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Abstract. Mixed finite elements for viscoelastic flows based on a 4 x 4 sub-linear interpolation for the extra stress components 
satisfy the Babuska-Brezzi condition and are highly stable. They have been proved to be quite satisfactory in solving problems 
with strong stress boundary layers. In this work, we examine the simultaneous use of 4 x 4 and 2 • 2 bilinear stress elements 
in an attempt to reduce the computational cost without sacrificing the accuracy. The 4 x 4 bilinear elements are employed in 
regions where the stress field is anticipated to be steep while the 2 x 2 elements carry the burden elsewhere with a much smaller 
number of stress nodes. Additional constraints along the sides shared by different elements are necessary in order to preserve 
conformity. The method is applied to the creeping flow of a Maxwell fluid around a sphere falling along the axis of a cylindrical 
tube. Results are given for three mixed finite element formulations: the Galerkin method, the consistent streamline-upwind/ 
Petrov-Galerkin method (SUPG) and the non-consistent streamline-upwind method (SU). Particular emphasis is given on 
the calculated drag correction factors. The effect of the sphere/cylinder diameter ratio is also examined. 

1 Introduction 

In 1987, Marchal and Crochet (1987) introduced a mixed finite element for calculating viscoelastic 
flow. It is characterized by a finite element representation of the stresses in terms of 4 x 4 bilinear 
sub-elements. Unlike the biquadratic or other elements previously proposed in the literature, their 
element satisfies the Babugka-Brezzi condition for convergence (Babugka 1973; Brezzi 1974; 
Fortin and Pierre 1989) at least at the Stokes flow limit, while it leads to stable numerical schemes. 
It is, however, characterized by a high number of stress nodes per element resulting in a higher 
computational cost. 

Marchal and Crochet (1987) considered successive stress representations using 2 x 2, 3 x 3 and 
4 x 4 sub-elements. It was clear that 4 x 4 sub-elements are needed in regions characterized by 
stress boundary layers or singularities: One may question the effectiveness of covering the entire 
flow domain with the expensive 4 x 4 sub-elements while they appear to be unnecessary in 
sub-domains of substantial size. The objective of the present work is to introduce the simultaneous 
use of 4 x 4 and 2 x 2 bilinear stress elements for the solution of viscoelastic flow problems in 
order to reduce the total number of unknowns, and consequently the computational cost, without 
sacrificing the accuracy. The 4 x 4 bilinear elements are used only in those regions where stress 
boundary layers or singularities are present and the 2 x 2 ones are employed elsewhere. 

As in Marchal and Crochet (1987), we consider three mixed finite element formulations: 

1. The Galerkin method 
2. The consistent streamline-upwind/Petrov-Galerkin method (SUPG) 
3. The non-consistent streamline-upwind method (SU) 

The Galerkin method converges only at relatively low values of the We due to tlie hyperbolic 
character of the constitutive equation (Marchal and Crochet 1987). Galerkin/finite element methods 
are formally accurate but unstable, failing in flows possessing sharp solution gradients or singulari- 
ties. In order to stabilize the numerical scheme, Marchal and Crochet (1987) introduced the use 
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of the SU and SUPG methods developed by Brooks and Hughes (1982) for the finite element 
integration of hyperbolic equations. 

The SUPG method is accurate and stable for problems in smooth geometries such as the 
viscoelastic flow in a corrugated tube (Crochet et al. 1990) and around a sphere (Crochet and Legat 
1992). The SUPG method is formally more accurate than the Galerkin method (Keunings 1989), 
but if the solution gradient is not aligned with the streamlines or in the presence of singularities, 
the method produces oscillatory stress and velocity fields as, for example, in the stick-slip flow of 
a Maxwell fluid (Marchal and Crochet 1987). 

The SU formulation was proposed in Marchal and Crochet (1987) as an alternative to the 
SUPG method for flow problems with stress singularities. The modified test function is used only 
for the integration of the purely advective term of the constitutive equation and thus the original 
problem is modified by the addition of an extra diffusion term. As shown in Crochet et al. (1990); 
Crochet and Legat (1992) this numerical diffusion vanishes as the mesh is refined but the method 
converges slowly. The velocity field converges faster than the stress field (Crochet and Legat 1992). 
The results are accurate at the asymptotic limit where the mesh size goes to zero. The method 
yields smooth results and is remarkably stable at very high Weissenberg numbers. 

The above comments are needed as a background for the study of the numerical schemes 
described in Sect. 3, where we demonstrate once more the higher accuracy of the SUPG method 
and the stabilizing character of the SU method. As a test problem for the simultaneous use of 2 x 2 
and 4 x 4 stress sub-elements, we have chosen the steady flow of a Maxwell fluid around a rigid 
sphere moving with a constant translational velocity along the axis of a cylindrical tube. Character- 
istic of this flow is the development of strong boundary layers around the sphere surface whose 
strength increases with fluid elasticity. These stress boundary layers require local mesh refinement 
making the problem suitable for our purposes. 

It should be pointed out that the sphere problem has been investigated as a benchmark problem 
by means of several numerical methods: mixed finite elements (Crochet and Legat 1992), boundary 
elements (Zheng et al. 1990; 1991), finite differences (Chilcott and Rallison 1988), spectral methods 
(Gervang et al. 1992), and the explicitly elliptic momentum equation (EEME) method (Lunsmann 
et al. 1992). Recent reviews of numerical simulations in viscoelastic flow may be found in (Crochet 
1989; Keunings 1989). 

In Sect. 2, we pose the sphere problem and give a literature review of viscoelastic flow in such 
geometries. The finite element results are discussed in Sects. 4 and 5, and, finally, the conclusions 
are summarized in Sect. 6. 

2 The sphere problem 

We consider the flow of a viscoelastic fluid around a rigid sphere of radius R falling with a (terminal) 
velocity U along the symmetry axis of a tube of radius Rc. In our calculations, it is actually assumed 
that the sphere is motionless and the wall moves with velocity U instead. The flow is axisymmetric 
and we employ cylindrical coordinates (r, z) as shown in Fig. 1. For steady, isothermal and 
incompressible flow, the momentum and continuity equations are as follows: 

-Vp+V.T +f=pv-Vv,  V.v=0,  (1,2) 

where p is an arbitrary isotropic pressure, T is the extra-stress tensor, f denotes the body force, p is 
the density, and v is the velocity vector. 

In this work, we will be concerned with the upper-convected Maxwell fluid, the constitutive 

u =U, v=O 

I v = 0 R c v=O v =0 
T=O I 

Symmetry z Symmetry Fig. 1. Geometry and boundary conditions 



G, C, Georgiou and M. J, Crochet: The simultaneous use of 4 x 4 and 2 x 2 bilinear stress elements 343 

equation of which is as follows: 

V 
T + 2T - 2r/d = 0, (3) 

v 
where 2 is the relaxation time, r/is the (constant) shear viscosity, T is the upper-convected derivative 
of the stress tensor, defined as: 

V 
T = v-VT - (Vv)T'T - T'Vv, (4) 

d is the rate-of-deformation tensor defined by 

d --�89 + (Vv)T]. (5) 

Vv is the velocity-gradient tensor, and, finally, the superscript T denotes the transpose. 
The boundary conditions are shown in Fig. 1. Essential boundary conditions for v and T are 

taken at the inlet. The radial velocity and the normal force are vanishing at the outlet plane. The 
velocity is set equal to zero along the sphere surface and equal to U along the wall. 

We nondimensionalize the governing equations by scaling the velocity components by U, the 
lengths by R and the pressure and stress components by tlU/R. With the body force neglected, 
this scaling yields two dimensionless numbers, the Reynolds number, Re, and the Weissenberg 
number, We: 

p U R ,  2U 
Re =- �9 We =- (6) 

tl R 

The drag exerted on the sphere constitutes a very interesting quantity to calculate and it is 
commonly used to compare the various numerical techniques (Crochet and Legat 1992; Zheng 
et al. 1990) and/or experimental measurements (Chmielewski et al. 1990; Tirtaatmadja et al. 1990). 
For creeping flow in an unbounded Newtonian fluid, the drag force F N ~ is given by Stoke's law: 

F N = 6~/R U. (7) 
oO 

In the present paper, we consider creeping flow in tubes of finite diameter and we are thus interested 
in the wall effect. For Newtonian fluids, the wall effect is accounted by the Faxen correction factor 
Kw (Chmielewski et al. 1990), defined as the ratio of the drag in a bounded medium to that in an 
unbounded medium: 

F N 1 

where the polynomial expansion W is given by: 

Rcc = 2.1044-- \ Rc,/ \ R e ~  \ R e /  

With only a few exceptions (e.g., Chhabra and Uhlherr 1988), for sphere motion in viscoelastic 
fluids, the wall effect on the drag coefficient is significant albeit less pronounced than for Newtonian 
fluids. Tirtaatmadja et al. (1990) using fluid M1 and Chmielewski et al. (1990) using a Boger fluid 
found that the wall effect is similar to that for the Newtonian fluids, at least for R/Rc  up to 0.15 
(hence, the Faxen correction can be used), whereas Mena et al. (1987) found that wall effects are 
much less appreciable for their non-Newtonian solutions than for the Newtonian case for similar 
value of R/R  c and that wall corrections are relatively unimportant in determining the drag force 
for R/R  c less than 1/15. Hassager and Bisgaard (1983) have also observed relatively significant 
wall effects in experiments with a solution of polyacrylamide in glycerine. 
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The effect of fluid elasticity on the drag coefficient is not fully understood. A useful quantity 
accounting for the deviation from Stokes's law is the drag correction factor K, defined as the ratio 
of the drag exerted on the sphere, F v, to that exerted by an unbounded Newtonian fluid: 

F v F v 

K - F N 61ulUR (10) 
0O 

When a wide cylinder is used, the fluid elasticity has little effect on the drag correction factor 
for low values of the Weissenberg number, as indicated by small perturbation solutions for 
Oldroyd-type fluids (Leslie 1961; Giesekus 1963) and a third-order Rivlin-Ericksen fluid (Caswell 
and Schwarz 1962; Mena and Caswell 1974). Perturbation solutions are obtained as a convergent 
series in powers of the Weissenberg number: 

CD = C~[1 - O(We) 2 + O(We) 4 + ...]. (11) 

Note that Eq. (11) is valid only for slightly viscoelastic flow in the creeping limit. Its predictions are 
substantiated by a plethora of experimental results (Chmielewski et al. 1990; Mena et al. 1987; 
Broadbent and Mena 1974; Chhabra et al. 1980) and by numerical simulations with the Maxwell 
model (Hassager and Bisgaard 1983), with an Oldroyd-type model (Tiefenbruck and Leal 1982) 
and with the Phan-Thien-Tanner model (Carew and Townsend 1988). From experimental and 
numerical evidence, it appears that the quadratic drag departure of Eq. (11) holds for values of 
We much higher than what one would expect from an asymptotic analysis (Mena et al. 1987). 

When a narrow cylinder is used, fluid elasticity appears to reduce K (with the exception of few 
experimental and numerical results to be discussed below). The experiments of Chhabra et al. (1990); 
Mena et al. (1987), and Chmielewski et al. (1990) with corn-syrup-based Boger fluids and of 
Hassager and Bisgaard (1983) with an 1~ solution of polyacrylamide in glycerine showed that, as 
We increases, K decreases monotonically reaching eventually a plateau. Mena et al. (1987) found 
that for their Boger fluid the drag reduction was initially quadratic as predicted by Eq. (11), but 
that was not true for their viscoelastic Separan solution due to the fact that shear-thinning effects 
dominated enhancing the drag reduction. Drag reduction has also been predicted in numerical 
calculations: by Chilcott and Rallison (1988) using an FENE-dumbbell model with a set of 
parameters representing a constant-viscosity elastic fluid; by Hassager and Bisgaard (1983) and 
Crochet and Legat (1992) using the Maxwell model; by Tiefenbruck and Leal (1982) and Zheng 
et al (1990) using the Oldroyd model; and by Sugeng and Tanner (1986) and Carew and Townsend 
(1988) using the Phan-Thien-Tanner model (Carew and Townsend 1988). 

In a few cases, however, drag enhancement with fluid elasticity has been detected. Acharya 
et al. (1976) found negligible influence of viscoelasticity on the drag coefficient using polyethylene 
and polyacrylamide solutions. Chmielewski et al. (1990) using a polyisobutylene/polybutene- 
based Boger fluid found that K remains constant at low We and then increases monotonically. 
Tirtaatmadja et al. (1990) in experiments with fluid M1 found that K decreases slightly reaching 
a minimum at a moderate value of We and it then increases monotonically surpassing the Stokes 
value. Chilcott and Rallison (1988) have been able to simulate this behavior using an FENE model 
with appropriate parameters. Tirtaatmadja et al. (1990) suggest that these different behaviors of 
K are due to different polymer-solvent configurations. Other researchers attribute the increase in 
the drag coefficient to the different flow patterns in the downstream wake where the velocity decays 
much more slowly than that of a Newtonian liquid due to the presence of a thin region of highly 
extended polymer (Chilcott and Rallison 1988; Harlen 1990). 

In the present review, we have not considered the effect of inertia. Even for creeping flow, it is 
clear that both shear thinning and viscoelasticity play important roles, while accurate numerical 
solutions are hard to obtain in view of the presence of the stress boundary layers. Our purpose 
below is to investigate how the use of accurate elements within the stress boundary layers would 
let us perform calculations at an affordable cost. Although we limit ourselves to the flow of a 
Maxwell fluid, the method is entirely applicable to other types of constitutive equations. 
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3 Finite element methods 

The finite element method is used to calculate the unknown fields, v, p and T. The flow domain ~2 
is discretized by means of quadrilateral elements. To interpolate v and p we use biquadratic, ~J 
(p2 _ CO), and bilinear, 7 ~j (p1 _ CO), trial functions respectively: 

Nv Np 
v = ~vJ@i,  p = ~ p J ~ J ,  (12,13) 

J J 

where v j, pJ a r e  the unknown nodal values of v and p, and N~, Np are the numbers of velocity and 
pressure nodes. For the stresses, we use the 4 x 4 bilinear sub-elements developed by Marchal and 
Crochet (1987) in regions where sharp stress gradients are anticipated (e.g., near the surface of the 
sphere), and the 2 • 2 elements in the rest of the computational domain. We will show below why 
we have not used in these regions the biquadratic mixed element MIX1 discussed by Crochet et al. 
(1984). Letting g J represent the stress trial functions, T j denote the unknown nodal values of the 
stress tensor, and NT be the number of stress nodes, we have: 

NT 
T =  Z VZ  J. (14) 

J 

As mentioned in the introduction, we consider three mixed finite element formulations: the 
Galerkin, the SUPG and the SU methods. What is different in the above formulations is the 
discretization of the constitutive equation. In all cases, the continuity equation is weighted by ~i  
and the momentum equation by @i: 

j ' V . v ~ i d ~ = 0 ,  i = l , 2 , . . . , N p ,  (15) 

n . ( - p I  + T)@'ds - j" [ ( - p I  + T)-V~i + pv.Vv@']d.Q = 0, i = 1 ,2 , . . . ,N  v, (16) 

where n is the outward unit normal vector to the boundary 0~. 
In the Galerkin method, the constitutive equation is weighted by ~ (the test functions are 

identical to the trial or weight functions): 

V 
~" (T + 2T - 2r/d)z~d~2 = 0, i = 1, 2 , . . . ,  N T. (17) 
s 

In the SUPG method, a modified test function ~ is employed: 

2i = X~ + kv 'Vi .  (18) 

The function k is given by: 

k _  ~(u~ + u2)1/2 (19) 
2 v.v 

where ~ is the streamline upwinding coefficient, and u~, u, are defined as: 

u~ = v 0.h~, u~ = v 0.h.. 

In the case of the 4 • 4 stress elements, Vo is the velocity at the centroid of a sub-element and the 
vectors h~, h, have a length of the same order as the sub-element size (see Marchal and Crochet 
1987). Shown in Fig. 2 are the two alternative definitions, D1 and D2, we have used in the case of the 
2 • 2 stress elements for vectors v 0, h~ and h,. In D1 these vectors are defined over the sub-elements, 
and in D2 they are defined over the quadrilaterals resulting from the 4 • 4 partition of the element 
in a fashion similar to that of the 4 • 4 stress elements. 

In the SU method, the modified test function is used only for the integration of the purely 
advective term v'VT of the constitutive equation: 

V 
j" (T + 2T -- 2r/d)xid.Q+ j" 2 v. V T  kv . V zi dg2 = O, i = 1, 2 . . . . .  N r . (20) 

X2 
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Constra ints  

T A = T 1 

3 T B = ~  T jXJ (XB)  
E 

T C = T 2 

T v = ~ T jXJ(xD) 

T E = T 3 

Figs 2 and 3. 2 Alternative definitions of v 0, h~ and h~ for the 2 x 2 stress element. 3 Constraints  along a side shared by 2 x 2 
and 4 x 4 stress elements 

In order to preserve the conformity of the elements, additional constraints along the sides 
shared by 4 x 4 and 2 x 2 elements are required. Let us use the indices 1-3 for the 2 x 2 stress 
nodes and A-E  for the 4 • 4 ones along such a side, as illustrated in Fig. 3. We demand 
that the stresses at the bilinear nodes A-E  are the same for both elements. Nodes A, C and E 
coincide with nodes 1, 2 and 3, respectively, and so do the corresponding nodal stress values. At 
nodes B and D we have: 

3 

TB ----- ~ TJz j2x 21B = ( Tt + T2)/2 = ( TA + TC)/2 (21) 
j = t  

3 

TD ---- ~ TJz~• 2 Io = ( T2 + T3)/2 = (T c + TE)/2 (22) 
j = l  

where Z j are the shape functions over the 2 x 2 element. Similar constraints have been used by 2 x 2  
M archal et al. (1984) when they adaptively refined a biquadratic mesh introducing two biquadratic 
elements under side 1-2. As in Marchal et al. (1984), instead of replacing the discretized stress 
equations at nodes B and D by the constraints (21) and (22), we eliminate the unknowns at these 
nodes by modifying the shape functions over the 4 x 4 element. Over the sub-elements adjacent 
to the 2 x 2 element we have: 

_ A A B B C C O D E E ( 2 3 )  T - T  Z4. x 4 + T  Z 4 x , + T  Z 4 x 4 + T  Z 4 x 4 + T  ~4.x4. 

By virtue of constraints (21) and (22), Eq. (23) becomes: 
T A A 1 B C C 1 B 1 D E E l D 

= T (Z4 • 4 + iZ4 x 4) + T (Z4 • 4 "~ 2Z4. x 4 '~ 2Z4 x 4) -Ji- T (Z4 x 4. "~ 2~4 x 4), (24) 

and therefore the modified shape functions over the 4 x 4 element read as follows: 
A A t B C C 1ZB t O Z~ E !ZO 

ZNEW=Z4. x4"~-2Z4x4 ' ZNEW=Z4x4-"~2 4 - x 4 + 2 Z 4 x 4  , N E W = Z 4 x 4 + 2  4x4" 

It is now clear why we have combined 4 x 4 and 2 x 2 mixed elements instead of 4 x 4 and 
biquadratic (MIX1) elements. At the interface between 4 x 4 and biquadratic elements, we could 
not possibly obtain (in general) a C O continuity of the extra stress field while the constitutive 
equations contain stress derivatives. With the constraints (21) and (22), we obtain a linear inter- 
polation of the stress fields between nodes A, C and E on both sides of the interface. Another 
reason is that the SU and SUPG methods have been essentially developed for bilinear shape 
functions. 

The discretized continuity, momentum and constitutive equations are solved simultaneously 
by means of the Newton-Raphson  method. The calculation of the drag exerted on the sphere 
amounts to the summation of the nodal forces in the z-direction along the sphere surface Ol2s: 

F v = ~, % ' I  [(--pI  + T ) 'V~  i + pv 'Vv~i]d .O,  (25) 
i o n  (? ~'Js ~Q 

where e~ is the unit vector in the z-direction. 
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4 Numerical results: ( R c [ R )  = 2 

In order to demonstrate the advantage of using both types of elements for solving viscoelastic flow 
problems endowed with stress boundary layers, we first examine the well-documented case of 
(Rc/R) = 2 and employ the meshes I and II used in Crochet and Legat (1992) (see Fig. 4). Results 
for other values of (Rc/R) will be given in the next section. 

The entry and exit lengths are equal to 15R and 30R respectively. We observe that the central 
portion of the meshes shown in Fig. 4 is made of a series of layers of quadrilateral elements. It is 
thus convenient to fill the first N l layers with 4 x 4 elements and the rest with 2 x 2 ones. The main 
characteristics of the meshes are given in Table 1 for different numbers of 4 x 4-element layers. 

In the sequence, we first discuss the results with full 4 x 4-element and full 2 x 2-element 
meshes, and then we proceed to the results obtained when the two elements are used simultane- 
ously. Note that in all the calculations of this work, inertia is neglected (Re = 0) and an increment of 
0.1 is used to proceed to a higher We. We do not pursue the calculations with a different increment 
for We when the method diverges. 

4.1 Results with the 4 x 4 stress elements 

We have first examined the results obtained with 4 x 4 stress elements using the Galerkin, the 
SUPG and the SU methods. The SUPG and SU results are the same as those of Crochet and 
Legat (1992). Table 2 gives the calculated values of K for all the methods. Notice that a streamline 
upwinding coefficient ~ = 0.5 was used in Crochet and Legat (1992). It is generally conceded that 
what is important is the form of the streamline upwinding function and not the value of ~ (Brooks 
and Hughes 1982). Nevertheless, we would like to point out that this is true only when the mesh 
is adequately refined. The effect of the streamline upwinding coefficient on K is illustrated in Fig. 5 
where we aIso show the values of Crochet and Legat (1992) obtained with the SUPG method 
and mesh III. For We up to 0.4, K is practically independent of ~. As a increases the method 
converges at higher values of the We but the numerical diffusion introduces a serious error and a 
minimum is observed before divergence occurs. As the mesh is refined, the error decays and the 
minimum moves towards the converged solution and eventually disappears (Crochet and Legat 
1992; Lunsmann et al. 1992). Unless otherwise indicated, the value ~ = 0.5 is employed hereafter. 

Table 2 summarizes the well-known behavior of the various numerical techniques for smooth 
viscoelastic problems. A finer mesh allows one to reach higher values of the Weissenberg number. 
The SUPG method converges at slightly higher values than the Galerkin method. The SU method 
is stable and allows one to reach high values of We but it converges slowly with mesh refinement. 
The SU results are best used in conjunction with a Richardson type of extrapolation (Crochet et al. 
1990; Crochet and Legat 1992). 

Fig. 4. Central portions of the finite element meshes 
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Table 1. Mesh characteristics 

N, Number of 4 x 4 Degrees of 
elements freedom 

Mesh I: 207 elements; 925 velocity nodes 
0 0 5806 
1 17 6766 
2 34 7590 
3 51 8414 
4 68 9238 
Full 4 x 4 207 16126 

Mesh II: 510 elements; 2175 velocity nodes 
0 0 13628 
1 31 15372 
4 124 19860 
7 217 24348 
9 279 27340 
Full 4 x 4 510 38644 

Computational Mechanics 11 (1993) 

6.0 

5.5 

t 5,0 
v 

4.5 

4.0 

o 
(Galerkin) o 

0 
O O 

O 0  o 

i 

0 1 

W e  

Fig. 5. Effect ofthestreamline-upwindingcoefficient ct onthedrag 
correction factor K; SU method, mesh I, full 4 • 4; O: values of 
Crochet and Legat (1992) with the SUPG method and mesh III 

Table 2. Calculated values of K with 4 x 4 stress elements; mesh I 

We Galerkin SUPG SU 

Mesh I Mesh II Mesh I Mesh II Mesh I Mesh II 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 

5.9490 5.9476 5.9490 5.9476 
5.8639 5.8622 5.8638 5.8620 
5.6625 5.6598 5.6624 5.6598 
5.4236 5.4198 5.4235 5.4197 
5.1923 5.1873 5.1920 5.1872 
4.9871 4.9803 4.9867 4.9801 
4.8130 4.8034 4.8t25 4.8031 
4.6699 4.6553 4.6697 4.6548 
Diverges 4.5332 4.5593 4.5320 

4.4346 Diverges 4.4314 
Diverges 4.3502 

4.2862 
Diverges 

5.9490 5.9476 
5.8527 5.8565 
5.6484 5.6523 
5.4145 5.4144 
5.1947 5.1873 
5.0066 4.9884 
4.8546 4.8219 
4.7381 4.6864 
4.6548 4.5785 
4.6025 4.4946 
4.5788 4.4312 
4.5815 4.3854 
4.6077 4.3546 
Diverges 4.3368 

4.3302 
4.3335 
4.3454 
4.3650 
4.3915 
Diverges 
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4.2 Results with the 2 x 2 stress elements 

As mentioned in the previous section, we examined two definitions, D 1 and D2, of the vectors v0, h~ 
and h, as shown in Fig. 2. The two definitions yield equivalent streamline upwinding functions at 
the limit of an infinitely refined mesh. With the meshes employed here, however, definition D2 
appears to be superior. The SUPG method diverges even at low We when definition D 1 is used. 
The SU method gives much better estimates for the drag correction when D2 is used, as shown in 
Fig.6. Furthermore, definition D2 gives more stable results than D1 and it is consistent with the 
definition used with the 4 • 4 stress elements. The results obtained with definition D1 and the SU 
method are tainted upstream and downstream by wiggles of a wavelength equal to the element 
size which grow as the We increases. (Oscillations are unavoidable with the 2 x 2 as well as with 
the biquadratic stress elements but they appear at relatively higher values of We when the Galerkin 
method or the other methods with definition D2 are used.) All the following calculations involving 
2 x 2 stress elements have been performed using definition D2. 

6.0 

5.6 

5.2 

4.8 

O 
4.4'  o 

4.0 i I i I 
0 0 2  0.4 0.6 0,8 

W e - - ~ , .  

D2 

O 
O 

'0 1. 1.2 

Fig. 6. Calculated values of K with the 2 • 2 stress elements and 
mesh I; DI: definition of vectors Vo, h e and h, over the sub- 
elements; D2: definition of the vectors over the quadrilaterals 
resulting from the 4 x 4 partition of the element; O: values of 
Crochet and Legat (1992) with the SUPG method and mesh III 

Table 3. Calculated values of K with 2 • 2 stress elements. The values in parentheses correspond to unacceptable finite-element 
solution (u,,i, < -8 )  

We Galerkin SUPG SU 

Mesh I Mesh II Mesh I Mesh II Mesh I Mesh II 

0.0 5.9461 5.9473 5.9463 5.9473 5.9461 5.9473 
0.1 5.8606 5.8619 5.8604 5.8618 5.8487 5.8560 
0.2 5.6571 5.6595 5.6562 5.6593 5.6419 5.6517 
0.3 5.4146 5.4193 5.4129 5.4190 5.4045 5.4138 
0.4 5.1788 5.1865 5.1763 5.1862 5.1809 5.1866 
0.5 4.9695 (4.9808) 4.9660 4.9788 4.9894 4.9878 
0.6 Diverges Diverges 4.7883 (4.8013) 4.8354 4.8216 
0.7 Diverges Diverges 4.7196 4.6864 
0.8 4.6412 4.5789 
0.9 4.5984 (4.4953) 
1.0 4.5874 (4.4323) 
1.1 4.6026 (4.3869) 
1.2 Diverges (4.3568) 
1.3 (4.3401) 
1.4 (4.3354) 
1.5 (4.3418) 
1.6 (4.3588) 
1.7 (4.3872) 
1.8 (4.4285) 
1.9 (4.4813) 
2.0 (4.5421) 
2.1 Diverges 
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Another issue is the numerical integration of the constitutive equation. A 3 x 3 Gauss-Legendre 
quadrature is exact with the Galerkin method, and adequate with the SU method when applied 
over the quadrilaterals resulting from the 4 • 4 partition of the elements. A difficulty arises with 
the SUPG method. A Gauss-Legendre quadrature appears to be inappropriate because of the 
presence of the non-polynomial term: 

~(u~ + u~)'/2T.v.VzI. 
2 v . v  

The above term becomes singular in regions where the velocity goes to zero (i.e., at the surface of 
the sphere). Notice that the same singularity occurs with the 4 x 4 elements as well, and becomes 
weaker as the mesh is refined. It vanishes at the limit of an infinitely refined mesh, because the 
velocity term in the denominator is cancelled by the velocity v o used to define ur and u',. It is 
worthwhile to mention that the singularity effect is more severe with definition D1 for the vectors 
Vo, he and h, than with definition D2 and this provides an explanation for the divergence of the 
SUPG method with D1. We decided to use a 3 x 3 integration over the quadrilaterals expecting 
to improve the accuracy by refining the mesh rather than by increasing the order of integration 
or by changing the integration rule. 

The calculated values of the stress correction factor are listed in Table 3. They confirm earlier 
results obtained with biquadratic stress elements used before the development of the 4 x 4 element. 
The Galerkin and the SUPG methods fail at low values of We while the situation does not improve 
with mesh refinement. The SU method converges at much higher values of We than the Galerkin 
and the SUPG methods and its range of convergence increases considerably with mesh refinement. 
Nevertheless, the finite element solution becomes oscillatory and eventually unacceptable above 
a critical value of the We, signaling the loss of convergence and the need for further mesh refinement 
(most necessary in the neighborhood of the sphere). As with the biquadratic stress elements 
(Marchal et al. 1984), the oscillations originate in the small element at the rear stagnation point, 

where the tensor (T  + ~ I )  loses its positive definiteness and one detects negative values for the 

axial velocity component. We consider the finite element solution acceptable if the minimum value 
of u is not greater in magnitude than the tolerance ~ = 10 -4 used in our calculations. 

4.3 Simultaneous use of 4 x 4 and 2 x 2 bilinear stress elements 

In the preceding subsections, we have seen that the low-cost 2 x 2 stress elements are unstable 
allowing oscillations to develop around the sphere surface. On the other hand, the highly stable 

Table 4. Calculated values of K with 
the Galerkin method; mesh I 

Table 5. Calculated values of K with 
the SUPG method; mesh I 

Table 6. Calculated values of K with 
the SU method; mesh I 

0.0 5.9490 5 . 9 4 6 4  5.9461 0.0 5.9490 5 . 9 4 6 5  5.9463 0.0 5.9490 5 . 9 4 6 4  5.9461 
0.1 5.8639 5 . 8 6 1 5  5.8606 0.1 5.8638 5 . 8 6 1 2  5.8604 0.1 5.8527 5 . 8 4 9 5  5.8487 
0.2 5.6625 5 . 6 5 9 9  5.6571 0.2 5.6624 5 . 6 5 8 9  5.6562 0.2 5.6484 5 . 6 4 4 3  5.6419 
0.3 5.4236 5 . 4 2 0 3  5.4146 0.3 5.4235 5 . 4 1 8 7  5.4129 0.3 5.4145 5 . 4 0 9 4  5.4045 
0.4 5.1923 5 . 1 8 8 1  5.1788 0.4 5.1920 5 . 1 8 6 3  5.1763 0.4 5.1947 5 . 1 8 8 8  5.1809 
0.5 4.9871 4 . 9 8 2 2  4.9695 0.5 4 .9867 4 . 9 8 0 7  4.9660 0.5 5 .0066 5 . 0 0 0 3  4.9894 
0.6 4 .8130 4 . 8 0 8 4  Diverges 0.6 4 .8125 4 . 8 0 7 0  4.7883 0.6 4.8546 4 . 8 4 8 6  4.8354 
0.7 4 .6699 Diverges 0.7 4 .6697 4 . 6 6 4 6  Diverges 0.7 4.7381 4 . 7 3 3 1  4.7196 
0.8 Diverges 0.8 4 .5593 Diverges 0.8 4.6548 4 . 6 5 1 5  4.6412 

0.9 Diverges 0.9 4.6025 4 . 6 0 1 5  4.5984 
1.0 1.0 4.5788 Diverges 4.5874 

1.1 4.5815 4.6026 
1.2 4.6077 Diverges 
1.3 Diverges 

We F u l l 4 •  N l = l  N t = 0  We F u l l 4 x 4  N , = I  N , = 0  We F u l l 4 x 4  N l = l  N~=0 
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4 • 4 stress elements are costly. We now proceed to the simultaneous use of these elements in an 
attempt to obtain accurate results with a lower computational cost. Let us first examine the effect 
of using both types of elements on the coarse mesh I, shown in Fig. 4. We limit ourselves to N~ = 1, 
i.e., only the first layer of quadrilateral elements near the sphere is made of 4 • 4 elements. The 
calculated values of K with all methods for mesh I and Ng = 1 are listed in Tables 4-6. Some 
differences from the full 4 x 4-element values are observed. They grow as the We increases, and 
they are expected to diminish when the mesh is refined (or when N~ is increased). With N t = 1, the 
maximum relative difference from the 4 • 4-element predictions is less than 0.05%, whereas the 
total number of unknowns has been reduced by approximately 58%. The computational cost 
(which is roughly proportional to the number of degrees of freedom times the square of the 
frontwidth) is reduced by 80%. With the full 2 • 2-element case (N~ = 0), the maximum relative 
difference is bigger than 0.5%, whereas the total number of unknowns and the computational cost 
are reduced by 64%00 and 86%, respectively. We should notice that the predictions with the 
2 x 2 elements are quite satisfactory at low values of the We. Their main limitation, however, is 
that they become unstable at moderate values of We. 

The advantage of the simultaneous use of 4 x 4 and 2 x 2 stress elements can be better seen 
with the use of a finer mesh. In Table 7 we summarized the results with Galerkin method for mesh 
II and different values of N~. We have observed that the method diverges at low values of We if 
Nt is small, as does the full 2 x 2-element method. When N~ = 4, the maximum difference of the 
calculated drag correction factors from the full 4 x 4-element values is less then 0.02% whereas 
the total number of unknowns has been decreased by about 51%. For N~ = 4, the thickness of the 
4 x 4-element ring is approximately 0.2R as is approximately the thickness of the stress boundary 
layer. (The reader is referred to the paper of Crochet and Legat (1992) who provide graphs of the 
stresses along the equatorial plane for We = 0.7.) The values of K for mesh II and N~ = 4 computed 
with the SUPG and SU methods are compared with the corresponding full 4 x 4-element and full 
2 x 2-element values in Tables 8 and 9 respectively. A bigger N l should be used at higher We for 
the SUPG method to converge. The SU method converges at higher We when a full 2 x 2-element 
mesh is used (N~ = 0) but the solution is polluted by oscillations for We > 0.8. 

Table 7. Calculated values of K with 
the Galerkin method and mesh II. The 
values in parentheses correspond to 
unacceptable finite-element solution 
(Umm "< --~3) 

We Full 4 x 4 N! = 4 Nt = 0 

0.0 5.9476 5.9473 
0.1 5 .8622 5.8620 
0.2 5.6598 5.6596 
0.3 5.4198 5.4195 
0.4 5.1873 5.1870 
0.5 4 .9803 4.980l 
0.6 4 .8034 4.8032 
0.7 4.6553 4.6551 
0.8 4 .5332 4.5318 
0.9 4 .4346 Diverges 
1.0 Diverges 

5.9473 
5.8619 
5.6595 
5.4193 
5.1865 

(4.9808) 
Diverges 

Table 8. Calculated values of K with 
the SUPG method and mesh I1. The 
values in parentheses correspond to 
unacceptable finite-element solution 
(Umi n < --E) 

We F u l l 4 x 4  N , = 4  N~=0 

0.0 5.9476 5.9473 
0.1 5 .8620 5.8619 
0.2 5 .6598 5.6594 
0.3 5.4197 5.4193 
0.4 5 .1872 5.1866 
0.5 4 .9801 4.9796 
0.6 4.8031 4.8026 
0.7 4 .6548 4.6544 
0.8 4 .5320  4.5318 
0.9 4 .4314 (4.4316) 
1.0 4 .3502 Diverges 
1.1 4.2862 
1.2 Diverges 

5.9473 
5.8618 
5.6593 
5.4190 
5.1862 
4.9788 

(4.8013) 
Diverges 

Table 9. Calculated values of K with 
the SU method and mesh II. The 
values in parentheses correspond to 
unacceptable finite-element solution 
(Umi n "~ - -  ,~) 

We F u l l 4 x 4  N t = 4  N~=O 

0.0 5.9476 5.9473 5.9473 
0.1 5.8565 5.8561 5.8560 
0.2 5.6523 5 . 6 5 1 9  5.6517 
0.3 5 .4144 5 . 4 1 4 0  5.4138 
0.4 5.1873 5.1868 5.1866 
0.5 4 .9884 4 . 9 8 8 0  4.9878 
0.6 4.8219 4 . 8 2 1 8  4.8216 
0.7 4 .6864 4 . 6 8 6 6  4.6864 
0.8 4.5785 4 . 5 7 9 1  4.5789 
0.9 4 .4946 4 . 4 9 5 5  (4.4953) 
1.0 4 .4312 4 . 4 3 2 4  (4.4323) 
1.1 4 .3854 4 . 3 8 6 8  (4.3869) 
1.2 4 .3546 4 . 3 5 6 1  (4.3568) 
1.3 4.3368 4 . 3 3 8 4  (4.3401) 
1.4 4 .3302 4 . 3 3 1 9  (4.3354) 
1.5 4.3335 4 . 3 3 5 1  (4.3418) 
1.6 4 .3454 4 . 3 4 7 0  (4.3588) 
1.7 4 .3650 4 . 3 6 6 4  (4.3872) 
1.8 4 .3915 4 . 3 9 2 8  (4.4285) 
1.9 Diverges Diverges (4.4813) 
2.0 (4.5421) 
2.1 Diverges 
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The major advantage of the method can be clearly seen in Tables 8 and 9. The 2 x 2 elements 
show a rather poor performance. At the very moderate  cost of including 4 layers of 4 x 4 elements, 
we are able to extend the range of convergence in terms of the We, while the accuracy is very similar 
to that of the full-4 x 4-element method. We see in Table 8 that, with the S U P G  method at 
We = 0.8, we obtain K = 4.5320 with full 4 x 4-element coverage and K = 4.5318 with Nz = 4. The 
results are even more striking with the SU method. With N t = 4, the method has the same range 
of convergence in terms of the We as the full 4 x 4-element method while the values of K show a 
relative difference of 3 x 10-* at We = 1.8. 

5 Numerical results: (Rc]R) = 2.5 and 5 

Having gained enough confidence in the simultaneous use of 2 x 2 and 4 x 4 stress elements, we 
now consider other geometrical ratios, i.e. (Rc/R) --- 2.5 and 5. The new meshes were constructed 
to be similar to mesh II in the vicinity of the sphere (Fig. 7). What  we will do in the present section 
is to start the calculations with N t = 0 and then continue with Nt = 4. The results for K with the 
accurate SUPG method are shown in Table 10. It is obvious that the numerical problem is less 
severe in the present cases compared to the (Rc/R) = 2 case. 

The calculated drag correction factors with the S U P G  method are shown in Fig. 8a. In 
agreement with Hassager and Bisgaard (1983); Carew and Townsend (1988), K decreases less 
rapidly with the We as the ratio (Rc/R) increases. It is worth noting that as (Rc/R) increases the 
stress boundary  layers weaken and the use of 4 x 4 elements becomes less necessary, for the 
moderate  Weissenberg numbers examined here (see Table ~0). The calculated values of K for 
(Rc/R) = 5, for example, are practically the same (up to the first four digits) as those obtained with 
a full 2 x 2-element mesh. The use of 4 layers of 4 • 4 elements, however, confirms the accuracy 
of the results. 

Figure 8b shows an enlarged view of the graph for (Rc/R) = 5. We observe that K reaches a 
minimum between We = 1.0 and 1.1. This minimum appears for N~ = 0 as well as for N t = 4. 

In Fig. 9, we have plotted the wall correction factors obtained from Table 10 for We = 0 and 
1 along with Faxen's curve for a Newtonian fluid. For  We = 0, our results agree with the 
predictions of Faxen's formula. The wall effect for the viscoelastic fluid is similar to that for the 
Newtonian fluid for low values of R/R o in agreement with experiments (Chmielewski et al. 1990; 
Tir taatmadja et al. 1990). 

Table 10. Calculated values of K with the SUPG method and different diameter ratios. The values in parentheses correspond 
to unacceptable finite-element solution (Umi. < --~) 

We 2:1 2.5:1 5:1 

Nl=4 N 1=0 N 1=4 N l=O N t=4 Nt =0 

0.0 5.9473 5.9473 3.5914 3.5913 1.6795 1.6795 
0.t 5.8619 5.8618 5.5697 3.5696 1.6780 1.6780 
0.2 5.6594 5.6593 3.5133 3.5133 1.6738 1.6738 
0.3 5.4193 5.4190 3.4391 3.4390 1.6677 1.6677 
0.4 5.1866 5.1862 3.3606 3.3605 1.6605 1.6605 
0.5 4.9796 4.9788 3.2861 3.2860 1.6530 1.6530 
0.6 4.8026 (4.8013) 3.2196 3.2195 1.6460 1.6460 
0.7 4.6544 Diverges 3.1625 3.1622 1.6400 1.6400 
0.8 4.5318 3.1147 3.1143 1.6354 1.6354 
0.9 (4.4316) 3.0756 Diverges 1.6323 1.6323 
1.0 Diverges 3.0445 1.6309 1.6308 
1.1 3.0204 1.6311 1.6310 
1.2 3.0026 1.6329 1.6328 
1.3 2.9904 1.6362 1.6361 
1.4 2.9832 1.6409 1.6408 
1.5 2.9808 1.6469 1.6468 
1.6 Diverges 1.6541 1.6540 
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Fig. 7. Central portions of the finite element meshes for (Rc/R) = 2.5 
and 5 
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Fig. 8. a Drag correction factors 
for various values of the ratio R c / R  
obtained with the SUPG method 
and N, = 4; b Enlarged view of the 
graph for Rc /R  = 5 
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6 Conclusions 

A finite element technique based on the simultaneous use of 4 x 4 and 2 • 2 bilinear stress elements 
has been proposed for the solution of viscoelastic flow problems. The method has been applied to 
the creeping motion of a Maxwell fluid past a sphere falling along the axis of a cylindrical tube 
using the Galerkin, the SUPG and the SU formulations. It has been found that a thin layer of 
4 • 4 elements around the surface of the sphere is adequate to assure the accuracy and the stability 
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of the solution whereas the total number of unknowns is dramatically reduced. The effect of the 
sphere/cylinder diameter ratio has also been examined. 
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