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a b s t r a c t

The augmented Lagrangian/Uzawa method has been used to study benchmark one-dimensional cessation
flow problems of a Bingham fluid, such as the plane Couette flow, and the plane, round, and annular
Poiseuille flows. The calculated stopping times agree well with available theoretical upper bounds for
the whole range of Bingham numbers and with previous numerical results. The applied method allows
for easy determination of the yielded and unyielded regions. The evolution of the rigid zones in these
unsteady flows is presented. It is demonstrated that the appearance of an unyielded zone near the wall
occurs for any non-zero Bingham number not only in the case of a round tube but also in the case of an
annular tube of small radii ratio. The advantages of using the present method instead of regularizing the
constitutive equation are also discussed.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Recently, Chatzimina et al. [1,2] solved numerically several one-
dimensional cessation flows of a Bingham plastic, i.e. the plane
Couette flow [1], and the plane, round, and annular Poiseuille flows
[1,2], in order to compare the numerical stopping times with the
theoretical upper bounds obtained by Glowinski [3] and Huilgol et
al. [4] and study the evolution of the yielded/unyielded regions.
The inherent discontinuity of the ideal Bingham plastic model
was overcome by using Papanastasiou’s exponential regulariza-
tion [5]. This model gives an accurate representation of the ideal
Bingham model when the stress-growth regularization parame-
ter approaches infinity [5,6]. The numerical results in Refs. [1,2]
have been mostly obtained for relatively low values of the regu-
larization parameter, which lead to satisfactory estimates of the
stopping times only for moderate and high values of the Bingham
number, which is a measure of the fluid yield stress. Chatzimina
et al. [1,2] pointed out that in order to improve the accuracy of
the calculated stopping times at low and moderate Bingham num-
bers, the regularization parameter should be increased to values
that lead to prohibitively very long computation times for such
time-dependent calculations.

∗ Corresponding author.
E-mail address: mitsouli@metal.ntua.gr (E. Mitsoulis).

Regularization methods may offer an attractive alternative to
the ideal Bingham model [7] for engineering calculations, but may
also mask interesting viscoplastic effects. It has been convinc-
ingly argued that variational inequalities [3,8] are better suited
for obtaining accurate results for the yielded/unyielded zones and
finite stopping times when using the ideal Bingham model or its
variants (Herschel–Bulkley and Casson models). The method of
choice for solving these problems is the augmented Lagrangian
method (ALM) with an Uzawa-like iteration.

Two slightly different numerical implementations of the
method have been proposed. In the first version, suggested origi-
nally for steady-state Poiseuille flows [9], only one tensor (Lagrange
multiplier) is additionally introduced. This method is discussed in
a recent review by Dean et al. [10]. More complicated cases based
on this method have also been published [11–13]. In the second
version, two tensors (Lagrange multiplier and independent rate-of-
strain tensor) are introduced. This augmented Lagrangian method
introduced by Fortin and Glowinski [14] has been widely used dur-
ing the last years. An early example is the work by Huilgol and
Panizza [15]. The method has been applied for steady pipe flows
[16–22] and for some two-dimensional problems [23–25].

The objective of the present work is to compare the perfor-
mance and the results of the former method to the regularized
time-dependent 1D results of Chatzimina et al. [1,2], in view of
the existing theoretical upper bounds of Glowinski [3] and Huilgol
et al. [4]. The emphasis will be on showing the numerical stopping
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times by the two methods and the evolution of yielded/unyielded
regions. Conclusions will be drawn about the advantages of each
method to handle viscoplastic problems.

2. Problem statement and method of solution

We have studied four cessation flows of a Bingham plastic: (a)
plane Couette flow; (b) plane Poiseuille flow; (c) axisymmetric
Poiseuille flow; and (d) annular Poiseuille flow. The problems at
hand are made dimensionless using the same scales as those used
in Chatzimina et al. [1,2]: the lengths are scaled by a characteristic
length, L, and the velocity is scaled by a characteristic velocity, U.
Then the time is scaled by �L2/� (� being the density and � the
viscosity), and the pressure and stress are scaled by �U/L. In the
case of the plane Couette flow, L is the gap size H and U is the initial
speed of the moving upper plate. The characteristic length is the
channel half-width, H, in the case of the plane Poiseuille flow, the
radius, R, of the tube in the case of axisymmetric Poiseuille flow, and
the radius of the outer cylinder in the case of the annular Poiseuille
flow. In the case of Poiseuille flows, U is the initial average velocity.

With the above non-dimensionalization the constitutive equa-
tion for a Bingham fluid becomes

�̇ = 0, |�| ≤ Bn

� =
(

1 + Bn

|�̇ |
)

�̇, |�| > Bn

}
, (1)

where � is the stress tensor and �̇ ≡ ∇u + (∇u)T is the rate-of-
strain tensor (all dimensionless), while |�̇ | and |�| denote the
magnitudes of the corresponding tensors. For example,

|�̇ | =
√

1
2

II�̇ =
[

1
2

{�̇ : �̇}
]1/2

, (2)

where II�̇ is the second invariant of �̇ .
In Eq. (1), Bn denotes the Bingham number, which is defined as

follows

Bn = �0L

�U
, (3)

with �0 being the yield stress. Another dimensionless number
appears in the case of the annular Poiseuille flow; this is the radii
ratio, k ≡ R1/R2 with 0 < k < 1.

As an example, we consider the time-dependent, unidirectional,
one-dimensional plane Poiseuille flow (the axisymmetric problems
can be similarly formulated). We assume that the only non-zero-
velocity component is in the z-direction: u = (0, 0, u(y, t)). At time
t = 0 the velocity u0(y, 0) = u0(y). A no-slip condition is imposed at
the two plates: u(−1) = u(1) = 0. Thus, the dimensionless momen-
tum equation is reduced to:

∂u

∂t
= ∂�

∂y
+ C(t), (4)

where � ≡ �yz is defined by Eq. (1) and C(t) is the dimensionless pres-
sure gradient, which is time-dependent. For the time discretization,
we used the standard fully-implicit backward Euler scheme. This
scheme reads as follows: with the initial condition u0 = u0 and for
n ≥ 1, compute un from un−1 via the solution of the minimization
problem [26]

J(un) = min
� ∈ H1

0
(˝)

J(�), (5)

where

J(�) = 1
2�t

∫
˝

�2dy + 1
2

∫
˝

(
∂�

∂y

)2

dy + Bn

∫
˝

∣∣∣∣∂�

∂y

∣∣∣∣dy −
∫

˝

f�dy.

(6)

�t is the time step and

f =
(

1
�t

)
un−1 + C(n�t). (7)

Accordingly [8], a scalar function � exists such that

� = ∂u

∂y
+ Bn�, �

∂u

∂y
=

∣∣∣∣∂u

∂y

∣∣∣∣ , |�| ≤ 1. (8)

This expression holds everywhere in ˝ (this includes the rigid
region, i.e. where ∂u/∂y = 0). We define the convex set of scalar
functions: 	 = {q|q ∈ (L2(˝)), |q| ≤ 1}. The original minimization
problem (5) corresponds to finding a saddle point of the Lagrangian
functional L : H1

0(˝) × 	 → R by [3,9]

L(�, q) = 1
2�t

∫
˝

�2dy + 1
2

∫
˝

(
∂�

∂y

)2

dy + Bn

∫
˝

q
∂�

∂y
dy −

∫
˝

f�dy.

(9)

We use the following notations: un, �n solution on the n time
step problem. The solution algorithm can be written as follows:

1. Initialization of u0 = u0(y).
2. For n ≥ 1 and time loop t = n�t, solve the viscoplastic problem by

an Uzawa algorithm, as follows:

• Initialization of �n
0 = �n−1.

• For i ≥ 1, assuming that un−1, �n
i−1 is known, compute un

i
and �n

i
by solving

un
i

�t
−∂2un

i

∂y2
=Bn

∂�n
i−1

∂y
+ un−1

�t
+ C(tn), un

i (0) = un
i (1) = 0, (10)

• Compute the viscoplastic Lagrange multiplier, �n
i
:

�n
i =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

�n
i−1 + rBn

∂un
i

∂y
, if

∣∣∣∣�n
i−1 + rBn

∂un
i

∂y

∣∣∣∣ < 1,

�n
i−1 + rBn

∂un
i

∂y∣∣∣∣�n
i−1 + rBn

∂un
i

∂y

∣∣∣∣
if

∣∣∣∣�n
i−1 + rBn

∂un
i

∂y

∣∣∣∣ ≥ 1
(11)

• Convergence if ��n
i

= max
∣∣�n

i
− �n

i−1

∣∣ < ε1, where ε1 is the tol-
erance for the Lagrange multiplier.

• i = i + 1

3. Stopping criterion.
4. n = n + 1.

Here r is an iterative parameter. The convergence of the above algo-
rithm is proved in [9]. The choice of the stopping criterion will be
discussed in the next section.

The present method is very convenient and easy to implement.
In addition to providing the velocity and stress distributions at
each time step, it also predicts the boundary separating yielded
and unyielded zones. From the definition of � (Eq. (8)), it can eas-
ily be observed that |�| = 1 in the yielded regions and |�| < 1 in
the unyielded ones. The yield surface is defined as the isostress
of |�| = Bn, i.e. at |�| = 1. The evolution of the yield surface is of great
importance in the present work.

3. Results and discussion

For the discretization of the one-dimensional domain, we use
centered finite differences in space and the fully-implicit backward
Euler scheme in time. The results presented in this work have been
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Fig. 1. Calculated stopping times for Q = 10−5 (dashed lines) and 10−7 in cessation
flows of a Bingham fluid: plane Couette, axisymmetric and plane Poiseuille flows;
annular Poiseuille flow with k = 0.5. Tf is the finite stopping time defined in [1,2].

obtained with 500 nodes. The effect of the time step has also been
investigated; as the Bingham number is increased, faster transients
are occurring and thus the time step should be reduced in order to
ensure satisfactory accuracy. In general, the (dimensionless) time
step ranged from 10−4 to 10−7.

Another issue also raised by Chatzimina et al. [1,2] is the crite-
rion used for calculating the numerical stopping time. Chatzimina
et al. [1,2] presented results for two tolerances, i.e. values of the
volumetric flow rate so low that the flow can be taken as practi-
cally stopped: Q = 10−3 and 10−5. The numerical stopping times for
these two values of Q coincide for moderate or large Bingham num-
bers (Bn ≥ 0.1). Chatzimina et al. [1,2] then presented results with
the numerical stopping time as that required to reach Q = 10−5. We
have obtained analogous results for the two lower values of the vol-
umetric flow rate, i.e., Q = 10−5 and 10−7. Fig. 1 shows plots of the
calculated numerical stopping times versus the Bingham number
for all cessation flows of interest. The results for Q = 10−5 and 10−7

coincide in all flows for Bn ≥ 10−2 and differ for Bn < 10−2, so for the
small Bn numbers a more rigorous criterion should be applied. The
current method produces a velocity approximation that contains
regions of zero strain rate, and this provides a possibility to use
the criterion Q = 0 for the stopping problems. So, in the remaining
numerical experiments presented hereafter for the stopping prob-
lems, we have used the criterion Q = 0. Concerning the cases where
the imposed pressure gradient is non-zero, as a stopping criterion
we apply a tolerance such that |Qn − Qn−1| < 10−7.

3.1. Plane Couette flow

The initial condition is the standard linear velocity profile. The
lower plate which moves with unit velocity suddenly comes to rest
at time t = 0. As a first test of the numerical code and the method,
we reproduced the results of Chatzimina et al. [1], namely the evo-
lution of the velocity profiles for Bn = 0 (Newtonian), 2 and 20. An
interesting feature of the cessation of viscoplastic flows, not shown
in Refs. [1] or [2], is the evolution of the interface between yielded
and unyielded regions. This is shown in Fig. 2 for Bn = 2 and 20. The
velocity inside the band is positive and at the two ends is equal to
zero. Consequently, the velocity derivative ∂u/∂y changes sign at
some point of this interval: therefore, this point belongs to a rigid
zone. The present results confirm the theoretical analysis of Huilgol
[27].

Fig. 2. Evolution of the yield surface in cessation of plane Couette flow of a Bingham
fluid for Bn = 2 and Bn = 20.

Fig. 3 shows the numerical stopping time Tf versus the Bingham
number. The calculated curve is just below the theoretical upper
bound provided by Huilgol et al. [4] for the whole range of Bn. This
result indicates an advantage of the Lagrangian method over reg-
ularization methods. The corresponding results of Chatzimina et
al. [1] with the Papanastasiou regularization of the Bingham model
are satisfactory only for very low and for moderate to high Bingham
numbers. For low to moderate Bingham numbers their numerical
stopping times were actually above the upper bound because the
regularization parameter was not sufficiently high. Using a higher
value of the latter, however, would have led to very long computa-
tion times.

3.2. Plane Poiseuille flow

It is well known that steady-state Poiseuille flows of a Bingham
fluid exist only if the applied pressure gradient exceeds a critical
value. With our dimensionalization, this critical pressure gradient
for plane Poiseuille flow is equal to the Bingham number, Bn. In the
present time-dependent calculations, we start with a steady-state

Fig. 3. Comparison of the computed stopping time (Q = 10−7) in cessation of plane
Couette flow of a Bingham fluid with the theoretical upper bound [3,4].
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Fig. 4. Evolution of the yield surface in cessation of plane Poiseuille flow of a Bing-
ham fluid for Bn = 5 and Bn = 20.

solution corresponding to a pressure gradient f0 > Bn and at t = 0, the
pressure is set to a new value f. If f ≤ Bn, then the flow will eventually
stop either at infinite (Newtonian) or finite (Bingham) time. If f > Bn,
the flow does not stop; another (non-zero) steady-state is reached
instead, with the volumetric flow rate corresponding to the new
pressure gradient.

We have again repeated the calculations of Chatzimina et al. [1]
and obtained essentially the same results. Fig. 4 shows the evolution
of the interface between yielded and unyielded regions for Bn = 5
and 20. As expected, the size of the unyielded region increases with
time and with the Bingham number. The numerical stopping time
for the case of f = 0 (i.e., when the imposed pressure gradient is set
to 0, cf. Fig. 16 of [1]) is plotted as a function of Bn in Fig. 5. Again,
the computed stopping times are just below the theoretical upper
bound [3,4] for the whole range of Bn numbers; for low to moderate
Bingham numbers, in particular, they are more accurate than the
regularization results of Chatzimina et al. [1].

As pointed out by Chatzimina et al. [1], an important difference
between the predictions of the ideal and the regularized Bingham
model is revealed when the imposed pressure gradient is non-zero

Fig. 5. Comparison of the computed stopping time (Q = 10−7) in cessation of plane
Poiseuille flow of a Bingham fluid with the theoretical upper bound [3,4] for f = 0
(zero pressure gradient).

Fig. 6. Evolution of the volumetric flow rate in cessation of plane Poiseuille flow of
a Bingham fluid with Bn = 1 and for various values of an imposed pressure gradient
f (inset) detail showing that a finite volumetric flow rate is reached when f > 1.

(f /= 0) and below the critical value Bn at which a non-zero steady-
state Poiseuille solution exists. In order to make comparisons with
their results, we carried out simulations for Bn = 1 and different val-
ues of f. The evolution of the volumetric flow rate is shown in Fig. 6.
As expected, for f = 0, 0.5 and 1, the flow stops while for f = 1.1, it
evolves to a new steady regime. The inset of Fig. 6 is a zoom show-
ing these effects in detail. It should be noted that in [1], the flow
does not stop when f = 0.5 and 1, but a new steady-state is reached
with a very small but non-zero-velocity corresponding to a small
but non-zero volumetric flow rate. As pointed out by Chatzimina
et al. [1], the value of the latter may be reduced by increasing the
value of the regularization parameter, but it will always be non-
zero. This effect is a direct consequence of the regularization of the
Bingham model; the regularized model does not correspond to an
ideal viscoplastic material but to a highly viscous fluid for very low
strain rates.

3.3. Axisymmetric Poiseuille flow

The results for the axisymmetric Poiseuille flow reveal some
subtle but very interesting differences from their planar counter-
parts. In Fig. 7 we show the evolution of the velocity profile for
Bn = 1. The inset of Fig. 7 is a zoom near the wall, which shows that
a second unyielded region of a smaller size appears near the wall,
where the fluid velocity is zero. This effect (a wall static layer) was
also noted in [1] for a higher value of the Bingham number. Chatz-
imina et al. [1] stated that “the growth of this region cannot be
explained physically and is considered as a numerical artifact due
to regularization of the constitutive equation”. The current compu-
tations based on the Lagrangian method show convincingly that
this effect takes place for all Bingham numbers. The dead zone
appears shortly before cessation and grows very quickly. Therefore,
this is not a numerical artifact caused by the regularization, but an
inherent feature of the Bingham model for this type of flow. This
phenomenon is more clearly illustrated in Fig. 8, where we show the
evolution of the yield surface for Bn = 1, 2, 5, 10 and 20. The stars on
these graphs designate the point at which the plug region and the
zero-velocity region meet. The size of the latter region decreases
with increasing Bingham number.

As in all flows studied, the numerical stopping times for f = 0,
plotted versus Bn in Fig. 9, agree very well with the theoretical
upper bounds [3,4]. For the circular Poiseuille flow we also consider
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Fig. 7. Evolution of the velocity profile in cessation of axisymmetric Poiseuille flow
of a Bingham fluid with Bn = 1 (inset) detail near the wall.

the case where the imposed pressure gradient is non-zero but less
than the critical value, which in this case is equal to 2Bn. The evolu-
tion of the yield surface for Bn = 2 and various values of the imposed
pressure gradient below and above the critical value (fcrit = 4) is
shown in Fig. 10. The most interesting result is the presence of the
second unyielded region, which depends on the pressure gradient.
For f = 0, 0.5, and 1, the dead zone appears near the wall. For f = 1.5,
2, and 4, there are no dead zones, and the size of the plug region
increases until it fills the whole pipe. For f = 6, the flow reaches the
new steady regime, as expected, and the size of the plug region
becomes constant.

3.4. Annular Poiseuille flow

Our simulations of the cessation of annular Poiseuille flow were
in very good agreement with the results of Chatzimina et al. [2].
When the value of the diameter ratio is quite small (e.g., k = 0.1),
the flow is quite similar to the circular Poiseuille flow. In particu-

Fig. 8. Evolution of the yield surface in cessation of axisymmetric Poiseuille flow
of a Bingham fluid for various Bingham numbers. The stars (*) denote the points at
which the plug region and the zero-velocity region meet.

Fig. 9. Comparison of the computed stopping time (Q = 10−7) in cessation of axisym-
metric Poiseuille flow of a Bingham fluid with the theoretical upper bound [3,4] for
f = 0 (zero pressure gradient).

lar, our simulations revealed the appearance of the dead zone near
the outer wall (wall static layer). It is not difficult to mathematically
argue (based on the governing differential equations and consider-
ing the signs of each term) that this is not the case for the inner wall.
The same arguments, when applied to the plane Poiseuille flow,
show no emergence of a dead zone near the wall, while this is pos-
sible for the axisymmetric Poiseuille flow. For k = 0.5, no dead zones
have been observed. The evolution of the yield surfaces with Bn = 20
and k = 0.1, 0.2, 0.3 and 0.5 is depicted in Fig. 11. One may observe
that the size of dead zone decreases with increasing the value of
k. The numerical stopping times for k = 0.1 and 0.5 are compared
with the theoretical upper bounds [3] in Fig. 12. Again the numer-
ical results satisfy the theoretical predictions for the whole range
of Bingham numbers.

Fig. 10. Evolution of the yield surface in cessation of axisymmetric Poiseuille flow
of a Bingham fluid with Bn = 2 for various values of the imposed pressure gradient f.
The stars (*) denote the points at which the plug region and the zero-velocity region
meet.



Author's personal copy

L. Muravleva et al. / J. Non-Newtonian Fluid Mech. 165 (2010) 544–550 549

Fig. 11. Evolution of the yield surface in cessation of annular Poiseuille flow of a Bingham fluid with Bn = 20 and different radii ratios: (a) k = 0.1; (b) k = 0.2; (c) k = 0.3; and
(d) k = 0.5. The stars (*) denote the points at which the plug region and the zero-velocity region meet.

Fig. 12. Comparison of the computed stopping times (dashed lines obtained with
Q = 10−7) with the theoretical upper bounds (solid lines) [2] for k = 0.1 and k = 0.5, in
cessation of annular Poiseuille flow of a Bingham fluid.

4. Conclusions

We have used the Lagrangian method to solve benchmark,
one-dimensional cessation flows of an ideal Bingham plastic. Com-
parisons have been made with the analytical upper bounds for the

stopping times [3,4] and the numerical results of Chatzimina et al.
[1,2], who used the regularized Papanastasiou model. Compared to
the latter method, the Lagrangian method yields superior results
regarding the location of the yield surface and the behavior of the
ideal Bingham model in extreme situations (for example, low Bn
number flows). The finite stopping times are always slightly below
the well known theoretical bounds for all Bn ranges. The unyielded
surfaces are more conservative than the ones obtained with the
regularized models, which need a very high regularization param-
eter to approach the ideal Bingham model, especially at low and
moderate Bingham numbers. This became obvious in cessation of
axisymmetric and annular Poiseuille flows, when a dead region
near the solid wall (wall static layer) was found for all Bn num-
bers. The regularized model gave such regions only over a certain
range of Bn (≥20).

On the other hand, the results of the regularized model are
shown to stand the test against the more rigorous and conser-
vative current results, as the differences are not that great. The
results with the Papanastasiou model are easily obtainable with
any viscous code by writing a simple viscosity subroutine, and
can be had very fast with modern computers. They are ideal
for engineering calculations and for giving a very good approx-
imation to the ideal Bingham model. Perhaps they are better in
representing real materials, where discontinuities may not be jus-
tified.

The present results are offered as reference solutions for
researchers working with the numerical simulation of vis-
coplasticity. They are the prelude for more demanding two-
and three-dimensional simulations, which are currently in
progress.
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