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Abstract

The method of fundamental solutions (MES) is formulated for three-dimensional Signorini boundary-value problems. The method is tested
on a three-dimensional electropainting problem related to the coating of vehicle roofs. The numerical results are in good agreement with
available numerical solutions. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The method of fundamental solutions (MFS) has become
popular in recent years and has proven to be an excellent
alternative to the standard boundary element method (BEM)
for the numerical solution of certain elliptic boundary-value
problems. The development of the MFS over the last three
decades is the subject of a recent review article by Fair-
weather and Karageorghis [4].

The MEFS is particularly effective when dealing with free
boundary problems, since in these problems, one is inter-
ested primarily in the solution on the boundary. Further, the
nonlinear nature of the MFS enables it to take into account
the nonlinearities present in free boundary problems without
great difficulty. The MFS was first applied to free boundary
problems in Ref. [6], where problems from potential theory
were considered. Poullikkas et al. [16] applied the MFS to a
free boundary Stokes flow problem. Karageorghis and Fair-
weather [7] solved a free boundary problem, governed by
the axisymmetric version of Laplace’s equation.

Signorini-type problems form a special class of free
boundary problems [3,5,6] and are the subject of a recent
survey article by Howison et al. [5]. On part of the bound-
ary, two types of condition alternate in conjunction with
certain inequality constraints. The main difficulty in these
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problems arises from the fact that the numbers and the posi-
tions of the points or curves where a change from one type
of condition to the other occurs are unknown [18]. In bound-
ary element methods, the determination of the locations of
the boundary points or curves of change of the boundary
conditions wusually requires special iterative schemes
[1,2,14]. As demonstrated by Poullikkas et al. [17], who
applied the MFS to two-dimensional Signorini problems,
the boundary inequalities in the MFS can be incorporated
directly into the minimization scheme and thus the need to
design iterative algorithms is avoided.

Despite the popularity of the MFS and its successful appli-
cation to a large variety of physical problems over recent years,
its mathematical foundation has been investigated only for
certain harmonic Dirichlet problems when fixed singularities
are used. In particular, in Refs. [8,11], it is shown that, when
the method is applied to a harmonic Dirichlet problem in a disk
of radius r and the singularities are placed on a circle of radius
R > r, then exponential convergence is achieved. In Refs.
[9,10], this result is generalized to regions in the plane
whose boundaries are analytic Jordan curves.

The objective of this work is to formulate the MFS for the
solution of three-dimensional Signorini problems. To
demonstrate the applicability of the method, we solve a
potential problem, known as the electropainting problem
[14], which is described in Section 2. This problem has
been solved recently by Poole and Aitchison [14] using
the boundary element method. The MFS formulation is
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described in Section 3. In Section 4, we present our numer-
ical results, which are found to agree well with those of
Poole and Aitchison.

2. The electropainting problem

The electropainting problem describes the coating
process of metal surfaces with paint [1,2]. Aitchison et al.
[1] formulated the two-dimensional version of this problem
as a Signorini problem and solved it using a finite element
method. Poullikkas et al. [17] also solved this two-dimen-
sional problem using the MFS and obtained similar results.
The three-dimensional electropainting problem is described
in detail in a recent paper by Poole and Aitchison [14],
where the problem was modeled and solved with the bound-
ary element method combined with iterative algorithms.

Physically, the car body shells are attached to a large
hoist, which lowers them into the bath containing the elec-
trolyte solution. In practice, the values of both the critical
current € and the height /4 of the solution above the car roof,
must be chosen carefully in order to obtain an even distribu-
tion over the whole roof. To model the car roof and the
volume of the electrolyte, the cuboid (2 of Fig. 1 is used.
The problem is formulated as a Signorini problem for the

Sg ———————Sm
$=0, 32 +¢>0
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electric potential ¢ in the paint solution [14]. In steady state,
the governing equation is:

V2p=0in Q= (—a,a)X(—h2,h2)X(—B,p). (1)

The face S; of the cuboid (2 (shown in Fig. 1) is the surface
of the electrolyte solution with insulating air above it. Hence
d

— =0 on ;.
on

@

The anode consists of the sides S, S3, S; and S5, where the
voltage V is applied so that

¢:VOHSZUS3US4US5. (3)

Finally, the face Sg is the car roof to be painted, which is the
cathode. On this surface, the parts that are painted are not
known a priori. On the unpainted subregions of S, the
boundary conditions are

d
=0, e 4)
on
while on the painted ones
d
9é +e=0, ¢ > 0. )
on

Eq. (1) and boundary conditions (2)—(5) constitute a
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Fig. 1. Geometry and boundary conditions of the electropainting problem.
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Table 1
Convergence of the solution with 7; 0.1 X 0.1 grid near the car roof center, 2 = 0.05, e =6 and N =6

(0,0)

0.05995 | 0.04611 | 0.03482 | 0.02681 | 0.02264
0.05168 | 0.03049 | 0.01499 | 0.00501 | 0.00000
0.05165 | 0.03038 | 0.01495 | 0.00493 | 0.00000
0.05165 | 0.03038 | 0.01495 | 0.00493 | 0.00000

0.06369 | 0.06021 | 0.05924 | 0.03146 | 0.02742
0.05423 | 0.03367 | 0.01888 | 0.00914 | 0.00489
0.05415 | 0.03361 | 0.01876 | 0.00911 | 0.00483
0.05415 | 0.03361 | 0.01876 | 0.00911 | 0.00483

0.06089 | 0.05810 | 0.04771 | 0.04036 | 0.03654
0.05945 | 0.04038 | 0.02666 | 0.01778 | 0.01346
0.05939 | 0.04035 | 0.02663 | 0.01776 | 0.01341
0.05939 | 0.04035 | 0.02663 | 0.01776 | 0.01341

(-0.4,-0.2)

harmonic Signorini boundary-value problem. In order to where k(t;,p;) = ry ' is the fundamental solution of

obtain conditions valid everywhere on Ss, one can combine
conditions (4) and (5) as follows:

I¢

an

d
+e€=0 and ¢<a_(:+€):0 on Sq. (6)

¢ =0,
Compared to the other length scales of the problem, the
paint thickness, which is defined as ¢/e, is very small [14].

3. Formulation of the MFS

In the MFS, the solution ¢ is approximated by a set of
fundamental solutions of the governing equation, which are
expressed in terms of sources located outside the domain (2
[12]. We use N sources, the positions of which are unknown;
these are calculated as part of the solution. On the boundary,
we place M fixed points p;. Let t; = (7 ,; , ;) denote the
coordinates of source j and p; = (p; ,p; ,p;.) be the coordi-
nates of boundary point i. The solution ¢; at the point p; is
approximated by

N
(51. = (ﬁ(c, t, p,) = Z Cjk(t]’ pi)’ (7)
j=1

Laplace’s equation in three dimensions with r; being
the distance between boundary point i and the source
j, i.e.

ryj = \/(Pibt =6+, — 1)+ (i, — 1)

The vectors ¢ = [c, ¢, ...,cN]T and t = [f1x,f1v,f17,fzx,f2v,
tzy,...tNx,th,th]T contain the unknown coefficients of
the fundamental solutions and the unknown coordinates
of the sources, respectively. Hence, the total number of
unknowns is 4N. The positions of the M fixed boundary
points and the initial location of the N moving sources
are important factors in the least squares procedure. The
boundary points are distributed uniformly on the bound-
ary. In this application of the MFS, extensive experi-
mentation indicated that approximately 6N boundary
points were required for the optimal representation of
the boundary.

Since ¢ is a solution of the governing equation (1), the
unknowns are determined so that the boundary conditions
are satisfied in a least squares sense. This is achieved by
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minimizing the functional

M, T
F(c,t):Z(%’

i=1

M Y 2
_fod;
+ E [(z),-( ¢ + e)] ,
. on
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(®)

subject to the following three inequality constraints:
¢ =0, on S, )
53
9 e=0on Se. (10)
on
and

W 2b [kl

—,—,—]>1.0, 11
max( a h B ) (11)

where M; denotes the number of boundary points on S;, i =
1,2,...6. The nonlinear constraint (11) ensures that the
sources remain outside the domain. It should be emphasized
that enforcing the inequality constraints (9)—(11) is accom-

Table 2

modated directly in the minimization scheme and that the
total number of unknowns is not altered.

The minimization of the nonlinear functional F, subject to
the inequality constraints (9)—(11), is carried out using the
least squares subroutine EO4UPF of the NAG Library [13].
This routine is designed to minimize an arbitrary sum of
squares subject to constraints, such as simple bounds on
the variables, linear constraints, and nonlinear constraints.
The user is required to supply the least squares subroutine
with an initial estimate of the solution, which in this case
depends on the initial locations of the singularities in the
MFS expansion. Usually, the singularities are placed
uniformly around the domain of the problem at a fixed
distance d from the boundary (see Ref. [15]). The least
squares subroutine EO4UPF terminates when either a user-
specified tolerance 7 is achieved or a user-specified maxi-
mum number of iterations NITER is reached. Thus, the user
specifies either 7 or NITER. In this study, we specified 7.
Clearly, the tolerance one specifies depends on the accuracy
required by the user. Usually, the tolerance is taken to be at
least of order 10>, The results of Table 1 indicate that this
value of the tolerance ensures convergence of the results up
to at least five decimal digits. The user must also supply
subroutines that define the functions and the nonlinear
constraints. If the exact Jacobian is not provided by the

Convergence of the solution with N; 0.1 X 0.1 grid near the car roof center, 2 = 0.05, e = 6 and 7= 107°

0.05274
0.05205
0.05187
0.05165
0.05165

0.03115
0.03088
0.03054
0.03038
0.03038

0.01399
0.01458
0.01463
0.01495
0.01495

(0,0)

0.00432
0.00486
0.00491
0.00493
0.00493

0.00000
0.00000
0.00000
0.00000
0.00000

0.05547
0.05489
0.05436
0.05415
0.05415

0.03465
0.03401
0.03379
0.03361
0.03361

0.01946
0.01902
0.01896
0.01876
0.01876

0.01067
0.01032
0.00955
0.00911
0.00911

0.00443
0.00460
0.00465
0.00483
0.00483

0.06099
0.06007
0.05982
0.05939
0.05939

0.04174
0.04132
0.04067
0.04035
0.04035

0.02774
0.02718
0.02689
0.02663
0.02663

0.01861
0.01809
0.01793
0.01776
0.01776

0.01467
0.01434
0.01380
0.01341
0.01341

(-0.4,0.2)
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user, it is approximated internally by finite differences.
More details concerning the use and performance of the
subroutine EO4UPF in the MFS context can be found in
Ref. [17].

4. Numerical results and discussion

In order to make comparisons with the numerical results
of Poole and Aitchison [14], we consider the paint distribu-
tion on the roof of a car with dimensions o = 0.75 and B8 =
0.7. The sources were initially placed outside the domain at
a distance d = 0.1 from the boundary.

In Tables 1 and 2, we demonstrate the convergence of the
MES approximation with the tolerance 7 and the number of

0.01

-

o (a) e=1
0.01
0.15
(b) e=6
0.01
0.07
(c) e=12

Fig. 2. Car roof paint distribution for different values of €, 2 = 0.05, N = 6,
M =216and 7= 10"

sources N, respectively. In both tables, the solution is tabu-
lated on a (0.1 X 0.1) grid near the car roof center. In Table
2, we present values obtained for various values of N with
7=10"°% in Table 1, we present values obtained for various
values of 7 with N = 6. We note that the numerical solution
converges as N is increased and 7 is reduced. The results for
N =6 and 7= 10" have converged up to five decimal
digits.

In Fig. 2, we present the paint distribution over the quarter
of the car roof (which is sufficient because of symmetry),
calculated for different values of € with 27 =0.05, N =16
and 7= 10"°. The paint thickness contours are plotted with
a step of 0.01; the contour values increase as one moves
from the upper right-hand corner, which corresponds to the
center of the car roof, to the lower left-hand corner. Evidently,

0.01
" (a) h=0.05
k/m
o (b) h=0.10

0.02
o (¢) h=0.15

Fig. 3. Car roof paint distribution for different values of h, e =6, N = 6,
M =216and 7= 10"
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Table 3
CPU times for various values of M and 7

N M T CPU time (s)
4 96 1072 220
1073 422
107 589
1073 706
1076 1034
5 150 1072 244
1073 807
1074 1200
107° 1397
107¢ 2091
6 216 1072 1165
1073 3249
107 5334
1073 5901
107¢ 7014
7 294 1072 8521
1073 20555
1074 23754
1073 26118
1076 27966

the minimum paint thickness occurs near the center of the
car roof. It can be seen that as € is increased, the paint
thickness over the center of the roof decreases; at high values
of €, the center of the roof remains unpainted. For small values
of €, the car roof is completely painted with the center
receiving the least amount of paint, as shown in Fig. 2(a),
where we plot the results for e = 1. If we increase the value
of €, the car roof center remains unpainted (Fig. 2(b)). Finally,
at even higher values of €, the unpainted area becomes larger.
These results are consistent with the qualitative results
obtained for the corresponding two-dimensional case [1,17].

In Fig. 3, we show the paint distribution calculated for
different values of & with e=6, N=6 and 7= 1076,
Again, the paint thickness contours are plotted with a step
of 0.01. As before, the paint thickness decreases towards the
center of the roof. We observe that, as & is increased, the
paint thickness over the center of the car roof increases. For
h = 0.05, the center of the roof remains unpainted, as shown
in Fig. 3(a). If we increase the value of #, the roof center
becomes painted (Fig. 3(b)) and at a higher value of 4, the
thickness of the paint near the roof center increases. These
results are in good agreement with the only available results
in the literature, i.e. those of Poole and Aitchison [14].

In order to solve Signorini-type problems using the
conventional BEM, Poole and Aitchison [14] employ an
iterative method, which is based on switching boundary
conditions on boundary elements according to whether
they correspond to the painted or the unpainted part of the
boundary surface. This involves the solution of a sequence
of linear systems, which are full. A more sophisticated
switching algorithm is proposed by the same authors in
Ref. [2]. In the case of the MFS, we solve a constrained

minimization problem, which is of comparable cost to
solving a sequence of linear systems of the same order. In
order to give an indication of the cost of the MFS solution of
the problem, we present in Table 3 the CPU times required
for certain numbers of degrees of freedom and values of the
tolerance 7. These were recorded on an IBM RS6000
(processor type: Power PC 604/100 MHz), for which the
LINPACK TPP benchmark in MFLOPS is 56.4. Further,
the application of the conventional BEM involves the poten-
tially costly and troublesome evaluation of surface integrals,
a feature that is absent from the MFS formulation. Also, the
data preparation for the application of the MFS is minimal,
involving only the boundary collocation points and the
initial positions of the singularities rather than an elaborate
surface discretization. For linear problems, it is true that the
conventional BEM requires much less computational time
than the MFS, as in the former, one needs to solve a linear
system instead of carrying out nonlinear minimization. This
is compensated partially by the ease of implementation
associated with the MFS. Signorini-type problems (and
free boundary problems in general) are nonlinear and the
costs of the two methods are comparable as iterative tech-
niques need to be used in conjunction with the conventional
BEM.

We are presently investigating the extension of the
present method for similar Signorini boundary-value
problems occurring in elasticity, i.e. crack problems.
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