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Flow development in compression of a finite amount of a Bingham plastic
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bstract

The flow and shape evolution during the compression of a finite amount of a Bingham plastic is investigated by means of numerical simulations.
he problem relates to the popular compression test used for the rheological characterization of non-Newtonian fluids. The flow is modelled in

agrangian coordinates using the Papanastasiou regularization for the Bingham plastic and a mixed-Galerkin finite element method. Simulations
ave been performed for compression under both constant load and constant velocity. Results for various Reynolds and Bingham numbers are
resented and discussed.
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. Introduction

The motivation of the present work derives from our inter-
st in semisolid metal slurries. These are mixtures of rounded,
osette-like solid particles and liquid at temperatures between
he liquidus and solidus limits. The average solid volume frac-
ion is a function of the bulk temperature of the suspension and
aries from zero to unity. During processing the viscosity also
hanges significantly due to the evolution of the internal struc-
ure [1]. In general, semisolid materials behave as viscoplastic
uids characterized by a finite yield stress, τ0, and other material
roperties that vary with time and the shear rate [1]. There-
ore, semisolid slurries can be modelled as Bingham plastic or
erschel–Bulkley fluids with time-dependent material parame-

ers the determination of which is obviously quite important.
Let u and τ be respectively the velocity vector and the viscous

tress tensor, and γ̇ be the rate of strain tensor:

˙ = ∇u + (∇u)T (1)
here ∇u is the velocity-gradient tensor and the superscript
denotes its transpose. The magnitudes of γ̇ and τ, denoted
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espectively by γ̇ and τ, are defined by

˙ =
√

1

2
IIγ̇ =

√
1

2
γ̇ : γ̇ and τ =

√
1

2
IIτ =

√
1

2
τ : τ (2)

here II stands for the second invariant of a tensor. Then, the
ingham model is written as follows:

˙ = 0, τ ≤ τ0; τ =
(

τ0

γ̇
+ μ

)
γ̇, τ ≥ τ0 (3)

here μ is the constant viscosity. The two material parameters,
and τ0 are determined from experimental data.
The ideal Bingham plastic model is difficult to use in theoreti-

al and numerical analyses, since it is discontinuous and singular
hen the shear rate approaches zero. It is thus primarily used in

imple unidirectional problems. For the numerical simulation of
omplicated two-dimensional flows of Bingham fluids, regular-
zed continuous versions of the constitutive equation (3) are used
n order to avoid the need of determining the yielded (τ > τ0)
nd unyielded (τ ≤ τ0) regions in the flow. The most popular
egularization is the one proposed by Papanastasiou [2,3]:

=
{

τ0[1 − exp(−mγ̇)] + μ

}
γ̇ (4)
γ̇

here m is a stress growth exponent. Eq. (4) provides a satisfac-
ory approximation of the Bingham plastic model for sufficiently
arge values of m and is valid uniformly at all levels of γ̇ [2–6].
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t should be noted, however, that the value of m should be cho-
en very carefully, since large values might lead to convergence
ifficulties while small values can lead to wrong results [3,4,6].
lexandrou and his collaborators [4,7] demonstrated that reg-
larized models such as the Papanastasiou, the biviscosity and
ther viscoplastic models, could predict the flow and a posteriori
epresent reasonably well the topography of the yield surfaces
τ = τ0), provided that the regularization parameters are selected
roperly.

The squeeze flow of viscoplastic materials has received
onsiderable attention in the past two decades and different
onstitutive equations have been used, in both theoretical and
umerical studies, such as the bi-viscosity model in the early
orks of Gartling and Phan Thien [8] and O’Donovan and
anner [9], the original Bingham model by Smyrnaios and
samopoulos [10] and Roussel et al. [11], the Herschel–Bulkley
odel by Sherwood and Durban [12], an elasto-viscoplastic
odel by Adams et al. [13], and the regularized Papanasta-

iou model by Smyrnaios and Tsamopoulos [10], Matsoukas
nd Mitsoulis [14], Mitsoulis and Matsoukas [15], and Karapet-
as and Tsamopoulos [16]. In most of these works, both plates
ere assumed to move either at constant velocity or at constant

oad. However, in the numerical work of Adams et al. [13] and
n the analysis of Sherwood and Durban [12] the lower plate was
ssumed to be fixed.

Another assumption usually made in both numerical and
heoretical studies of squeeze flow is that of the quasi-steady
ow [8–10,14]. Karapetsas and Tsamopoulos [16] solved the

ransient axisymmetric squeeze flow of a viscoplastic material
nder creeping flow conditions using the Papanastasiou model,
or both cases where the disks are moving with constant veloc-
ty and under constant force. As pointed out by these authors,
his distinction is impossible under the quasi-steady-state
onditions.

In agreement with previous quasi-steady-state studies
9,10,13–15], Karapetsas and Tsamopoulos reported that in
queeze flow under constant velocity, unyielded material arises
nly around the two centers of the disks [16]. Adams et al. [13]
ho considered the case in which the lower plate is fixed, also

eported the existence of such wedge regions. Moreover, they
eported that unyielded regions appear also at the periphery of
he specimen. Adams et al. considered an elasto-viscoplastic

aterial assuming that linear elastic deformation occurs prior to
ield and that the yield surface is strain rate hardening according
o an associated viscoplastic flow rule [13]. They also considered
oth non-slip and lubricated wall boundary conditions. Mit-
oulis and Matsoukas [15] also observed unyielded regions at the
ree surface, in some cases of quasi-steady-state planar squeeze
ow and large aspect ratios. They noted, however, that this phe-
omenon may be due to the regularized Papanastasiou model
sed.

In squeeze flow under constant velocity, the size of the
nyielded regions was found to increase with the Bingham

umber and to decrease as the two plates approach each other
10,14–16]. Matsoukas and Mitsoulis [14] noted that big aspect
atios give larger unyielded regions than small ones for the
ame Bingham number, and that axisymmetric geometries give

i
t
w
O
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maller unyielded regions than planar ones. Karapetsas and
samopoulos [16] also observed that the size of the unyielded

egion decreases when slip occurs along the plates. They also
howed that the load required for maintaining the velocity of the
isks constant increases significantly with the Bingham num-
er and the time, which provides a technique for calculating the
ield stress [16].

For the case of squeeze flow under constant load, Karapetsas
nd Tsamopoulos [16] reported that the disks decelerate until
hey finally stop, when the material behaves as a rigid solid.
he unyielded regions of the material arise first around the two
tagnation points of the flow and then at the outer edge of the
ample. As the time proceeds, the latter extend towards the axis
nd the plane of symmetry and eventually merge with the former
nyielded regions to form a rigid domain. Note that bounds for
he limiting film thickness (at which the velocity vanishes) are
iven by Zwick et al. [17] who carried out the variational analysis
f the creeping squeeze flow of a Herschel–Bulkley fluid under
onstant load.

In some of the aforementioned works, the free surface of
he sample was assumed to be flat [10,14] or was completely
gnored by letting the material to freely exit the region defined
y the two plates [8,9]. In their squasi-steady-state simula-
ions, Mitsoulis and Matsoukas [15] noted that the inclusion
f the free surface does not alter the unyielded regions in any
isible way. More recently, Karapetsas and Tsamopoulos [16]
mployed a sophisticated quasi-elliptic mesh generation scheme
n order to follow the large deformations of the free surface of
he fluid, not only inside but also outside the space of the two
isks.

In actual compression experiments under constant load, the
aterial parameters are determined by means of compression

elocity data, under simplifying assumptions for the compres-
ion. The magnitude of the rate of strain is typically estimated
rom the original dimension of the sample and the velocity of the
ress. An effective viscosity is then evaluated using measured
ulk quantities that are not fixed beforehand. Unfortunately,
his procedure ignores the fact that, irrespective of the sam-
le’s size, the resulting flow is not viscometric and the sample
esponds to the compression in the same complex manner as a
arger sample. Other useful information that is also neglected is
he evolution of the sample’s shape during compression. Using
omputational rheology, as proposed here, one can first mea-
ure all pertinent quantities in the compression experiment,
nd then use accurate computational models to select, by trial-
nd-error or other more sophisticated matching methods, the
ow model and material constants that reproduce the measured
xperimental data and match the history of deformation of the
ample [4].

In this study, we investigate numerically the compression of
finite amount of Bingham-plastic fluid assuming that the mate-

ial parameters are time-independent. The numerical simulations
re performed either under constant load or under constant veloc-

ty applied only on the upper disk. As already mentioned, among
he aforementioned literature, the lower disk is fixed only in the
orks of Sherwood and Durban [12] and Adams et al. [13].
ther important differences between the present and previous
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tudies are: (a) the creeping flow assumption is relaxed (i.e. the
eynolds number is not zero) and (b) the initial sample aspect

atio is 2, in agreement with experiments with semisolid mate-
ials, whereas in the literature this ratio is usually equal to or
ess than unity (if not negligibly small). The objective here is
o study how the rate of compression and other derived quanti-
ies are affected by the controlling parameters such as the yield
tress. A key derived-quantity examined here is the topology of
he yielded and unyielded zones and their evolution during pro-
essing. This aspect is important in understanding the structural
hanges and rheological attributes during flow.

In Section 2, the governing equations and boundary and ini-
ial conditions are presented. In Section 3, the numerical method
s briefly discussed. In Section 4, the numerical results are
resented and discussed. Concluding remarks are provided in
ection 5.

. Governing equations

Fig. 1 shows the axisymmetric sample of initial radius R and
eight H = 2R used in the simulations. The material is placed on
plate and compressed from the top by applying either constant

oad or constant velocity. Due to symmetry, only one-half of
he sample is used in the simulations. A related flow is Stefan’s
queezing flow, in which both sides are compressed.

The flow is governed by the continuity and momentum equa-
ions for an incompressible fluid:

· u = 0 (5)

nd

Du
Dt

= −∇p + ∇ · τ (6)
here gravity is neglected, ρ is the density of the fluid, p is
he pressure, and Du/Dt is the material derivative. The viscous
tress tensor is assumed to obey the regularized Papanastasiou
quation (4), which closes the system of Eqs. (5) and (6).

ig. 1. Geometry and boundary conditions of the compression experiment. At
= 0 the sample is at rest.
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The governing equations (4)–(6) are non-dimensionalized
sing the following scales:

x∗
i = xi

H
, τ∗ = τ

τ0
, p∗ = p

τ0
, u∗ = u

U
,

t∗ = t

H/U
(7)

here U is the compression velocity of the sample. In the case of
ompression under constant load, U is just an arbitrary velocity
nd the load, F̄ , is scaled by τ0H2, i.e. the dimensionless load
s given by

= F̄

τ0H2 (8)

he stars here denote non-dimensionalized quantities. By means
f the above scalings, the governing equations (5) and (6)
ecome:

· u∗ = 0 (9)

nd

e
Du∗

Dt∗
= −∇p + ∇ · τ∗ (10)

here Re is the Reynolds number:

e = ρUH

μ
(11)

he dimensionless form of the Papanastasiou regularized con-
titutive relation is

∗ =
[
Bn

1 − exp(−Mγ̇∗)

γ̇∗ + 1

]
γ̇∗ (12)

here γ̇∗ is the dimensionless rate of strain tensor, γ̇∗ denotes its
econd invariant, M is the dimensionless growth exponent, and
n is the Bingham number. The last two-dimensionless numbers
re defined as follows:

= mU

H
and Bn = τ0H

μU
(13)

or simplicity, the stars are dropped hereafter.
The boundary conditions of the flow are shown in Fig. 1.

ymmetry boundary conditions are imposed along the axis of
ymmetry and the velocity is set to zero along the bottom. On
he free surface it is assumed that the surface tension is zero.

hen the specimen is compressed at constant velocity (from
he top), the transverse velocity is set to −1. When the specimen
s compressed at constant load in the direction of gravity, i.e. the
imensionless load, scaled by τ0H2, is of the form F = −Fez, the
oundary condition at the top of the sample is given by
=
∫

s

(−pI + τ) · ez dS (14)

here S is the surface of the top side of the sample, and I

s the unit tensor. As for the initial conditions, the velocity is
verywhere set to zero at t = 0.



G.C. Florides et al. / J. Non-Newtonian Fluid Mech. 143 (2007) 38–47 41

Table 1
Characteristics of the meshes used in the simulations
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Fig. 4 shows the effect of M on the evolution of the sample’s
height in a constant-load experiment for different Reynolds num-
bers and Bn = 0.5. For all the values of the Reynolds number, the
numerical results for M = 100 and 800 are essentially the same.
. Numerical method

The governing equations are solved in Lagrangian coordi-
ates, which implies that the unknown position of the free
urface is calculated automatically. The equations are discretized
sing the mixed-Galerkin finite element method with standard
ine-node quadrilateral elements for the velocity and four-node
nes for the pressure. The resulting non-linear system of equa-
ions is solved using a Newton–Raphson iteration procedure
oupled to an iterative solver, with an error tolerance equal
o 10−4. Remeshing is achieved by using a Laplace-type dis-
retization algorithm, i.e. the mesh is updated according to the
ew position of the free surface by solving ∇2yi = 0 and ∇2xi = 0
here the independent coordinates are those of a regular square

ξ, η) formed by the four corners of the domain. The mesh moves
nd its shape changes with the fluid velocity. When nodes of the
ree surface touch the solid boundary (in either side) the mesh
s regenerated using a “rough” elliptic distortion, where interior
odes are placed at the average location of all their neighbours.
ote that this is an iterative procedure until the mesh converges.
rior to the interior node generation, the boundary nodes are
istributed so that the mesh is finer near the corners. The flow
eld variables are reassigned new values based on the old mesh.

. Numerical results

In the numerical simulations, the finite amount of a Bingham
lastic is compressed from rest (under either constant load or
onstant velocity) up to a time the flow becomes relatively very
low. Five meshes, the characteristics of which are tabulated
n Table 1, have been employed, in order to study the con-
ergence of the numerical results with mesh refinement. Fig. 2
hows typical mesh shapes obtained with Mesh 3 (16 × 16 ele-
ents) during an experiment under constant load with Re = 1,
n = 1 and M = 300. It should be noted that the mesh appears

o be more refined due to the fact that the graphics package
e used divides each nine-node element into four quadrilater-

ls. Our numerical experiments have shown that Mesh 3 gives
ractically converged results. An example of the effect of mesh
efinement is provided in Fig. 3, which shows the evolution of
he sample height under constant load for Meshes 1 and 5, dif-
erent Reynolds numbers (0.1, 1 and 10), Bn = 0.5 and M = 300.
ur calculations showed that Meshes 3 and 5 (with respectively
56 and 576 elements) give essentially the same results. All

ubsequent numerical results have been obtained with Mesh 3.

The effect of the growth parameter M on the numerical results
as also been studied. As already mentioned, M should be
ufficiently high so that the regularized Papanastasiou model

F
e

rovides a good approximation of the ideal discontinuous Bing-
am model. On the other hand, very high values of M are
ndesirable since they lead to convergence difficulties [3,4,6].
ig. 2. Typical mesh shapes with 256 elements obtained in a constant-load
xperiment for F = −10, Re = 1, Bn = 1 and M = 300.



42 G.C. Florides et al. / J. Non-Newtonian Fluid Mech. 143 (2007) 38–47

F
a
a

F
h
r
i
t
r
w
B
[
s

h
A
t
t
t
i
o
n
s

F
e

F
e

W
t
e

y
l
A
d
s
e
s
i
u
s
fl
a
d

ig. 3. Effect of mesh refinement on the evolution of the sample’s height in
constant-load experiment for different Reynolds numbers, F = −10, Bn = 0.5

nd M = 300.

ig. 5 shows the effect of M on the evolution of the sample’s
eight for Re = 1 and different Bingham numbers. Again, the
esults for M = 100 and 800 are identical. This is also illustrated
n Fig. 6, where we show snapshots of the sample at different
imes for F = −10, Re = 1, Bn = 0.5. The yielded and unyielded
egions are also shown. The yield surfaces (i.e. the surfaces on
hich τ = 1) are determined using the technique proposed by
urgos et al. [7]. In agreement with Matsoukas and Mitsoulis

14], the unyielded areas observed at initial times are reduced in
ize as M is increased. In all subsequent results, we take M = 800.

Let us now elaborate on the effects of the Reynolds and Bing-
am numbers in the case of compression under constant load.
s shown in Fig. 3, the rate of compression becomes slower as

he Reynolds number is increased, which may sound counterin-
uitive. However, due to our nondimensionalization keeping all
he other numbers constant and increasing the Reynolds number

s simply equivalent to increasing the density of the fluid. The
verlapping of the curves corresponding to different Reynolds
umbers is due to the fact that the effective stress field in the
ample is eventually reduced below the material’s yield stress.

ig. 4. Effect of M on the evolution of the sample’s height in a constant-load
xperiment for different Reynolds numbers, F = −10 and Bn = 0.5.
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ig. 5. Effect of M on the evolution of the sample’s height in a constant-load
xperiment for different Bingham numbers, F = −10 and Re = 1.

hile the applied load is kept constant, the area of the sample’s
opside increases as the experiment proceeds and, therefore, the
ffective stress field decreases.

Fig. 7 shows snapshots of the sample and the corresponding
ielded/unyielded regions taken at different times in a constant-
oad experiment (F = −10) for Bn = 0.5 and Re = 0.1, 1 and 10.
s expected, the size of the unyielded spot at the bottom center
ecreases as the experiment proceeds. The compression of the
ample begins soon after the whole material is yielded, with the
xception of the unyielded spot located on the bottom around the
ymmetry axis of the sample. Even though this cannot be seen
n the snapshots of Fig. 7, in the final stages of the experiment,
nyielded regions appear on the top and the bottom around the
ymmetry axis; these grow fast and eventually meet causing the
ow to stop (the material around the symmetry axis behaves
s a rigid body). The upper part of the sample is initially more
eformed than the bottom one, which is due to the fact that
nly the upper disk is moving. This asymmetry, which is more
isible for high Re, moves towards the center of the sample as
he experiment proceeds and the sample may look symmetric.
n the final stages of the experiment, however, the lower part of
he sample is more spread than the upper one.

In order to study the effect of the yield stress, with the
ondimensionalization used, we have to increase, of course, the
ingham number and re-adjust accordingly the load so that the
imensionless number

∗ = F Bn = F̄

μUH
(15)

emains constant. The deformation of the sample and the evo-
ution of the yielded (grey) and unyielded (black) regions for
* = −10, Re = 1 and three Bingham numbers, 0.1, 1 and 2, are
hown in Fig. 8. In general, the unyielded region initially appears
round the axis of symmetry at the fixed bottom side of the sam-

le and increases in size as the yield stress is increased reaching
he periphery of the sample. This observation is in agreement
ith the creeping-flow results of Karapetsas and Tsamopou-

os [16]. At higher Bingham numbers an unyielded spot is also
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Fig. 6. Effect of M on the evolution of the yielded (grey) and unyielded (black) regions in a constant-load experiment with Re = 1, Bn = 0.5 and F = −10.

Fig. 7. Compression under constant load and evolution of the yielded (grey) and unyielded (black) areas for different Reynolds numbers, F = −10 and Bn = 0.5.
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ig. 8. Compression under constant load and evolution of the yielded (grey) an

bserved at the top side of the sample around the axis of sym-
etry. As clearly seen in the case of Bn = 2, unyielded regions

row again during the final stage of the experiment at the top and
ottom sides of the sample around the axis of symmetry, which
auses the flow to stop as they merge together. In fact, the flow
tops early, at t = 0.58, as almost the entire material becomes
nyielded and behaves as a rigid solid.

In Fig. 9, the rates of compression under constant load
or F* = −10, Re = 1 and three Bingham numbers, 1, 4 and
, are shown. In agreement with the findings of Karapet-
as and Tsamopoulos [16], the rate of compression decreases

ith the Bingham number and the experiment stops earlier
ue to the fact that the size of the unyielded region grows
ast causing the flow to stop. Moreover, the final distance
etween the two disks increases with the Bingham number,

ig. 9. Effect of the applied load on the evolution of the sample’s height for
* = −10 and Re = 1.

t
a
s
B
t
a

F
R

ielded (black) areas for different Bingham numbers, F* = −10 and Re = 1.

hich also agrees with the simulations of Karapetsas and
samopoulos [16].

Fig. 10 shows the effect of the applied load on the evolution
f the sample’s height for Re = 10 and Bn = 0.5. As expected,
he rate of compression increases with the applied load. Inter-
stingly, the compression with F = −1 is interrupted in the early
tages of the experiment, as the effective stress field in the sample
ecomes lower than the yield stress.

It is clear that under constant velocity, compression starts
nstantaneously. In other words, almost all the material is yielded
rom the very beginning of the experiment, with the excep-
ion of a small unyielded spot that appears at the bottom side
round the axis of symmetry. Fig. 11 shows snapshots of the

ample obtained in constant-velocity experiments for a fixed
ingham number, Bn = 0.5, and Re = 0.1, 1 and 10. As expected,

he shape of the compressed sample becomes more asymmetric
t higher Reynolds numbers. The unyielded spot grows initially

ig. 10. Effect of the applied load on the evolution of the sample’s height for
e = 10 and Bn = 0.5.
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Fig. 11. Compression under constant velocity and evolution of the yielded

nd then disappears. Its size is reduced as the Reynolds number
s increased. Fig. 12 shows snapshots of the sample obtained
or Re = 10 and various Bingham numbers (0.01, 0.1 and 1). In
he case of Bn = 1, we observe again an unyielded spot around
he axis of symmetry on the bottom side of the sample, which
nitially grows and then disappears.

Figs. 13 and 14 show respectively the effects of the Reynolds
nd the Bingham numbers on the resulting load along the topside
f the sample during compression at constant velocity. Since
here is no elastic component in the constitutive equation, the
oad required to maintain the constant velocity of the moving
isk at t = 0 is very high (infinite in theory). However, the load
ecreases rapidly to reach a plateau in the initial stages of the
xperiment, and then increases sharply due to the rapid increase

f the sample area. The numerical simulations fail to advance
bove a critical time, as the sample becomes very thin and the
urface of the sample very large (the finite elements are of high
spect ratio). Note that smoothing has been used in order to elim-

o
[

i

and unyielded (black) areas for different Reynolds numbers and Bn = 0.5.

nate artificial spikes in the pressure (and hence in the calculation
f the load) due to the discrete advancing of the nodal points on
he solid surface. This is clearly a disadvantage caused by the
imitations of the remeshing technique used. With the excep-
ion of the initial decreasing regime, the observed behaviour
f the load is consistent with the analysis of Sherwood and
urban [12] and the experiments of Adams et al. [13] with an

lasto-viscoplastic material. Evidently, the sharp increase of the
oad in the final stages of the experiments is due to the increase
f the area of the sample that is being compressed at constant
elocity. Karapetsas and Tsamopoulos [16] also found that the
pplied force increases significantly with time, in their creeping-
ow numerical simulations in which both plates were moving.
hey also noted that the load increases as the aspect ratio

f the sample is increased, in agreement with previous works
10,15].

The necessary load to achieve compression at constant veloc-
ty increases with the Reynolds (Fig. 13) and the Bingham
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Fig. 12. Compression under constant velocity and evolution of the yielded (grey) and unyielded (black) areas for different Bingham numbers and Re = 10.

Fig. 13. Effect of the Reynolds number on the resulting load in a constant-
velocity experiment for Bn = 0.5.

Fig. 14. Effect of the Bingham number on the resulting load in a constant-
velocity experiment for Re = 10.



tonian

n
s
a
e

5

o
p
l
L
i
e

u
t
R
p
d
u
o
s
i

m
n
i

s
m
e
c
i
u
n

R

[

[

[

[

[

[

G.C. Florides et al. / J. Non-New

umbers (Fig. 14). In their creeping-flow simulations, Mat-
oukas and Mitsoulis [14] and Karapetsas and Tsamopoulos [16]
lso found that the load increases with the Bingham number, as
xpected.

. Concluding remarks

We have simulated numerically the flow of a finite amount
f a Bingham plastic, assuming that the top side of the sam-
le is compressed either under constant velocity or constant
oad while its bottom side is fixed. The flow is modelled in
agrangian coordinates employing the Papanastasiou regular-

zation for the Bingham plastic and using a mixed-Galerkin finite
lement method.

The simulations under constant load showed that the
nyielded regions are located around the axis of symmetry at
he bottom side of the sample and their size increases with the
eynolds and the Bingham numbers. In the initial stages of com-
ression, the unyielded area decreases in size and, in some cases,
isappears completely. In the final stage of the compression,
nyielded material is built again at the top and bottom sides
f the sample causing the flow to stop. The rate of compres-
ion becomes slower as the Reynolds and Bingham numbers are
ncreased.

When the sample is compressed with constant velocity, the
aterial is yielded from the beginning of the experiment. The

ecessary applied load increases as the Bn and Re numbers are
ncreased.

The numerical results for the flow and the shape of the test
ample may be used together with experiments in order to deter-
ine the material constants. Given that the materials of interest

xhibit thixotropic behavior, a more systematic study of the

ompression flow, including both experiments and simulations,
s still required. Moreover, the evolution of the yielded and
nyielded regions and the permanent damage of the material
eed to be further investigated.
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