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Abstract \\

We propose a new description of elagto=viscoplastic fluids by relating the notion of

thixotropy directly to internal Melqst city and network structures through a
general, thermodynamically \w t, approach. By means of non-equilibrium
thermodynamics, a thermically—admissible elasto-viscoplastic model is
derived which i% self-consistently and effortlessly thixotropic effects and
reproduces oth loy nd high shear rates experimental data usually fitted with
empirical (WV equations, such as the Bingham and Herschel-Bulkley models.
Thepr DIOHS of the new model are in very good agreement with available steady-

sﬂeav;heological data for soft colloidal pastes and blood, i.e. systems exhibiting

a yielsi stress, and with time-dependent rheological data for blood, i.e. during a
tgangular time-dependent change in shear rate, exhibiting a hysteresis. The proposed
approach is expected to provide the means to improve our understanding of

thixotropic fluids.
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I. INTRODUCTION

Many materials of industrial interest, such as emulsions, colloids, suspensions
and foams, exhibit a yield stress, i.e. they flow only above thi?ritical stress and
behave as elastic solids otherwise.!> Such materials are encou ere(h{any sectors,
such as in the oil industry (e..g, crude oil and drilling flui )letruction sector
(e.g., cement pastes and fresh concrete), the food induStry'(e.g.,“ketchup, margarine
and mayonnaise) and in the pharmaceutics/cosmeti€s indus ‘?;;., blood, pastes and
foams).!? The yield stress is acknowledged agsan “engi e)ring” reality and has been
the subject of ongoing debate.> The deschiption (if:—)ield—stress materials has been

proven to be one of the subtlest taﬁé\rhe logy.* However, a more in-depth

understanding of their peculiar rheologieal.behaviour is paramount if we aspire to

optimize the processing propertie?ﬁs\i portant class of materials.
st

The appearance QS\:(\ ss is a rheological feature strongly associated

with thixotropic fluids.> According to [IUPAC, thixotropy is defined as the continuous
decrease of visc 'ty%? time when flow is applied to a sample that has been
previously at‘sest and thesubsequent recovery of viscosity in time when the flow is

discontin w ver, such a behaviour is also encountered with viscoelastic,

she 'Dng, fluids: upon a stepwise increase in shear rate the viscosity, after an

initial £ oveyhoot, decreases, whereas when a stepwise reduction is applied the

ViSCO%ty gradually returns to a higher value. Clearly, distinguishing between

henomena.” Another characteristic rheological feature of thixotropic fluids is the

—
K‘; ixotropy and nonlinear viscoelasticity is important in our understanding of these
-

R

hysteresis experiment where the shear rate, 7, is first gradually increased with time

y=at, 0<t<t_  and then decreased following y :a(ZZm —t), t <t<2t , with
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a=y,./t,, where . is the maximum shear rate reached (at t=tm).” When the

transient shear stress is plotted as a function of the time-dependent shear rate, a

hysteresis loop is observed in thixotropic fluids (see e.g., Fig. 2 of Ref. 5 and Figs. 3

—s%\ﬂuids, also
known as viscoplastic fluids, is the Bingham model, w ki\lves two material
parameters (the yield stress, o, and the plastic viscosi )1 8

( &} (1)

where o is the extra (polymeric) tress sor, Y= Vu+ Vu is the rate-of-strain

— /1 . Y Y
tensor, and o =./16:6 and y =3

(the latter denotes the s a&k&

stress at small shear rates andibehaves as a Newtonian fluid at large shear rates. An

%\e Herschel-Bulkley (HB) model given as

and 7 below).

The simplest model available for the description of

;\L enote the magnitudes of the two tensors

shear flow, the shear stress approaches the yield

extension of thi

2

G b
& | y
‘y(é\)é the consistency index and » is the flow behaviour index (power-law

Xpon nt),1 4 the Bingham model is a special case of the HB model when n=1 and

ﬂ
k =1,. The HB model is able to describe a shear thinning (n<1) or shear thickening

w “ (n>1) behaviour. Both the Bingham and HB models, which are routinely employed to

describe the behavior of various viscoplastic materials, belong to the class of

generalized Newtonian constitutive equations, i.e. they do not account for viscoelastic
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effects.! It should also be emphasized that, despite their success, when fitting data
using these models, the material parameters involved, are phenomenological in nature
and bear no physical meaning, i.e. they cannot be related to the molecular
characteristics of the particular material they aim to describe. Furthermore, they
exhibit an unavoidable disadvantage: they predict vanishing n rmahkgées in shear

flow.>?

The complex rheological behavior of thixotr c}m@ in general, can be
understood on the basis of a microstructure that ependsson he shear history.> For

example, Carbopol solutions are made of hi@olecu ar-weight structural elements

that interact forming complex network-like ctéres.'® The continued competition

between the flow-induced breakdown&{t thermal-noise-induced buildup of the

cheold

structural elements characterizes No ogical behaviour. Under extreme flow
&

conditions, the breakdown{of t tructure prevails recombination, leading to a
complete destruction of? h&c etwork. Another example is suspensions, e.g.,
drilling fluids, for which the eXistence of a yield stress is attributed to the combined
effect of the s (@ of connected particles and the dry friction between loose
particles;!! the ,‘:mc}'(on of the network is the result of viscous forces acting on the
particl %Mw. Finally, in the case of crude oil, the elastic network is believed
to e tBe ult of crystalline formations composed of paraffine, asphaltane, and resin
eQns enté.?

SFrom a mathematical point of view, the internal structure may be characterized
b§ a scalar structural variable, A4, that expresses the instantaneous degree of structure:
in a fully structured state, i.e. a complete network that deforms elastically, it is equal

to unity, while in a completely broken state it vanishes.’ Thus, the equation for the

shear stress is coupled with A4 , e.g. in the case of the HB model
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o, (A)=0,(A)+K,, (4)7"™ 3> The rate of change of the A is the net result of

the simultaneous rates for structure buildup and breakdown which follow certain

kinetics.> One of the earliest thixotropic constitutive models of this class, is that

proposed by Moore!? in which the stress tensor is given as 6 74(/1)7 where A is
dictated by 0,A=k, (I—Z)—kl/l , where k2 and ki are th rat} of buildup and

destruction, respectively, which could depend on (th: i-13var1 ts vand on A .
Another early model, is that of Fredrickson'? whefein the.stress tensor is given as

6=¢ 'y and the structural parameter, chC.cte d )Js “fluidity” ¢ , obeys

0,0=k, (4 —9)—k (4. —9)6:7; thus, it canbe deduced that A=(d—d)/(4,—d,).
Many more viscoplastic constitutive m}del\s e’been proposed in the literature.’
However, common visc plast1mutive models still ignore elastic effects
once the fluids start flowing. Thhmﬁion has led to the development of elasto-
viscoplastic constitutive '\Xes ibing the rheological behavior of the fluid above
the yields stress via the use Vlscoelastlc models, such as the Oldroyd-B!4, the
Maxwell,'> or n- T ien Tanner'® models. Even though some of these models
have pro Zﬁ e to/describe well experimental data, 12 their connection with
molec aﬁm is vague. Furthermore, the mere hybridization of viscoplasticity
and elastieity may not be done appropriately, possibly lacking self-consistency. These
diaw /ckJ are detrimental in the potential use of elasto-viscoplastic models to
han)e our understanding of the rheological behavior of thixotropic fluids.
5 To remedy the above shortcomings, we herein propose a detailed model for
thixotropic materials that can be related to their molecular underpinning and provide a

self-consistent coupling between elasticity and viscoplasticity through the

consideration of an elastic free energy expression [see Egs. (5)]. The Generalized-
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bracket'” formalism of non-equilibrium thermodynamics (NET) is employed to
properly address three key issues: (a) selecting the proper state variables, (b)
constructing both the Poisson and dissipation brackets, and (c) specifying the system’s
Hamiltonian. The attractive advantage of employing a NET form?ljsm”‘19 is that the
resulting constitutive model is, by construction, consistent wNe laws of

thermodynamics.'”-!* NET laws provide the means to impose restgiCtions to the model

parameters. Up to date, several micro-structured systems, such asdiquid crystals,?0-2?

-~

17-19.22:24 immisciblef complex fluids,!7-1%25-27 polymer

polymer melts and solutions,

nanocomposites,?®33 drilling fluids,** blood,Cohno s,h and micellar systems,*’

have been addressed through NET, a “fact at‘)lttests to its usefulness and

[ -
applicability. To the best of our knowld&only e model proposed by Beris et al.38

for concentrated star polymer suspensions,.a system exhibiting a yield stress, was
derived via the use of NET prin \}{[ is model is based on an extension of the

Johnson—Segalman visc elasN titutive equation in which the non-affine
parameter is variable, obey%evolution equation that is purely phenomenological
and not derived fi N}S Beris et al.*® also proposed phenomenological elastic and

viscous c? tiofis to the shear stress, not derived from NET.

L &EQUILIBRIUM THERMODYNAMICS  MODELING  OF
<§T‘ Y

-
& The vector of state variables
—

T

A

5 Following previous works,” we choose to employ a scalar structural variable,
, to characterize the instantaneous degree of structure of thixotropic materials by

accounting for the number of segments or components that are attached to the

underlying network. We also employ an additional tensorial structural variable, C, to
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characterize the deformation of the complex structure, where each segment is
modeled as an elastic dumbbell that can be detached from the network due to flow
and attach to it due to thermal noise. The use of NET allows for the proper coupling
of these two structural variables with the hydrodynamic ones z?« with each other.
Herein, we consider a homogeneous, isothermal, and inco %Nﬂow. The

number density, #n, and the mass density of polymer segments, are related through

n=(p/M)N,, , where M denotes the segment molecular ‘@ight each chain (i.e., a
—
is

—
strictly monodisperse system is considered) and{/NVav i gadro’s constant. The

conformation tensor density is defined by C ﬁ, W‘]Sel‘e c= jRRl//(R,t)d R is the
second moment of the distribution fu@,t for the end-to-end connector

vector R.!7"1%22 Note that as the ma\; of polymer segments is constant, due to

incompressibility, the conformati Yﬂﬁnso may be employed directly.!” Finally, we
.

consider the momentum densi as,the hydrodynamic variable. Overall, the vector

x of state variables is exp%\ﬁms x={m,4,c}. Since the system is isothermal, the

sity @tme) is excluded from the vector of state variables.
(s

en
éh&ilto ian of the system

)e present case, the mechanical part of the system’s Hamiltonian is given

entropy d
B. T

). H, =K, (x)+A4(x), 3)

Rl (4)
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The first term on the right-hand side of Eq. (3) represents the kinetic energy of the
system, K, (X), given via Eq. (4), whereas A(X) represents the system’s Helmholtz

free energy, given by

A(x)=[a(x)v = [[a, (x)+ a,. (x) /\
EJ.[kB—Ttr(c—ceq)—lndeté}dV+EJ‘(lln/1— + >

where G =nk,T = pRT/M is the (constant) elastic CDM 1s the dumbbell’s

)

spring constant, kg is Boltzmann’s constant, and(wls absolute temperature. It

should be noted that in the present approach Epol-yyeric segments are assumed to
be below the entanglement thresholdy how r,‘There are available free energy
expressions that can be used beyog d}'!\th old.?* The first integral in Eq. (5)
o~
expresses the sum of the elastice ergy the Hookean springs, wherein all segments
are deformed due to the 1Kse ow. The second integral expresses the ideal
entropy of mixing for se p&a‘tare not associated to the network; the extra term
is added to ensure he mixing free energy maximizes under no flow conditions,
ee Mx

i.e. when 1=1As her discussion below).

C.T oisson d1ss1pat10n brackets
system for which its internal structure is described by a conformation

tensor, e/expression for the Poisson bracket is well known [see, e.g., Refs. 17-19]:

)

U

X

=~
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{F,G}Z—_[ 5_Fvﬂ m G _5_Gvﬂ m OF dv
om "om, ) om, " om,

_I{ oF (Caﬁ 5G J_ 5G Vy[ca,,, SF H‘W

OC,p om, | ¢,y om,

+Jqu{5F'vy[5G:}_5G’vy[5F

OC,p omy | ¢,y om

\%

i -
N

)

Note that here, and throughout this work, @st@'nj’ s summation convention for

repeated Greek indices is employed. hc%sst‘(ﬁr integrals represent the usual
0

Poisson bracket for the isothermal.and ‘ac essible flow of a viscoelastic fluid

whose structure is characterize bSac ormation tensor.'7-1%?2 The last integral in
.
1

between the scalar structural variable and the

Eq. (6) introduces a genera%pl

velocity gradient throug ?:@.19 Since we need to impose the requirement that

the Poisson brack Is the Jacobi identity, the following restrictions are obtained

when the mos ge;}gkubression for g is considered, g = g,¢+ g,8 + g,¢ ' according
-Hani 0{ theorem (where the scalar coefficients are functions of 4 and

to the Cazé\
the t ee}n ariants of the dimensionless conformation tensor ¢=(K/k,T)c :

g,

- g %8 o 08,08 O
5 oA oA ar, oI,

\

=~

0g; og, og,  0g;
283 _ o Zol ol oL 783 | 7
I Y R T2 @)
9 9 dg, 0
0, %8, 2,08 Og
oa o \a,
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Publishing The corresponding dissipation bracket used in this work is of the following form

[F.G] =—j—‘5F A 55—GdV—j5—FA45—GdV
we 2 8e,, s, A A

®)

oF oG
-V V|——dV
J. a(é‘Mﬁ]Qaﬂyg 7[5Ms]d

The first two integrals on the right-hand side of Eq. (8) ac{\?relaxation effects

for both structural variables and are proportional to

ourth-rank, relaxation tensor,
q\\

A°, and a scalar relaxation factor A*, which, infturn, are fayersely proportional to

afye
some characteristic relaxation times. The t‘ira integral”accounts for the viscous
dissipation of the solvent and expresses the"Wewtonian rheological behavior of the

solvent; it is proportional to the fouﬁbﬁ tefisor O, . Note that the subscript
\

roduct correction,” is added to the dissipation

(13 2

nec”’, meaning “no entropy

bracket to indicate that thi d%;on bracket is without terms involving Volterra

derivatives with respect‘N\nQ/, which are not important when considering (as
stems.

we do here) isother,

D. The e{uh\qvo tion equations

llowing the usual procedure,!” the following expressions are obtained for

the auc}yy momentum balance equation, the evolution equations for the
-ﬁ

confoﬁnation tensor ¢ and the scalar structural variable A, and the extra stress tensor:

Q
3 p?z—pD'VD—V'P-i—V'G, (9a)
\ f

04

. _ e 04
Capi) = ~Nopye S
ye

(9b)

10
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t
oA o4
Oup 2c, —+ 8up (9d)
"Sc, oA

The following typical expressions, proposed in the literature for ?’écoelastic fluids,”

are also used: Q\
1
Ay =————(c, 8, +c, .8, +c x (10a)
By 2nKTR (trc,ﬁ)( 7B ﬂ7 ﬂyQ“‘
Q

5 (10b)

Grﬂ
D
aﬁys - U?Q{& 5137) ? (100)

where 77, is the (constant) solv. t viscosity, 7, is the characteristic relaxation time

of segments (usually of mac‘\\le lar nature) in their non-associative state, and 7,

is a characteristic time fo Nar structural variable. Further, in what follows we

consider g = —¢4 hé-tm*; satisfies restrictions Egs. (7).

Fin ly, f(yowmg time evolution equations are derived for the scalar

structu Var1 e and the dimensionless conformation tensor, and the expression for

the xtr ress tensor:
[1]_ +1J Ve— (Vo) -c—¢-Vo=— 1~ [c—kBTﬁj, (11
7, (r€, 1) K

5 D2 Lo (k)4 (12)

Dt 7,
<

(9

G(&-8)-Z a(nA)e+nq=
2

| ) (13)

—§-d- (lenljé+ﬁsq’(

11
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The thermodynamic pressure P is given by!’

P:czg—a(x). (14)

where 6 =6/ G, & is the unit tensor, and K=(VD)T. It should be, pointed out that

since the material of interest is incompressible, the pressu ew longer a

D

thermodynamics state variable but some arbitrary scalar field guarantees that the

divergence-free condition automatically holds.!” Eq. T‘ﬁpre s the dynamics of
. .. H .

the conformation tensor, where the definition of tHeuppersconvected Maxwell time

derivative is also provided. The segment’s ch(ra.cter ic ti)ne is selected to be given

by

(16)

which is based on the extended \wyb@t ner (EWM) expression,'’? where 7, is

the segment’s character@;\ea{ quilibrium if the segments were not able to

associate, and the exponen should be negative to account for a decreasing

characteristic ti due flow (for shear-thinning fluids). The concentration

dependen?o :: foyows the theory of Zimm, according to which 7z, , ~ /)

where

bj%gcentration and v is the scaling exponent (v =1/2 for theta-solvents
in good solvents).*® Although other choices for the segment’s
eharai ris’éc time are, of course, possible, our above-stated choice will be shown
lowsto capture the steady-state flow characteristics of the routinely employed HB
n})del. Eq. (12) describes the evolution equation for A involving a coupling between
A and the velocity gradient in the second term, to account for the breakup of the
network due to the imposed flow, and relaxation effects in the first term accounting

for the buildup of the network; when making time (and the velocity gradient)

12
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dimensionless using 7, then a parameter £ =7, /7, appears in the denominator of

the first term which expresses the ratio between the relaxation time associated with
network buildup and the relaxation time of segments; thus the parameter ¢ quantifies
the relative importance between two counteracting effects: reger?(ation/buildup and
flow-induced breakup. This parameter is particularly impo a%%\as will be
shown below, is intimately related to the existence of a &ss in steady-state
shear. ‘)
~

Egs. (11)-(13) lie at the heart of this work. hi?‘appgo leads unambiguously
and self-consistently to the network buildup @ des ton terms as described via
Eq. (12). Thus, the necessity to resortsfo pgstblated and phenomenological
expressions, as is routinely done in‘ﬂK atufe, is eliminated.>® Under no flow

conditions, 4 =1 and the segment’s MH time becomes infinite, so that the

conformation tensor evoluti i\'\nhds ém =0, bearing the solution ¢ =B (¢,¢')

, where B(t,t')=E(1,/' is the Finger strain tensor; this is the expected

solution for the d@l of a solid network.*!
£

II1. CO RIS WITH PREVIOUS WORK

%npo nt to see how the new rheological model as derived in the context
of_ the generalized bracket formalism of NET compares with previous models.> In
£

ﬂ
the caﬂe shear flow close to equilibrium, Eq. (12) becomes 8,4 = (1- 1) / T, - ye T

-
Q ince Cyy ~ g ), which nicely matches previous models:®

X

=~

0A=ky* (1—/1)d —ky"2" when a=b=d=1, c=0, k,=1/7,, and ki=¢ " . Of course,
these exact expressions can be obtained within the formalism by choosing different
expressions for g and the mixing free energy density. For example, when

13
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g=— 17“_2/1by one gets exactly the afore-mentioned destruction term; however, this

selection does not couple the structural variable with the conformation tensor. In case
we were to generalize g to include a more general tensorial function of the

conformation tensor, we should take note of whether restricti(?§ imposed by the

)36;\%1@ —/1)d and
having the structural variable characteristic time decreasinN

as 7, ~y ¢ leads to the afore-mentioned regeneration tg%"mere appropriate form,
_—

however, irrespective of the choice of a,, COQQSdentiﬁed by considering

r,=7,(c,A). D

Overall, and despite the fact t@ works invoked phenomenological

and empirical relations for the buil@'&e&;mction of the network and how these
are related to the deformatio of\gments, it is obvious that they are similar to the
proposed model; in fact, he%\(h&r te is herein generalized for beyond equilibrium
cases, since it involves me present approach, the choice of the form of the

@12) self-consistently specifies the extra stress tensor

Jacobi identity, Eqs. (7), are duly met. Similarly, when a,,

destruction rat

expressi07

stress t nsok\pQVi ed (introduced) externally. Ultimately, and given the similarity

c{)mgs in complete contrast to previous works, wherein the extra

stitutive relations employed by previous approaches (at least close to
ibrium), the present model also stands as a verification of these approaches from

a NEﬁperspective, thus dictating their thermodynamic admissibility (see Appendix).

)

S ~ IV. ASYMPTOTIC BEHAVIOR IN STEADY STATE SHEAR AND

UNIAXIAL ELONGATION

14
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In this section we proceed to analyze the asymptotic behavior of the model in
the limit of low deformation rates for the following two types of flow: simple shear

flow described by the kinematics u = ( 7,0, 0) and uniaxial elongation flow described
by the kinematics u = (éx,— L&y, —1éz), where ¢ is the elongati?{ rate. The material

functions to analyze are the shear viscosity n=0,, / 7 an he%(mal stress

coefficients ‘Plz(am—aw)/ 7° in the case of shea L%ewn normal stress

—~
iscosity, = (o, -0, ) /¢ in the

)

or the conformation tensor

coefficient is identically zero), and the extensional

case of uniaxial elongation. To get asymptotic@ressi

and the structural variable, and consequently“for the material functions under steady-

state conditions, in shear and uniaxi%@ n, we consider the limit of small
deformation rates and linearize the b}@equations. The following results are then

obtained: ~

In shear flow we a§\

1+2¢" = limé,, =2¢"
7—0

7>
s~ o~ 12
—ly_lir(}axy =G,=¢ , (17)
1-&"°Wi

which i IM‘[ the shear stress and the first normal stress difference approach a

pl al; this limit, o,, = G/ \/E,Nl =0,-0, =2G/¢ . The former expression is

what 1 uéomarily referred to as the yield stress, o, , while the latter will be referred
et

Q\

}\e yield first normal stress difference, Ni,. It is easily observed that as the value

o? the parameter & increases both o, and N1, decrease, and for & >>1 neither a yield

stress nor a yield first normal stress difference is predicted. In fact, N1, dissipates

much faster than o, . This is anticipated as when 7, >>7,  the buildup of the

15
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Publi shing network takes much longer than its destruction and the network exhibits almost no
resistance to flow.

In uniaxial elongation we get

.. 1
lylil(}cxx—1+;9(5) /

, (18a)
R

-0 Y 26+30(¢)

leading to
o
lim(&,,~6,,)= N, =[1+19(g) 30(e)
70 > ” & +30(%)
C , (18b)
Axl-2[ 142 JWi
S NG
where \\
+§g, (18¢)

We thus note that a yie ing\%{o is also observed even in uniaxial elongation,

where a yield elongation normal stress, Vg, is noted, although the expressions are

more complicat @ of ¢.
Q/
V. PRE /CNKS F THE NEW MODEL

N
ow

A. She

/Thypredictions of the new model in the case of homogenous simple shear for
ﬂ
A, Sh‘,

ar stress, and first normal stress difference are plotted vs. the dimensionless

ﬁ
Qear rate, Wi=yr7, , , for various values of & and k in Fig. 1. We note that as

S “. Wi<<1 both the shear stress and the first normal stress difference approach their yield

values, o, and N1, respectively. As the dimensionless shear rate exceeds ~ &' the

destruction of the network commences [Fig. 1(a)] leading to the increase of both the

16
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Publishing shear stress [Fig. 1(b)] and the first normal stress difference [Fig. 1(c)]. When
segments deform with a constant relaxation time, i.e. &=0, the shear stress, when
Wi>>1, increases linearly, while the first normal stress difference increases
quadratically, with Wi. The former prediction, i.e. the exhi?n of a constant

viscosity at large shear rates, is reminiscent of the Bingham model.

3O\n&Ko‘[her hand,

when k#0 the shear stress power-law at large Wi is belo\e:p Bingham model

predictions, which is reminiscent of the HB model, o, ;7) the exponent 7 is related

—

—
to k via n=(1—2k)_1 . As an overall note, contrq&s e behavior close to

equilibrium, and, therefore, the yielding beha\@w eas the exponent & controls the

behavior at large Wi. Note that would % ta{TTlata for N1, were available, the

2
value of ¢ could conveniently be ¢ c@ &= 4(o-y /N, y) .

@ (®) Wi
=001, k=0
e c=0.01, k=-1/2 21/273
0.1+ &100, k=-1/2 Wi
~< 001 w— =100, k=-3/2
0.001 4 wil4
1E-4
1E-5 1
1E-6 7 = ; 10" . . . . .
107 A107% 10° /lo' 102Wi103 10* 10 10" 10° 10" 100 10* 10
10° T T T T T Wi
(© i
10°4 — 001, k=0 i g
5 — c=0.01, k=-1/2
1074 e £=100, k=-1/2
Q\D w— =100, k=-3/2
y. = 10°4

o~ / 102

10" 4

3 10°4

3 10-110‘2 16" 16“ 16‘ 10\°N 163 10
1

\I<

FIG. 1. Predictions of the new model for (a) A, (b) shear stress, and (c) first normal
stress difference as a function of dimensionless shear rate for selected values of the
model parameters; a power-law behavior at large shear rates is observed.
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FIG. 2: Predictions of the ne mor (a) 4, and (b) elongation stress as a

function of dimensionless el ngaxt\atexfor selected values of the model parameters;
V&N

&

a power- at large elongation rates is noted.

B. Uniaxial Elong ‘oh

We s roc?d to the case of uniaxial elongation. Fig. 2 presents the

depend Nnd the elongation stress as a function of dimensionless elongation

ratgl Wi érR,gq , for various values of ¢ and k. We note, as for the shear flow, that
£
as. Wi <1/the elongation stress approaches its yield value Ng,, given by Eq. (18b),
— ere)s by increasing Wi the network is destroyed [Fig. 2(a)] resulting to the increase

0} the elongation stress [Fig. 2(b)]. When, k=0, the elongation stress diverges as Wi

S “ approaches 4, as is the prediction for the Upper-Convected Maxwell model.*!

However, when k#0 the power-law behavior of the elongation stress at large Wi
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Publishing follows &, ~ Wi™ . As in shear flow, & controls the behavior when Wi<<1 whereas k

controls the behavior when Wi>>1.
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FIG. 3: Hysteresis curve predictions for the shear stress as a function of Wi
Q selected model parameter values.

&
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FIG. 4: Hysteresis curv prew\t@ﬁ)r the first normal stress difference as a
function ofﬁojeﬁed model parameter values.
C. Triangular change il&gate experiments
We now, t@ention to the case of the time-dependent triangular change
in shear r?#,é{,a}/mentioned in Sec. I, is a characteristic rheological feature of
thixotr, pir)ﬂui Here, the shear rate is initially increased as Wi=Wi__ (t/tm),
0£/<tms and\ then decreased following Wi=Wi_ [2—(t/ ¢, )], tm<t<2tm. The
~
predi3tio s for the shear stress and the first normal stress difference are plotted in
ﬁ

and 4, respectively. By increasing the absolute value of &, we note that the

S edictions for both quantities [Figs. 3(a) and 4(a)] decrease above Wi=0.4 in the
e

ascending part of the shear-rate triangular ramp, but the overall shape of the hysteresis

loop remains the same, i.e. of the type depicted in Fig. 2(a) of Ref. 5; the same is
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noted when increasing the maximum shear rate [Figs. 3(d) and 4(d)], although, as
expected, the predictions are higher as the shear rate becomes higher. Also, the same
is noted by increasing & , however the overall shape of the curves are altered by
having the two curves (the ascending and descending portions of ?e triangular ramp)
coming closer to each other; in addition, the shear stress is see tgw large loop
when £=10. Such a prediction is closer to the hysteresis rgaedepicted in Fig.
2(c) of Ref. 5. Finally, by increasing the time neede to}ach ¢ maximum shear
——

rate, fm, the value of the stress and the first normal stress Cegfficient [Figs. 3(c) and

4(c)], increases, and the ascending and descafnting pertions of the triangular ramp

become more asymmetric and come closérto eac‘}}:—)ther. As an overall note, the
shear stress hysteresis loops are ir@a ive agreement with experimental
rheological data for blood as measu%wau et al.*2 as will be made more clearly

in the next Section. \ N
VI. COMPARISON WIT%’ERIMENTAL DATA

In Fig. 5 @;} predictions are compared with the experimental steady-
of Cloi

state she? % et al.¥ for the steady shear stress (scaled with the yield
stress) as Wn f dimensionless shear rate. The experimental data refer to soft
collpi )stes, consisting of polyelectrolyte microgels made of cross-linked acrylate

chai be@ng methacrylic acid units, of various concentrations in water (77, =1
—

Pa.ss or in a water/glycerol mixture (77, =10 mPa.s).*® The characteristic time at

ehuilibrium for non-associating segments is considered as 7.,

=n,/G with

G=4600(C-0.0142) given in Pa and the value of k=-3/4 is selected to match the

power-law at large shear rates, o, ~ 7"*. Fig. 5 shows that the model is able of

reproducing the rheological data quite well except in the range 0.01<Wi<I. This
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Publi shing could easily be amended by considering a spectrum of relaxation times instead of a

single relaxation time as we have assumed here.

RELLLLL LR, B LLLL LU B LU BRI AL, BERLELILELLLE LR Lib: B
17=1 mPa.s n=10 mPa.s /
® C=0015g/g ©O C=0.03¢g/g
® C-0.02g0 5
- ® C=0.03g/¢
@) 10!] @ C00tge |
\>< 1 ® C=0.06g/g .) ]
b>~.
—
10°- — ]

] N ]
T T T T T } T T T T T
10° 10" \Q‘\X 10 10° 10*
S Wi

FIG 5. Comparison of experi ha-lq;heological data of Cloitre et al.*} on soft

colloidal pastes along with predi

Y

of the present model (with &£=1 and k=-3/4 or

n=0.4).

Fi %Iy | predictions are compared with the experimental steady-

In (g
state shea N‘[a of Sousa et al.** on the whole blood of Donor A, i.e. the solvent

9

s 17.=1.2 mPa.s. (the average value of the normal value of plasma viscosity
£

- 1.30 mPa s at 37°C independent of age and gender®S). Given that at large

ear}ates o,, ~ 7 then we consider k&=0. We note a very good comparison with the

e)perimental rheological data, which were previously fitted with the Casson model.*®
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FIG 6. Comparison of the model predicti sg"ah t@xperimen‘[al rheological data
L

on the blood of Donor A from Sousa et al. 4 with & hematocrit 41.6% at 7=37 °C (with
%s, & =1 and £=0).

G=0.019 Pa,

<
EO.IS
g 4
>\ ‘
04104
%

b 0.00 PE— — .
= 00 02 04 06 08 1.0
b shear rate (1/s)

S Y RIGT. Comparison of the model predictions with the hysteresis curve-rheogram B of

sample 8 of Bureau et al.** (with G=0.28 dyn/cm?, 7, =0.5 s, &£ =50 and k=0).
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Finally, in Fig. 7 we compare the model predictions against the hysteresis
curve-rheogram B of sample 8 (& =0.043 s2, t»=23.8 s) of Bureau et al.,*> (hematocrit
equal to 45% and the measurements were done at 25+0.5 °C). As in Fig. 6, we

consider a plasma viscosity equal to 77,=1.2 mPa.s. and consid?blood to become
Newtonian at large shear rates (i.e. £~0). We note a satisfact %ﬂint with the

experimental hysteresis curve of Bureau et al. although a SNK' atch is noted for
0.5.
—

the descending portion between, approximately, Wi=0.45 a‘ta

Q
VII. CONCLUSION C

We provided the modeling of matesials @_leiting a thixotropic behavior
through NET. Our approach provic&Qw\Q ns to introduce a self-consistent
coupling between elasticity and visc m&y. Even though the proposed model is
simple, it has been shown to be abw capture the exhibition of a yield stress at small
shear rates, and the po er-laM ior at large shear rates in the case of steady
shear, in accordance wmical data routinely fitted by the HB model. It is
important to say thag the use of the Bingham and HB models in computational codes

results in ?p efltaﬁ}n difficulties due to the inherent singularity exhibited by the

discont‘np%y\C{ese models; i.e. that they only flow above the yield stress.®*” The

pro oém%lel is free from such singularities. In addition, the proposed NET-based
/

app ch dllows for checking the thermodynamic admissibility of the model.

oreéver, it allows relating the notion of the yield stress to molecular arguments,

ﬁ
wich turns out to be governed by the ratio of the two characteristic times associated

S <« With the buildup of the network and the relaxation of segments. The new model is in

quantitative agreement with steady-shear stress data of colloidal pastes (Fig. 5) and
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blood (Fig. 6), and in a satisfactory agreement with the rheological hysteresis data of
blood as measured by Bureau et al.** (Fig. 7).

The proposed thermodynamically-based approach, in addition to guaranteeing
the thermodynamic admissibility and the internal consistency of/he final transport
equations, easily allows for important modifications, omitted i thep%sint version of
our model, to take place and thus improve its predictive capacity«Ihe proposed model
can be extended, for example, by considering an a 'so?’pic drodynamic drag,
which will allow the prediction of a non-vanishi @'%\::nal stress difference.
Accounting for diffusion and wall effects, Qpl-l alse, bef particularly important in

reproducing the stress-gradient induced ratlon@ red blood cells and rouleaux

(column-like aggregates of red bloodicells) to address the Fahraeeus and Fahraeus—

Lindqvist effects.*® Such a modidbﬁl\No_uld also be particularly important for

drilling fluid flows in porous medi

W
Finally, the impr Ve&kk ive model could be employed in direct Finite
Element simulations W&Q’

i

ill*improve our understanding as to how various
parameters, like t%‘ e and pressure and the duration of stopping times in crude
oil pipelines %} operties of crude 0il.>° Such results are expected to shed
light on t(Wl 1 behavior of thixotropic materials and, therefore, to their tailor
design: Den that thixotropic materials are used and consumed in everyday life, such

an dérst?a ing is of great importance.

<3

U

X

=~
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APPENDIX )\

'M\
Any thermodynamic system must obey the restriction“of a‘ngn-negative total rate of

entropy production. In the case of 1sother r;sible flows, the entropy

production results from the degradatlﬁ\ ’)chamcal energy leading to

dH, /dt=[H,,H,]<0." For this to Q‘{d it can be shown that the following
condition must hold \\

f{ A, 1\@7 aﬂygvy {JHM ]}W o @D
5C 5M,

The ﬁrst term 1ves

5” Aoy 50 = 2? (trc 6+ tre” ) (A2a)
R

gL ¢ written in terms of the eigenvalues of the conformation tensor,

xy,

54 54 G < (p-1)
AS = >0. A2b
\ T~ 5o, N s = 2 (A2b)
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Given that both the characteristic time and the elastic modulus are always positive,

this is indeed a non-negative quantity. The second term in Eq. (A1) is non-negative
provided that A* >0 which, in view of Eq. (10b), indeed holds true for a non-

negative relaxation time 7,. Finally,

oH oH
vV, | —2 V| —2|=ny:4> A2c
a[§MﬂJQaﬂys 7{5MEJ 7737 \ ( )
which holds true for a non-negative solvent viscosity.~«

)

In the above description, it has been @med the conformation tensor is
positive definite. A sufficient (but not necessary) condition for the conformation

tensor to be positive definite is the p?o% ofhe unit tensor in the conformation

11),\;\Rar‘wgative;”’51 this requires that 7, >0,
which holds true since char%tz\t}n?e"s are always non-negative. Thus, it has been
demonstrated that the déwi del is thermodynamically admissible and preserves

the positive-definit ua%k conformation tensor.
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