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bstract

We numerically solve the cessation of the annular Poiseuille flow of Bingham plastics for various values of the diameter ratio, using the regularized

onstitutive equation proposed by Papanastasiou and employing finite elements in space and a fully implicit scheme in time. When the yield stress
s not zero, the calculated stopping times are finite and just below the theoretical upper bounds provided by Glowinski [R. Glowinski, Numerical

ethods for Nonlinear Variational Problems, Springer-Verlag, New York, 1984].
2006 Elsevier B.V. All rights reserved.
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. Introduction

Viscoplastic flows have generated a strong scientific inter-
st, as evidenced at the recent workshop on viscoplasticity, that
ook place in Banff, Canada [1]. Many engineering fields were
epresented from the flow of avalanches to those of gels. In
articular, a drilling equipment in the petroleum industry often
perates with viscoplastic fluids, such as drilling muds exhibit-
ng a yield stress [2]. The geometry where the flow takes place is
hat of an annulus, and therefore a considerable practical interest
s generated for these types of annular flows of viscoplastic flu-
ds. The ability to understand and predict these flows in start-up
nd cessation are of immediate interest to the practitioners in the
eld.

In a recent work [3], we solved numerically the cessation of
he plane Couette and plane and axisymmetric Poiseuille flows
f Bingham plastics using the regularized constitutive equation
roposed by Papanastasiou [4], in order to avoid the determina-
ion of the yielded and unyielded regions in the flow domain. An
xcellent review by Frigaard and Nouar [5] on different models

nd their implementation has also recently appeared. It has been
enerally accepted that for engineering calculations the Papanas-
asiou model offers an attractive alternative to the ideal Bingham

∗ Corresponding author. Tel.: +357 22892612; fax: +357 22892601.
E-mail address: georgios@ucy.ac.cy (G.C. Georgiou).
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odel [4]. Thus, our previous numerical results showed that the
umerical stopping times are just below the theoretical upper
ounds derived by Glowinski [6] and Huilgol et al. [7]. The
bjectives of the present work are: (a) to numerically solve, for
he first time, the cessation of the annular Poiseuille flow of a
ingham fluid for different diameter ratios, using a regularized
odel and (b) to compute the stopping times and make com-

arisons with the theoretical upper bound given by Glowinski
6].

The paper is organized as follows. In Section 2, we present
he steady-state and time-dependent solutions for the Newtonian
nnular Poiseuille flow. In Section 3, we present the steady-state
olution for the annular Poiseuille flow of a Bingham plastic and
he theoretical upper bounds for the stopping times in the case
f flow cessation. In Section 4, we introduce the regularized
apanastasiou constitutive equation, discuss briefly the numer-

cal method, and present results for various diameter ratios.
omparisons are also made with the theoretical stopping time
ounds, which indicate that the latter are tight. Some discrep-
ncies are observed only for low Bingham numbers when the
rowth parameter in the Papanastasiou model is not sufficiently
igh. Finally, Section 5 contains the conclusions of this work.
. Newtonian annular Poiseuille flow

We consider the Poiseuille flow of a Newtonian fluid in an
nnulus of radii κR and R, where 0 < κ < 1, as shown in Fig. 1.

mailto:georgios@ucy.ac.cy
dx.doi.org/10.1016/j.jnnfm.2006.07.002
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Fig. 1. Geometry of the annular Poiseuille flow of a Newtonian fluid.

.1. Steady-state Newtonian flow

The steady-state velocity profile is given by [8]

s
z(r) = 1

4μ

(
−∂p

∂z

)s [
1 −

( r

R

)2 + 1 − κ2

ln(1/κ)
ln

r

R

]
, (1)

here (−∂p/∂z)s is the (steady-state) pressure gradient and μ

s the constant viscosity. The volumetric flow rate, Q, and the
ean velocity in the annulus, V, are given by

= π

8μ

(
−∂p

∂z

)s

R4

[
1 − κ4 − (1 − κ2)

2

ln(1/κ)

]
(2)

nd

= 1

8μ

(
−∂p

∂z

)s

R2
[

1 + κ2 − 1 − κ2

ln(1/κ)

]
. (3)

To nondimensionalize the equations, we scale lengths by R,
he velocity by V, and the pressure and stress components by
V/R. The dimensionless axial velocity is then given by

us
z)∗(r∗) = 2

1 + κ2 − ((1 − κ2)/ ln(1/κ))

×
[

1 − (r∗)2 + 1 − κ2

ln(1/κ)
ln r∗

]
. (4)
or simplicity, the stars (*) are dropped hereafter.
In Fig. 2, we plot the dimensionless steady-state Newtonian

elocity profiles for various values of κ. The maximum of the

Fig. 2. Steady Newtonian velocity profiles for different values of κ.
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elocity occurs at

m =
[

1 − κ2

2 ln(1/κ)

]1/2

. (5)

The dimensionless pressure gradient, denoted by fs, is given
y

s = 8

1 + κ2 − ((1 − κ2)/ ln(1/κ))
. (6)

.2. Cessation of the Newtonian flow

We assume that at t = 0 the velocity uz(r, t) is given by the
teady-state solution (Eq. (1)) and that at t = 0+ the pressure
radient is changed from (−∂p/∂z)s to (−∂p/∂z). Scaling the time
y ρR2/μ, we obtain the dimensionless form of the z-momentum
quation:

∂uz

∂t
= f + 1

r

∂

∂r

(
r
∂uz

∂r

)
, (7)

here f is the new pressure gradient. The dimensionless bound-
ry and initial conditions read:

uz(κ, t) = 0, t ≥ 0

uz(1, t) = 0, t ≥ 0

uz(r, 0) = us
z(r), κ ≤ r ≤ 1

⎫⎪⎬
⎪⎭ . (8)

Let (ak, bk), k = 1, 2, . . . be the solutions of the system

J0(akκ) + bkY0(akκ) = 0

J0(ak) + bkY0(ak) = 0

}
, (9)

here J0 and Y0 are, respectively, the zeroth-order Bessel func-
ions of the first and second kind. Let now

k
0(r) ≡ J0(r) + bkY0(r) (10)

nd

k
1(r) ≡ J1(r) + bkY1(r), (11)

here J1 and Y1 are, respectively, the first-order Bessel functions
f the first and second kind. Then the system (9) takes the simpler
orm:

Zk
0(akκ) = 0

Zk
0(ak) = 0

}
. (12)

It can be shown that the time-dependent solution, when the
ressure gradient is suddenly reduced from f s �= 0 to f, is given
y [9]

z(r, t) = a′ f

f s

[
1 − r2 + 1 − κ2

ln(1/κ)
ln r

]

+8a′
(

1 − f

f s

) ∞∑
k=1

1

a3
k

Zk
0(akr)

Zk
1(ak) + κZk

1(akκ)
e−a2

k
t,

(13)
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and

c = λ−λ+
2

R2
(

−∂p

∂z

)s

= λ−λ+
λ+ − λ−

τ0R. (26)
ig. 3. Evolution of the volumetric flow rate in cessation of annular Newtonian
oiseuille flow for various values of κ.

here

′ = 2

1 + κ2 − ((1 − κ2)/ ln(1/κ))
. (14)

Integrating Eq. (13) gives the dimensionless volumetric flow
ate which is scaled by π(1 − κ2):

= 32

1 − κ4 − ((1 − κ2)2
/ ln(1/κ))

×
∞∑

k=1

1

a4
k

Zk
1(ak) − κZk

1(akκ)

Zk
1(ak) + κZk

1(akκ)
e−a2

k
t . (15)

The volumetric flow rate decays exponentially with time (i.e.
he stopping time is infinite). In Fig. 3, we see the predictions of
q. (15) for various values of κ.

. Annular Poiseuille flow of a Bingham fluid

Let u, τ, and γ̇ denote, respectively, the velocity vector, the
tress tensor, and the rate-of-strain tensor. The latter is defined
y:

˙ ≡ ∇u + (∇u)T, (16)

here �u is the velocity-gradient tensor, and the superscript ‘T’
enotes its transpose. The magnitudes of γ̇ and τ are, respec-
ively, defined as follows:

˙ =
√

1

2
IIγ̇ =

√
1

2
γ̇ : γ̇ and τ =

√
1

2
IIτ =

√
1

2
τ : τ, (17)

here II stands for the second invariant of a tensor. In tensorial
orm, the Bingham model is written as follows:
γ̇ = 0, τ ≤ τ0

τ =
(

τ0

γ̇
+ μ

)
γ̇, τ ≥ τ0

(18)

here τ0 is the yield stress.
F
P
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.1. Steady-state Bingham flow

The steady-state annular Poiseuille flow of a Bingham fluid
as been solved by Bird et al. [10]. Szabo and Hassager [11] have
lso presented analytical solutions for the flow of a Bingham
uid in general eccentric annular geometries.

For any fluid, the steady-state one-dimensional z-momentum
quation is

=
(

−∂p

∂z

)s

+ 1

r

d

dr
(rτrz), (19)

hich upon integration yields

rz = −
(

−∂p

∂z

)s
r

2
+ c

r
, (20)

here c is the integration constant. In the case of a pressure-
riven Bingham flow in an annulus, the flow field is divided into
hree flow regions as shown in Fig. 4, where we use the notation
f Bird et al. [10]. In region I (κR ≤ r ≤ λ−R), τrz ≥ τ0 with

˙ = duz

dr
and τrz = τ0 + μ

duz

dr
. (21)

In region II (λ+R ≤ r ≤ R), −τrz ≥ τ0 with

˙ = −duz

dr
and τrz = −τ0 + μ

duz

dr
. (22)

Finally, in region III (λ−R ≤ r ≤ λ+R), |τrz| ≤ τ0 and

˙ = duz

dr
= 0, (23)

hich means that the fluid is unyielded.
By requiring that

rz(λ−R) = −τrz(λ+R) = τ0, (24)

ne finds that

τ0 = (λ+ − λ−)R

(
−∂p

∂z

)s

(25)
ig. 4. Profiles of the shear stress, the shear rate and the velocity in the annular
oiseuille flow of a Bingham fluid.
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Substituting Eq. (26) into Eq. (20) gives

rz = −R

2

(
−∂p

∂z

)s [
r

R
− λ−λ+

R

r

]
. (27)

Substituting now Eq. (21) into Eq. (27), integrating and apply-
ng the boundary condition uz(κR) = 0 gives the velocity profile
n region I. Similarly, substituting Eq. (22) into Eq. (27), inte-
rating and applying the boundary condition uz(R) = 0 gives the
elocity profile in region II. In region III, the velocity is uniform,
.g.

z(r) = uz(λ+R), λ−R ≤ r ≤ λ+R. (28)

The following velocity profile is thus obtained:

z(r) = 1

4μ
R2

(
−∂p

∂z

)s

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

[
2λ−λ+ ln

r

κR
− r2

R2 + κ2 − 2(λ+[
−2λ−λ+ ln

1

λ+
+ 1 − λ2

+ − 2(λ+[
−2λ−λ+ ln

R

r
+ 1 − r2

R2 − 2(λ+ −

By demanding that

z(λ−R) = uz(λ+R), (30)

e find an equation relating λ+ to λ− and κ:

2β ln
β

κ
+ β2 − 1

)
λ2

+ + 2(1 − β)(1 + κ)λ+ − 1 + κ2 = 0,(3

here

= λ−
λ+

. (32)

For given κ and β, λ+ is the root of the quadratic Eq. (31)
etween λ− and 1.

We now note from Eq. (25) that when τ0 = 0, then λ− = λ+,
hich corresponds to the Newtonian flow (the unyielded region

egenerates to the velocity maximum). Moreover, the criti-
al pressure above which Bingham flow occurs corresponds to
− = κ and λ+ = 1, i.e. the entire flow field is an unyielded region.
t is clear that flow occurs only when

−∂p

∂z

)s

>
2τ0

(1 − κ)R
. (33)

uz(r) = 2(1 − κ2)

I

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

[
2λ−λ+ ln

r

κ
− r2[

−2λ−λ+ ln
1

λ+
+[

−2λ−λ+ ln
1

r
+ 1
In Fig. 5, we plot λ− and λ+, calculated from Eq. (31) for
= 0.1 and 0.5, versus the dimensionless number

≡ λ+ − λ−
1 − κ

= 2τ0

(1 − κ)R(−∂p/∂z)s . (34)

w

B
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)
( r

R
− κ

)]
, κR ≤ r ≤ λ−R

−)(1 − λ+)

]
, λ−R ≤ r ≤ λ+R

)
(

1 − r

R

)]
, λ+R ≤ r ≤ R

(29)

For χ = 0, the two yield points coincide with the maximum of
he Newtonian velocity given by Eq. (5). When χ = 1 the pressure
radient is equal to the critical one and no flow occurs.

Integrating the velocity profile (29) over the annular cross
ection gives the following expression for the volumetric flow
ate:

= π

8μ

(
−∂p

∂z

)s

R4
[

1 − κ4 − 2βλ2
+(1 − κ2)

−4

3
(1 − β)λ+(1 + κ3) + 1

3
λ4

+(1 − β2)(1 + β)2
]

.

(35)

For the mean velocity in the annulus, we get

= 1

8μ

(
−∂p

∂z

)s

R2 I

1 − κ2 , (36)

here

=
[

1 − κ4 − 2βλ2
+(1 − κ2) − 4

3
(1 − β)λ+(1 + κ3)

+1

3
λ4

+(1 − β2)(1 + β)2
]

. (37)

We nondimensionalize the equations as in the Newtonian
ow, i.e. we scale lengths by R, the velocity by V and the pres-
ure (and stress components) by μV/R. For the dimensionless
elocity, we get:

− 2(λ+ − λ−)(r − κ)
]
, κ ≤ r ≤ λ−

λ2
+ − 2(λ+ − λ−)(1 − λ+)

]
, λ− ≤ r ≤ λ+

2 − 2(λ+ − λ−)(1 − r)

]
, λ+ ≤ r ≤ 1

(38)

From Eq. (36), we find the dimensionless pressure gradient:

s = 8(1 − κ2)

I
. (39)

From Eq. (25), we get

n = λ+ − λ−
2

f s = 4(λ+ − λ−)

I
(1 − κ2), (40)
here

n ≡ τ0R

μV
(41)
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ig. 5. Evolution of the positions of the two yield points (λ− and λ+) with χ for
= 0.1 (a) and 0.5 (b).

s the Bingham number. The dimensionless number χ defined in
q. (34) takes the form:

≡ 2Bn

(1 − κ)f s . (42)

Obviously, flow occurs only if

s >
2Bn

1 − κ
. (43)

In Fig. 6, the dimensionless velocity profiles for κ = 0.5 and
.1 are plotted for various Bingham numbers. We observe that
he size of the unyielded region increases with the Bingham
umber and the velocity profile becomes flat as Bn goes to infin-
ty. As the value of κ is reduced, the velocity profiles become

ore asymmetric and skewed towards the inner wall.

.2. Cessation of Bingham flow

We assume that at t = 0 the velocity uz(r, t) is given by the
teady-state solution and that at t = 0+ the pressure gradient is
educed either to zero or to (−∂p/∂z) < (−∂p/∂z)s. Using the same

cales as above, we obtain the dimensionless form of the z-
omentum equation

∂uz

∂t
= f + 1

r

∂

∂r
(rτrz), (44)

a

ig. 6. Dimensionless velocity profiles for different Bingham numbers with (a)
= 0.5 and (b) κ = 0.1.

here f is the dimensionless pressure gradient. The dimension-
ess form of the Bingham constitutive equation is given by

γ̇ = 0, |τrz| ≤ Bn

τrz =
(

Bn

γ̇
+ 1

)
∂uz

∂r
, |τrz| ≥ Bn

(45)

here γ̇ = |∂uz/∂r|. The dimensionless boundary and initial
onditions are given by Eq. (8).

Glowinski [6] provides the general expression of the upper
ound for the stopping time in the case of a Bingham plastic
Bn > 0). For the annular Poiseuille flow, one gets

f ≤ 1

λ1
ln

[
1 + λ1

||uz(r, 0)||
(2Bn/(1 − κ)) − f

]
, f <

2Bn

1 − κ
,

(46)

here uz(r, 0) = us
z(r) is given be Eq. (38),

|uz(r, 0)|| =
[

2
∫ 1

κ

u2
z(r, 0)r dr

]1/2

, (47)
nd λ1 is the smallest (positive) eigenvalue of the problem:

1

r

d

dr

(
r

dw

dr

)
+ λw = 0, w(κ) = w(1) = 0. (48)
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Table 1
Least eigenvalues for the upper bound of the stopping time

κ a1

0.1 3.313938715053
0.3 4.412394692777
0.5 6.246061839191
0
0

v
b

T

w
[
w

4

h
p
E
e

τ

w

M

a

w
q
c
d
d
w

1
e
t
a
t
s
s
r
M
r
N

e
1
w

fl
a
l
v
l
t
w
t
t
l
h

(
i
solution, Eq. (13), for the Newtonian flow. The numerical solu-
tion for the Bingham flow (Fig. 7b) confirms that cessation is
accelerated as the Bingham number is increased. Fig. 8 presents
the evolution of the volumetric flow rate for various Bingham
.7 10.455235484744

.9 31.411512705886

It is easily found that λ1 = a2
1, where a1 is the smallest eigen-

alue of the problem (12), with the corresponding eigenfunction
eing given by w1(x) = Z1

0(a1x). Therefore,

f ≤ 1

a2
1

ln

[
1 + a2

1
||uz(r, 0)||

(2Bn/(1 − κ)) − f

]
, f <

2Bn

1 − κ
.

(49)

Table 1 shows the values of a1 for various values of κ. These
ere calculated using the computer algebra system MAPLE

12]. The bound (49) holds only when f < 2Bn/(1 − κ); other-
ise, the flow will not stop.

. Numerical results

As in our previous work [3], in order to simulate the Bing-
am flow, we employed the regularized constitutive equation
roposed by Papanastasiou [4]. In other words, instead of using
q. (45), we employed the following dimensionless constitutive
quation:

rz =
{

Bn[1 − exp(−Mγ̇)]

γ̇
+ 1

}
∂uz

∂r
, (50)

here

≡ mV

R
(51)

nd m is the Papanastasiou regularization parameter.
For the spatial discretization of the problem (44) and (50)

ith the conditions (8), we used the finite element method with
uadratic (P2-C0) elements for the velocity. For the time dis-
retization, we used the standard fully-implicit (Euler backward-
ifference) scheme. At each time step, the nonlinear system of
iscretized equations was solved by using the Newton method
ith a convergence tolerance equal to 10−5.
The results presented in this work have been obtained with

00 elements. Our numerical experiments with meshes of differ-
nt refinement (ranging from 25 up to 400 elements) showed that
he solutions obtained with the aforementioned optimal meshes
re convergent. In particular, the calculated velocity profiles in
he case of steady-state Bingham flow agreed well with the
teady-state solutions shown in Fig. 6. The effect of the time
tep has also been studied. As in [3], the time step should be

educed as the Bingham number or the regularization parameter

is increased, in order not only to ensure satisfactory accu-
acy but, more importantly, to ensure the convergence of the
ewton–Raphson process which becomes very slow. In gen-

F
κ
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ral, for M = 300, the time step ranged from 10−4 (Bn = 0) to
0−6 (Bn = 20); these values were further reduced by the code
henever the Newton–Raphson process failed to converge.
The code has also been tested by solving first the Newtonian

ows and making comparisons with the analytical solutions. The
greement between the theory and the calculations was excel-
ent. In particular, for all values of κ in Fig. 3, the calculated
olumetric flow rates coincided with the theoretical ones. The
atter were calculated using MAPLE [12] and taking into account
he leading 100 terms of the series in Eq. (15). In this section,
e have chosen to present results only for κ = 0.5 and 0.1 with

he imposed pressure gradient f set equal to zero. The effect of
he dimensionless growth parameter M has also been studied,
eading to similar conclusions as in [3]. In the results presented
ere, M = 300.

Fig. 7 shows the evolution of the velocity for a Newtonian
Bn = 0) and a Bingham (Bn = 20) fluid, with κ = 0.5. The numer-
cal solution in Fig. 7a compares very well with the analytical
ig. 7. Evolution of the velocity in cessation of annular Poiseuille flow with
= 0.5: (a) Newtonian fluid; (b) Bingham fluid with Bn = 20.
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ig. 8. Evolution of the volumetric flow rate in cessation of annular Poiseuille
ow for various values of the Bingham number and κ = 0.5.
umbers. These curves demonstrate the dramatic effect of the
ield stress, which accelerates the cessation of the flow.

The results obtained for other values of the diameter ratio,
, are quite similar. Fig. 9 shows the evolution of the velocity

ig. 9. Evolution of the velocity in cessation of annular Poiseuille flow with
= 0.1: (a) Newtonian fluid; (b) Bingham fluid with Bn = 20.
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ig. 10. Evolution of the volumetric flow rate in cessation of annular Poiseuille
ow for various values of the Bingham number and κ = 0.1.

or κ = 0.1 and Bn = 0 and 20. The evolution of the volumetric
ow rate for κ = 0.1 and various values of the Bingham number

s shown in Fig. 10. It should be noted that the stopping times
ncrease as the diameter ratio is reduced.

In order to make comparisons with the theoretical upper
ound (49), we consider the numerical stopping time, Tf, as
he time at which Q = 10−5 is reached. As pointed out in our
revious work [3], using a lower value of Q does not affect
he numerical stopping time for moderate and high Bingham
umbers (Bn > 0.1). For low Bingham numbers (Bn < 0.1), how-
ver, the stopping time increases (see Figs. 14 and 15 in [3]).
n Fig. 11, we compare the numerical stopping times for κ = 0.1
nd 0.5 with the theoretical upper bounds. For moderate and
igh Bingham numbers, the computed stopping times are just
elow the theoretical upper bound given in Eq. (49). As dis-
ussed in [3], the small discrepancies observed for small values

f the Bingham number are due to the fact that the value of
he regularization parameter M is not sufficiently high. For very
mall Bn, the effect of M is not crucial, since the material is prac-

ig. 11. Comparison of the numerical stopping times (dashed lines) with the
heoretical upper bounds (solid lines) for κ = 0.1 and 0.5.
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ically Newtonian, which explains why the numerical stopping
ime falls again below the theoretical upper bound.

. Conclusions

The Papanastasiou modification of the Bingham model has
een employed in order to solve numerically the cessation of the
nnular Poiseuille flow of a Bingham plastic. Unlike their coun-
erparts in a Newtonian fluid, the stopping times for complete
essation are finite, in agreement with theory. The numerical
topping times are found to be in very good agreement with
he theoretical upper bound provided by Glowinski [6], for
oderate and high Bingham numbers. Some minor discrepan-

ies observed for rather low Bingham numbers can be reduced
y increasing the regularization parameter introduced by the
apanastasiou model. These results can be helpful in estab-

ishing stopping times in drilling exploration for drilling muds,
here annular geometries are encountered.
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