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Abstract 

We propose a new description of elasto-viscoplastic fluids by relating the notion of 

thixotropy directly to internal viscoelasticity and network structures through a 

general, thermodynamically consistent, approach. By means of non-equilibrium 

thermodynamics, a thermodynamically-admissible elasto-viscoplastic model is 

derived which introduces self-consistently and effortlessly thixotropic effects and 

reproduces at both low and high shear rates experimental data usually fitted with 

empirical constitutive equations, such as the Bingham and Herschel-Bulkley models. 

The predictions of the new model are in very good agreement with available steady-

state shear rheological data for soft colloidal pastes and blood, i.e. systems exhibiting 

a yield stress, and with time-dependent rheological data for blood, i.e. during a 

triangular time-dependent change in shear rate, exhibiting a hysteresis. The proposed 

approach is expected to provide the means to improve our understanding of 

thixotropic fluids.  
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I. INTRODUCTION 

Many materials of industrial interest, such as emulsions, colloids, suspensions 

and foams, exhibit a yield stress, i.e. they flow only above this critical stress and 

behave as elastic solids otherwise.1,2 Such materials are encountered in many sectors, 

such as in the oil industry (e..g, crude oil and drilling fluids), the construction sector 

(e.g., cement pastes and fresh concrete), the food industry (e.g., ketchup, margarine 

and mayonnaise) and in the pharmaceutics/cosmetics industry (e.g., blood, pastes and  

foams).1,2 The yield stress is acknowledged as an “engineering” reality and has been 

the subject of ongoing debate.3 The description of yield-stress materials has been 

proven to be one of the subtlest tasks in rheology.4 However, a more in-depth 

understanding of their peculiar rheological behaviour is paramount if we aspire to 

optimize the processing properties of this important class of materials. 

The appearance of a yield stress is a rheological feature strongly associated 

with thixotropic fluids.5 According to IUPAC, thixotropy is defined as the continuous 

decrease of viscosity with time when flow is applied to a sample that has been 

previously at rest and the subsequent recovery of viscosity in  time when the flow is 

discontinued.5,6 However, such a behaviour is also encountered with viscoelastic, 

shear-thinning, fluids: upon a stepwise increase in shear rate the viscosity, after an 

initial overshoot, decreases, whereas when a stepwise reduction is applied the 

viscosity gradually returns to a higher value. Clearly, distinguishing between 

thixotropy and nonlinear viscoelasticity is important in our understanding of these 

phenomena.7 Another characteristic rheological feature of thixotropic fluids is the 

hysteresis experiment where the shear rate,  , is first gradually increased with time 

m,  0<t t t    and then decreased following  m m m2 ,  < 2t t t t t    , with 
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max mt   , where max  is the maximum shear rate reached (at t=tm).5 When the 

transient shear stress is plotted as a function of the time-dependent shear rate, a 

hysteresis loop is observed in thixotropic fluids (see e.g., Fig. 2 of Ref. 5 and Figs. 3 

and 7 below). 

The simplest model available for the description of yield-stress fluids, also 

known as viscoplastic fluids, is the Bingham model, which involves two material 

parameters (the yield stress, y , and the plastic viscosity, B )1,8 
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where σ  is the extra (polymeric) stress tensor,  T  γ u u  is the rate-of-strain 

tensor, and 1
2 :  σ σ  and  1

2 :  γ γ    denote the magnitudes of the two tensors 

(the latter denotes the shear rate). In shear flow, the shear stress approaches the yield 

stress at small shear rates and behaves as a Newtonian fluid at large shear rates. An 

extension of this model is the Herschel-Bulkley (HB) model given as  

1
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 where K is the consistency index and n is the flow behaviour index (power-law 

exponent);1,8 the Bingham model is a special case of the HB model when n=1 and 

BK  . The HB model is able to describe a shear thinning (n<1) or shear thickening 

(n>1) behaviour. Both the Bingham and HB models, which are routinely employed to 

describe the behavior of various viscoplastic materials, belong to the class of 

generalized Newtonian constitutive equations, i.e. they do not account for viscoelastic 
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effects.1 It should also be emphasized that, despite their success, when fitting data 

using these models, the material parameters involved, are phenomenological in nature 

and bear no physical meaning, i.e. they cannot be related to the molecular 

characteristics of the particular material they aim to describe. Furthermore, they 

exhibit an unavoidable disadvantage: they predict vanishing normal stresses in shear 

flow.5,9  

The complex rheological behavior of thixotropic fluids, in general, can be 

understood on the basis of a microstructure that depends on the shear history.5 For 

example, Carbopol solutions are made of high molecular-weight structural elements 

that interact forming complex network-like structures.10 The continued competition 

between the flow-induced breakdown and the thermal-noise-induced buildup of the 

structural elements characterizes their rheological behaviour. Under extreme flow 

conditions, the breakdown of the structure prevails recombination, leading to a 

complete destruction of the elastic network. Another example is suspensions, e.g., 

drilling fluids, for which the existence of a yield stress is attributed to the combined 

effect of the solid network of connected particles and the dry friction between loose 

particles;11 the destruction of the network is the result of viscous forces acting on the 

particles due to flow. Finally, in the case of crude oil, the elastic network is believed 

to be the result of crystalline formations composed of paraffine, asphaltane, and resin 

constituents.9 

From a mathematical point of view, the internal structure may be characterized 

by a scalar structural variable,  , that expresses the instantaneous degree of structure: 

in a fully structured state, i.e. a complete network that deforms elastically, it is equal 

to unity, while in a completely broken state it vanishes.5 Thus, the equation for the 

shear stress is coupled with  , e.g. in the case of the HB model 
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       n
yx y HBK         .5,9,11 The rate of change of the   is the net result of 

the simultaneous rates for structure buildup and breakdown which follow certain 

kinetics.5 One of the earliest thixotropic constitutive models of this class, is that 

proposed by Moore12 in which the stress tensor is given as    σ γ  where    is 

dictated by   2 11t k k      ,  where k2 and k1 are the rates of buildup and 

destruction, respectively, which could depend on (the invariants of) γ and on  . 

Another early model, is that of Fredrickson13 wherein the stress tensor is given as 

1 σ γ and the structural parameter, characterized as “fluidity”  , obeys 

   2 0 1 :t k k         σ γ ; thus, it can be deduced that    0 0       . 

Many more viscoplastic constitutive models have been proposed in the literature.5  

However, common viscoplastic constitutive models still ignore elastic effects 

once the fluids start flowing. This omission has led to the development of elasto-

viscoplastic constitutive models describing the rheological behavior of the fluid above 

the yields stress via the use of viscoelastic models, such as the Oldroyd-B14, the 

Maxwell,15 or the Phan-Thien Tanner16 models. Even though some of these models 

have proven able to describe well experimental data,12 their connection with 

molecular structure is vague. Furthermore, the mere hybridization of viscoplasticity 

and elasticity may not be done appropriately, possibly lacking self-consistency. These 

drawbacks are detrimental in the potential use of elasto-viscoplastic models to 

enhance our understanding of the rheological behavior of thixotropic fluids.   

To remedy the above shortcomings, we herein propose a detailed model for 

thixotropic materials that can be related to their molecular underpinning and provide a 

self-consistent coupling between elasticity and viscoplasticity through the 

consideration of an elastic free energy expression [see Eqs. (5)]. The Generalized-
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bracket17 formalism of non-equilibrium thermodynamics (NET) is employed to 

properly address three key issues: (a) selecting the proper state variables, (b) 

constructing both the Poisson and dissipation brackets, and (c) specifying the system’s 

Hamiltonian. The attractive advantage of employing a NET formalism17-19 is that the 

resulting constitutive model is, by construction, consistent with the laws of 

thermodynamics.17-19 NET laws provide the means to impose restrictions to the model 

parameters. Up to date, several micro-structured systems, such as liquid crystals,20-22 

polymer melts and solutions,17-19,22-24 immiscible complex fluids,17-19,25-27 polymer 

nanocomposites,28-33 drilling fluids,34 blood,35 ionomers,36 and micellar systems,37 

have been addressed through NET, a fact that attests to its usefulness and 

applicability. To the best of our knowledge, only the model proposed by Beris et al.38 

for concentrated star polymer suspensions, a system exhibiting a yield stress, was 

derived via the use of NET principles. This model is based on an extension of the 

Johnson–Segalman viscoelastic constitutive equation in which the non-affine 

parameter is variable, obeying an evolution equation that is purely phenomenological 

and not derived from NET. Beris et al.38 also proposed phenomenological elastic and 

viscous contributions to the shear stress, not derived from NET.  

 

II. NONEQUILIBRIUM THERMODYNAMICS MODELING OF 

THIXOTROPY 

A. The vector of state variables 

Following previous works,5 we choose to employ a scalar structural variable, 

 , to characterize the instantaneous degree of structure of thixotropic materials by 

accounting for the number of segments or components that are attached to the 

underlying network. We also employ an additional tensorial structural variable, C, to 
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characterize the deformation of the complex structure, where each segment is 

modeled as an elastic dumbbell that can be detached from the network due to flow 

and attach to it due to thermal noise. The use of NET allows for the proper coupling 

of these two structural variables with the hydrodynamic ones and with each other.  

Herein, we consider a homogeneous, isothermal, and incompressible flow. The 

number density, n, and the mass density of polymer segments,  , are related through 

  Avn M N , where M denotes the segment molecular weight of each chain (i.e., a 

strictly monodisperse system is considered) and Nav is Avogadro’s constant. The 

conformation tensor density is defined by C c , where   3, t d c RR R R   is the 

second moment of the distribution function  , t R  for the end-to-end connector 

vector R.17-19,22 Note that as the mass density of polymer segments is constant, due to 

incompressibility, the conformation tensor c may be employed directly.17 Finally, we 

consider the momentum density m as the hydrodynamic variable. Overall, the vector 

x of state variables is expressed as  , ,x m c . Since the system is isothermal, the 

entropy density (or temperature) is excluded from the vector of state variables.  

 

B. The Hamiltonian of the system 

In the present case, the mechanical part of the system’s Hamiltonian is given 

by 

   m enH K A x x ,                                               (3)  

where 

 
2

2enK dV


 
M

x .                                              (4)  
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The first term on the right-hand side of Eq. (3) represents the kinetic energy of the 

system,   enK x ,  given via Eq. (4), whereas   A x  represents the system’s Helmholtz 

free energy, given by 

       

   ln det ln 1
2 2

el mix

eq
B

A a dV a a dV

G K G
tr dV dV

k T
  

    

 
     

 

 

 

x x x x

c c c
  .                     (5)  

where BG nk T RT M   is the (constant) elastic modulus, K is the dumbbell’s 

spring constant, kB is Boltzmann’s constant, and T is the absolute temperature. It 

should be noted that in the present approach the polymeric segments are assumed to 

be below the entanglement threshold; however, there are available free energy 

expressions that can be used beyond this threshold.23 The first integral in Eq. (5) 

expresses the sum of the elastic energy of the Hookean springs, wherein all segments 

are deformed due to the imposed flow. The second integral expresses the ideal 

entropy of mixing for segments that are not associated to the network; the extra term 

is added to ensure that the mixing free energy maximizes under no flow conditions, 

i.e.  when =1 (see further discussion below).  

 

C. The Poisson and dissipation brackets 

 For a system for which its internal structure is described by a conformation 

tensor, the expression for the Poisson bracket is well known [see, e.g., Refs. 17-19]: 
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 ,
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  .              (6) 

Note that here, and throughout this work, Einstein’s summation convention for 

repeated Greek indices is employed. The first four integrals represent the usual 

Poisson bracket for the isothermal and incompressible flow of a viscoelastic fluid 

whose structure is characterized by a conformation tensor.17-19,22 The last integral in 

Eq. (6) introduces a general coupling between the scalar structural variable and the 

velocity gradient through the tensor g.19 Since we need to impose the requirement that 

the Poisson bracket fulfils the Jacobi identity, the following restrictions are obtained 

when the most general expression for g is considered,  1
1 2 3g g g   g c δ c   according 

to the Cayley-Hamilton theorem (where the scalar coefficients are functions of   and 

the three invariants of the dimensionless conformation tensor  BK k Tc c : 

1
1 2 3, ln det ,I tr I I tr    c c c   ):19 

2 1 1 2
1 2

2 1

3 31 1
1 3

3 1

3 32 2
2 3

3 2

2

2

2

g g g g
g g

I I

g gg g
g g

I I

g gg g
g g

I I

 

 

 
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       

   
       

   
       

.                                                   (7) 
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The corresponding dissipation bracket used in this work is of the following form 

 

 , c

nec

F G F G
F G dV dV

c c

F G
Q dV

M M



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  
 

   
   

 
 

    

   
         

 


.                          (8)                     

The first two integrals on the right-hand side of Eq. (8) account for relaxation effects 

for both structural variables and are proportional to a fourth–rank relaxation tensor,  

c
  and a scalar relaxation factor   , which, in turn, are inversely proportional to 

some characteristic relaxation times. The third integral accounts for the viscous 

dissipation of the solvent and expresses the Newtonian rheological behavior of the 

solvent; it is proportional to the fourth–rank tensor Q . Note that the subscript 

“nec”, meaning “no entropy production correction,” is added to the dissipation 

bracket to indicate that this dissipation bracket is without terms involving Volterra 

derivatives with respect to entropy,17 which are not important when considering (as 

we do here) isothermal systems. 

 

D. The resulting evolution equations 

Following the usual procedure,17 the following expressions are obtained for 

the Cauchy momentum balance equation, the evolution equations for the 

conformation tensor c and the scalar structural variable  , and the extra stress tensor: 

P
t

 
      


υ

υ υ σ ,                                          (9a) 

[1]
c

,

A
c

c 





  ,                                                           (9b) 
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D A
:

Dt
 


  κ g ,                                                       (9c) 

2
A A

c g
c  


 
 

  .                                                      (9d) 

The following typical expressions, proposed in the literature for viscoelastic fluids,17 

are also used: 

   1

2 ,
c

R

c c c c
nK tr           

 
    

c
,                     (10a) 

2

G



  ,                                                       (10b) 

 sQ          ,                                       (10c) 

where s  is the (constant) solvent viscosity,   R  is the characteristic relaxation time 

of segments (usually of macromolecular nature) in their non-associative state, and  

is a characteristic time for the scalar structural variable. Further, in what follows we 

consider   g c , that duly satisfies restrictions Eqs. (7).  

Finally, the following time evolution equations are derived for the scalar 

structural variable and the dimensionless conformation tensor, and the expression for 

the extra stress tensor:  

   [1]

1

,
T B

R

k T

t tr K 
               

c
c υ c υ c c υ c δ

c



,                  (11) 

 1
ln :

D

Dt 

  


   κ c ,                                             (12)                               

   ln
2

1
ln

2

s

s

G
G   

  

    

     
 

  

  

σ c δ c γ

σ c δ c γ
.                                     (13) 
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 The thermodynamic pressure P is given by17 

 :
A

P a



 c x
c

.                                             (14) 

where Gσ σ , δ  is the unit tensor, and  T κ υ . It should be pointed out that 

since the material of interest is incompressible, the pressure is no longer a 

thermodynamics state variable but some arbitrary scalar field that guarantees that the 

divergence-free condition automatically holds.17 Eq. (11) expresses the dynamics of 

the conformation tensor, where the definition of the upper-convected Maxwell time 

derivative is also provided. The segment’s characteristic time is selected to be given 

by 

  , tr
,

1 tr

k

R eq
R

eq

tr


 

 

     

c
c

c
,                                             (16) 

which is based on the extended White/Metzner (EWM) expression,17,39 where ,R eq  is 

the segment’s characteristic time at equilibrium if the segments were not able to 

associate, and the exponent k should be negative to account for a decreasing 

characteristic time due to flow (for shear-thinning fluids). The concentration 

dependency of ,R eq  follows the theory of Zimm, according to which    2 3 3 1
, ~R eq c    

 

where c is the concentration and   is the scaling exponent ( =1/2 for theta-solvents 

and ≈0.588 in good solvents).40 Although other choices for the segment’s 

characteristic time are, of course, possible, our above-stated choice will be shown 

below to capture the steady-state flow characteristics of the routinely employed HB 

model. Eq. (12) describes the evolution equation for   involving a coupling between 

  and the velocity gradient in the second term, to account for the breakup of the 

network due to the imposed flow, and relaxation effects in the first term accounting 

for the buildup of the network; when making time (and the velocity gradient) 
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dimensionless using ,R eq  then a parameter ,R eq    appears in the denominator of 

the first term which expresses the ratio between the relaxation time associated with 

network buildup and the relaxation time of segments; thus the parameter   quantifies 

the relative importance between two counteracting effects: regeneration/buildup and 

flow-induced breakup. This parameter is particularly important since, as will be 

shown below, is intimately related to the existence of a yield stress in steady-state 

shear.  

Eqs. (11)-(13) lie at the heart of this work. This approach leads unambiguously 

and self-consistently to the network buildup and destruction terms as described via 

Eq. (12). Thus, the necessity to resort to postulated and phenomenological 

expressions, as is routinely done in the literature, is eliminated.5,9 Under no flow 

conditions,  =1 and the segment’s relaxation time becomes infinite, so that the 

conformation tensor evolution equation reads [1] 0c , bearing the solution  ,t tc B

, where       , , ,Tt t t t t t   B E E  is the Finger strain tensor; this is the expected 

solution for the deformation of a solid network.41   

 

III. COMPARISONS WITH PREVIOUS WORK 

It is important to see how the new rheological model as derived in the context 

of the generalized bracket formalism of ΝΕΤ compares with  previous models.5,9 In 

the case of shear flow close to equilibrium, Eq. (12) becomes   1
21t           

(since 1/ 2~xyc   ), which nicely matches previous models:5 

 2 11
dc a b

t k k          when a=b=d=1, c=0,  2 1k  , and k1= 1/ 2  . Of course, 

these exact expressions can be obtained within the formalism by choosing different 

expressions for g and the mixing free energy density. For example, when 
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2
1

a bk     g γ  one gets exactly the afore-mentioned destruction term; however, this 

selection does not couple the structural variable with the conformation tensor. In case 

we were to generalize g to include a more general tensorial function of the 

conformation tensor, we should take note of whether restrictions imposed by the 

Jacobi identity, Eqs. (7), are duly met. Similarly, when     1
1 1

d

mix da G   x  and 

having the structural variable characteristic time decreasing due to the imposed flow 

as ~ c
    leads to the afore-mentioned regeneration term. A more appropriate form, 

however, irrespective of the choice of mixa ,  could be identified by considering 

 ,    c .  

Overall, and despite the fact that previous works invoked phenomenological 

and empirical relations for the buildup and destruction of the network and how these 

are related to the deformation of the segments, it is obvious that they are similar to the 

proposed model; in fact, the buildup rate is herein generalized for beyond equilibrium 

cases, since it involves ln . In the present approach, the choice of the form of the 

destruction rate in Eq. (12) self-consistently specifies the extra stress tensor 

expression. This comes in complete contrast to previous works, wherein the extra 

stress tensor is provided (introduced) externally.  Ultimately, and given the similarity 

of the constitutive relations employed by previous approaches (at least close to 

equilibrium), the present model also stands as a verification of these approaches from 

a NET perspective, thus dictating their thermodynamic admissibility (see Appendix).  

 

IV. ASYMPTOTIC BEHAVIOR IN STEADY STATE SHEAR AND 

UNIAXIAL ELONGATION 
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In this section we proceed to analyze the asymptotic behavior of the model in 

the limit of low deformation rates for the following two types of flow: simple shear 

flow described by the kinematics  , 0,0yu  and uniaxial elongation flow described 

by the kinematics  1 1
2 2, ,x y z    u    , where   is the elongation rate. The material 

functions to analyze are the shear viscosity yx     and the first normal stress 

coefficients   2
1 xx yy       in the case of shear (the second normal stress 

coefficient is identically zero), and the extensional viscosity  E xx yy       in the 

case of uniaxial elongation. To get asymptotic expressions for the conformation tensor 

and the structural variable, and consequently for the material functions under steady-

state conditions, in shear and uniaxial elongation, we consider the limit of small 

deformation rates and linearize the algebraic equations. The following results are then 

obtained: 

In shear flow we have 

1 1

0 0

1/ 2

0 0

1/ 2

lim 1 2 lim 2

lim lim

1 Wi

xx xx

xy xy y

c

c

 

 

  

  

 

 

 



 

   

  

 

 

 

 

   ,                                     (17) 

which imply that both the shear stress and the first normal stress difference approach a 

plateau in this limit, 1, 2xy xx yyG N G        . The former expression is 

what is customarily referred to as the yield stress, y , while the latter will be referred 

to as the yield first normal stress difference, N1,y. It is easily observed that as the value 

of the parameter   increases both y  and N1,y  decrease, and for 1   neither a yield 

stress nor a yield first normal stress difference is predicted. In fact, N1,y dissipates 

much faster than y . This is anticipated as when ,R eq   the buildup of the 
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network takes much longer than its destruction and the network exhibits almost no 

resistance to flow.  

In uniaxial elongation we get 

 

 
 

0

0

1
lim 1

lim 2
2 3

xx

yy

c

c





 

  
  





 














,                                     (18a) 

leading to  

     
 

 

E,
0

31
lim 1

2 3

1 2 1 Wi

xx yy yN


 
   

   


 



       

 
    

 


 

,                             (18b) 

where  

  4
1 1

3
     ,                                                (18c) 

We thus note that a yielding behavior is also observed even in uniaxial elongation, 

where a yield elongation normal stress, NE,y is noted, although the expressions are 

more complicated functions of  .  

 

V. PREDICTIONS OF THE NEW MODEL 

A. Shear Flow 

The predictions of the new model in the case of homogenous simple shear for 

 , shear stress, and first normal stress difference are plotted vs. the dimensionless 

shear rate, ,Wi R eq  , for various values of   and k in Fig. 1. We note that as 

Wi<<1 both the shear stress and the first normal stress difference approach their yield 

values, y  and  N1,y  respectively. As the dimensionless shear rate exceeds  1/ 2~    the 

destruction of the network commences [Fig. 1(a)] leading to the increase of both the 
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shear stress [Fig. 1(b)] and the first normal stress difference [Fig. 1(c)]. When 

segments deform with a constant relaxation time, i.e. k=0, the shear stress, when 

Wi>>1, increases linearly, while the first normal stress difference increases 

quadratically, with Wi. The former prediction, i.e. the exhibition of a constant 

viscosity at large shear rates, is reminiscent of the Bingham model. On the other hand, 

when k≠0 the shear stress power-law at large Wi is below the Bingham model 

predictions, which is reminiscent of the HB model, ~ n
yx  ; the exponent n is related 

to k via   1
1 2n k

  . As an overall note,   controls the behavior close to 

equilibrium, and, therefore, the yielding behavior, whereas the exponent k controls the 

behavior at large Wi. Note that would experimental data for N1,y were available, the 

value of   could conveniently be calculated via   2

1,4 y yN  . 

 

FIG. 1. Predictions of the new model for (a)  , (b) shear stress, and (c) first normal 

stress difference as a function of dimensionless shear rate for selected values of the 

model parameters; a power-law behavior at large shear rates is observed. 
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FIG. 2: Predictions of the new model for (a)  , and (b) elongation stress as a 

function of dimensionless elongation rate for selected values of the model parameters; 

a power-law behavior at large elongation rates is noted. 

 

B. Uniaxial Elongation 

We next proceed to the case of uniaxial elongation. Fig. 2 presents the 

dependency of   and the elongation stress as a function of dimensionless elongation 

rate, ,Wi R eq  , for various values of   and k. We note, as for the shear flow, that 

as Wi<<1 the elongation stress approaches its yield value NE,y, given by Eq. (18b), 

whereas by increasing Wi the network is destroyed [Fig. 2(a)] resulting to the increase 

of the elongation stress [Fig. 2(b)]. When, k=0, the elongation stress diverges as Wi 

approaches ½, as is the prediction for the Upper-Convected Maxwell model.41 

However, when k≠0 the power-law behavior of the elongation stress at large Wi 
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follows ~ Wi k
el  . As in shear flow,   controls the behavior when Wi<<1 whereas k 

controls the behavior when Wi>>1. 

 

 

FIG. 3: Hysteresis curve predictions for the shear stress as a function of Wi 

for selected model parameter values.  
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FIG. 4: Hysteresis curve predictions for the first normal stress difference as a 

function of Wi for selected model parameter values.  

 

C. Triangular change in shear rate experiments 

We now turn our attention to the case of the time-dependent triangular change 

in shear rate, which, as mentioned in Sec. I, is a characteristic rheological feature of 

thixotropic fluids. Here, the shear rate is initially increased as   max mWi Wi ,t t

0<t<tm and then decreased following  maxWi Wi 2 ,mt t     tm<t<2tm. The 

predictions for the shear stress and the first normal stress difference are plotted in 

Figs. 3 and 4, respectively. By increasing the absolute value of k, we note that the 

predictions for both quantities [Figs. 3(a) and 4(a)] decrease above Wi=0.4 in the 

ascending part of the shear-rate triangular ramp, but the overall shape of the hysteresis 

loop remains the same, i.e. of the type depicted in Fig. 2(a) of Ref. 5; the same is 
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noted when increasing the maximum shear rate [Figs. 3(d) and 4(d)], although, as 

expected, the predictions are higher as the shear rate becomes higher. Also, the same 

is noted by increasing   , however the overall shape of the curves are altered by 

having the two curves (the ascending and descending portions of the triangular ramp)  

coming closer to each other; in addition, the shear stress is seen to exhibit a large loop 

when  =10. Such a prediction is closer to the hysteresis curve type depicted in Fig. 

2(c) of Ref. 5.  Finally, by increasing the time needed to reach the maximum shear 

rate, tm, the value of the stress and the first normal stress coefficient [Figs. 3(c) and 

4(c)], increases, and the ascending and descanting portions of the triangular ramp 

become more asymmetric and come closer to each other.  As an overall note, the 

shear stress hysteresis loops are in a qualitative agreement with experimental 

rheological data for blood as measured by Bureau et al.42 as will be made more clearly 

in the next Section.  

 

VI. COMPARISON WITH EXPERIMENTAL DATA 

In Fig. 5 the model predictions are compared with the experimental steady-

state shear data of Cloitre et al.43 for the steady shear stress (scaled with the yield 

stress) as a function of dimensionless shear rate.  The experimental data refer to soft 

colloidal pastes, consisting of polyelectrolyte microgels made of cross-linked acrylate 

chains bearing methacrylic acid units, of various concentrations in water ( s =1 

mPa.s) or in a water/glycerol mixture ( s =10 mPa.s).43 The characteristic time at 

equilibrium for non-associating segments is considered as ,R eq s G   with 

G=4600(C-0.0142) given in Pa and the value of k=-3/4  is selected to match the 

power-law at large shear rates, 0.4~yx  . Fig. 5 shows that the model is able of 

reproducing the rheological data quite well except in the range 0.01<Wi<1. This 
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could easily be amended by considering a spectrum of relaxation times instead of a 

single relaxation time as we have assumed here.  

 

  

FIG 5. Comparison of experimental rheological data of Cloitre et al.43 on soft 

colloidal pastes along with predictions of the present model (with  =1 and k=-3/4 or 

n=0.4).    

 

In Fig. 6 the model predictions are compared with the experimental steady-

state shear stress data of Sousa et al.44 on the whole blood of Donor A, i.e. the solvent 

viscosity is s =1.2 mPa.s. (the average value of the normal value of plasma viscosity 

is 1.10–1.30 mPa s at 37°C independent of age and gender45). Given that at large 

shear rates  ~xy   then we consider k=0. We note a very good comparison with the 

experimental rheological data, which were previously fitted with the Casson model.46    
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FIG 6. Comparison of the model predictions with the experimental rheological data 

on the blood of Donor A from Sousa et al.44 with a hematocrit 41.6% at T=37 oC (with 

G=0.019 Pa, ,R eq =0.14 s,  =1 and k=0).  

 

 

FIG 7. Comparison of the model predictions with the hysteresis curve-rheogram B of 

sample 8  of Bureau et al.42 (with G=0.28 dyn/cm2, ,R eq =0.5 s,  =50 and k=0).  
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Finally, in Fig. 7 we compare the model predictions against the hysteresis 

curve-rheogram B of sample 8 ( =0.043 s-2, tm=23.8 s) of Bureau et al.,42 (hematocrit 

equal to 45% and the measurements were done at 25±0.5 oC). As in Fig. 6, we 

consider a plasma viscosity equal to s =1.2 mPa.s. and consider blood to become 

Newtonian at large shear rates (i.e. k=0). We note a satisfactory agreement with the 

experimental hysteresis curve of Bureau et al. although a slight mismatch is noted for 

the descending portion between, approximately, Wi=0.15 and 0.5.  

 

VII. CONCLUSION 

We provided the modeling of materials exhibiting a thixotropic behavior 

through NET. Our approach provides the means to introduce a self-consistent 

coupling between elasticity and viscoplasticity. Even though the proposed model is 

simple, it has been shown to be able to capture the exhibition of a yield stress at small 

shear rates, and the power-law behavior at large shear rates in the case of steady 

shear, in accordance with rheological data routinely fitted by the HB model. It is 

important to say that the use of the Bingham and HB models in computational codes 

results in implementation difficulties due to the inherent singularity exhibited by the 

discontinuity of these models; i.e. that they only flow above the yield stress.8,47 The 

proposed model is free from such singularities. In addition, the proposed NET-based 

approach allows for checking the thermodynamic admissibility of the model. 

Moreover, it allows relating the notion of the yield stress to molecular arguments, 

which turns out to be governed by the ratio of the two characteristic times associated 

with the buildup of the network and the relaxation of segments. The new model is in 

quantitative agreement with steady-shear stress data of colloidal pastes (Fig. 5) and 
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blood (Fig. 6), and in a satisfactory agreement with the rheological hysteresis data of 

blood as measured by Bureau et al.42 (Fig. 7).   

The proposed thermodynamically-based approach, in addition to guaranteeing 

the thermodynamic admissibility and the internal consistency of the final transport 

equations, easily allows for important modifications, omitted in the present version of 

our model, to take place and thus improve its predictive capacity. The proposed model 

can be extended, for example, by considering an anisotropic hydrodynamic drag, 

which will allow the prediction of a non-vanishing second normal stress difference. 

Accounting for diffusion and wall effects, will also be particularly important in 

reproducing the stress-gradient induced migration of red blood cells and rouleaux 

(column-like aggregates of red blood cells) to address the Fåhræus and Fåhræus–

Lindqvist effects.48 Such a modification would also be particularly important for 

drilling fluid flows in porous media.49  

Finally, the improved constitutive model could be employed in direct Finite 

Element simulations which will improve our understanding as to how various 

parameters, like temperature and pressure and the duration of stopping times in crude 

oil pipelines, affect the properties of crude oil.9,50 Such results are expected to shed 

light on the rheological behavior of thixotropic materials and, therefore, to their tailor 

design. Given that thixotropic materials are used and consumed in everyday life, such 

an understanding is of great importance.  
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APPENDIX 

Any thermodynamic system must obey the restriction of a non-negative total rate of 

entropy production. In the case of isothermal incompressible flows, the entropy 

production results from the degradation of mechanical energy leading to 

 , 0m m mdH dt H H  .17 For this to be satisfied, it can be shown that the following 

condition must hold 

 
2

,

0

m m

c m m

H H

H HA A A
Q dV

C C M M


   
   

   
    

 

                      


.       (A1) 

The first term gives  

 1tr 6 tr
2

c

R

A A G

c c
 

 
  

   c c 
 

,                                (A2a) 

or when rewritten in terms of the eigenvalues of the conformation tensor, 

 , ,k k x y z  , 

 2
1

0
2

kc

kR k

A A G

c c
 

 
   


   

.                                (A2b) 
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Given that both the characteristic time and the elastic modulus are always positive, 

this is indeed a non-negative quantity. The second term in Eq. (A1) is non-negative 

provided that  0   which, in view of Eq. (10b), indeed holds true for a non-

negative relaxation time   . Finally,  

: 0m m
s

H H
Q

M M  
 

  
 

   
          

γ γ  ,                        (A2c) 

which holds true for a non-negative solvent viscosity.  

In the above description, it has been assumed that the conformation tensor is 

positive definite. A sufficient (but not necessary) condition for the conformation 

tensor to be positive definite is the prefactor of the unit tensor in the conformation 

tensor evolution equation, Eq. (11), be non-negative;17,51 this requires that   0R  , 

which holds true since characteristic times are always non-negative. Thus, it has been 

demonstrated that the derived model is thermodynamically admissible and preserves 

the positive-definite nature of the conformation tensor. 
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