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We investigate the use of the method of fundamental solutions (MFS) for the numerical
solution of Signorini boundary value problems. The MFS is an ideal candidate for solving
such problems because inequality conditions alternating at unknown points of the boundary
can be incorporated naturally into the least-squares minimization scheme associated with
the MFS. To demonstrate its efficiency, we apply the method to two Signorini problems.
The first is a groundwater flow problem related to percolation in gently sloping beaches,
and the second is an electropainting application. For both problems, the results are in close
agreement with previously reported numerical solutions.

1. Introduction

When boundary methods are used to solve problems involving partial differential equations
only the boundary of the domain is discretized. As a consequence, compared to domain
discretization methods, such as finite difference and finite element methods, the size of
the linear system of equations resulting from boundary methods is much smaller and the
required data manipulation is considerably reduced. Boundary methods are particularly
suitable for the solution of free surface problems since, in these, it is the free boundary
which is of prime interest (Wrobel & Brebbia (1991)).

The method of fundamental solutions (MFS) has become popular in recent years and has
proven to be an excellent alternative to the standard boundary element method for the nu-
merical solution of certain elliptic boundary value problems. The method has already been
applied to various harmonic and biharmonic problems with boundary singularities and free
surfaces (Karageorghis (1992a, b), Poullikkas et al (1998)). The MFS can be viewed as
an indirect boundary element method based on the approximation of the solution in terms
of fundamental solutions of the governing equation involving sources located outside the
domain of the problem. The unknown coefficients of the fundamental solutions and the
final location of the sources are calculated so that the boundary conditions are satisfied in
a least-squares sense. The MES offers the advantages of boundary methods over domain
discretization methods; in addition, it is adaptive in the sense that it takes into account
sharp changes in the solution or in the geometry of the domain, and is relatively easy to
implement. As will be demonstrated, another advantage of the MFS is that it very easily
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accommodates difficult boundary conditions involving inequalities, as occur in Signorini
problems.

Signorini-type problems form a special class of free boundary problems (Elliott & Ock-
endon (1982), Spann (1993)). On part of the boundary, two types of conditions alternate
in conjunction with certain inequality constraints. The main difficulty in these problems
arises from the fact that the points where a change from one type of condition to the other
occurs are unknown (Spann (1993)). Signorini-type problems, including the special cases
studied in this paper, are the subject of a recent review article by Howison et al (1997). In
other methods, enforcing these boundary conditions is usually achieved by special iterative
schemes (Aitchison er al (1983, 1984)). In the MFS, however, the boundary inequalities
can be incorporated into the minimization scheme in a natural way, and the need to design
an appropriate iterative algorithm is thus avoided. Our objective is to demonstrate the use
of the MFS for solving Signorini problems. We apply the method to two such problems,
namely the shallow dam problem (Aitchison et al (1983)) and an electropainting problem
(Aitchison et al (1984)). For both cases the results agree well with previously reported
numerical solutions.

In Section 2 we present the formulation of the MFS for Signorini problems. The steady-
state shallow dam and electropainting problems are defined and solved in Sections 3 and 4,
respectively, where we also make comparisons with numerical results reported in the liter-
ature. Our conclusions are summarized in Section 5.

2. Application of the MFS to Signorini problems

Consider the problem
Viu=0 in £, 2.1)

where V2 denotes the Laplace operator, u is the dependent variable, and $2 is a bounded
domain in the plane. We assume that the boundary 32 consists of two parts, 3§2; and
0£2;;. On 382, we assume that u is prescribed by a given function g, i.e., in Cartesian
coordinates:

u=gkx,y) on 082;. 2.2)

On 0$2;;, we assume that either u or its normal derivative du/dn are prescribed, according
to the following conditions:

ad
u = h(x,y) when a_u < f(x,y) on 9082y, 2.3)
n
or
ou
Fe f(x,y) when u < h(x,y) on 08y, (24)

where h and f are known functions.

Equation (2.1) and boundary conditions (2.2)~(2.4) constitute a harmonic Signorini
problem (Elliott & Ockendon (1982), Spann (1993)). In such problems, we do not know in
advance the parts of the boundary 3£2;; on which conditions (2.3) apply and its remaining
parts where conditions (2.4) apply. The number of and the positions of the points separat-
ing these different parts of 32,, are unknown. The separation points must be found as part
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of the solution. In order to obtain conditions valid everywhere on 9£2;;, one can combine
conditions (2.3) and (2.4) as follows:

u<h on 08y, .5
a
=< f on 3 (2.6)
on
and
u
(u—h) (5’; - f) =0 on 0. 2.7

In the MFS, the solution u is approximated in terms of fundamental solutions of the gov-
erning equation which involve sources located outside the domain §2 (Mathon & Johnston
(1977)). We use N sources, the positions of which are to be determined, and choose M
fixed points along the boundary 82. Let t; = (t;,,¢; ) denote the coordinates of source
j and let p; = (pi,, pi,) be the coordinates of boundary point i. We seek the following
approximation of the solution at the point p;:

N
i = die, t,pi) = ) cj k(t;, p), (2.8)
j=1

where k(t;, p;) = log r;;j is the fundamental solution of Laplace’s equation, and r;; is the
distance between boundary point i and source j, i.e.,

riy = (i, = 12 + (i, — 1)

The vector ¢ = [cy, €2, ..., cx]7 contains the unknown coefficients of the fundamental so-
lutions, and the vector t = [t1,, t1,, f2,, B2, s EN;» tNy]T contains the unknown coordinates
of the sources. Hence, the total number of unknowns is 3N.

Because # is a solution of the governing equation (2.1), the unknowns are determined
so that the boundary conditions (2.2) and (2.7) are satisfied in a least-squares sense. To
achieve this, we minimize the functional

i, d il 2
Fle,t)y=Y (@i—g)+ ), [(a,- —hi) (3; - f)] , 2.9)
i=1 i=M+1

where M is the number of fixed boundary points along 352,; we require # to satisfy the
remaining inequality constraints (2.5) and (2.6), i.e.,

o
i—h<0 and %—fgo on 382y (2.10)

Note that enforcing the inequality constraints (2.10) may be directly accommodated in
the minimization scheme with no difficulty, and that the total number of unknowns is not
altered.

To minimize the nonlinear functional F defined by equation (2.9), subject to the in-
equality constraints (2.10), we use the least-squares subroutine EO4UPF of the NAG Li-
brary (1991). This routine is designed to minimize an arbitrary sum of squares subject
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to constraints, which may include simple bounds on the variables, linear constraints, and
nonlinear constraints. It employs a sequential algorithm in which the search direction is
determined by the solution of a quadratic programming problem. The user must supply an
initial estimate of the solution and subroutines that define the functions and the nonlinear
constraints; the subroutine EO4UPF performs best if the user supplies as many first partial
derivatives as possible or, preferably, the exact Jacobian. Derivatives not provided by the
user are approximated internally by finite differences. The subroutine EO4UPF terminates
when either the user-specified tolerance, t, is achieved or the user-specified maximum
number of iterations, NIT E R, is reached. The tolerance can be supplied through the op-
tional input parameter ‘Optimality Tolerance’ which specifies the accuracy to which the
user wishes the final iterate to approximate the solution of the problem. The maximum
number of iterations can be supplied to EO4UPF by the optional input parameter ‘Major
Iteration Limit’.

In arecent paper (Poullikkas et al (1998)), we solved harmonic and biharmonic problems
and compared the computational efficiency of EO4UPF with that of two MINPACK sub-
routines, LMDIF and LMDER. Both MINPACK subroutines use a Levenberg—Marquardt
algorithm to minimize a sum of squares of nonlinear functions (Garbow et al (1980)).
Our comparisons showed that the MINPACK routines generally perform slightly more ef-
ficiently than EO4UPF. Unlike EO4UPF, however, they cannot accommodate constraints,
which option is necessary in solving Signorini.problems. The success of the method de-
pends on the quality of the software used to solve the constrained problem. An alternative
to using the nonlinear least-squares EO4UPF would have been to use a penalty function
approach.

The initial placement of the N moving sources is important in the least-squares proce-
dure. Usually the sources are initially distributed uniformly around the boundary at a fixed
distance d from the boundary (Karageorghis & Fairweather (1987)). The fixed boundary
points are distributed uniformly on the boundary and following the recommendations of
Oliveira (1968), their number is chosen to be approximately three times the number of
unknowns. The tendency of the sources to move into the interior of the domain is over-
come by introducing an additional nonlinear constraint into the minimization scheme that
excludes all points from £2.

3. The steady-state shallow dam problem

We consider the potential flow problem shown in Fig. 1, which is related to percolation in
gently sloping beaches and is known as the steady-state shallow dam problem. As shown
in Fig. 1, the sand is divided into saturated and dry regions. The base is impermeable
and, therefore, water seeps slowly from the left to the right through the sand. Since the
velocity is very small, laminar flow is assumed, governed by Darcy’s law. The domain of
interest is the saturation region ABCDEF in Fig. 1. More details of the problem are given
by Aitchison et al (1982).

Following Aitchison et al (1983) the model for the dam problem is made dimensionless
in which case |AB| = 1, the surface profile is of the form y(x) = 1 4+ §G(x) and the free
boundary is of the form y(x) = 1 + §W(x) where W(x) < G(x). Then, we consider the
asymptotic expansions of the pressure ¥ and W in powers of . The leading term is trivial.
Equating terms of order § yields the problem we are examining. In particular, the top part
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surface profile
dry region (sand)
seepage face
water _F
level
free boundary tide
y saturated region (sand)

L. .

FI1G. 1. Percolation in gently sloping beaches.

of the boundary is the projection of the boundary FEDC (see Fig. 1) on y = 1 because of
the asymptotic expansion of both the field equations and the boundary conditions. This is a
Signorini boundary value problem on a square domain with the pressure u as the unknown
in the saturated region. The problem is then

Viu=0 in £=(0,1)x(0,1). 3.1

Through the base S; = {(x,y) : 0 < x < 1, y = 0}, no flow occurs, i.e., the pressure
gradient is zero:

— =0 on S. (3.2)

On the vertical sides S = {(x,y) :x =1,0< y < 1}and S4 = {(x,y) :x=0,0< y <
1}, hydrostatic conditions are assumed, i.e., the pressure is constant. Along S4 the pressure
is set to zero:

u=0 on S 3.3)

We assume that the surface profile is given by a known function G(x) (Aitchison et al
(1983)). Then, along S, we have

u=G(l) on . 3.4

Conditions (3.3) and (3.4) are chosen in order to model the physical situation satisfactorily
by considering a single surface profile adjacent to regions generating a small horizontal
flow (Tayler (1986)).

On S3 = {(x,y) : 0 < x < 1, y = 1}, the number and the positions of the separation
points between the free boundary (the projection of FE and DC onto y = 1) and the
seepage face, the projection of ED onto y = 1 (Fig. 1), obviously depend on the surface
profile G (x). On the parts of S3 corresponding to the free boundary, the kinematic condition
requires the pressure gradient to vanish. On the remaining parts of S3, corresponding to the
seepage face, momentum balance requires the pressure u to be equal to G (x) in the absence
of surface tension. Therefore, we have

0
55:0 and u<G(kx) on 8 (3.5)
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or
3
u=G(x) and ?al<0 on S (3.6)
y

As already mentioned, the number and positions of the separation points depend on the sur-
face profile G(x). In order to make comparisons with the numerical solutions of Aitchison
et al (1983) and Karageorghis (1987), we considered the following two profiles:

Gﬂx):(%—x) 1-x)—x, 3.7

Gy(x) = (% — %x) (1 - %x) (1-x)—x. (3.8)

From the numerical results of Aitchison et al (1983) and Karageorghis (1987), we know
that G, (x) has one separation point with one free boundary segment, whereas G2 (x) has
two separation points with two free boundary segments. Aitchison et al (1983) solved the
steady-state shallow dam problem using a finite element method, whereas Karageorghis
(1987) developed a technique for determining the number and positions of the separation
points and solved the problem using a boundary element method.

In the MFS, the approximate solution is given by equation (2.8). Let M1, M2, M3 and M4
be the numbers of boundary points along the four parts of the boundary, the total number
of boundary points being M = M; + M, + M3 + M. As in equation (2.9), the boundary
conditions are satisfied in a least-squares sense by minimizing the functional

My ran N2 Mth
Feo=3(5) + 3 ta-cnr

i=1 i=M;+1
M\ +My+M; Sii: 2 M
+ [ li; — G(x)] 5—‘} + i, (3.9)
=Mt Ma+1 Yy =M+ Myt Ma+1
subject to the three inequality constraints:
#i—Gx)<0 on S, (3.10)
9i
M <o on S, 3.11)
ay
and
max (|Jx — 05|, |y — 0-5]) > 0-5. (3.12)

The last constraint ensures that the sources remain outside the domain. The fact that this
constraint is not differentiable does not appear to be causing internal difficulties for the
solver, as convergence was achieved in all the cases considered. In the documentation
for EO4UPF it is stated explicitly that the method will usually work if there are isolated
singularities away from the solution. In order to confirm this, the constraint was replaced
by the smooth constraint (x — 0:5)>" + (y — 0-5)" > 0-5%™, where m is a positive integer
(clearly as m increases the above curve tends to the square) and tests were run for various
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TABLE 1
Convergence with N of the solution near the separation point for
Gi(x)=(G—-x)(1-x)—xandt =10"°

x 0-6000 0-6500 0-7000 0-7500 0-8000 0-8500 0-9000
Gi(x) —06400 —0-7025 —0-7600 —0-8125 —0-8600 —0-9025 —0-9400

M N NITER Approximate solution
28 3 72 —08045 —08676 —0-9146 —0-9418 —0-9481 —09348 —0-9055
48 5 119 —0-6935 —0-7392 -—0-7828 —0-8244 —0-8641 —0-9023 —0-9391
64 7 893 —-06618 —0-7151 —-0-7663 —0-8148 —0-8603 —0-9027 —0-9424
84 9 946 —06599 —0-7148 —-0-7664 —0-8125 —0:8601 —0-9027 —0-9417

free boundary seepage face
TABLE 2

Convergence with N of the solution near the separation point for
Gi(x) =G —x)(1 —x) —x and NITER = 700

x 0-6000 0-6500 0-7000 0-7500 0-8000 0-8500 0-9000
Gi(x) —-0-6400 —0-7025 —0-7600 —0-8125 —-0-8600 —0-9025 —0-9400
M N Approximate solution
28 3  —-0-8045 —08676 —09146 —09418 —09481 —09348 —0-9055
48 5 07055 —-0-7495 —-0-7912 —-0-8309 —-0-8688 —0-9051 —0-9400
64 7 -—06619 —07153 —07665 —0-8149 —0-8603 —09027 —09423
84 9 —-06602 —07153 -0-7667 —0-8126 —0-8599 —0-9027 —0-9420

free boundary seepage face

values of m. We also ran EO4UPF with no nonlinear constraint to keep the sources outside
the domain (for cases when no sources entered the domain). The results obtained both ways
were almost identical to the results already obtained with the original constraint. Also, the
number of iterations required to reach a specific tolerance was essentially the same with all
three methods.

The problem was solved for various numbers of sources N, values of the tolerance T and
numbers of iterations NIT E R. The sources were initially placed outside the domain at a
distance d = 0-1 from the boundary. In Tables 1 and 2, we illustrate the convergence of the
MES with N (and M, recall that M = 9N). In both tables, we tabulate the values of the
surface profile G (x) and the calculated values of u on S3 near the separation point. Recall
that the separation point is the point where we have a change from conditions (3.5) to
conditions (3.6) or vice versa. As mentioned in Section 2, the point at which the subroutine
EO4UPF terminates is controlled by either a user specified tolerance, 7, or a user specified
number of iterations, NIT ER. In order to demonstrate the convergence of the method
while increasing the number of sources N (and boundary points M), in Table 1 we present
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TABLE 3
Convergence with t of the solution near the separation point for
Gi(x)=G-x)(1-x)—x,N=Tand M = 64

x 0-6000 0-6500 0-7000 0-7500 0-8000 0-8500 0-9000
Gi(x) —0-6400 —0-7025 —07600 —0-8125 —0-8600 —0-9025 —0-9400
T NITER Approximate solution
102 77 —06640 —0-7183 —07686 —0-8149 —0-8596 —0-9045 —0-9502
1073 84 —-06625 —07171 —0-7678 —0-8144 —0-8594 —0-9046 —0-9506
1074 270 —0-6587 —0-7129 —07647 —0-8138 —0-8599 —0-9033 —0-9446
103 345 —06622 —07162 —0-7675 —0-8157 —08606 —0-9025 —0-9422
10-6 893 —-0-6618 —0-7151 —07663 —0-8148 —0-8603 —0-9027 —0-9424
free boundary seepage face
TABLE 4

Convergence with NITER of the solution near the separation point for
Gix)=G —x)(1—x)—x,N=Tand M =64

x 0-6000 06500 0-7000 0-7500 0-8000 0-8500 0-9000
Gi1(x) —0-6400 —0-7025 —07600 —0-8125 —0-8600 —0-9025 —0-9400
NITER Approximate solution
100 ~06711 —07266 —0-7764 —08202 —0-8614 —0-9026 —0-9049
300 -06627 —07170 —0-7685 —0-8166 —0-8610 —0-9025 —0-9418
500 -06623 —07158 —0-7670 —0-8153 —0-8605 —0-9025 —0-9419
700 -06619 —0-7153 —0-7665 —0-8150 —0-8603 —0-9027 —0-9423
900 —06618 —07151 —0-7663 —0-8148 —0-8603 —0-9027 —0-9424
free boundary seepage face

the solutions obtained with the surface profile G;(x), when keeping t fixed. We observe
that the values of # converge with N. On the section corresponding to the surface profile,
the solution is in excellent agreement with the values of G(x). In order to demonstrate
the convergence of the method with N (and M) in the case where the number of iterations
is fixed instead of the tolerance, in Table 2 we tabulate results obtained with the surface
profile G| (x) when NIT ER is kept fixed. In order to observe the change in the results as
the stopping criteria of EO4UPF are made stricter (i.e., when either the tolerance is made
smaller or the number of iterations is increased) in Tables 3 and 4 we present the results
obtained for fixed N (and M) when varying T and NIT ER, respectively. Again, the u
values calculated on the surface profile agree well with the values of G (x).

In Fig. 2 we show the numerical results obtained with the surface profile G(x), N =7,
M = 64 and NITER = 700. We observe that there is only one separation point be-
tween the free boundary and the surface profile with one free boundary curved compo-
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FIG. 2. Approximate solution of the shallow dam problem for N = 7, M = 64, NITER = 700 and
Gix) = (3 —x)(1—x) —x.

nent. Similar results were obtained with the surface profile G,(x), N = 7, M = 64 and
NITER = 2000. For this profile, there correspond two separation points with two free
boundary segments, as shown in Fig. 3. The free boundary segments are slightly curved.
The results are again in excellent agreement with those of Aitchison et al (1983) and Kara-
georghis (1987).

4. The steady-state electropainting problem

We apply the MFES to another potential problem known as the steady-state electropainting
problem (Aitchison et al (1984)). In the electropaint process, the object to be coated is
immersed in a bath containing an electrolyte paint solution. A potential difference is ap-
plied between the object and the tank walls and a current flows through the solution. The
paint particles thus become charged and are deposited on the surface of the object. Special
attention is required near corners to achieve sufficient paint thickness.

Aitchison et al (1984) formulated the problem as a Signorini problem on a square do-
main for the electric potential u in the paint solution. The electric potential in the paint
solution is a harmonic function, i.e., the governing equation is

Viu=0 in £ =(=0505)x(0,1). “4.1)

The base S} = {(x,y) : =05 < x < 05, y = 0} is the anode where the voltage V is
applied. Hence,
u=V on . 4.2)
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FIG. 3. Approximate solution of the shallow dam problem for N = 7, M = 64, NITER = 2000 and
Ga(x) = (3 — 301 = 3x)(1 —x) — x.

The other sides S, = {(x,y) :x=05,0<y <1}, SB3={(x,y) 1 —-05<x <05, y=
1}and Sy = {(x, y) : x = —0-5, 0 < y < 1} make up the object to be painted which is the
cathode. On these boundaries, we do not know which sections are painted and which are
unpainted. On the parts corresponding to unpainted surfaces, the boundary conditions are

9
u=0, a—“+e>o on  S,US;US,, (4.3)
n

and on the parts corresponding to painted surfaces, the boundary conditions are

Z—Z+s=0, u>0 on SUSUS,, 4.4)
where ¢ is the critical cut-off current which is a property of the paint. Compared to the
other length scales of the problem, the paint thickness, h = u/e, is very small. Aitchison
et al (1984) used a finite element method to solve the resulting problem. They also showed
the existence of a unique solution.

As before, in the MFS we approximate the solution using equation (2.8). The boundary
conditions are satisfied in a least-squares sense by minimizing the functional

M,

M oii: 2
Fle.)=)Y @@-D*+ Y. [12,- (E—i—e)] : 4.5)

i=1 i=M+1
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(b) £ = 0.50

(c)e =055 (d) e = 070

FIG. 4. Paint distributions for (a) € = 0-40, (b) ¢ = 0-50, (c) ¢ = 055, and (d) e = 070 with N = 12, M = 108
and NITER = 600.

subject to the following three inequality constraints:

>0, on SUS3US,, (4.6)
ou
a—n—+a>0 on SUS;3U Sy, 4.7
and
x| — 025 —-05
max( l lO-Z(; s Y G D > 1:0. 4.8)

As before, the latter constraint ensures that the sources remain outside the domain.

The problem was solved for various numbers of sources N, tolerances 7 and numbers
of iterations NIT ER, with the sources initially placed outside the domain at a distance
d = 0-1 from the boundary. In Fig. 4, we show the paint distribution over half of the domain
(because of the symmetry), calculated for various values of & and N = 12, M = 108 and
NITER = 600. For the smaller values of &, the object is completely painted with the
corner receiving the least amount of paint, as shown in Fig. 4(a) where we plot the results
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for € = 0-40. If we increase the value of ¢, the paint film near the corner becomes thinner
(Fig. 4(b)), and the corner eventually becomes unpainted (Fig. 4(c)). Finally, at an even
higher value of ¢, both the corner and the top surface of the object are unpainted (Fig.
4(d)). The results are identical to those of Aitchison et al (1984).

5. Conclusions

We have demonstrated that the MFS is ideally suited for the numerical solution of Sig-
norini problems. The inequality boundary conditions can be incorporated into the solution
process in a natural way, when using a state-of-the-art constrained least-squares minimiza-
tion routine. The separation points, where the type of boundary condition changes, are
automatically generated by the method. These factors make the MFS an ideal candidate
for the numerical solution of this type of problem. It takes into account all the particular
features of the problem in a natural way which is very easy to implement. This renders the
MFS extremely efficient when compared to previously used numerical methods such as
finite element methods or boundary element methods. The advantages of the MFS (when
applicable) over these methods are well documented (Karageorghis & Fairweather (1987)).
The method is applied to the steady-state shallow dam problem and to a steady-state elec-
tropainting problem. The results for both problems are in close agreement with previously
reported numerical solutions.
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