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a b s t r a c t

We consider both the axisymmetric and planar steady-state Poiseuille flows of weakly compressible
Newtonian fluids, under the assumption that both the density and the shear viscosity vary linearly with
pressure. The primary flow variables, i.e. the two non-zero velocity components and the pressure, as well
as the mass density and viscosity of the fluid are represented as double asymptotic expansions in which
the isothermal compressibility and the viscosity–pressure-dependence coefficient are taken as small
parameters. A standard perturbation analysis is performed and asymptotic, analytical solutions for all the
variables are obtained up to second order. These results extend the solutions of the weakly compressible
flow with constant viscosity and those of the incompressible flow with pressure-dependent viscosity.
The combined effects of compressibility and the pressure dependence of the viscosity are analyzed and
discussed.

© 2014 Elsevier Masson SAS. All rights reserved.
1. Introduction

In most isothermal flows of Newtonian liquids, the density and
the viscosity are commonly assumed to be constant. Such an as-
sumption, however, is valid only at low processing pressures and
may introduce significant error when modeling flows involving
high pressures or a large pressure range, such as polymer process-
ing, crude oil and fuel oil pumping, fluid film lubrication, microflu-
idics, and in certain geophysical flows [1–4].

Waxy crude oil transport [5], polymer extrusion [6,7], and poly-
mer injection molding [8] are important cases of liquid flows in
long tubes where compressibility effects cannot be neglected. An
exponential equation of state, relating themass density of the fluid,
ρ∗, to the total pressure, p∗, is very often used for compressible
liquids [5,9]. For weakly compressible liquids, the following linear
equation of state is a good approximation to the exponential equa-
tion of state:
ρ∗

= ρ∗

0


1 + ε∗(p∗

− p∗

0)


(1)
where ε∗ is the isothermal compressibility, assumed to be con-
stant, and ρ∗

0 is the mass density of the fluid at the reference
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pressure p∗

0 . It should be noted that a superscript star throughout
the text indicates a dimensional quantity.

Various numerical solutions for weakly compressible Poiseuille
flows for Newtonian [10] as well as non-Newtonian fluids, such
as the Carreau fluid [6], the Bingham plastic [5], and certain vis-
coelastic fluids [11] are available in the literature. Venerus and co-
worker [12,13] derived analytical perturbation solutions in terms
of the compressibility for the axisymmetric and the plane isother-
mal Poiseuille flow of a weakly, compressible Newtonian liquid
respectively, using the steamfunction/vorticity formulation and
employing Eq. (1). Taliadorou et al. [14] obtained equivalent solu-
tions using a methodology in which the perturbation is performed
on the primary flow variables, i.e. on the velocity components and
the pressure. Housiadas and collaborators [9,15,16] extended the
primary-variable perturbation method to derive solutions of the
plane and axisymmetric Poiseuille flows of a weakly compressible
viscoelastic Oldroyd-B fluid.

Flows of fluids with pressure-dependent viscosity have re-
ceived an increasing attention recently. The viscosity of typical liq-
uids begins to increase substantially with pressurewhen pressures
of the order of 1000 atm are reached [17]. In fact, under certain
conditions, e.g. in elastohydrodynamics, the dependence of the vis-
cosity on pressure may be several orders of magnitude stronger
than that of density [3,17,18]. Málek and Rajagopal [19] reviewed
different equations proposed in the literature in order to describe
experimental observations on the pressure-dependence of the
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viscosity. The pressure-dependence of the viscosity in Poiseuille
and other flows has been analyzed mathematically by various in-
vestigators [17,19–21]. Renardy [17] employed the following linear
expression for the viscosity, η∗:

η∗
= η∗

0


1 + δ∗(p∗

− p∗

0)


(2)
where δ∗ is the viscosity–pressure-dependence material constant
and η∗

0 is the viscosity at the reference pressure p∗

0 . Recently, Kalo-
girou et al. [22] compiled analytical solutions for unidirectional
plane, round, and annular Poiseuille flows of a Newtonian liquid
assuming that the viscosity obeys Eq. (2).

In the present work, we consider the steady, isothermal New-
tonian Poiseuille flows in a straight channel or slit and in a circu-
lar tube, for which both the mass density and the viscosity of the
fluid depend weakly on pressure, obeying Eqs. (1) and (2), respec-
tively. To our knowledge, studies taking into account both the com-
pressibility and the viscosity–pressure-dependence are very scarce
in the literature. Since exact analytical solutions are not possible,
the objective is to obtain approximate analytical solutions for these
flows by means of perturbation methods.

The rest of the paper is organized as follows. In Section 2, the
governing equations and the boundary conditions are presented. In
Section 3, themain steps of the perturbationmethod are discussed.
All flow variables are expressed as double asymptotic expansions
in terms of the dimensionless isothermal compressibility and the
viscosity–pressure coefficient, which serve as small perturbation
parameters. Perturbation solutions are then derived up to second
order. The resulting analytical solutions are discussed in Section 4.
It is shown in particular that at least up to second order the
viscosity–pressure-dependence tends to reduce the velocity in the
flow direction and to counterbalance compressibility effects on the
pressure. Finally, in Section 5, concluding remarks are provided.

2. Problem and formulation

We consider the steady, weakly compressible isothermal flow
of a Newtonian fluid with pressure-dependent viscosity, under
zero gravity. The continuity and momentum equations can be
written as follows:
∇

∗
· (ρ∗u∗) = 0 (3)

ρ∗u∗
· ∇

∗u∗
= −∇

∗p∗
+ ∇

∗
· τ∗ (4)

where u∗ is the velocity vector and τ∗ is the viscous extra-stress
tensor, given by

τ∗
= η∗(p∗)


∇

∗u∗
+ (∇∗u∗)T −

2
3
I(∇∗

· u∗)


. (5)

In Eq. (5), ∇∗u∗ is the velocity-gradient tensor, the superscript T
denotes the transpose, and I is the unit tensor. Substituting Eq.
(5) into Eq. (4) leads to the following generalized Navier–Stokes
equation:

ρ∗u∗
· ∇

∗u∗
= −∇

∗p∗
+ η∗

∇
∗2u∗

+
∂η∗

∂p∗

×


∇

∗p∗
·

∇

∗u∗
+ (∇∗u∗)T


−

2
3
(∇∗

· u∗)∇∗p∗


+

η∗

3
∇

∗(∇∗
· u∗). (6)

Two flow geometrical configurations are studied; the first is the
axisymmetric Poiseuille flow in a circular tube of constant radius
R∗ and length L∗ in cylindrical coordinates (r∗, z∗), and the second
is the planar Poiseuille flow in a straight channel (or slit) of width
2H∗ and length L∗ in Cartesian coordinates (x∗, y∗) centered at the
midplane. In the following, we present the axisymmetric case in
more detail and provide the most important results for the planar
case.
2.1. Axisymmetric flow

For the flow in a circular tube, the governing equations are
rendered dimensionless scaling r∗ by R∗, z∗ by L∗, u∗

z by U∗, u∗
r

by U∗R∗/L∗, and p∗
− p∗

0 by 8η∗

0L
∗U∗/R∗2, where U∗ is the mean

velocity at the tube exit. The mass density and the viscosity are
scaled by ρ∗

0 and η∗

0 , respectively. Thus, the two components of the
momentum equation (6), the continuity equation (3), the equation
of state (1), and the equation for the shear viscosity (2) become:

αReρ

ur

∂uz

∂r
+ uz

∂uz

∂z


= −8

∂p
∂z

+
η

3


3
r

∂

∂r


r
∂uz

∂r


+ 4α2 ∂2uz

∂z2
+ α2 ∂

∂z


1
r

∂

∂r
(rur)


+

2α2

3
∂η

∂z


2
∂uz

∂z
−

1
r

∂

∂r
(rur)


+

∂η

∂r


∂uz

∂r
+ α2 ∂ur

∂z


(7)

α3Re ρ


ur

∂ur

∂r
+ uz

∂ur

∂z


= −8

∂p
∂r

+ α2η


4
3

∂

∂r


1
r

∂

∂r
(rur)


+

1
3

∂2uz

∂r∂z
+ α2 ∂2ur

∂z2


+ 2α2 ∂η

∂r


∂ur

∂r
−

1
3r

∂

∂r
(rur) −

1
3

∂uz

∂z


+ α2 ∂η

∂z


α2 ∂ur

∂z
+

∂uz

∂r


(8)

∂(ρrur)

∂r
+

∂(ρruz)

∂z
= 0 (9)

ρ = 1 + εp (10)
η = 1 + δp (11)

where the Reynolds number, Re, the aspect ratio of the tube, α,
the dimensionless compressibility number, ε, and the viscosity
pressure-dependence number, δ, are respectively defined by:

Re ≡
ρ∗

0U
∗R∗

η∗

0
, α ≡

R∗

L∗
,

ε ≡
8ε∗η∗

0L
∗U∗

R∗2
, δ ≡

8δ∗η∗

0L
∗U∗

R∗2
.

(12)

The systemof equations (7)–(11) closeswith appropriate boundary
conditions. Along the axis of symmetry, symmetry conditions are
applied:

∂uz

∂r
(0, z) = ur(0, z) = 0, 0 ≤ z ≤ 1. (13)

Also, no-slip and no-penetration are imposed along the tube wall:

ur(1, z) = uz(1, z) = 0, 0 ≤ z ≤ 1. (14)

Moreover, the pressure datum is set at the tube exit,

p(1, 1) = 0 (15)

and the dimensionless mass flow rate is unity at any distance
z ∈ [0, 1] from the inlet plane:

2
 1

0
ρuzrdr = 1. (16)

2.2. Planar flow

The governing equations are rendered dimensionless by scaling
x∗ by L∗, y∗ by H∗, u∗

x by U∗, u∗
y by U∗H∗/L∗, and p∗

− p∗

0 by
3η∗

0L
∗U∗/H∗2, where U∗ is the mean velocity (per unit width) at
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the channel exit. The dimensionless equations governing the flow
are:

αReρ

ux

∂ux

∂x
+ uy

∂ux

∂y


= −3

∂p
∂x

+ η


4α2

3
∂2ux

∂x2
+

∂2ux

∂y2
+

α2

3
∂2uy

∂x∂y


+

2α2

3
∂η

∂x


2
∂ux

∂x
−

∂uy

∂y


+

∂η

∂y


∂ux

∂y
+ α2 ∂uy

∂x


(17)

α3Reρ

ux

∂uy

∂x
+ uy

∂uy

∂y


= −3

∂p
∂y

+ α2η


α2 ∂2uy

∂x2
+

4
3

∂2uy

∂y2
+

1
3

∂2ux

∂x∂y


+ α2 ∂η

∂x


α2 ∂uy

∂x
+

∂ux

∂y


+

2α2

3
∂η

∂y


2
∂uy

∂y
−

∂ux

∂x


(18)

∂(ρux)

∂x
+

∂(ρuy)

∂y
= 0. (19)

The equation of state and that of the viscosity are the same as
in the axisymmetric flow (Eqs. (10) and (11)). The definitions of
the dimensionless numbers are analogous to those of Eq. (12)
for the axisymmetric case, with H∗ replacing R∗ and 3 replac-
ing 8. The boundary conditions are also similar to Eqs. (13)–(16):
∂ux/∂y(x, 0) = uy(x, 0) = 0 along the symmetry plane, ux(x, 1) =

uy(x, 1) = 0 along the slit wall, p(1, 1) = 0, and the dimension-
less flow rate (per unit length in the neutral direction) is unity,
i.e.

 1
0 ρuxdy = 1 at any distance x from the inlet plane.

Proving the existence and uniqueness of the solution to the
problem under consideration is an open and substantially difficult
task, which is out of the scope of the present work. The reader is
referred, for example, to the work of Lions [23] and to the papers
by Lanzendörfer [24] and Jesslé et al. [25] for relevant discussions.
However, it should be pointed out that the asymptotic solutions
derived in Section 3 are unique, due to the fact that the governing
equations that result from the perturbation procedure are linear.

3. Perturbation method

Under the assumption that the compressibility number, ε, and
the viscosity–pressure coefficient, δ, are small, the primary flow
variables can be expressed as a double asymptotic expansion in ε
and δ:

X = X (00)
+ εX (10)

+ δX (01)
+ ε2X (20)

+ δ2X (02)
+ εδX (11)

+ h.o.t. (20)

where X is any primary variable, e.g. X ∈ {uz, ur , p, ρ, η} in
the axisymmetric case, the superscript (ij) denotes a variable at
order O(εiδj) and h.o.t . stands for ‘‘higher order terms’’, which
includes terms of O(ε3, δ3, ε2δ, εδ2) and higher. Substituting the
expansions of all primary variables into the governing equations
and collecting terms of the same order, we derive a sequence of
systems of partial differential equations at each order (ij) that is
solved alongwith the boundary conditions at the same order.More
details are given in [26].

There are three possible balances between ε and δ: ε ∼

δ, ε ≪ δ, and ε ≫ δ. We focus on the first case and derive the
perturbation solution up to second order, i.e. for the zero-order and
the orders ε, δ, ε2, δ2, and εδ. Since the derivation of the zero-
order solution is trivial, the solutions at orders ε and ε2 are given
in [14], and the solutions at orders δ and δ2 are Taylor expansions
of the analytical solution provided in [22], the lengthy but straight-
forward derivation of the perturbation solution is briefly discussed
below.
3.1. Axisymmetric flow

The zero-order solution corresponds to the classical incom-
pressible Newtonian Poiseuille flow, i.e.

u(00)
z = 2(1 − r2), u(00)

r = 0,

p(00)
= z̃, ρ(00)

= 1, η(00)
= 1

(21)

where

z̃ ≡ 1 − z ≥ 0. (22)

The deviations from the incompressible parabolic solution, at
orders ε and ε2 have been derived by Taliadorou et al. [14] (also
confirmed in [13] for the weakly compressible flow with constant
viscosity, since at these orders the viscosity–pressure dependence
has no effect on the solution. The deviations are due to fluid inertia
and to geometric effects, represented by the Reynolds number, Re,
and the tube aspect ratio, α, respectively. In the current notation
we have in addition η(10)

= η(20)
= 0.

In order to derive the solution at order δ, we assume that
u(01)
r = u(01)

r (r). From Eqs. (10) and (11) we respectively get
ρ(01)

= 0 and η(10)
= p(00). Then, from the continuity equation

at order δ we find that u(01)
z = F(r), where F is a function to

be determined. Similarly, substituting all expressions into the r-
momentumequation and integratingwith respect to r , we find that
p(01)

= G(z)−α2(1− r2)/4 where G is another unknown function
to be determined. Substituting all the known quantities into the
r- and z-momentum equations, and separating variables we find
three ordinary differential equations for u(01)

r , F and G which are
solved analytically. Finally, applying the boundary conditions we
find that u(01)

r = 0, F = 0 and G = z̃2/2. Therefore the solution at
order δ is:

u(01)
z = 0, u(01)

r = 0, p(01)
=

z̃2

2
−

α2

4
(1 − r2),

ρ(01)
= 0, η(01)

= z̃.
(23)

There are no contributions to the velocity at this order nor any
compressibility effects. We observe, however, that there is a
quadratic correction to the pressure profile, which introduces de-
pendence on the radial coordinate r and increases with α2 (geo-
metric effect).

For the solution of order δ2, we assume that u(02)
r = u(02)

r (r).
From the equation of state we easily deduce that ρ(02)

= 0, and
from Eq. (11) that η(02)

= p(01). Then, substituting all the known
quantities into the continuity, z-momentum, and r-momentum
equations at order δ2, carrying out suitable integrations, using
separation of variables, and applying the boundary conditions, we
eventually find that u(02)

r vanishes. It turns out that the solution at
order δ2 is:

u(02)
z =

α2

24
(1 − r2)(1 − 3r2), u(02)

r = 0,

p(02)
=

z̃3

6
−

α2

12
(2 − 3r2)z̃, ρ(02)

= 0,

η(02)
=

z̃2

2
−

α2

4
(1 − r2).

(24)

To obtain the solution at O(εδ), which represents the coupling be-
tween compressibility and viscosity–pressure-dependence effects,
we first assume thatu(11)

r = u(11)
r (r). For the density and the viscos-

ity we easily find that ρ(11)
= p(01) and η(11)

= p(10). As described
in [26], substituting into the remaining equations at this order and
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following similar steps as above, we find again that the transverse
velocity vanishes and eventually get the following solution:

u(11)
z = −(1 − r2)z̃2 +

α2

36
(1 − r2)(11 + 3r2)

u(11)
r = 0

p(11)
= −

2
3
z̃3 +

αRe
4

z̃2 +
α2

36
(31 − 24r2)z̃

−
α3Re
144

(7 − 9r4 + 2r6)

ρ(11)
=

z̃2

2
−

α2

4
(1 − r2)

η(11)
= −

z̃2

2
+

αRe
4

z̃ +
α2

12
(1 − r2)



. (25)

It is clear that ρ(11) decreasesmonotonically (decompression) with
the axial distance z, while η(11) increases monotonically provided
that α ≪ 1.

Combining all solutions up to second orderwe get the following
perturbation solution:

uz ≈ (1 − r2)


2 + ε


−2z̃ −

αRe
18


2 − 7r2 + 2r4



+
δ2α2

24


1 − 3r2


+ εδ


−z̃2 +

α2

36
(11 + 3r2)



+ ε2


3z̃2 −

αRe
6

(1 + 7r2 − 2r4)z̃ +
α2

72
(1 − 27r2)

+
α2Re2

21600


43 − 957r2 + 2343r4 − 1257r6 + 168r8


(26)

ur ≈ ε2 αRe
36

r

1 − r2

2 
4 − r2


(27)

p ≈ z̃ +
ε

2


−z̃2 +

αRe
2

z̃ +
α2

6
(1 − r2)


+

δ

2


z̃2 −

α2

2
(1 − r2)


+

δ2

6


z̃3 −

α2

2


2 − 3r2


z̃


+
ε2

2


z̃3 − αRe z̃2 +

α2

18


9r2 − 29


z̃

+
2α2Re2

27
z̃ +

α3Re
216

(1 − r2)

19 − 35r2 + 10r4



+ εδ


−

2
3
z̃3 +

αRe
4

z̃2 +
α2

36
(31 − 24r2)z̃

−
α3Re
144

(7 − 9r4 + 2r6)


(28)

ρ ≈ 1 + εz̃ +
ε2

2


−z̃2 +

αRe
2

z̃ +
α2

6
(1 − r2)


+

εδ

2


z̃2 −

α2

2
(1 − r2)


(29)

η ≈ 1 + δz̃ +
δ2

2


z̃2 −

α2

6
(1 − r2)


+

εδ

2


−z̃2 +

α Re
2

z̃ +
α2

6
(1 − r2)


. (30)
3.2. Planar flow

The zero-order solution is the standard Poiseuille flow solution.
The deviations from the latter solution at orders ε and ε2 have
been derived by various researchers [13–15] for the weakly
compressible flowwith constant viscosity. The procedure followed
to derive higher-order solutions is similar to that described in
Section 3.1 for the axisymmetric flow. Combining all solutions up
to second order, one gets:

ux ≈

1 − y2

 
3
2

+
3ε
2


−x̃ +

αRe
140


−5 + 28y2 − 7y4


+

δ2α2

20


1 − 5y2


+

εδ

4


−3x̃2 +

α2

10


23 + 5y2


+

ε2

4


9x̃2 −

9αRe
70


19 + 28y2 − 7y4


x̃

−
α2

2


1 + 3y2


−

3α2Re2

107800

×

2193 − 9163y2 − 6853y4 + 5159y6 − 616y8


(31)

uy ≈ ε2 3αRe
140

y

1 − y2

2 
5 − y2


(32)

p ≈ x̃ +
ε

2


−x̃2 +

36αRe
35

x̃ +
α2

3


1 − y2


+

δ

2


x̃2 − α2 

1 − y2


+
δ2

2


x̃3

3
−

α2

5


3 − 5y2


x̃


+ ε2


x̃3

2
−

36αRe
35

x̃2 −
α2

6


11 − 3y2


x̃ +

3044α2Re2

13475
x̃

+
α3Re
840


1 − y2

 
97 − 140y2 + 35y4



+ εδ


−

2
3
x̃3 +

18αRe
35

x̃2 +
α2

15


27 − 20y2


x̃

−
α3Re
280


1 − y2

 
67 + 28y2 − 7y4


(33)

ρ ≈ 1 + εx̃ +
ε2

2


−x̃2 +

36αRe
35

x̃ +
α2

3
(1 − y2)


+

εδ

2


x̃2 − α2(1 − y2)


(34)

η ≈ 1 + δx̃ +
δ2

2


x̃2 − α2 

1 − y2


+
εδ

2


−x̃2 +

36αR e
35

x̃ +
α2

3


1 − y2


(35)

where x̃ ≡ 1 − x ≥ 0.

4. Discussion

In this section we discuss the perturbation solutions found in
Section 3, alongwith some interesting quantitieswhich are usually
reported for internal, pressure driven flows, i.e. the volumetric
flow rate, Q , the average pressure drop required to drive the
flow ∆p ≡ p̄(0) − p̄(1) (where the overbar means averaging in
the transverse direction), and the average Darcy friction factor, f ,
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defined as follows:

Q ≡


2

 1

0
uz(r, z)rdr, axisymmetric case 1

0
ux(x, y)dy, planar case

(36)

∆p ≡


2

 1

0
[p(r, 0) − p(r, 1)] rdr, axisymmetric case 1

0
[p(0, y) − p(1, y)] dy, planar case

(37)

f̄ ≡


−

8
Re

 1

0
η(1, z)

∂uz

∂r
(1, z) dz, axisymmetric case

−
8
Re

 1

0
η(x, 1)

∂ux

∂y
(x, 1) dx, planar case.

(38)

4.1. Incompressible flow (ε = 0, δ > 0)

First, it is interesting to consider the incompressible case, i.e.
when ε = 0, for which the relation between the shear viscosity
and the pressure is given by Eq. (11).

Incompressible axisymmetric flow
For the axisymmetric case the (dimensionless) analytical solu-

tion is given by:

uz =
64

Aα2δ2
ln


I0(Aδa/8)
I0(Aδa r/8)


, ur = 0,

p =
1
δ


I0(Aδa r/8)
I0(Aδa/8)

eAδz̃/8
− 1


, η =

I0(Aδar/8)
I0(Aδa/8)

eAδz̃/8
(39)

where I0 is the modified Bessel function of zero order. The above
solution coincides with that derived by Kalogirou et al. [22] who
considered the flow domain −1 ≤ z ≤ 0 and imposed a zero da-
tum pressure at the center of the tube exit; as a result, the expres-
sion of the pressure (and the viscosity) is slightly different. In Eq.
(39), A is a constant that can be found by demanding that the di-
mensionless mean velocity is unity. It turns out that A is a root of
the following equation

2
 1

0
ln [I0(Aδa r/8)] rdr − ln [I0(Aδa/8 )] +

Aδ2α2

64
= 0. (40)

Results for A as a function of δa have been presented in [22]. In par-
ticular, it has been shown that A is an increasing function of δa. For
the average pressure gradient we find

∆p =
16(eAδ/8

− 1)I1(Aαδ/8)
Aαδ2I0(Aδa/8)

(41)

where I1 is the modified Bessel function of first order. It is deduced
from Eq. (41) that for αδ < 1, ∆p increases with αδ. Given that the
flow is incompressible f̄ = 32∆p/Re.

Next, we proceedwith the derivation of asymptotic expressions
for the solution (39). Indeed, when δ ≪ 1 we can assume that
X = X (0)+δX (1)+δ2X (2)+· · ·, whereX ∈ {uz, p, η, A}. Substituting
in Eqs. (39) and (40) and collecting terms of the same order, we get
asymptotic expressions for all variables. These expressions up to
O(δ4) are:

uz ≈ (1 − r2)

2 +

δ2α2

24
(1 − 3r2) +

δ4α4

288
(1 − r2)(1 − 4r2)


(42)
p ≈ z̃ +
δ

2


z̃2 −

α2

2
(1 − r2)


+

δ2

6


z̃3 −

α2

2
(2 − 3r2)z̃


+

δ3

24


z̃4 − α2(1 − 3r2)z̃2 +

α4

8
(1 − r2)(1 − 3r2)


+

δ4

24


z̃5

5
+ α2r2z̃3 −

α4

8
(1 − 3r4)z̃


(43)

A ≈ 8 +
2δ2α2

3
+

δ4α4

12
. (44)

The expression for the viscosity η can be found up to O(δ5) using
Eqs. (11) and (43). It is easily verified that when ε = 0 Eqs. (42)
and (43) agree with Eqs. (26) and (28) up to O(δ2).

The asymptotic expression for ∆p up to O(δ4) is:

∆p ≈ 1 +
δ

2
+ δ2


1
6

−
α2

24


+ δ3


1
24

+
α2

48


+ δ4


1

120
+

α2

48


. (45)

It is clear that for typical values of the aspect ratio α, ∆p is an
increasing function of δ.
Incompressible planar flow

The solution for the incompressible planar flow is [22]:

ux =
9

Aα2δ2
ln


cosh(Aδa/3)
cosh(Aδa y/3)


, uy = 0,

p =
1
δ


cosh(Aδa y/3)
cosh(Aδa/3 )

eAδx̃/3
− 1


,

η =
cosh(Aδa y/3)
cosh(Aδa/3)

eAδx̃/3

(46)

where A is the root of 1

0
ln [cosh(Aδa y/3 )] dy − ln [cosh(Aδa/3 )] +

Aδ2α2

9
= 0. (47)

The above solution is the same as that of Kalogirou et al. [22], if the
differences in the definitions of the axial coordinate and the datum
pressure are taken into account.

The average pressure drop is given by:

∆p =
3(eAδ/3

− 1)
Aδ2a

tanh(Aδa/3). (48)

In the case of incompressible planar flow, f̄ = 24∆p/Re.
The corresponding expansions of the solution and all quantities

of interest up to O(δ4) are:

ux ≈
1
2
(1 − y2)


3 +

δ2α2

10
(1 − 5y2)

+
δ4α4

1050
(23 − 175y2 + 140y4)


(49)

p ≈ x̃ +
δ

2


x̃2 − α2(1 − y2)


+

δ2

2


x̃3

3
−

α2

5


3 − 5y2


x̃


+
δ3

120


5x̃4 − 6α2(1 − 5y2)x̃2 + α4 

1 + 6y2 + 5y4


+
δ4

4200


35x̃5 + α2(1 + 10y2)x̃3

+ α4 
−121 + 210y2 + 175y4


x̃


(50)

A ≈ 3

1 +

δ2α2

5
+

11δ4α4

175


(51)
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c

Fig. 1. Incompressible case (ε = 0): (a) Comparison between the numerical
solution and the perturbation solutions up to O(δ2) and O(δ4) for the A parameter,
(b) the absolute error in ux between the analytical solution and the perturbation
solution up to O(δ2) and O(δ4) for α δ = 0.4, (c) the absolute error in ux between
the analytical solution and the perturbation solution up to O(δ2) and O(δ4) for
α δ = 0.7.

∆p ≈ 1 +
δ

2
+ δ2


1
6

−
2α2

15


+ δ3


1
24

+
α2

30


+ δ4


1

120
+

2α2

45
−

2α4

525


. (52)

Let us compare the exact solution in Eq. (46) with the pertur-
bation solution in Eq. (49), for various values of the dimensionless
viscosity pressure-dependence number δ. The variation of the pa-
rameter A with αδ is illustrated in Fig. 1(a), where the exact solu-
tion is plotted along with the perturbation solutions up to O(α2δ2)
and O(α4δ4). It should be noted that in general α ≪ 1 and δ < 1,
which implies that αδ ≪ 1. It is seen that the second-order ac-
curate solution is a very good approximation to the numerical
solution up to αδ ≈ 0.4, while the agreement for the fourth or-
der accurate solution is excellent up to αδ ≈ 0.7. The absolute
errors in the axial velocity profile for αδ = 0.4 and 0.7 are plot-
ted in Fig. 1(b) and (c), respectively. It is clear that the perturbation
solution approximates the exact solution very well; as expected,
the fourth-order accurate solution is muchmore accurate than the
second-order solution. Therefore, there is strong indication that
the asymptotic solutions found in the present paper are very good
approximations of the full solution.

4.2. Compressible flow (ε, δ > 0)

In this subsection we consider the general case in which both ε
and δ are nonzero.
Compressible axisymmetric flow

The perturbation solutions in Eqs. (26)–(28) reveal some inter-
esting features of the steady compressible Newtonian Poiseuille
flow with pressure-dependent viscosity. The radial velocity ur ,
which is zero by assumption at first order in ε, is always positive
at second order, depends only on r (and not on z), varies linearly
withα and Re, and is independent of δ at second order. On the other
hand, the solutions u(10)

z and u(20)
z of the velocity component in the

flow direction depend on both z and r . These may be positive or
negative depending on the values of α, Re, z and r . Also, u(01)

z is
zero so the pressure-dependence of the viscosity does not affect
the velocity at this order; u(02)

z depends only on r , changes sign in
the flow domain, and is proportional to α2. Finally, u(11)

z can be ei-
ther positive or negative depending on the values of α and r .

In the limit α → 0 (infinitely long tube), the axial velocity is
simplified to

uz ≈ (1 − r2)

2 − 2εz̃ − εδz̃2 + 3ε2z̃2


. (53)

We observe that u(02)
z vanishes, u(10)

z ≤ 0, and u(20)
z ≥ 0 ev-

erywhere in the tube. All components are independent of iner-
tia effects. Also, u(11)

z is everywhere negative, i.e. the combination
of compressibility and viscosity pressure-dependence reduces the
velocity in the flow direction. It should be noted that here, and in
all subsequent discussions, whenwe consider the limit α → 0, the
Reynolds number is assumed to be sufficiently small. More specif-
ically, in order for the assumptions of the asymptotic expansions
to be satisfied, the coefficients in all orders should be of order 1.
Given that long tubes are of interest, α is small, and therefore the
terms involving only α do not impose a threat to the validity of
asymptotic expansions (26)–(28). Therefore, considering the terms
that involve also the Reynolds number Re, we derived various con-
straints on Re, and upon choosing themost stringent one, we found
that, approximately, Re < 1/α, that is, the longer the tube the
larger the value of Re allowed.

For the volumetric flow rate we get

Q (z) ≈ 1 − εz̃ +
ε2

2


3z̃2 −

αRe
2

z̃ −
α2

9


+

εδ

2


−z̃2 +

α2

3


. (54)

The above equation shows that the major correction to the
volumetric flow rate is due to the compressibility of the fluid, and is
negative (naturally, the volumetric flow rate is reduced upstream
due tomass conservation). The combination of compressibility and
pressure-dependent viscosity reduces further the volumetric flow
rate.

In Fig. 2, we show the contours of uz for δ = 0.01, α =

0.1, Re = 0, and various values of ε. The value of α was in-
tentionally chosen to be high (short tube), in order to facilitate
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Fig. 2. Contours of uz for δ = 0.01, α = 0.1, Re = 0: (top) ε = 0.01; (middle)
ε = 0.1; (bottom) ε = 0.2.

the visualization of compressibility effects. The contour lines are
obviously horizontal for low values of ε, since the dependence on z
is weak. At higher values of ε, this dependence increases; the fluid
accelerates downstream, and thus the contour lines tend to bend
towards the axis of symmetry. The larger deviation here is that of
u(10)
z which increases linearly with z, and this causes a more pro-

nounced bending of the contours close to the symmetry axis. In
Fig. 3, the contours of uz for the higher value δ = 0.1 are shown.
Again compressibility has a more pronounced effect on the veloc-
ity. The viscosity–pressure-dependence only contributes slightly
to the acceleration of the fluid downstream.

The pressure at zero order, p(00), is independent of r , being
simply the standard linear distribution of steady, incompressible,
Poiseuille flow with constant viscosity. Both the compressibility
and the pressure dependence of viscosity introduce dependence
on r . For very long channels (α → 0), we observe that p(10)

≈

−z̃2/2, i.e. p(10) is negative for almost all values of z. Therefore,
compressibility causes an order-ε reduction to the pressure.

At order δ, p(01) varies quadratically with both z and r and
the r-dependence becomes stronger as α increases. When α →

0, p(01)
≈ z̃2/2. The effects of the pressure-dependence of viscosity

and of compressibility competewith each other. At first order, p(01)

and p(10) cancel each other outwhen ε ∼ δ. Similarly, at the second
order and for long tubes, we find that the contributions of p(20)

and p(02) are canceled by p(11). The competition of compressibility
and viscosity pressure-dependence effects is also present when α
is finite. It also appears at the second order for uz, ρ, and η.

The mean pressure drop for the axisymmetric case is:

∆p ≈ 1 +
δ

2
+ δ2


1
6

−
α2

24


+ ε


−

1
2

+
αRe
4


+

ε2

2


1 −

49α2

36
− αRe +

2α2Re2

27


+ εδ


−

2
3

+
19α2

36
+

αRe
4


. (55)

For δ = 0, the above expression reduces to that derived previously
by Housiadas et al. [16]. The net effect of the pressure-dependent
shear viscosity is strictly positive, since both the O(δ) and O(δ2)
terms in Eq. (55) are positive. Indeed, the analytical solution up to
second order shows an enhancement of the shear viscosity with
the increase of the distance from the inlet plane. Consequently, a
higher pressure difference is required to drive the flow. This is also
illustrated in Fig. 4, where the mean pressure drop for δ = 0 and
0.02, Re = 0, and α = 0.1 is plotted versus the compressibility
number ε. The dashed line corresponds to the predictions of Eq.
(55) for δ = 0.02 and Re = 1. The difference from its Re=0
counterpart is due mainly to the O(ε) term.

The average Darcy friction factor is found to be

Re f̄
32

≈ 1 +
δ

2
+ δ2


1
6

−
α2

24


+ ε


−

1
2

+
αRe
12


+

ε2

2


1 −

13α2

36
−

αRe
2

+
17α2Re2

1080


+ ε δ


−

2
3

+
7α2

36
+

αRe
6


. (56)

For an incompressible fluid, i.e. for ε = 0, Eq. (56) shows that Re f̄
increases with δ. In the general case, i.e. for ε, δ > 0, and due to
the fact that the geometric effects are very small, α2

≪ 1, both
the compressibility of the fluid and the pressure-dependence of the
shear viscosity result in the reduction of the average Darcy friction
factor.
Compressible planar flow

The volumetric flow rate is given by

Q (x) ≈ 1 − εx̃ + ε2

3
2
x̃2 −

18
35

αRe x̃ −
2α2

15


+ εδ


−

x̃2

2
+

2α2

5


(57)
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and the average pressure drop by

∆p ≈ 1 + ε


−

1
2

+
18
35

αRe


+
δ

2

+ ε2

1
2

−
5
3
α2

−
36
35

αRe +
3044
13475

α2Re2


+ δ2

1
6

−
2α2

15


+ εδ


−

2
3

+
61
45

α2
+

18
35

αRe


. (58)

Given that αRe ≪ 1, the mean pressure drop increases with δ
and decreases with ε. Moreover, it is easily verified that when
α → 0, Re = 0, and ε ∼ δ, the viscosity–pressure-dependence
and compressibility effects cancel each other.

Finally, the average Darcy friction factor is:

Re f̄
24

≈ 1 +
δ

2
+ δ2


1
6

−
2α2

15


+ ε


−

1
2

+
4αRe
35


+ ε2


1
2

−
α2

3
−

3αRe
7

+
116α2Re2

2695


+ ε δ


−

2
3

+
7α2

15
+

11αRe
35


. (59)

5. Conclusions

Asymptotic solutions for the steady, planar and axisymmetric,
Poiseuille flows of a weakly compressible Newtonian fluid with
viscosity that is weakly dependent on the pressure have been
obtained. Both the density and the viscosity are assumed to
vary linearly with the pressure, and the primary flow variables
are perturbed in terms of the compressibility number ε and
the viscosity–pressure coefficient δ. The perturbation solution,
derived up to the second order in terms of ε and δ, reveals the
following:

(a) The transverse velocity is only affected by compressibility at
second order;

(b) When ε and δ are of the same order, the horizontal velocity
component is reduced;

(c) The pressure field is affected by compressibility and the
viscosity–pressure-dependence at both the first order and the
second order; these two effects counterbalance each other
when ε and δ are of the same order. A similar competition is
also observed for the main velocity component;

(d) The mean pressure drop increases with viscosity–pressure-
dependence and decreases with compressibility.

The expressions for the average pressure drop and the Darcy
friction factor have also been derived. These are important for the
design and control of fluid transport in channels and tubes and
other processes involving high pressures at which compressibility
and viscosity–pressure dependent effects are important. They can
also be used to study various heat transfer problems which are of
significance in a variety of practical and industrial applications.

Note that the most popular formula for the dependence of
the viscosity on the pressure is the exponential law proposed by
Barus [27], which can be viewed as a generalization of the linear
equation (2) that we have used. If Barus law is employed instead,
the differences in the solutions will appear at O(δ2) and higher.
We have chosen to use the linear law, not only because of the
complexity of the governing equations but also in order to be able
to check the validity of the asymptotic solutions derived here with
the available analytical solution of the full governing equations for
unidirectional flow.
Fig. 3. Contours of uz for δ = 0.1, α = 0.1, Re = 0: (top) ε = 0.01; (middle)
ε = 0.1; (bottom) ε = 0.2.
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