follows:

�u�a1; b1; c; d; t; pi�
� 1� a1r�b1�1��cos�b1 � 1�hÿ cos�b1 ÿ 1�h�

�
XN

j�1

cj log rij �
XN

j�1

djr
2
ij log rij ; �23�

i.e. only the leading term of the local solution (20) is taken
into account and its form is considered unknown. The
boundary conditions are modi®ed accordingly.

Table 3. Calculated solutions
of the Motz problem near the
singularity (0:25� 0:25 grid;
M � 66; N � 7;NFEV � 4000)

578.95 605.05 631.08 655.27 677.50
547.59 559.30 576.48 598.17 620.75
546.04 557.32 574.20 595.82 618.49
546.31 557.72 574.70 596.31 618.92
546.24 557.64 574.61 596.23 618.85

553.03 590.52 622.50 649.86 673.90
526.33 535.61 555.54 586.07 614.14
524.63 533.17 552.54 583.12 611.44
524.89 533.71 553.30 583.76 611.93
524.81 533.59 553.19 583.67 611.86

530.90 582.26 618.48 647.70 672.73
501.69 502.50 503.46 579.39 611.66
499.97 499.63 496.80 575.80 608.48
500.11 500.18 500.26 576.48 608.96
500.00 500.00 500.00 576.41 608.91

MFS 0
Modi®ed MFS, unknowns: a1

Modi®ed MFS, unknowns: a1 & b1

Modi®ed MFS, unknowns: a1 & a2 (Karageorghis 1992b)

Exact solution (Rosser and Papamichael 1975)

Table 4. Calculated values of a1 and b1 for the Motz problem; the
exact values are 151.63 and 0.50, respectively

N M d NFEV a1 b1

7 66 0.4 20000 150.32 0.48
25000 149.72 0.45
30000 150.85 0.44
35000 150.88 0.44
40000 150.88 0.44

7 66 0.6 20000 150.13 0.47
25000 150.14 0.47
30000 150.14 0.47
35000 150.14 0.47
40000 150.14 0.47

10 96 0.5 20000 151.64 0.46
25000 150.92 0.47
30000 150.51 0.47
35000 150.43 0.47
40000 150.39 0.47

10 96 0.6 20000 149.91 0.47
25000 149.77 0.48
30000 149.17 0.48
35000 149.13 0.48
40000 149.13 0.48

Fig. 6. Geometry and boundary conditions for the stick-slip
problem
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The problem was solved for various values of NFEV
with the sources initially placed at different distances d
from the boundary. Due to the nonlinearity introduced by
the singular term, the new modi®ed MFS converges only
for values of d greater than 3. In Table 5, we tabulate the
streamfunction near the singularity obtained for
N � 14;M � 182 and NFEV � 45 000 with the following
methods: (a) MFS; (b) Modi®ed MFS with a1 only as an
additional unknown; (c) Modi®ed MFS with a1 and b1 as
additional unknowns; and (d) Modi®ed MFS with a1 ÿ a4

as additional unknowns (Karageorghis 1992b). The results
of Kelmanson (1983) are also given for comparison pur-
poses. It was observed that in case (c) convergence was

slower than in case (b). This is due to the inclusion of the
extra nonlinear term in the functional that we minimize.
As expected, the solution is more accurate when the nature
of the leading singular term is given, case (b), than when
b1 is considered as unknown, case (c). The results of
Karageorghis (1992b) are in excellent agreement with
those of Kelmanson (1983). The calculated values of a1 and
b1 are given in Table 6. These are in good agreement with
the exact values.

5
Conclusions
A weakness of the MFS is its computational cost which
arises from the use of a nonlinear least squares minimi-
zation algorithm. In this work, the computational perfor-
mance of various minimization routines was investigated,
in order to improve the ef®ciency of the method. Two least
squares routines from MINPACK, namely LMDER and
LMDIF, were ®rst examined. In LMDER, the Jacobian of
the system must be provided by the user whereas in
LMDIF the Jacobian is evaluated internally by a ®nite
difference scheme. The performance of the two routines on
test problems was compared, and it was found that
LMDER improves signi®cantly the ef®ciency of the
method. As the user is not required to provide the Jaco-
bian, LMDIF is considerably simpler to code which might
be important when solving problems with complicated
boundary conditions and/or complex geometries. The
performance of the NAG routine E04UPF, which is much
more general as it offers many more options, was also
examined. One particular option of this routine is that the
user may choose whether to supply the Jacobian or not.
The results when providing the Jacobian were very similar.
In the cases when the Jacobian is evaluated internally,
LMDIF is much more ef®cient than the corresponding
version of E04UPF. One important feature of E04UPF,
however, is that it can solve constrained minimization
problems which can be extremely important when the MFS

Table 5. Calculated solutions
of the stick-slip problem near
the singularity (0:750� 0:125
grid, M � 182;N � 14;
NFEV � 45000)

0

1.01706 1.02672 0.95466 0.98268 1.00916
1.00305 0.99198 1.00617 0.99888 0.99820
0.98767 0.98726 0.97934 0.99704 1.00480
0.99988 0.99990 1.00000 1.00020 0.99981
1.0000 1.0000 1.0000 1.0000 1.0000

0.99466 1.00221 0.90386 0.87294 0.88208
0.98088 0.96987 0.96168 0.88767 0.87582
0.96643 0.96506 0.93032 0.88502 0.87958
0.97743 0.97721 0.95539 0.88777 0.87673
0.9778 0.9774 0.9555 0.8877 0.8767

0.92986 0.93388 0.82375 0.75847 0.75590
0.91716 0.90691 0.87627 0.77372 0.75304
0.90521 0.90156 0.84683 0.76959 0.75473
0.91398 0.91300 0.87156 0.77319 0.75332
0.9145 0.9133 0.8716 0.7730 0.7531

MFS
Modi®ed MFS, unknowns: a1

Modi®ed MFS, unknowns: a1 & b1

Modi®ed MFS, unknowns: a1; a2; a3 & a4 (Karageorghis 1992b)

Kelmanson (1983)

Table 6. Calculated values of a1 and b1 for the stick-slip problem;
the exact values are 0.69099 and 0.50, respectively

N M d NFEV a1 b1

14 356 9 30000 0.51871 0.45
40000 0.62042 0.46
50000 0.66008 0.46
60000 0.72549 0.47
70000 0.69019 0.47

28 700 9 30000 0.66673 0.46
40000 0.57094 0.47
50000 0.57567 0.47
60000 0.53798 0.47
70000 0.54546 0.47

56 1372 7 30000 0.56516 0.48
40000 0.66575 0.47
50000 0.66727 0.47
60000 0.64780 0.47
70000 0.62114 0.47

70 1708 8 30000 0.54727 0.52
40000 0.52862 0.48
50000 0.57662 0.48
60000 0.62645 0.47
70000 0.67213 0.47
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is used to solve certain classes of problems such as free
boundary problems.

A modi®ed version of the MFS for the solution of
problems with boundary singularities was also used. The
leading singular term is subtracted from the solution and,
in addition to the singular coef®cient, the form of the
leading term can be determined. This modi®cation was
achieved with very little extra effort as the unknown sin-
gular coef®cient and the corresponding power can be in-
cluded in the nonlinear least squares minimization scheme
in a natural way. This is of great importance when the
analytic behaviour of the singularity of a given problem is
not known a priori. The method was applied to two well-
known elliptic singular problems. The numerical results
indicate that as the number of function evaluations is in-
creased the approximate solution converges to the exact
one. This modi®cation of the MFS may be applied to
problems involving more complex geometries and boun-
dary conditions.
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