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a b s t r a c t

The isothermal, planar Poiseuille flow of a weakly compressible Oldroyd-B fluid is considered under the
assumption that the density of the fluid obeys a linear equation of state. A perturbation analysis for all
the primary flow variables is carried out with the isothermal compressibility serving as the perturbation
parameter. The sequence of partial differential equations which results from the perturbation procedure
is solved analytically up to second order. The effects of the compressibility parameter, the aspect ratio,
and the Weissenberg number are discussed. In particular, it is demonstrated that compressibility has a
significant effect on the transverse velocity and the first normal stress difference.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The importance of compressibility in viscous and viscoelastic flows of polymer melts and other liquids has been emphasized in many
studies in the past few decades. Such flows correspond to low values of the Mach number, which is defined as the ratio of the characteristic
speed of the fluid to the speed of sound in the fluid; the incompressibility limit corresponds to zero Mach number. Compressibility
becomes significant in flows where a sufficient amount of fluid is subject to high pressures, such as the extrusion process [1], injection
blow moulding, jet cutting and liquid impact [2], or in flows involving relatively long tubes, such as waxy crude oil transport [3], or locally
near sharp corners [4]. The stick-slip polymer extrusion instability is caused by the combined effects of compressibility and non-linear
slip [1,5]. Georgiou and Crochet [6] pointed out that the incompressibility assumption may lead only to minor errors to the steady-state
solutions but can significantly affect the flow dynamics. The numerical simulations of Taliadorou et al. [7] of the extrusion of strongly
compressible Newtonian liquids revealed that compressibility may also lead to oscillatory steady-state free surfaces. Hatzikiriakos and
Dealy [8] noted that, although the isothermal compressibility of molten polymers is very small, it can have a dramatic effect on the time
required for the pressure to level off in a capillary flow experiment. Ranganathan et al. [9] presented time-dependent experimental capillary
flow data for a high-density polyethylene using the multipass rheometer and showed that the experimentally observed pressure relaxation
on cessation of the piston movement can be almost entirely attributed to the compressibility of the melt alone. More recently, Valério et al.
[10] demonstrated that the incompressibility constraint creates singularities that lead to non-physical eigenvalues at infinity which poses
severe difficulties on linear stability analyses.

Numerical simulations of weakly compressible flows have been reported for different fluids: Newtonian [6,7], generalized Newtonian
fluids, such as the Carreau fluid [11–13], the Bingham plastic [3], and the Herschel–Bulkley fluid [14], and viscoelastic fluids, such as the
Oldroyd-B fluid [15] and the Rolie Poly model [12]. Keshtiban et al. [15] presented a time-marching pressure-correction/Taylor–Galerkin
finite element algorithm for solving low Mach number compressible viscoelastic flows and applied it to contraction flows of an Oldroyd-B
fluid. The compressible Oldroyd-B model was also used by Brujan [16] in his study of bubble dynamics in a compressible viscoelastic
fluid, and by Webster and co-workers in subsequent works dealing with numerical algorithms for solving low Mach number viscoelastic
flows [2,17,18]. Much earlier, Edwards and Beris [19] proposed a modification of viscoelastic models in the presence of compressibility
and applied it to the upper-convected Maxwell model. Matusu-Necasova et al. [20] studied the existence and uniqueness of stationary
solutions for the equations modelling the steady flow of compressible viscoelastic fluids of the Oldroyd type in an exterior domain.
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In the present work we derive the second-order regular perturbation solution for the planar isothermal Poiseuille flow of a weakly
compressible viscoelastic fluid which follows the Oldroyd-B model. This is a popular viscoelastic constitutive equation predicting constant
shear viscosity and strain-hardening properties in extension. To our knowledge, this is the first perturbation analysis of compressible
viscoelastic flow. The present work can be viewed as an extension of the recent work by Georgiou and co-workers [21,22], who obtained
perturbation solutions for the planar, the round, and the annular Newtonian Poiseuille flows and reviewed relevant works with Newtonian
perturbation solutions. A linear equation of state is employed and the isothermal compressibility is taken as the perturbation parameter.
Taliadorou et al. [21] and Joseph et al. [22] perturbed only the primary unknown fields, i.e. the pressure and the velocity vector, while
Venerus [23,24] used a vorticity/streamfunction formulation. In the present work, the viscoelastic part of the stress tensor constitutes an
additional primary field to be perturbed.

The rest of the paper is organized as follows. In Section 2, the governing equations, i.e., the equations of motion, the constitutive
equation, and the equation of state are presented and then dedimensionalized to yield the basic dimensionless parameters, such as the
compressibility parameter, the Weissenberg, and the Reynolds numbers. The perturbation procedure is described in Section 3 and the
solution of the plane Poiseuille flow of an Oldroyd-B fluid is obtained up to second order in terms of the compressibility parameter. The
correctness of all the expressions and the final perturbation solution derived here has been verified using “Mathematica” [25]. The results
are analyzed in Section 4, where the effects of compressibility, the Weissenberg number, the Reynolds number and the aspect ratio on the
velocity, the pressure and the stress fields are discussed. Finally, the main conclusions of this work are summarized in Section 5.

2. Governing equations

We consider the isothermal, steady, pressure-driven flow of a weakly compressible viscoelastic fluid between parallel plates and work
in Cartesian coordinates centered at the midplane with the x-axis pointing in the main flow direction and the y-axis being vertical to
the two plates. The gap between the plates is equal to 2H* and their length and width are denoted by L* and W*, respectively. Note that
throughout the paper a star “*” denotes that the corresponding quantity is dimensional.

For isothermal, steady flow with zero gravity, the dimensional forms of the continuity and momentum equations are:

∇∗ · (�∗v∗) = 0 (1)

�∗v∗ · ∇∗v∗ = ∇∗ · T∗ (2)

where �* is the mass density of the fluid, v∗ is the velocity vector, and T∗ is the total stress tensor, given by:

T∗ = −p∗I + �∗
s �̇∗ + �∗ (3)

where p* is the total pressure, �∗
s is the constant zero shear-rate (Newtonian) viscosity of the pure solvent, �̇∗ is the augmented rate-of-

strain tensor, and �∗ is the viscoelastic part of the extra-stress tensor (due to the polymer). For a compressible fluid with zero bulk viscosity,
the augmented rate-of-strain tensor, �̇∗, is defined as:

�̇∗ = ∇∗v∗ + (∇∗v∗)T − 2
3

(∇∗ · v∗)I (4)

where I is the unit tensor and the superscript T denotes the transpose. The Oldroyd-B constitutive equation is:

�∗ + �∗
[

∂�∗

∂t∗ + v∗ · ∇∗�∗ − �∗ · ∇∗v∗ − (∇∗v∗)T · �∗
]

= �∗
p�̇∗ (5)

where �∗
p and �* are the zero shear-rate viscosity and the single relaxation time of the polymer, respectively.

The fluid under consideration is assumed compressible with its mass density following a linear equation of state:

�∗ = �∗
0 [1 + ε∗(p∗ − p∗

0)] (6)

where �∗
0 is the mass density at a reference pressure p∗

0, ε∗ = −(1/V∗
0)(∂V∗/∂P∗)P∗

0
,T∗

0
is the isothermal compressibility coefficient, which is

a assumed to be constant, V* is the specific volume, and V∗
0 is the specific volume at the reference pressure, p∗

0, and temperature, T∗
0 .

Eqs. (1)–(6) are dedimensionalized by scaling the flow direction, x*, by the length L* of the channel, the transverse coordinate, y*, by the
channel half-width H*, the axial velocity component, u∗

x, by a characteristic velocity U*, the transverse velocity component, u∗
y, by U*H*/L*,

the mass density �* by �∗
0, and the viscoelastic part of the extra-stress tensor, �∗, by �∗

pU∗/L∗. The characteristic velocity U* is defined here
as the mean velocity at the channel exit:

U∗ ≡ Ṁ∗

�∗
0H∗W∗ (7)

where Ṁ∗ is the mass flow-rate at the outlet plane and W* is the characteristic length in the neutral direction. Finally, the pressure difference
p∗ − p∗

0 is scaled by 3(�∗
s + �∗

p)L∗U∗/H∗2 so that the dimensionless pressure gradient in the case of incompressible flow is equal to 1. Using
these scales, the dimensionless forms of the continuity equation and the two components of the momentum equation become:

∂(�ux)
∂x

+ ∂(�uy)
∂y

= 0 (8)

˛ Re �

(
ux

∂ux

∂x
+ uy

∂ux

∂y

)
= −3

∂p

∂x
+ �s

{
˛2 ∂2ux

∂x2
+ ∂2ux

∂y2
+ ˛2

3

(
∂2ux

∂x2
+ ∂2uy

∂x∂y

)}
+ �p

{
˛2 ∂�xx

∂x
+ ˛

∂�xy

∂y

}
(9)
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˛3 Re �

(
ux

∂uy

∂x
+ uy

∂uy

∂y

)
= −3

∂p

∂y
+ �s˛

2

{
˛2 ∂2uy

∂x2
+ ∂2uy

∂y2
+ 1

3

(
∂2ux

∂x∂y
+ ∂2uy

∂y2

)}
+ �p˛2

{
˛

∂�xy

∂x
+ ∂�yy

∂y

}
(10)

where �s ≡ �∗
s /(�∗

s + �∗
p) and �p ≡ �∗

p/(�∗
s + �∗

p) are respectively the dimensionless viscosity ratios for the solvent and the polymer, ˛ = H*/L*
is the aspect ratio of the channel, and

Re ≡ �∗
0U∗H∗

�∗
s + �∗

p
(11)

is the Reynolds number.
The dimensionless equations for the non-trivial components of the constitutive model are:

�xx + We

(
ux

∂�xx

∂x
+ uy

∂�xx

∂y
− 2�xx

∂ux

∂x
− 2�xy

a

∂ux

∂y

)
= 4

3
∂ux

∂x
− 2

3
∂uy

∂y
(12)

�xy + We

(
ux

∂�xy

∂x
+ uy

∂�xy

∂y
− �xy

(
∂ux

∂x
+ ∂uy

∂y

)
− �xxa

∂uy

∂x
− �yy

a

∂ux

∂y

)
= ˛

∂uy

∂x
+ 1

˛

∂ux

∂y
(13)

�yy + We

(
ux

∂�yy

∂x
+ uy

∂�yy

∂y
− 2�yy

∂uy

∂y
− 2a�xy

∂uy

∂x

)
= 4

3
∂uy

∂y
− 2

3
∂ux

∂x
(14)

�zz + We

(
ux

∂�zz

∂x
+ uy

∂�zz

∂y

)
= −2

3

(
∂ux

∂x
+ ∂uy

∂y

)
(15)

where

We ≡ �∗U∗

L∗ (16)

is the Weissenberg number.
Finally, the dimensionless form of the equation of state is:

� = 1 + εp (17)

where

ε ≡ 3(�∗
s + �∗

p)ε∗L∗U∗

H∗2
(18)

is the compressibility number.
Eqs. (8)–(10), (12)–(15) and (17) are defined in the domain {0 ≤ x ≤ 1, − 1 ≤ y ≤ 1}. In addition to the viscosity ratios, �s and �p, four

other dimensionless numbers appear; these are the aspect ratio and the Reynolds, Weissenberg and compressibility numbers: ˛, Re, We
and ε. Note that the Mach number for this compressible flow takes the form

Ma ≡
√√√√ ε˛ Re(

3
c∗

p
c∗
v

) (19)

where c∗
p/c∗

v is the heat capacity ratio (or adiabatic index). In this work only subsonic flows are considered, so that Ma � 1.
The governing partial differential equations are supplemented by suitable boundary conditions, i.e. no-slip and no-penetration at the

wall (y = 1), symmetry conditions at the midplane (y = 0), a reference value for the pressure at x = y = 1, and the condition that the total
(dimensionless) mass flow-rate, Ṁ, at the outlet plane (x = 1) is equal to unity:

ux(x, 1) = uy(x, 1) = 0, 0 ≤ x ≤ 1 (20)

∂ux

∂y
(x, 0) = uy(x, 0) = 0, 0 ≤ x ≤ 1 (21)

p(1, 1) = 0 (22)

Ṁ =
∫ 1

0

�uxdy = 1 at x = 1 (23)

Note that no boundary conditions are specified at the inlet plane (x = 0), as discussed by Venerus [23], Poinsot and Lele [26], and Taliadorou
et al. [21].
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3. Perturbation solution

We employ a regular perturbation scheme in terms of the compressibility parameter, ε. Hence, the primary dependent variables are
expanded as follows:

p = p0 + εp1 + ε2p2 + O(ε3)

ux = ux0 + εux1 + ε2ux2 + O(ε3)

uy = 0 + εuy1 + ε2uy2 + O(ε3)

�xx = �xx0 + ε�xx1 + ε2�xx2 + O(ε3)

�xy = �xy0 + ε�xy1 + ε2�xy2 + O(ε3)

�zz = �zz0 + ε�zz1 + ε2�zz2 + O(ε3)

� = 1 + ε�1 + ε2�2 + O(ε3)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(24)

The transverse velocity is assumed to be zero at zero order. The expansion of � is suggested explicitly by Eq. (17). The same choice of
perturbation parameter was also made by Venerus [23] and, more recently, by Taliadorou et al. [21] and Joseph et al. [22] and Venerus and
Bugajsky [24]. Schwartz [27] also employed the equivalent quantity Ma2/Re.

Substituting the expansions of Eq. (24) into the governing equations and collecting together terms of the same order, a sequence of
partial differential equations together with the accompanying boundary conditions is formed. The zero-, first-, and second-order problems
are solved analytically below.

3.1. Zero-order problem

Zero-order equations are trivial and their solution is the following:

p0 = 1 − x

ux0 = 3
2

(1 − y2)

uy0 = 0

�xx0 = 18 We
˛2

y2

�xy0 = − 3
˛

y

�yy0 = 0

�zz0 = 0

�0 = 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(25)

Eq. (25) is the standard solution for incompressible Poiseuille flow of an Oldroyd-B fluid. With the exception of �xx0, which depends on the
Weissenberg number, the solution is the same as that for a Newtonian fluid [21,24].

3.2. First-order problem

The first-order terms of the equation of state is �1 = p0 which gives

�1 = 1 − x (26)

The first-order terms of the continuity equation then becomes:

∂

∂x
(�1ux0 + ux1) + ∂

∂y
(uy1) = 0 (27)

Assuming that uy1 = 0 (an assumption also made in [21–24] for the Newtonian flow), so that we can derive a separable solution, and
integrating the above equation with respect to x, we get the following expression for ux1:

ux1(x, y) = xux0(y) + f (y) (28)

where f = f(y) is a function to be determined. From Eq. (28) and the boundary conditions for ux in Eqs. (20), (21) and (23), it is deduced that
f satisfies the following three conditions:

f (1) = df

dy
(0) = 0 and

∫ 1

0

f (y)dy = −1 (29)

The y-momentum at O(ε1) takes the form:

∂p1

∂y
= 2

3
a2�py − 1

3
�sa

2y + 1
3

a3�p
∂�xy1

∂x
(30)
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which is integrated with respect to y to give the following expression for p1:

p1 = 1
3

a2y2
(

�p − 1
2

�s

)
+ 1

3
a3�p

∫
∂�xy1

∂x
dy + g(x) (31)

where g = g(x) in another unknown function to be determined. The extra stress component �xy1 can be found from the first-order xy-
component of the constitutive model. However, in this equation �yy1 is required. Following the procedure described in Appendix A, and
solving the corresponding first order equation for �zz1 as well, we find that

�yy1 = �zz1 = y2 − 1 (32)

Similarly, we get

�xy1 = 1
˛

[
y (−3x + 2 We ux0) + df

dy

]
(33)

Substituting the above expression into Eq. (31) and simplifying we get:

p1 = −1
6

a2y2 + g(x) (34)

From Eqs. (34) and (22), we obtain the following condition for g:

g(1) = ˛2

6
(35)

Next, we calculate �xx1 from the corresponding component of the constitutive model, following once again the procedure described in
Appendix A:

�xx1 = 12 We
˛2

[
3y2 (x − ux0We) + y

(
2y We ux0 − df

dy

)]
+ 4

3
ux0 (36)

Substituting Eq. (36) into the first-order terms of the x-momentum equation and separating variables lead to

9a

4
Re(y2 − 1)

2 − 3�p We(1 + 9y2) − d2f

dy2
= −3

(
dg

dx
+ x

)
(37)

The above equation is valid when each side is equal to a constant, c1; thus, we obtain the following ODEs for f and g:

9a

4
Re(y2 − 1)

2 − 3�p We(1 + 9y2) − d2f

dy2
= c1 (38)

and

−3
(

dg

dx
+ x

)
= c1 (39)

Integrating Eq. (38) and applying the conditions for f (see Eq. (29)), we calculate the two integration constants and then c1, getting:

c1 = 6
35

(9˛ Re − 49�p We) − 3 (40)

and

f (y) = (1 − y2)
[
−3

2
+ 3a

280
Re(−5 + 28y2 − 7y4) + 9

20
�p We(−1 + 5y2)

]
(41)

Integrating now Eq. (39) and using Eqs. (34) and (40), we get:

g(x) = ˛2

6
− 1

2
(1 − x)2 + 2

35
(1 − x)[9˛ Re − 49�p We] (42)

Substituting f in Eqs. (28), (33) and (36), and g into Eq. (34) completes the first-order solution.

3.3. Second-order problem

From the second-order terms of the equation of state, we get

�2 = p1 = −1
6

a2y2 + ˛2

6
− 1

2
(1 − x)2 + 2

35
(1 − x)(9˛ Re − 49�p We) (43)

Now, the second-order component of the continuity equation can be written as follows:

∂ux2

∂x
+ ∂uy2

∂y
+ ∂

∂x
(p0ux1) + ∂p1

∂x
ux0 = 0 (44)

Assuming that uy2 = uy2(y) and integrating with respect to x give:

ux2 = p0

(
duy2

dy
− ux1

)
− p1ux0 + F(y)
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where F is a function to be determined. Substituting p0, ux1, p1 in the above equation we get:

ux2 = 3
2

x2ux0 − x

[(
1 − c1

3

)
ux0 − f + duy2

dy

]
+ duy2

dy
− f + F − ux0

[
a2

6
(1 − y2) + 1

2
+ c1

3

]
(45)

Integrating the second-order terms of the y-momentum equation,

0 = −3
∂p2

∂y
+ �s

(
4˛2

3
d2uy2

dy2
+ ˛2

3
∂2ux2

∂x∂y

)
+ �p˛2

(
˛

∂�xy2

∂x
+ ∂�yy2

∂y

)
(46)

with respect to y and rearranging some terms, we obtain the following expression for p2:

p2 = �s

9
˛2

(
4

duy2

dy
+ ∂ux2

∂x

)
+ �p

3
˛2

(
�yy2 + ˛

∫
∂�xy2

∂x
dy

)
+ G(x) (47)

where G is another function to be determined. The second-order stress components �yy2 and �xy2 can be found by solving the corresponding
components of the constitutive equation:

�yy2 + We ux0
∂�yy2

∂x
= 4

3
duy2

dy
− 2

3
∂ux2

∂x
(48)

�xy2 + We ux0
∂�xy2

∂x
= 1

˛

∂ux2

∂y
+ We

[
3uy2

˛
+ �xy1ux0 − �xy0ux1 + �xy0

(
duy2

dy
+ ∂ux2

∂x

)
+ 1

a

(
�yy1

∂ux1

∂y
+ �yy2

dux0

dy

)]
(49)

where the relations ux0 = ∂ ux1/∂ x and �xy0 = ∂ �xy1/∂ x have been used. Taking into account that ∂2ux1/∂ x2 = 0, using Eq. (45), and following
the procedure described in Appendix A, we can solve Eq. (48) for �yy2 :

�yy2 = −2ux0

(
x − ux0 We − 1

3
+ c1

9

)
+ 2

duy2

dy
− 2f

3
(50)

The shear stress component �xy2 can now be found from Eq. (49):

�xy2 = −9y

a

(
We2u2

x0 − We ux0x + 1
2

x2
)

+ a1(y) (x − We ux0) + a0(y) (51)

where

a1(y) = 1
˛

[
−yux0 We + ∂2ux2

∂x∂y
(0, y)

]
(52)

and

a0(y) = 1
˛

∂ux2

∂y
(0, y) + We

{
3(uy2 + yf )

˛
+ ux0�xy1(0, y) + �xy0

[
duy2

dy
+ ∂ux2

∂x
(0, y)

]
+ 1

a

[
�yy1

df

dy
+ dux0

dy
�yy2(0, y)

]}
(53)

The second-order component of the x-momentum equation is:

˛ Re

[
ux0

(
�1

∂ux1

∂x
+ ux1 + ∂ux2

∂x

)
+ uy2

dux0

dy

]
= −3

∂p2

∂x
+ �s

(
4˛2ux0 + ∂2ux2

∂y2

)
+ ˛�p

(
˛

∂�xx2

∂x
+ ∂�xy2

∂y

)
(54)

From the second-order xx-component of the constitutive equation,

�xx2 + We ux0
∂�xx2

∂x
= 4

3
∂ux2

∂x
− 2

3
duy2

dy
+ We

[
−ux1

∂�xx1

∂x
− uy2

d�xx0

dy
+ 2

∂ux2

∂x
�xx0 + 2ux0�xx1 + 2

a

(
∂ux2

∂y
�xy0 + ∂ux1

∂y
�xy1 + dux0

dy
�xy2

)]
(55)

and following the procedure described in Appendix A, we solve for �xx2 :

�xx2 = 144 We
˛2

y2
(

We2u2
x0 − We ux0x + 1

2
x2

)
+ b1(y)(x − We ux0) + b0(y) (56)

where

b1(y) = 4ux0

[
1 +

(
3 We y

˛

)2
]

+ 2 We

{
3ux0�xx0 + �xy0

a

[
−d2uy2

dy2
+ 3y

(
1 − c1

3

)
+ 2

df

dy

]
− 3y

a

[
�xy1(0, y) + 9y

˛
We ux0 + a1(y)

]}
(57)

and

b0(y) = −36 We2y(yf + uy2)
˛2

+
(

4
3

+ 2 We �xx0

)
∂ux2

∂x
(0, y) − 2

3
duy2

dy

+ 2 We

[
ux0�xx1(0, y) + 1

a

(
∂ux2

∂y
(0, y)�xy0 + df

dy
�xy1(0, y) + du0

dy
�xy2(0, y)

)]
(58)
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In Eq. (58), ∂ux2/∂ x(0, y) and ∂ux2/∂ y(0, y) are found from Eq. (45) while the terms �xx1(0, y), �xy1(0, y) and �xy2(0, y) are found from Eqs.
(35), (32) and (51), respectively. Substituting the expressions for �1, ux1, �xx2, �xy2 and p2 into Eq. (54) and simplifying the result leads to
an equation of the following form:

xs1(y, uy2(y)) + s2(y, uy2(y), F(y)) + s3(x, G(x)) = 0 (59)

where s1, s2 and s3 are known functions:

s1(y, uy2(y)) = 9˛ Re

[
−59

70
+ y2

(
1 − y2

2

)]
+ We �p

(
129

5
+ 81y2

)
− d3uy2

dy3
(60)

s3(x, G(x)) = −9
2

x2 + 9x − 3
dG

dx
(61)

while s2 is too long to be given here; however, it is available upon request. Eq. (59) is valid for any x and y, only if s1 = � , s2 = c2, and
x� + c2 + s3 = 0, where � and c2 are constants to be determined. These three equations, together with the appropriate auxiliary conditions,
determine the unknowns functions uy2 = uy2(y), F = F(y) and G = G(x). Indeed, the first equation, s1 = � , is solved with the required auxiliary
conditions, which also allow for the evaluation of � .

First, Eq. (20) at second order gives ux2(x, 1) = 0, which in conjunction with Eq. (45), results in:

(1 − x)

[
duy2

dy
(1) − xux0(1) − f (1)

]
− p1(1, y)ux0(1) + F(1) = 0. (62)

Since f(1) = ux0(1) = 0 and the latter equation must hold for any x, it follows that (duy2/dy)(1) = F(1) = 0. Eqs. (20) and (21) give
uy2(0) = uy2(1) = 0. Moreover, by differentiating Eq. (45) with respect to y and using boundary condition (21) give

∂ux2

∂y
(x, 0) = (1 − x)

(
d2uy2

dy2
− x

dux0

dy
− df

dy

)
(0) − ∂p1

∂y
(x, 0)ux0(0) − p1(x, 0)

dux0

dy
(0) + F ′(0) = 0 (63)

Since (dux0/dy)(0) = (df/dy)(0) = 0, and ( ∂ p1/∂ y)(x, 0) = 0 (see Eq. (34)), we get

(1 − x)
d2uy2

dy2
(0) + F ′(0) = 0

and therefore (d2uy2/dy2) (0) = F ′(0) = 0. Summarizing, the boundary conditions for uy2 are:

uy2(0) = uy2(1) = duy2

dy
(1) = d2uy2

dy2
(0) = 0 (64)

Then, the solution of s1 = � is:

uy2 = 3
140

y(1 − y2)
2
[˛ Re(5 − y2) + 63�p We] (65)

and

� = −216
35

˛ Re + 42�p We (66)

It is clear that inertia and viscoelasticity give rise to non-zero transverse velocity, uy2.
Now, from x� + c2 + s3 = 0 and Eq. (61) we have:

−9
2

x2 + (9 + �)x − 3
dG

dx
= −c2 (67)

which can be integrated to yield:

G(x) = −1
2

x3 + 1
6

(9 + �)x2 + c2

3
x + c3 (68)

where c3 is another constant to be determined. Last, by substituting uy2 in s2(y, uy2, F) = c2 we get a second-order ordinary differential
equation for F which is integrated twice with respect to y along with the required auxiliary conditions for F:∫ 1

0

F(y)dy = 0, F(1) = 0,
dF

dy
(0) = 0 (69)

Eq. (69) results from the total mass flow-rate, Eq. (23), at second order, which is

Ṁ2 = 1
2

∫ +1

−1

(�2ux0 + �1ux1 + ux2)dy = 0 at x = 1

and from �2(1, y) = p1(1, y), �1(1) = p0(1) = 0 and ux2(1, y) = − p1(1, y)ux0(y) + F(y).
Solving s2 = c2 and applying the three auxiliary conditions given in Eq. (69), c2 and F can be determined:

c2 = −9
2

+ ˛2

(
17 − 9�s

2
− 9132 Re2

13, 475

)
− 42�pWe + 12

175
�p We2(−829 + 589�s) + ˛ Re

35

(
216 + 1478

5
�p We

)
(70)
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F(y) = (1 − y2)

{
˛2

8
(1 − 5y2) + 3˛2 Re2

431200
(−2193 + 9163y2 + 6853y4 − 5159y6 + 616y8)

−3�p We2

1400
[−201�s + 561 + (420�s − 2520)y2 + (1365�s − 665)y4] −�pa We Re

11, 200
(1303 − 1413y2 − 13, 563y4 + 2985y6)

}
(71)

The constant c3 is determined with the aid of the suitable boundary condition for the pressure, which results from Eq. (22) at O(ε2):

p2(1, 1) = 0 (72)

Indeed, using Eq. (47) and (duy2/dy)(1) =(∂ ux2/∂ x)(1, 1) = �yy2(1, 1) = 0, we get:

0 = p2(1, 1) = �p

3
˛3

(∫
∂�xy2

∂x
dy

)
(1, 1) + G(1) (73)

The integral in Eq. (73) is calculated using Eq. (51). The solution for c3 is:

c3 = 1
2

+ 57
280

a3�p Re − 2
525

a Re(270 + 739�p We) + −�p We
175

{
− 1225 + 4 We(−829 + 589�s)

+ a2
[
−17

6
+ 3044

13, 475
Re2 − We(3 + 2�2

s ) + �s

(
3
2

+ 5 We
)]}

(74)

Substituting � , c2, c3 into Eq. (68) and simplifying the result we find the solution for G:

G(x) = 1
2

(1 − x)3 − 17 − 9�s

6
˛2(1 − x) − 36

35
˛ Re(1 − x)2 + 3044

13, 475
˛2 Re2(1 − x)

+ 57
280

�pa3 Re + �p We
{

a2(2�s − 3) + 7(1 − x)2 + 2
525

(1 − x)[6 We(829 − 589�s) − 739a Re]
}

(75)

The second-order solution is completed by solving the zz-component of the constitutive equation,

�zz2 + We ux0
∂�zz2

∂x
= −2

3

(
∂ux2

∂x
+ duy2

dy

)
(76)

which gives:

�zz2 = −3(1 − y2)
(

x − We ux0 − 1
3

+ c1

9

)
− 2f

3
(77)

3.4. The perturbation solution up to second order

By combining the zero-, first- and second-order solutions derived above and rearranging some terms, we get the following expressions
for the pressure, the velocity, and the extra stress components.

3.4.1. Pressure

p = 1 − x + ε

[
˛2

6
(1 − y2) − 1

2
(1 − x)2 + 2

35
(1 − x)(9˛ Re − 49�p We)

]
+ ε2

{
1
2

(1 − x)3 + ˛2

6
(1 − x)(−11 + 3y2)

+ 3044˛2 Re2

13, 475
(1 − x) − 36

35
˛ Re(1 − x)2 + a3 Re

840
(1 − y2)(97 − 140y2 + 35y4)

+ We �p

[
7(1 − x)2 − ˛2

30
(1 − y2)(−13 + 75y2) − 1478

525
˛ Re(1 − x) − 4 We

175
(1 − x)(−829 + 589�s)

]}
(78)

3.4.2. Velocity components

ux = 3
2

(1 − y2)
{

1 + ε
[
−(1 − x) + ˛ Re

140
(−5 + 28y2 − 7y4) + 3�p We

10
(−1 + 5y2)

]
+ ε2ûx2

}
(79)

where

ûx2 = 3
2

(1 − x)2 − ˛2

12
(1 + 3y2) + 3˛ Re

140
(1 − x)(−19 − 28y2 + 7y4) − ˛�p Re We

16, 800
(1303 − 1413y2 − 13, 563y4 + 2985y6)

+ 2�p We(1 − x)(2 − 3y2) − �p We2

700
[561 − 201�s + (420�s − 2520)y2 + (1365�s − 665)y4]

− a2 Re2

215, 600
(2193 − 9163y2 − 6853y4 + 5159y6 − 616y8) (80)
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Fig. 1. The volumetric flow rate at the inlet of the channel, Q(0), as a function of the compressibility parameter, ε, for ˛ = 0.1, �s = 1/9, �p = 8/9.

uy = 3ε2

140
y(1 − y2)

2
[˛ Re(5 − y2) + 63�p We] (81)

3.4.3. Extra stress components

�xx = 18 We
˛2

y2 + ε

{
2(1 − y2) + 18 We2y2

a2

[
18�s − 23

5
+ (7 − 6�s)y2

]
+ We y2

[
36
˛

(x − 1) + Re
y2

a

(
−297

35
+ 18y2 − 27

5
y4

)]}
+ ε2�xx2 (82)

where

�xx2 =
[

26
35

˛ Re − 6(1 − x) + We
10

(89�s − 119)
]

+
[
− 96, 597

107, 800
Re2 We + 9(24, 421 − 15, 997�s + 1026�2

s )We3

350a2

+ Re

(
6a

7
− 3(−4868 + 1103�s)We2

350a
− 108 We(x − 1)

7a

)]
y2 +

[
3
2

(−25 + 11�s)We − 243 Re2 We
70

− 81(109 − 97�s + 18�2
s )We3

5a2
+ Re

(
−2a + 9(−370 + 171�s)We2

14a
+ 72 We(x − 1)

a

)]
y4
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Fig. 2. The volumetric flow rate at the inlet of the channel, Q(0), versus the pressure drop, 	˘ , for a Newtonian and three viscoelastic fluids. Parameter values are ˛ = 0.01,
Re = 100, �s = 1/9, �p = 8/9. For each case, the critical compressibility number, εc , is also reported.
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Fig. 3. Effect of the Weissenberg number on the velocity components in compressible Poiseuille flow: (a) deviation of ux from the incompressible (parabolic) profile and (b)
transverse velocity, uy; ε = 0.2, x = 0.9, ˛ = 0.01, �s = 1/9, Re = 1.

+
[

1179 Re2 We
100

+ 27(481 − 529�s + 138�2
s )We3

10a2
+ Re

(
2a

5
− 9(−328 + 189�s)We2

10a
− 108 We(x − 1)

5a

)]
y6

+
[
−459 Re2 We

70
+ 9 Re We

70a
(325�s − 554)

]
y8 + 1287

1400
Re2 We y10 (83)

�xy = − 3
˛

y + εy
[

3(1 − x)
˛

+ 9 We(1 − �s)
(

3
5

− y2
)

+ 3 We(1 − y2) + 3 Re
140

(33 − 70y2 + 21y4)
]

+ ε2y�̂xy2 (84)

where:

�̂xy2 = ˛

2
+ 8517

53, 900
a Re2 + 3

700a
(−13, 264 + 6343�s + 621�2

s ) − Re
1400

[1721 + 679�s + 810(1 − x)] − 6
a

We(7 − 5�s)(1 − x)

− 9
2˛

(1 − x + x2) +
{

3a

2
− 9

140
a Re2 + 3

10a
(572 − 419�s + 27�2

s )We2 + 3
280

Re[(1481 − 405�s)We − 420(1 − x)]

+ 12
a

We(4 − 3�s)(1 − x)
}

y2 −
{

351
700

a Re2 + 9
20a

(280 − 259�s + 39�2
s ) + 9Re

200
[(477 − 179�s)We + 30(1 − x)]

}
y4

+ 3
280

(459 − 199�s − 30a Re2)y6 − 3
70

a Re2 y8 (85)

�yy = −ε(1 − y2)
{

1 − ε
[

3(1 − x) + We
10

(103 − 58�s + 15(−13 + 10�s)y2) − ˛ Re
140

(37 + 196y2 − 49y4)
]}

(86)
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Fig. 4. Effect of the compressibility parameter, ε, on the velocity components: (a) deviation of ux from the incompressible (parabolic) profile and (b) transverse velocity, uy;
We = 0.2, x = 0.9, ˛ = 0.01, �s = 1/9, Re = 1.

�zz = −ε(1 − y2)
{

1 − ε
[

3(1 − x) + We
10

(−76 + 31�s − 15(−4 + �s)y2) − ˛ Re
140

(67 + 28y2 − 7y4)
]}

(87)

It is readily verified that for We = 0 the above expressions are reduced to the Newtonian solution obtained by Taliadorou et al. [21] and
subsequently by Venerus and Bugajsky in [24].

4. Results and discussion

The basic features of the perturbation solution derived in Section 3 are the following:

(a) At zero order, the dimensionless pressure is independent of all dimensionless numbers in the flow problem. At first order both Re
and We contribute separately, while at second order they contribute to the solution not only separately but also in combination. The
y-dependence of pressure becomes stronger as ˛ increases, i.e. as the length of the channel is reduced. At first order, the pressure
gradient in the wall normal direction, ∂p1/∂ y, is always positive below the midplane (respectively, negative above the midplane) and
is due to viscous forces only, while ∂p1/∂ x depends on viscous forces, inertia and fluid viscoelasticity.

(b) The streamwise velocity component, ux, deviates from the parabolic, incompressible, solution at first order in ε, due to fluid inertia and
viscoelasticity. The contribution of the latter is negative for |y| < 1/

√
5 and positive otherwise, i.e. the streamwise velocity decreases

close to the centerline and increases close to the walls. At second order, the effects of fluid inertia and viscoelasticity are combined.
(c) The transverse velocity component, uy, is by assumption second order in ε. This is always positive above the midplane and varies

linearly with the aspect ratio, the Reynolds, and the Weissenberg number.
(d) The density follows the same trends as the pressure (see Eq. (17)). At the exit of the channel (x = 1), we get:

�(x = 1) = 1 + ˛2ε2

6
(1 − y2)

{
1 + ε We �p

(
25y2 − 13

5

)
+ ε˛ Re

(
1
4

y4 − y2 + 97
140

)}
+ O(ε4) (88)



Author's personal copy

84 K.D. Housiadas, G.C. Georgiou / J. Non-Newtonian Fluid Mech. 166 (2011) 73–92

0.90

0.80

0.70

0.60

0.50

0.40

0.30

0.20

0.10

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Y

X

a

0.90

0.80

0.70

0.60

0.50

0.40

0.30

0.20

0.10

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Y

X

b 

Fig. 5. Pressure field contours for We = 0.4, ˛ = 0.01, �s = 1/9, and Re = 1: (a) ε = 0.05 and (b) ε = 0.2.

It is clear that at first order there is no effect of fluid inertia and viscoelasticity on the density. Since only very small variations of the density
are acceptable at the exit of the channel (the fluid is decompressed and the mass density reaches its lowest values at x = y = 1), it is deduced
that there must be ε2˛2/6 � 1.

(e) All non-zero components of the extra-stress tensor depend linearly on the Reynolds and Weissenberg numbers. In addition, there
is a combined fluid inertia – viscoelasticity effect in the expression for �xx. For long channels and moderate Re and We, the major
contribution to �xx at first order is that of We/˛. For �xy, however, the viscous contribution is the most important at all orders, since
this component is inversely proportional to the aspect ratio, ˛, for which ˛ � 1, dominating the viscoelastic and inertia contributions.
Therefore, the differences of the �xy between the Newtonian and the viscoelastic cases are negligible. The expressions for �yy and �zz

are similar; their magnitudes are much smaller than �xx and �xy while both depend linearly on the Reynolds and the Weissenberg
numbers.

With the aid of Eqs. (24), (79) and (80), the volumetric flow-rate, Q (x) ≡
∫ 1

0
ux(x, y)dy, is given by:

Q (x) = 1 − ε(1 − x) + ε2

[
−2˛2

15
+

(
−18

35
˛ Re + 14

5
We �p

)
(1 − x) + 3

2
(1 − x)2

]
+ O(ε3) (89)

At x = 0, the above expression gives

Q (0) ≈ 1 − ε + cε2 (90)

where

c ≡ 3
2

− 2˛2

15
− 18

35
˛ Re + 14

5
We �p > 0 (91)
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Fig. 6. Axial velocity field contours for We = 0.4, ˛ = 0.01, �s = 1/9, and Re = 1: (a) ε = 0.05 and (b) ε = 0.2.

Hence, Q(0) is a parabola with the minimum at εc = 1/(2c). Since increasing ε must lead to more compression, i.e. to lower value at Q(0) (in
dimensional units), the perturbation solution is valid only when ε < εc. Similar conclusions have been reported for the Newtonian Poiseuille
flows in capillaries [23] and slits [21]. Expressions (90) and (91) reveal that the presence of viscoelasticity reduces εc, i.e. it reduces the
upper limit of validity of the perturbation solution, while the presence of inertia has the opposite effect. Fig. 1 shows the volumetric flow
rates at the inlet of the channel, Q(0), as a function of the compressibility parameter, ε, for two Newtonian and two viscoelastic cases
with �s = 1/9 and a = 0.1. In the Newtonian cases the critical compressibility values are εc = 0.51 and εc = 0.33 with and without inertia,
respectively. The corresponding values in the viscoelastic cases are εc ≈ 0.25 and εc ≈ 0.20. Note also, that the difference in the volumetric
flow rate between the inlet and the outlet plane of the channel is

	Q ≡ Q (1) − Q (0) ≈ ε(1 − cε) (92)

In a similar fashion, we define the average pressure ˘(x) ≡
∫ 1

0
p(x, y)dy, which, by virtue of Eqs. (24) and (78), is

˘(x) = (1 − x) − ε

[
−a2

9
+ (1 − x)2

2
+

(
−18

35
a Re + 14

5
�pWe

)
(1 − x)

]
+ ε2

[
(1 − x)3

2
− 5

3
a2(1 − x) − 36

35
a Re(1 − x)2

+ a Re
(

2
35

a2 + 3044
13, 475

a Re(1 − x)
)

+ �p We
{

− 2
45

a2 +
(

−1478
525

a Re + We
175

(3316 − 2356�s)
)

(1 − x) + 7(1 − x)2
}]

+ O(ε3)

(93)

Thus, the pressure difference between the entrance and the exit of the channel up to second order is found to be:

	˘ ≡ ˘(0) − ˘(1) ≈ 1 − ε
(

1
2

− 18
35

˛ Re + 14
5

�p We
)

+ ε2
(

1
2

− 5
3

˛2 − 36
35

˛ Re + 3044
13, 475

˛2 Re2
)

+ ε2�p We
[

7 − 1478
525

˛ Re + We
175

(3316 − 2356�s)
]

(94)
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Fig. 7. Contours of extra stress component Sxx = �s�̇xx + �p�xx for ˛ = 0.01, �s = 1/9, and Re = 1: (a) We = 0.4, ε = 0.05; (b) We = 0.4, ε = 0.2; and (c) We = 0, ε = 0.2.
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Fig. 8. Contours of extra stress component Sxy = �s�̇xy + �p�xy for ˛ = 0.01, �s = 1/9, and Re = 1: (a) We = 0.4, ε = 0.05; (b) We = 0.4, ε = 0.2; and (c) We = 0, ε = 0.2.
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Fig. 9. Contours of extra stress component Syy = �s�̇yy + �p�yy for ˛ = 0.01, �s = 1/9, and Re = 1: (a) We = 0.4, ε = 0.05; (b) We = 0.4, ε = 0.2; and (c) We = 0, ε = 0.2.

For We = 0, Eq. (94) reduces to the result of Venerus and Bugajsky [24] for a compressible Newtonian fluid with zero bulk viscosity. In
Fig. 2, we plot the dimensionless flow curves, i.e. plots of the volumetric flow rate at the entrance of the channel versus the pressure
drop, constructed by varying the compressibility number ε from ε = 0 to ε = εc (the upper limit of validity of the perturbation solution) and
calculating Q(0) and 	˘ from Eqs. (90) and (94), respectively. For the Newtonian fluid (We = 0) and the weakly viscoelastic fluid (We = 0.1)
it is seen that the flow curves are monotonic. However, as the Weissenberg number increases (We = 0.2 and 0.4) there is a range of 	˘ for
which two solutions for Q(0) are admissible.
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Fig. 10. Contours of extra stress component Szz = �s�̇zz + �p�zz for ˛ = 0.01, �s = 1/9, and Re = 1: (a) We = 0.4, ε = 0.05; (b) We = 0.4, ε = 0.2; and (c) We = 0, ε = 0.2.

Let us now discuss in more detail the effects of the Weissenberg number and compressibility by fixing the values of the solvent viscosity
ratio �s = 1/9, �p = 8/9, the aspect ratio to ˛ = 0.01, and the Reynolds number to Re = 1. The effect of the Weissenberg number on the
streamwise and the normal velocity components is shown in Fig. 3. In particular, Fig. 3a illustrates the deviation of the streamwise velocity
component from the incompressible (parabolic) profile near the channel exit (x = 0.9) for ε = 0.2 and various Weissenberg numbers (We = 0,
0.1, 0.2, and 0.4). The value of the compressibility parameter is actually the upper limit of validity of the perturbation solution (for We = 0.4
and Re = 1, εc ≈ 0.201). It is seen that the effect of viscoelasticity decreases as we move away from the midplane center and diminishes at
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Fig. 11. Contours of the first normal stress difference, N1, for We = 0.4, ˛ = 0.01, �s = 1/9 and Re = 1: (a) ε = 0.05 and (b) ε = 0.2.

the wall. A similar behavior has also been observed for the effect of Reynolds number on the streamwise velocity [21]. The effect of the
Weissenberg number on the transverse velocity component, which is an odd function of y, is illustrated in Fig. 3b. As implied by Eq. (81),
this velocity component varies linearly with the Weissenberg number.

The effect of the compressibility parameter on the velocity components near the exit of the channel, x = 0.9, is illustrated in Fig. 4. As the
compressibility parameter increases, the deviation of the streamwise velocity from the incompressible profile also increases. As pointed
out earlier, this deviation is reduced from the midplane to the wall. As dictated by Eq. (81), uy increases quadratically with ε.

In Fig. 5 the pressure contours for We = 0.4 and two values of the compressibility parameter, ε = 0.05 and 0.2, are shown. It should be
noted that in both cases ε2˛2/6 � 1 while εc ≈ 0.201. Also, the Reynolds numbers is set equal to 1 (and the same holds for Figs. 6–11). It is
seen that the contours are similar, almost vertical and equidistant, and slightly shifted towards the exit of the channel. This is due to the
fact that y-dependent terms are multiplied by the aspect ratio (see Eq. (78)), which in the present case is a very small. More pronounced
differences are observed, however, in the axial velocity contours. As illustrated in Fig. 6, the contours of ux, which are parallel everywhere
in the case of incompressible flow and near the exit of the channel otherwise, are curved upstream towards the midplane. This is obviously
due to the fact that for the mass to be preserved the flow accelerates downstream to counterbalance the reduction of the density.

In Figs. 7–10, we plotted the contours of the four non-trivial components of the extra stress tensor,

S = �s�̇ + �p� (95)

(i.e. of Sxx, Sxy, Syy, and Szz) for three different combinations of We and ε: (a) We = 0.4, ε = 0.05; (b) We = 0.4, ε = 0.2; and (c) We = 0, ε = 0.2.
For We = 0 (Newtonian flow) Sxx is a strong function of ε and the transverse coordinate y. This dependence becomes weaker by increasing
the value of the Weissenberg number and the contours of Sxx are almost horizontal. The effect of compressibility on Sxy appears to be weak.
Nevertheless, it is clear from Fig. 8 that compressibility causes more rapid changes of Sxy near the wall. The effects are more dramatic on
the other two extra stress components, provided that We is sufficiently high. For a given value of x, the values of Syy in Fig. 9b (We = 0.4,
ε = 0.2) pass through a minimum as y is increased from 0 to 1. A similar trend is observed for Szz in Fig. 10b.
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Finally, the contours for the first normal stress difference, N1 ≡ Sxx − Syy, for We = 0.4 and ε = 0.05 and 0.2 are presented in Fig. 11. These
follow the same pattern as those of Sxx, which is expected, since Sxx dominates Syy. The second normal stress difference, N2 ≡ Syy − Szz, is
non-zero but very small. Even for highly viscoelastic liquids, its values are of the order of 10−4.

5. Conclusions

A perturbation solution for the laminar, isothermal, weakly compressible plane Poiseuille flow of an Oldroyd-B fluid has been derived.
The primary variables of the flow, namely the velocity, pressure, mass density and polymer extra-stress fields, are expanded as power
series of the compressibility number and the solution is obtained up to second-order. Expressions for the volumetric flow and the pressure
drop between the entrance and the exit of the channel, up to second-order, are also derived. It is demonstrated that fluid compressibility,
inertia and viscoelasticity have a significant effect on the transverse velocity component, the extra stress tensor, and the first normal
difference.

Appendix A. Extra stress components of the constitutive equation

From the zero-, first- and second-order terms of the constitutive model, one gets a first-order differential equation of the form:

We ux0
∂�k

∂x
+ �k = mk, (A1)

where ux0 is a function of y, given by Eq. (25), �k is the k-order contribution to any stress component and mk is a known function, which
for the three cases of interest is given by:

m0(y) = C0(y)
m1(x, y) = B1(y)x + C1(y)
m2(x, y) = A2(y)x2 + B2(y)x + C2(y)

}
(A2)

The general solution of (A1) is:

�k = K(y)e−(x/We ux0) + 1
We ux0

e−(x/We ux0)

∫
mkex/We ux0 dx (A3)

However, for a continuous dependence of the solution on the Weissenberg number, we set K = 0. In addition, substituting (A2) into (A3)
and integrating by parts, we get:

�k =
(

We2u2
x0 − We ux0x + 1

2
x2

)
∂2mk

∂x2
+ (x − We ux0)

∂mk

∂x
(0, y) + mk(0, y) (A4)

The above solution for the three cases of interest is simplified as follows:

�0 = C0(y)
�1 = (x − We ux0)B1(y) + C1(y)
�2 = 2(We2u2

x0 − We ux0x + x2/2)A2(y) + (x − We ux0)B2(y) + C2(y)

}
(A5)
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