
A

a
w
o
e
o
©

K

1

t
p
t
a
f
r
p
t
σ

a
r

γ

a

0
d

J. Non-Newtonian Fluid Mech. 146 (2007) 30–44

A two-dimensional numerical study of the
stick–slip extrusion instability

Eleni Taliadorou a,1, Georgios C. Georgiou a,∗, Andreas N. Alexandrou b,2

a Department of Mathematics and Statistics, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
b Department of Mechanical and Manufacturing Engineering, University of Cyprus,

P.O. Box 20537, 1678 Nicosia, Cyprus

Received 14 June 2006; received in revised form 17 November 2006; accepted 21 November 2006

bstract

The time-dependent, compressible extrusion of a Carreau fluid is solved over the reservoir-die-extrudate region using finite elements in space
nd a fully implicit scheme in time. A nonmonotonic slip law based on experimental data on polyethylene melts is assumed to hold along the die
all and the velocity at the entrance of the reservoir is taken to be fixed and uniform. As in the case of the extrudate-swell flow, the combination

f compressibility and nonlinear slip leads to self-sustained oscillations of the pressure drop and of the mass flow rate in the unstable regime. The
ffects of the reservoir volume, the imposed flow rate, and the capillary length on the amplitude and the frequency of the pressure and free surface
scillations are studied and comparisons are made with experimental observations.

2006 Elsevier B.V. All rights reserved.
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. Introduction

Among the various types of polymer extrusion instabilities,
he stick–slip instability is the only one that is associated with
ressure oscillations at constant throughput, i.e. at constant pis-
on speed in the reservoir region [1]. The instantaneous flow rate
t the capillary exit is also oscillatory and the extrudate emerges
rom the capillary in bursts, and is characterized by alternating
ough and relatively smooth zones. It is well known that the
ressure and flow rate oscillations follow the stable branches of
he apparent flow curve, i.e. the plot of the wall shear stress,
w, versus the apparent shear rate, γA, as shown in Fig. 1. The
pparent wall shear rate is calculated from the volumetric flow
ate Q as follows
˙A ≡ 32Q

πD3 , (1)
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here D is the diameter of the capillary. The wall shear stress is
alculated by

w = Pd − Pend

4L/D
, (2)

here Pd is the driving pressure determined for the force on the
iston, Pend the Bagley end correction for the pressure drop, and
is the length of the capillary.
Due to the oscillations of the wall shear stress, the flow

urve is discontinuous and consists of two stable positive-slope
ranches separated by the unstable stick–slip instability regime
2–5], as illustrated in Fig. 1. Experiments with fluids exhibiting
he stick–slip instability revealed that the flow curve depends
n the capillary diameter. This dependence, which becomes
tronger as the apparent shear rate increases, is due to the occur-
ence of slip at the capillary wall. The lower part of the low-flow
ate branch is insensitive to the capillary diameter, which implies
he absence of wall slip. The upper part may be weakly depen-
ent on D, which indicates that weak slip is possible [6–8]. The
igh-flow rate branch is strongly dependent on D, which is an

ndication of strong slip [6–11]. Based on slip velocity estimates,
atzikiriakos and Dealy [2] proposed a power-law slip equation

or the right branch of their flow curve. El Kissi and Piau [10]
lso derived a single nonmonotonic slip equation for both the
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Fig. 1. Schematic of an apparent flow curve and the stick–slip regime.

ranches of the flow curve. These indirect observations for the
ccurrence of stick and slip phenomena during the extrusion of
ertain polymer melts have also been confirmed by recent direct
lip velocity measurements with optical methods [12,13]. The
ole of wall slip in extrusion instabilities is discussed in detail
n [14,15].

When the imposed shear rate is in the unstable regime, the
all shear stress and the apparent shear rate oscillate (with

he same period and phase) following closely, in the clockwise
ense, the hysteresis cycle ABCD [2,3,5]. The critical wall shear
tresses for the nearly instantaneous jumps from point A to point

and from C to D are denoted here by σc2 and σc3, respec-
ively. These two critical stresses correspond to the transition
rom weak to strong slip and vice versa, and define the limiting
alues between which the wall shear stress oscillates. Hence,
he amplitude of the wall shear stress oscillation is equal to
σc2 − σc3). Similarly, the amplitudes of the sudden apparent
hear rate increase and decrease are determined by the shear
ate differences between points A and B and points C and D,
espectively [2,3]. Hence, for a given capillary (i.e. given D and
/D), the onset of the stick–slip instability (i.e. the critical shear
tress σc2) and the amplitudes of the oscillations are determined
olely by the steady-state flow curve [2,3,16,17].

The oscillations of the pressure and the extrudate flow rate
re obviously analogous to those of the wall shear stress and
pparent flow rate, respectively. The variation of the extrudate
ow rate, in spite of the constant piston speed, arises from

he compressibility of the melt in the reservoir, and causes
he characteristic appearance of the extrudate which consists
f alternating rough and relatively smooth regions [2–4].

The generation of self-sustained pressure and flow rate oscil-
ations when compressibility is combined with nonlinear slip has
een confirmed by the two-dimensional simulations of Geor-
iou and Crochet [18,19]. These authors employed an arbitrary
onmonotonic slip equation relating the wall shear stress to the

lip velocity and numerically solved the time-dependent com-
ressible Newtonian Poiseuille and extrudate-swell flows. Their
imulations showed that steady-state solutions in the negative-
lope regime of the flow curve are unstable, and that oscillatory

l
m
fl

Fluid Mech. 146 (2007) 30–44 31

olutions are obtained at constant volumetric flow rate. In a
ecent work, Georgiou [20] carried out numerical simulations for
shear-thinning Carreau fluid using an empirical slip equation

hat is based on the experimental measurements of Hatzikiriakos
nd Dealy with a HDPE melt [2,8]. His time-dependent calcula-
ions at fixed volumetric flow rates in the unstable negative-slope
egime of the flow curve showed that the pressure and flow rate
scillations do not follow the stable branches of the flow curve,
n contrast to the experiments. As stated in Ref. [20], including
he reservoir region in the simulations is necessary in order not
nly to account for the compression and decompression of most
art of the fluid but also for obtaining limit cycles following
he steady-state branches of the flow curve, i.e. for getting pres-
ure and extrudate flow rate oscillations characterized by abrupt
hanges, as is the experiments.

The objective of the present work is to extend the simula-
ions in [20] to the full reservoir-capillary-extrudate geometry,
n order (a) to study the effects of the reservoir length, the
mposed flow rate, and the capillary length on the pressure
nd free surface oscillations and (b) to make comparisons with
xperimental observations on extrusion under constant piston
peed. As discussed below, experimental results from different
tudies are not always in agreement. The present simulations
ay be helpful in understanding some of the experimental

bservations.
Experiments with different materials showed that as the

eservoir is emptying, the period of the pressure and flow rate
scillations is reduced while the hysteresis loop of the flow
urve remains unchanged, which implies that the amplitudes
f the pressure and flow rate oscillations remain the same
2,3,7,16,17,21]. The period of the oscillations has been found
o vary linearly with the volume of the melt in the reservoir,
nd that the extrapolations of the experimental period data do
ot pass through the origin [2,3,5,22,23]. On the other hand,
he waveform of the pressure oscillations appears to be insensi-
ive to the reservoir length, meaning that the relative durations
f the compression and relaxation phases do not change as the
xtrusion experiment proceeds [2,3,17].

According to experimental observations, as the imposed flow
ate is increased in the unstable regime, the waveform of the
ressure oscillations changes so that the relative duration of
he compression part is reduced, while their amplitude is not
ffected [2,3,17,21,24]. The reports concerning the effect on
he period of the pressure and flow rate oscillations are some-
ow conflicting. In experiments with HDPEs, Hatzikiriakos
nd Dealy [2], Durand et al. [3] and Den Doelder et al. [25]
bserved that the period is decreased as the flow rate is increased.

period reduction has also been reported in experiments on
LLDPE [7] and a PB [26]. On the other hand, the earlier

xperiments of Myerholtz [21], Weill [17] and Okubo and Hori
27] on HDPEs and those of Vinogradov et al. [24] on PBs
howed that the period passes through a minimum in the unstable
egime.
Experiments with HDPEs have shown that as the capillary
ength increases, the stick–slip regime is shifted to lower volu-
etric flow rates and its size increases, the hysteresis loop of the
ow curve becomes larger, and both the amplitude and the period
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the superscript T denotes the transpose, IId the second invariant
of d, η0 the zero-shear-rate viscosity, λ a time constant, and n is
the power-law exponent.

Table 1
Symbols and values of various lengths concerning the flow geometry

Symbol Parameter Value

Rb Radius of the barrel 0.9525 cm
Lb Length of the barrel
ig. 2. Geometry and boundary conditions for the time-dependent, compress
ncluding the reservoir region.

f the pressure oscillations increase [2,3,5]. The experiments of
urand et al. [3] and Vergnes et al. [28] showed that reducing

he capillary length eventually leads to a continuous (monotonic)
ow curve. According to Den Doelder et al. [25], HDPEs do not
xhibit pressure oscillations for short dies (L/D < 5), since these
re overruled by the entry and exit pressure losses.

The critical wall shear stress, σc2, at which the stick–slip
nstability is observed may increase or decrease or remain con-
tant as the capillary length to the capillary diameter ratio,
/D, increases. Experiments with HDPE melts [2,3,5,21] and
PDM compounds [28] showed that �c2 and the stress difference
σc2 − σc3) increase with the capillary length. Hatzikiriakos and
ealy [2] attribute this effect to the pressure dependence of wall

lip. Experiments with other materials, however, show that σc2
s not always an increasing function of the L/D ratio. This was
ound to slightly decrease with L/D in the experiments of Vino-
radov et al. with PBs [24], El Kissi and Piau with PDMS [9],
nd Kalika and Denn with a LLDPE [7], and to be independent
f L/D in the experiments of Ramamurthy with a LLDPE [6]
nd Wang and Drda with entangled linear PEs [29,30].

In Section 2, the governing equations, the slip equation,
nd the boundary and initial conditions are presented and their
imensionless forms are provided. In Section 3, after a brief
escription of the numerical method, the numerical results
re presented and discussed and comparisons are made with
xperimental observations. Finally, Section 4 summarizes the
onclusions.

. Governing equations

The geometry of the flow corresponds to the actual setup
sed in the experiments of Hatzikiriakos and Dealy [2]. There is
contraction region at 45◦ between the barrel and the capillary

s shown in Fig. 2. The actual values of the radii of the barrel and
he capillary, denoted respectively by Rb and R, and the length
f the capillary, L, are tabulated in Table 1.

The continuity and the momentum equations for time-

ependent, compressible, isothermal viscous flow in the absence
f body forces are as follows

∂ρ

∂t
+ ∇ · ρv = 0, (3)

R
L
L

xisymmetric extrusion of a Carreau fluid with slip along the capillary wall,

(
∂v
∂t

+ v · ∇v
)

= ∇ · �, (4)

here ρ is the density, v the velocity vector, p the pressure, and σ

s the stress tensor. For the density, the following linear equation
s employed:

= ρ0[1 + β(p− p0)], (5)

here β is the isothermal compressibility and ρ0 is the density
t the reference pressure p0.

Even though the fluid studied by Hatzikiriakos and Dealy
2] is considered to behave as a power-law one, we employ the
arreau model in order to avoid the well-known numerical dif-
culties caused by the former model, which predicts infinite
ero-shear-rate viscosity. For compressible flow of a Carreau
uid with zero infinite-shear-rate viscosity, the stress tensor is
ritten as

= −pI+ η0[1 + λ2(2IId)2]
(n−1)/2

(
2d − 2

3
I∇ · v

)
, (6)

here I is the unit tensor, d is the rate-of-deformation tensor,
efined as

= 1

2
[(∇v) + (∇v)T], (7)
Contraction angle 45◦
Capillary radius 3.81 × 10−2 cm
Capillary length 0.762 cm

e Length of the extrudate 3.81 cm
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Table 2
Values of the slip model parameters

Parameter Value

a1 ((MPa)−m1 cm/s) 125.09
m1 3.23
a2 ((MPa)−m2 cm/s) 1000
m2 2.86
a3 ((MPa)−m3 cm/s) 5.484 × 10−3

m3 −4.434

σc2 (MPa) 0.27
σmin (MPa) 0.19
v

v
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c2 (cm/s) 1.82

min (cm/s) 8.65

.1. The slip equation

We use the same three-branch multi-valued slip model as in
20]:

w =

⎧⎪⎨
⎪⎩
a1σ

m1
w , 0 ≤ vw ≤ vc2

a3σ
m3
w , vc2 ≤ vw ≤ vmin

a2σ
m2
w , vw ≤ vmin

, (8)

here vw is the relative velocity of the fluid with respect to
he wall, σw the shear stress on the wall, vc2 the maximum slip
elocity atσc2, andvmin is the minimum slip velocity atσmin. The
alues of all slip parameters are given in Table 2. The plot of the
lip equation is given in Fig. 3. This is based on the experimental
ata of Hatzikiriakos and Dealy [8]. The low-flow rate (low
elocity) branch is a simplification of the corresponding slip
quation proposed by the latter authors, under the assumption
f infinite normal stress. The high-flow rate branch is exactly the
ower-law slip equation proposed by the same authors for the
ight branch of their experimental flow curve. The intermediate

ranch, which corresponds to the unstable region of the flow
urve, is just an arbitrary line connecting the other two branches.
t should be noted that for a finite normal stress the first branch of
he slip equation moves closer to the third one; for zero normal

ig. 3. The nonmonotonic slip law based on the experimental data of Hatzikiri-
kos and Dealy [2,8].
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tress, the two branches almost overlap. It should be noted that in
eality, the wall shear stress is expressed as a function of the slip
elocity and not vice versa, i.e. σw = σw(vw). In other words,
he inverse of Eq. (8) is used.

.2. Dedimensionalization

To dedimensionalize the governing equations, we scale the
engths by the capillary radius R, the velocity by a reference
elocity, V, in the capillary, the pressure and the stress compo-
ents by η0λ

n−1Vn/Rn, the density by ρ0, and the time by R/V.
ith these scalings, one gets:

∂ρ

∂t
+ ∇ · ρv = 0, (9)

e(1 + Bp)

(
∂v
∂t

+ v · ∇v
)

= ∇ · σ, (10)

nd

= −pI +Λ1−n[1 +Λ2(2IId)2]
(n−1)/2

(
2d − 2

3
I∇ · v

)
,

(11)

here all variables are now dimensionless. (For simplicity the
ame symbols are used for the dimensionless variables.) The
edimensionalization results in three dimensionless numbers,
he Reynolds number, Re, the compressibility number, B, andΛ
n the constitutive equation, which are defined as follows

e ≡ ρ0R
nV 2−nλ1−n

η0
, B ≡ βη0V

n

λ1−nRn
, Λ ≡ λV

R
.

(12)

For resin A at 180 ◦C, Hatzikiriakos and Dealy [2] pro-
ide the following values: β = 9.923 × 10−4 MPa−1, n = 0.44
nd, for the consistency index, K = 0.0178 MPa sn. Assuming
hat η0 = 0.03 MPa s, we calculate λ from η0λ

n−l = K. For the
eference velocity, we get V = Rγ̇/4 = 5.24 cm/s2, assuming
hat γ̇ = 500 s−1 and R = 3.81 × 10−2 cm2. Under these assump-
ions, the values of the three dimensionless numbers are:
e = 1.43 × 10−5, B = 1.54 × 10−4, and Λ= 349.2.

The dimensionless form of the slip equation is

w =

⎧⎪⎨
⎪⎩
A1σ

m1
w , 0 ≤ vw ≤ vc2

A3σ
m3
w , vc2 ≤ vw ≤ vmin

A2σ
m2
w , vw ≤ vmin

, (13)

here

i ≡ aiη
mi
0 V

min−1

λmi(1−n)Rmin
, i = 1, 2, 3, (14)

nd the dimensionless values of vc2 and vmin correspond to

σc2R
nλ1−n σminR

nλ1−n
∗
c2 ≡

η0Vn
and σ∗

min ≡
η0Vn

, (15)

espectively. The values of the above dimensionless numbers are
iven in [20].
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ig. 4. (a) Various meshes for different barrel lengths and L = 20 used in the s
ntrance.

.3. Boundary and initial conditions

The dimensionless boundary conditions for the full extrusion
ow are shown in Fig. 2. The usual symmetry conditions apply
long the axis of symmetry. Along the barrel and the contraction
alls both velocity components are zero (no slip). Along the

apillary wall, only the radial velocity is zero, whereas the axial
elocity satisfies the slip Eq. (13). At the inlet plane, it is assumed
hat the radial velocity component is zero while the axial velocity
s uniform (corresponding to the motion of the piston at constant
peed):

z = Q

R2
b

,

here Q is the imposed volumetric flow rate (scaled by πR2V).
t should be noted that the simulations are carried out on a fixed
omain, i.e. the motion of the piston is not taken into account.
his is a reasonable assumption provided that the piston speed

s low.
When the extrudate region is excluded, we assume that the

adial velocity component vanishes at the capillary exit. In the
ase of the extrudate-swell flow, the weaker condition σrz = 0 is

sed at the outflow plane. In both cases, the total normal stress
s assumed to be zero, σzz = 0. Finally, on the free surface, we
ssume that surface tension is zero and impose vanishing normal
nd tangential stresses. Additionally, the unknown position h(z,

(

L
s

tions (the extrudate region is excluded). (b) Detail of the meshes near the die

) of the free surface satisfies the kinematic condition:

∂h

∂t
+ vz

∂h

∂z
− vr = 0. (16)

When the extrudate region is excluded, we use as initial
ondition the steady-state solution corresponding to a given vol-
metric flow rate Qold at the inlet that we perturb to Q at t = 0.
n the case of the extrudate-swell flow, we start with the steady-
tate solution of the stick–slip flow (i.e. with flat free surface)
or a given volumetric flow rate Q and release the free surface
t t = 0.

. Numerical results

The finite element formulation is used for solving the free
urface flow problem under study. The unknown position of the
ree surface is calculated simultaneously with the velocity and
ressure fields (full-Newton method). The standard biquadratic-
elocity (P2-C0) and bilinear-pressure (P1-C0) elements with a
uadratic representation for the position h of the free surface are
mployed. For the spatial discretization, the standard Galerkin
orms of the continuity, momentum and kinematic equations are
sed, while for the time discretization, the standard fully implicit

Euler backward-difference) scheme has been chosen.

As already mentioned, the dimensionless capillary length is
= 20. In order to study the effect of the capillary length on the

tick–slip instability, additional capillary lengths are considered
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ig. 5. Newtonian flow curves with Re = 0.01 and Lb = 80: (a) regular plot; (b)
og–log plot.

n the last part of this section. The extrudate length Le has been
aken to be 100, while the reservoir length Lb ranged from 20 to
00. Fig. 4 shows some of the meshes used in the simulations
excluding the extrudate region) with L = 20. The finite element
eshes were refined near the walls, and around the entrance and

xit of the capillary. The longest mesh (Lb = 200) consisted of
511 elements in the reservoir-capillary region and of 18,386
lements when the extrudate region was included. The corre-
ponding total numbers of unknowns were 42,403 and 169,504,
espectively. With the exception of the Reynolds number, Re,
he values of the dimensionless parameters are those given in
ection 2, i.e. B = 1.54 × 10−4 and Λ= 349.2. For comparison
urposes, in addition to the Carreau flow ones (n = 0.44), results

re also presented for the Newtonian flow (n = 1).

We first constructed the steady-state flow curves for the
eservoir-capillary region (excluding the extrudate region). In
ig. 5, we show both the regular (Fig. 5a) and log–log (Fig. 5b)

r
w
t
m

ig. 6. Effect of the power-law exponent on the flow curve: Re = 0.01 and

b = 80.

lots of the pressure drop versus the volumetric flow rate
btained with Re = 0.01 and Lb = 80 in the case of Newtonian
ow. Four different possibilities for the pressure drop are shown:
a) �Ptot,w is the pressure difference along the wall from the
iston to the capillary exit; (b)�Ptot,c is the pressure difference
long the centerline from the piston to the capillary exit; (c)
Pcap,w is the pressure difference along the wall from the cap-

llary entrance to the capillary exit; (d) �Pcap,c is the pressure
ifference along the centerline from the capillary entrance to
he capillary exit. The pressures �Ptot,w and �Ptot,c are essen-
ially the same for all volumetric flow rates and correspond to
he piston driving pressure, Pd, in Eq. (2). �Pcap,w and �Pcap,c
re slightly different from �Ptot,w and �Ptot,c along the left
ositive-slope branch of the flow curve. Much bigger differences
re observed in the negative-slope and the right positive-slope
ranches of the flow curves. In these regimes, �Pcap,w is much
ower than �Pcap,c due to the effect of the singularity at the
apillary entrance. It should be noted that differences between
Ptot,w and �Ptot,c at high volumetric flow rates are much big-

er in the case of the Carreau fluid. A careful examination of the
olution near the piston region shows that these differences are
olely due to the region near the piston and the barrel wall. More-
ver, unlike their Newtonian counterparts,�Pcap,w and�Pcap,c
lmost coincide, which implies that the effect of the singularity
t the capillary entrance is much weaker than in the Newtonian
ase. In what follows, the pressure drop �P corresponds to the
iston pressure �Ptot,c = Pd, unless otherwise indicated.

The flow curves obtained in the case of Carreau flow
n = 0.44) are quite similar. In Fig. 6, the Newtonian and Carreau
ow curves (�P =�Ptot,c) are compared. We observe that as n

s reduced, the negative-slope regime is slightly shifted to the

ight and reduces in size. Moreover, the resulting hysteresis loop,
hich is also shifted to the right, is much bigger. This implies

hat one would expect slightly bigger pressure oscillations and
uch bigger jumps of the volumetric flow rate. From Fig. 6,
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ig. 7. Contours of the steady-state Carreau solution (n = 0.44) inside the bar
= 1.5.

t can be deduced that the biggest volumetric flow rate will be
bout eight times its lowest value. This agrees well with the
eport of Hatzikiriakos and Dealy [2] that with resin A at 160 ◦C
he mass flow rate suddenly increases by a factor of about 8.

Fig. 7 shows the (steady-state) contours of the two velocity
omponents, the pressure and the streamfunction, ψ, obtained
or the Carreau flow with Re = 0.01, Lb = 80, and Q = 1.5, i.e. near
he middle of the negative-slope regime of the flow curve. We see
he rearrangement of the flow near the capillary entrance, and
bserve that the differences between �Ptot and �Pcap are basi-
ally due to the entrance region. Far from the capillary entrance,
he pressure in the reservoir is practically constant, which veri-
es that one of the basic assumptions made in one-dimensional
henomenological models proposed in the literature (see, e.g.
ef. [31]) is valid.

When the extrudate region is excluded, the steady-state solu-
ions are perturbed by changing the volumetric flow rate from an
ld value to the desired one, Q. Given that the flow is compress-
ble, the behavior of the time-dependent solution depends on
hether the new value of Q corresponds to the stable positive-

lope branches or to the unstable negative-slope one. In the
ormer case, the new steady-state is obtained without any oscil-
ations, whereas, in the latter one, the solution is oscillatory
nd becomes periodic after a transition period. Self-sustained
scillations of the pressure drop and the mass flow rate are
btained which are similar to those observed experimentally
n the stick–slip extrusion instability regime. All the results
resented below have been obtained in the unstable regime.

In Fig. 8, we show the oscillations of the pressure drop and
he volumetric flow rate obtained by perturbing the Newto-
ian steady-state solution for Re = 0.01, Lb = 80 and Q = 1.35.

e note in Fig. 8a that sudden jumps of the pressure drop

re observed when this is measured across the capillary. No
umps are observed when �P is measured between the piston
nd the capillary exit. The volumetric flow rate at the capil-

Fig. 8. Pressure and flow rate oscillations for Newtonian flow (n = 1), Re = 0.01,
Lb = 80 and Q = 1.35.
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Re = 1.43 × 10−5, we reduced the value of the Reynolds number
ig. 9. Pressure and flow rate oscillations for Carreau flow (n = 0.44), Re = 0.01,

b = 80 and Q = 1.35.

ary exit (Fig. 8b) is also characterized by sudden jumps which
s consistent with experimental observations [2,3]. The results
n the case of Carreau flow are similar but the amplitude and
he period of the oscillations are higher (Fig. 9), as expected.
lotting the trajectory of the solution on the flow curve plane
Fig. 10) shows that, after a transition period, a limit cycle is
eached which follows exactly the positive-slope branches of
he steady-state flow curve. The volumetric flow rate increases
ogether with the pressure following exactly the left positive-
lope branch of the flow curve and, when the pressure reaches
ts maximum value, Q jumps to the right positive-slope branch.
he volumetric flow rate then starts decreasing together with

he pressure following this branch till the pressure reaches its
inimum and then jumps to the left positive-slope branch and
tarts the next oscillation cycle. This behavior agrees well with
xperimental observations [2,3]. Note also that in our previ-
us study [20], the limit cycles did not follow the steady-state

f
a
a

ig. 10. Trajectory of the solution on the flow curve plane for Carreau flow
n = 0.44), Re = 0.01, Lb = 80 and Q = 1.35: (a) regular plot; (b) log–log plot.

ow curve due to the omission of the reservoir region. This
rawback was also exhibited by the one-dimensional model of
reenberg and Demay [32], which does not include the bar-

el region. Note that most one-dimensional phenomenological
elaxation/oscillation models require as input the experimen-
al (steady-state) flow curve. These models are based on the
ompressibility/slip mechanism and describe oscillations of the
ressure and the volumetric flow rate in the stick–slip insta-
ility regime (see [11,31,33] and references therein) under the
ssumption that these follow the experimental flow curve. The
resent simulations are the first to predict that the limit cycle
ndeed follows the steady-state flow curve.

In an attempt to approach the experimental value
rom 0.01 to 0.001. Fig. 11 shows a comparison of the pressure
nd flow rate oscillations during a cycle, obtained with Re = 0.01
nd 0.001 for both the Newtonian and the Carreau flows (with
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ig. 11. Comparison of the pressure (a) and flow rate (b) oscillations for
e = 0.01 and 0.001, Lb = 80 and Q = 1.35.

b = 80 and Q = 1.35). It is clear that decreasing the Reynolds
umber has no practical effect on the oscillations with the excep-
ion of the artificial flow rate overshoots obtained with the lower
e. Instead of trying to eliminate the overshoots by reducing the

ime step (which would have resulted into much longer runs),
e decided to continue the runs with Re = 0.01. Note that when

he reservoir region is excluded, the results are sensitive to the
eynolds number: the amplitude of the pressure drop oscilla-

ions is reduced, the amplitude of the mass flow rate oscillations
s increased and the frequency of the oscillations is considerably
ncreased, as the Reynolds number is reduced [20]. This shows
nce again the importance of including the reservoir region.

In order to study the effect of the reservoir length on the pres-
ure oscillations, we obtained results for various values of Lb.
he pressure oscillations for different values of Lb, Re = 0.01 and
= 1.35 are given in Figs. 12 and 13 for the Newtonian and the
arreau flow, respectively. In both cases, the period of the pres-

ure oscillations increases with Lb while their amplitude seems
o be less sensitive. This is more clearly shown in Fig. 14, where
he corresponding periods and the amplitudes of the pressure
scillations are plotted versus the reservoir volume. As already
entioned, the period and the amplitude of the pressure oscil-

ations are higher in the case of the Carreau fluid. In agreement

ith experiments [2,3,5,23], the period T increases linearly with

he reservoir volume, while the amplitude is essentially constant.
owever, the period appears to pass through the origin, which

s not the case with the experiments [2,3,5,23].

o

F
t

ig. 12. Effect of the reservoir length on the pressure oscillations: Newtonian
ow (n = 1), Re = 0.01 and Q = 1.35.

To show the effect of the reservoir length on the waveform of
he pressure oscillations, we compare in Fig. 15 the normalized
ressure oscillations during one cycle for both fluids, Lb = 20
nd 200. The waveform is independent of the reservoir length,
.e. the durations of both the compression and the relaxation
ncrease linearly with the reservoir length, which agrees well
ith the experiments of Hatzikiriakos and Dealy [2] and Durand

t al. [3].
Results for various values of Q in the unstable regime,

e = 0.01 and Lb = 80, have been obtained in order to investigate
he effect of the imposed volumetric flow rate on the pressure
scillations. Fig. 16 shows the periods of the resulting pressure
scillations versus Q for both the Newtonian and Carreau flows.
he period decreases initially reaching a minimum in the middle
f the unstable regime and then starts increasing slowly. This was
lso the case in the experiments of Myerholtz [21], Okubo and
ori [27] and Weill [17] on HDPEs and those of Vinogradov et

l. [24] on a polybutadiene. In other experiments, Hatzikiriakos
nd Dealy [2], Durand et al. [3] and Robert et al. [23] reported
hat the period decreases with Q. However, the latter authors
arried out experiments only for a few values of Q, which were
ot sufficient for capturing the minimum and the slight increase

f the period in the rightmost part of the unstable regime.

The effect of Q on the pressure oscillations is illustrated in
igs. 17 and 18 for the Newtonian and Carreau flows, respec-

ively, where pressure oscillations obtained with Re = 0.01,
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Fig. 13. Effect of the reservoir length on the pressure oscillations: Carreau flow
(n = 0.44), Re = 0.01 and Q = 1.35.

Fig. 14. Period (a) and amplitude (b) of the pressure oscillations vs. the reservoir
volume: Re = 0.01 and Q = 1.35.
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ig. 15. Effect of the reservoir length on the waveform of the pressure oscil-
ations: (a) Newtonian flow (n = 1); (b) Carreau flow (n = 0.44), Re = 0.01 and

= 1.35.

b = 80 and various values of Q are shown. It is again clear
hat the period of the oscillations passes though a minimum.
he ascending part (compression) of the oscillations is rel-
tively reduced in agreement with experimental observations
2,3,23,27]. The descending part of the oscillation does not
emain constant but increases significantly at high values of Q, in
isagreement with the experiments of Hatzikiriakos and Dealy
2], Durand et al. [3] and Robert et al. [23], in which, however,
he period was found to be a decreasing value of Q. In the present
imulations, the period is decreasing only in the first half of the
nstable regime, where the growth of the descending part of the
scillation is not as pronounced.

The time-dependent simulations of the full extrusion flow
ave been obtained by starting with the steady-state solution
orresponding to a flat free surface (stick–slip flow) and letting
he free surface move at t = 0. In Fig. 19, we present free sur-
ace profiles obtained for the Newtonian flow with Re = 0.01,

= 1.5 and a small reservoir length, Lb = 20, during one cycle
f the pressure oscillations (from a pressure drop maximum to
he next one) after the periodic solution is established. The free
urface oscillations resemble to the ‘bamboo’ instability pat-

ern with a long ‘smooth’ part and a shorter ‘distorted’ part.
s in Ref. [20], in addition to the motion of the free surface
aves in the flow direction, the free surface also oscillates in the

adial direction; swelling is minimized at pressure drop max-
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ig. 16. Effect of the imposed volumetric flow rate on the period of the pressure
scillations: Re = 0.01 and Lb = 80.

ma. This result agrees with the experiments of Pérez-González
t al. [34], who worked with polyethylene melts and observed
hat severe contractions in the extrudate diameter occur at pres-
ure maxima. From Fig. 19, it can easily be deduced that the
otion of the extrudate is accelerated just after the pressure

rop maximum, which is, of course, due to the sudden jump of
he volumetric flow rate from the left to the right stable branch
f the flow curve. Similarly, the extrudate motion is deceler-
ted just after the pressure drop minimum, since the flow rate
umps from the right to the left stable branch. A comparison
ith Fig. 20, where Newtonian free surface profiles obtained
ith Lb = 80 are shown, reveals that with a longer reservoir (i.e.

or a bigger period of pressure oscillations), the wavelength of
he resulting free surface waves is much bigger. The amplitude
nd the relative length of the distortions also appear to increase.
imilar results have been obtained for the case of Carreau flow,
s illustrated in Figs. 21 and 22, which show free surface profiles
btained with Lb = 20 and 80, respectively.

In addition to L = 20, we have also considered the values
= 0.1, 1, 5, 10 and 40, in order to study the effect of the capillary
ength. In Fig. 23a, we plotted the flow curves of the Carreau fluid
btained for all capillary lengths. As expected, the pressure drop
s well as the difference between its maximum and minimum
alues are reduced as the capillary length is decreased. More-

s
e
s

ig. 17. Effect of the imposed volumetric flow rate on the pressure oscillations:
ewtonian flow (n = 1), Re = 0.01 and Lb = 80.

ver, for very small capillary lengths the flow curve becomes
onotonic, which implies that the flow is stable for all values

f the volumetric flow rate. In other words, the hysteresis loop
ecreases in size and eventually vanishes as the capillary length
s decreased. As a consequence, the amplitude and the period of
he pressure drop oscillations decrease, as illustrated in Fig. 23b;
or L = 1, no oscillations are observed, since the flow is every-
here stable. Fig. 24 shows that the period and the amplitude
f the pressure drop oscillations vary linearly with the capillary
ength, above the critical value at which the flow curve ceases
o be monotonic. These results agree well with experiments on
DPEs [3,5,8,21], regarding the size of the hysteresis loop and

he amplitude and the period of the pressure oscillations. Unlike
he experiments, however, our simulations do not predict the
hift of the stick–slip regime to lower flow rates. This may be
ue to the fact that the pressure dependence of wall slip is not
aken into account in the slip model [2]. The numerical simu-
ations also showed that the capillary length has a slight effect
n the waveform of the pressure oscillations. As illustrated in
ig. 25, where the normalized pressure oscillations for L = 5,
0 and 40 are compared, the increasing part of the oscillation
ncreases slightly with the capillary length.

Assuming that the pressure drop corresponding to the very

hort capillary length L = 0.1 (see Fig. 23a) is equal to the Bagley
nd correction, Pend, in Eq. (2), we calculated the wall shear
tresses versus the apparent wall shear rate. Interestingly, the
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Fig. 19. Free surface oscillations during one cycle: Newtonian flow (n = 1),
Re = 0.01, Lb = 20 and Q = 1.5.
ig. 18. Effect of the imposed volumetric flow rate on the pressure oscillations:
arreau flow (n = 0.44), Re = 0.01 and Lb = 80.

urves of the calculated wall shear stresses for all capillary
engths (L = 1, 5, 10, 20 and 40) coincide, as shown in Fig. 26.
he critical values of the wall shear stress are σc2 = 0.34 MPa
nd σc3 = 0.24 MPa, which give (σc2 − σc3) = 0.1 MPa. The val-
es of σc2 reported by Hatzikiriakos and Dealy [2] are in
he range 0.22–0.50 MPa, while those of (σc2 − σc3) are in
he range 0.03–0.11 MPa. Given the assumptions made in the
resent work, the agreement between simulations and exper-
ments is rather good. As already mentioned, experimental
bservations on the effect of the capillary length on the value
f σc2 cover all possibilities. In some cases, σc2 has been found
o increase [2,3,5,28] and in others to decrease [9,7,24], as L
s increased. Our simulations agree with the experiments of
amamurthy [6] and Wang and Drda [29,30] in which σc2 was

ound to be independent of L. Finally, the effect of the cap-

llary length on the free surface oscillations is illustrated in
ig. 27. Both the amplitude and the wavelength increase, and

he waveform appears to change dramatically with the capillary
ength.

Fig. 20. Free surface oscillations during one cycle: Newtonian flow (n = 1),
Re = 0.01, Lb = 80 and Q = 1.5.
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Fig. 21. Free surface oscillations during one cycle: Carreau flow (n = 0.44),
Re = 0.01, Lb = 20, and Q = 1.5.

Fig. 22. Free surface oscillations during one cycle: Carreau flow (n = 0.44),
Re = 0.01, Lb = 80 and Q = 1.5.

Fig. 23. Flow curves (a) and pressure oscillations (b) for different capillary
lengths: Carreau flow (n = 0.44), Re = 0.01, Q = 1.35 and Lb = 80.

Fig. 24. Period (a) and amplitude (b) of the pressure oscillations as functions of
the capillary length: Carreau flow (n = 0.44), Re = 0.01, Q = 1.35 and Lb = 80.
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Fig. 25. Normalized pressure oscillations for different capillary lengths: Carreau
flow (n = 0.44), Re = 0.01, Q = 1.35 and Lb = 80.

Fig. 26. Apparent wall shear stress vs. the apparent wall shear rate for different
capillary lengths: L = 1, 5, 10, 20 and 40; Carreau flow (n = 0.44) and Re = 0.01.

Fig. 27. Free surface oscillations at a pressure drop maximum for different
capillary lengths: Carreau flow (n = 0.44), Re = 0.01 and Lb = 80.
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. Conclusions

We used finite elements to simulate the time-dependent,
ompressible extrusion of a Carreau fluid in the full reservoir-
apillary-extrudate geometry, assuming that slip occurs along
he die wall following a nonmonotone slip law that is based on the
xperimental measurements of Hatzikiriakos and Dealy [2,8].

The numerical simulations agree well with the following
xperimental observations: (a) the pressure and flow rate oscil-
ations follow the hysteresis loop defined by the two branches
f the flow curve, and the volumetric flow rate is character-
zed by instantaneous jumps between the two branches; (b) the
mplitude and the period of the pressure oscillations increase lin-
arly with the capillary length, since the hysteresis loop becomes
arger; (c) for small capillary lengths, the pressure is a continu-
us monotonic function of Q, and no oscillations are observed;
d) the period of the pressure and flow rate oscillations increases
inearly with the reservoir length, while their amplitudes and
aveforms are fairly constant. Nevertheless, the period of the
ressure oscillations, when plotted versus the reservoir volume,
ppears to pass through the origin, which is not the case with
xtrapolated experimental data [2,3,5,23].

In agreement with certain experiments [17,21,24,27], the
eriod of the pressure oscillations passes through a minimum,
hen this is plotted versus the imposed volumetric flow rate.
he compression part of the pressure oscillations is relatively

educed, as Q is increased.
The calculated value of the critical wall shear stress for the

nset of the stick–slip instability, σc2 = 0.34 MPa, is in the range
eported by Hatzikiriakos and Dealy [2]. This value was found
o be independent of the capillary length, which is in agreement
nly with certain experiments [6,29,30]. Unlike experimental
bservations [2,3], the stick–slip regime is not shifted to lower
olumetric flow rates but remains constant as the capillary length
s increased. This may be due to the fact that the slip equation we
mployed does not take into account the pressure dependence
f wall slip and holds uniformly across the capillary.
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