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parameter. The sequence of partial differential equations which results from the perturbation procedure
is solved analytically up to second order. The effects of the compressibility parameter, the aspect ratio,
and the Weissenberg number are discussed. In particular, it is demonstrated that compressibility has a
significant effect on the transverse velocity and the first normal stress difference.
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1. Introduction

The importance of compressibility in viscous and viscoelastic flows of polymer melts and other liquids has been emphasized in many
studies in the past few decades. Such flows correspond to low values of the Mach number, which is defined as the ratio of the characteristic
speed of the fluid to the speed of sound in the fluid; the incompressibility limit corresponds to zero Mach number. Compressibility
becomes significant in flows where a sufficient amount of fluid is subject to high pressures, such as the extrusion process [1], injection
blow moulding, jet cutting and liquid impact [2], or in flows involving relatively long tubes, such as waxy crude oil transport [3], or locally
near sharp corners [4]. The stick-slip polymer extrusion instability is caused by the combined effects of compressibility and non-linear
slip [1,5]. Georgiou and Crochet [6] pointed out that the incompressibility assumption may lead only to minor errors to the steady-state
solutions but can significantly affect the flow dynamics. The numerical simulations of Taliadorou et al. [7] of the extrusion of strongly
compressible Newtonian liquids revealed that compressibility may also lead to oscillatory steady-state free surfaces. Hatzikiriakos and
Dealy [8] noted that, although the isothermal compressibility of molten polymers is very small, it can have a dramatic effect on the time
required for the pressure to level off in a capillary flow experiment. Ranganathan et al. [9] presented time-dependent experimental capillary
flow data for a high-density polyethylene using the multipass rheometer and showed that the experimentally observed pressure relaxation
on cessation of the piston movement can be almost entirely attributed to the compressibility of the melt alone. More recently, Valério et al.
[10] demonstrated that the incompressibility constraint creates singularities that lead to non-physical eigenvalues at infinity which poses
severe difficulties on linear stability analyses.

Numerical simulations of weakly compressible flows have been reported for different fluids: Newtonian [6,7], generalized Newtonian
fluids, such as the Carreau fluid [11-13], the Bingham plastic [3], and the Herschel-Bulkley fluid [14], and viscoelastic fluids, such as the
Oldroyd-B fluid [15] and the Rolie Poly model [12]. Keshtiban et al. [15] presented a time-marching pressure-correction/Taylor-Galerkin
finite element algorithm for solving low Mach number compressible viscoelastic flows and applied it to contraction flows of an Oldroyd-B
fluid. The compressible Oldroyd-B model was also used by Brujan [16] in his study of bubble dynamics in a compressible viscoelastic
fluid, and by Webster and co-workers in subsequent works dealing with numerical algorithms for solving low Mach number viscoelastic
flows [2,17,18]. Much earlier, Edwards and Beris [19] proposed a modification of viscoelastic models in the presence of compressibility
and applied it to the upper-convected Maxwell model. Matusu-Necasova et al. [20] studied the existence and uniqueness of stationary
solutions for the equations modelling the steady flow of compressible viscoelastic fluids of the Oldroyd type in an exterior domain.
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In the present work we derive the second-order regular perturbation solution for the planar isothermal Poiseuille flow of a weakly
compressible viscoelastic fluid which follows the Oldroyd-B model. This is a popular viscoelastic constitutive equation predicting constant
shear viscosity and strain-hardening properties in extension. To our knowledge, this is the first perturbation analysis of compressible
viscoelastic flow. The present work can be viewed as an extension of the recent work by Georgiou and co-workers [21,22], who obtained
perturbation solutions for the planar, the round, and the annular Newtonian Poiseuille flows and reviewed relevant works with Newtonian
perturbation solutions. A linear equation of state is employed and the isothermal compressibility is taken as the perturbation parameter.
Taliadorou et al. [21] and Joseph et al. [22] perturbed only the primary unknown fields, i.e. the pressure and the velocity vector, while
Venerus [23,24] used a vorticity/streamfunction formulation. In the present work, the viscoelastic part of the stress tensor constitutes an
additional primary field to be perturbed.

The rest of the paper is organized as follows. In Section 2, the governing equations, i.e., the equations of motion, the constitutive
equation, and the equation of state are presented and then dedimensionalized to yield the basic dimensionless parameters, such as the
compressibility parameter, the Weissenberg, and the Reynolds numbers. The perturbation procedure is described in Section 3 and the
solution of the plane Poiseuille flow of an Oldroyd-B fluid is obtained up to second order in terms of the compressibility parameter. The
correctness of all the expressions and the final perturbation solution derived here has been verified using “Mathematica” [25]. The results
are analyzed in Section 4, where the effects of compressibility, the Weissenberg number, the Reynolds number and the aspect ratio on the
velocity, the pressure and the stress fields are discussed. Finally, the main conclusions of this work are summarized in Section 5.

2. Governing equations

We consider the isothermal, steady, pressure-driven flow of a weakly compressible viscoelastic fluid between parallel plates and work
in Cartesian coordinates centered at the midplane with the x-axis pointing in the main flow direction and the y-axis being vertical to
the two plates. The gap between the plates is equal to 2H* and their length and width are denoted by L* and W*, respectively. Note that
throughout the paper a star “*” denotes that the corresponding quantity is dimensional.

For isothermal, steady flow with zero gravity, the dimensional forms of the continuity and momentum equations are:

V- (p*r*)=0 (1)

vV =V T (2)
where p* is the mass density of the fluid, v* is the velocity vector, and T* is the total stress tensor, given by:

T = p Ly + T (3)

where p* is the total pressure, 1§ is the constant zero shear-rate (Newtonian) viscosity of the pure solvent, Z* is the augmented rate-of-
strain tensor, and t* is the viscoelastic part of the extra-stress tensor (due to the polymer). For a compressible fluid with zero bulk viscosity,
the augmented rate-of-strain tensor, *, is defined as:

.k * ok E 2 * *
V=Y () - S (4)

where [ is the unit tensor and the superscript T denotes the transpose. The Oldroyd-B constitutive equation is:

%

T
£*+A* 3?* +y*2*£*_£*z*y*_(z*y*)7'£* ZU;Z (5)

where 73, and A* are the zero shear-rate viscosity and the single relaxation time of the polymer, respectively.
The fluid under consideration is assumed compressible with its mass density following a linear equation of state:

pr=pp 1+ (p* - pp)l (6)
where pj is the mass density at a reference pressure p, &* = —(1/V§)(0V*/oP* )PS’TS is the isothermal compressibility coefficient, which is
a assumed to be constant, V* is the specific volume, and V;; is the specific volume at the reference pressure, pj;, and temperature, T;.

Egs. (1)-(6) are dedimensionalized by scaling the flow direction, x*, by the length L* of the channel, the transverse coordinate, y*, by the
channel half-width H*, the axial velocity component, uj, by a characteristic velocity U*, the transverse velocity component, uj, by U*H*/L*,
the mass density p* by o, and the viscoelastic part of the extra-stress tensor, T*, by n;U*/L*. The characteristic velocity U is defined here
as the mean velocity at the channel exit: B

M+
U= ——— 7
pH*W* (7)
where M* is the mass flow-rate at the outlet plane and W* is the characteristic length in the neutral direction. Finally, the pressure difference
p* — p{; is scaled by 3(n} + 77;*,)L*U*/H*2 so that the dimensionless pressure gradient in the case of incompressible flow is equal to 1. Using
these scales, the dimensionless forms of the continuity equation and the two components of the momentum equation become:

d(puy) | d(puy) _
ok + S 0 (8)

Oty dux\  ,0p o Puy  Puy  o? [(Fue  Puy 5 OTxx 0Txy
ozRep(uan+uy8y> =- ax—kns{a ) + 32 +? ) +78x8y +npqa o +o 3y (9)
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ou ou op ?uy,  FPuy, 1 [%uy u ot it
3 y y ) _ 2} 207Uy y 1 X y 2 Xy vy
« Rep<u" x W 8y> 8y+?7506 {a w2 a3y2 *t3 8x8yJr ay? Tipam dy (10)

where ns = 15 /(nf + 1) and np = 05 /(9§ + ny) are respectively the dimensionless viscosity ratios for the solvent and the polymer, o = H*/L*
is the aspect ratio of the channel, and

% H*
Re = 20

= (11)
ns +mp
is the Reynolds number.
The dimensionless equations for the non-trivial components of the constitutive model are:
O0Txx O0Txx Ouy 2Ty Ouy \ 4 0uy 2 0uy
T + We (u"E)}c+uy 3y _Zt’“W— e ) 3w 39y (12)
OTxy 0Ty ouy  Ouy duy Ty duy duy 1 duy
Ty + We (uxaeruy 3y — Txy W+W —rxan—TW _aa—x ay (13)
Jt ot au au 40duy 20du
Ty + We (“X ai”“Ya;y‘ZT”ayy‘z‘”Wa;) =39 3 (14)
012, 0Tz, 2 ([ duy 8Lly
Y =S| =42 1
Taz e(ux x W ay 3\ T ay (15)
where
AU*
We = I (16)
is the Weissenberg number.
Finally, the dimensionless form of the equation of state is:
p=1+¢p (17)
where
3 * + * S*L*U*
e (15 + np) (18)

H*2

is the compressibility number.

Egs. (8)-(10), (12)-(15) and (17) are defined in the domain {0 <x<1, — 1<y <1}. In addition to the viscosity ratios, ns and n,, four
other dimensionless numbers appear; these are the aspect ratio and the Reynolds, Weissenberg and compressibility numbers: «, Re, We
and &. Note that the Mach number for this compressible flow takes the form

(19)

where cj/c; is the heat capacity ratio (or adiabatic index). In this work only subsonic flows are considered, so that Ma « 1.

The governing partial differential equations are supplemented by suitable boundary conditions, i.e. no-slip and no-penetration at the
wall (y=1), symmetry conditions at the midplane (y=0), a reference value for the pressure at x=y=1, and the condition that the total
(dimensionless) mass flow-rate, M, at the outlet plane (x=1) is equal to unity:

ux(x,1)=uy(x,1)=0, O0=<x=<1 (20)
Oy
——(x,0)=uy(x,0)=0, 0=<x=<1 (21)
ay
p(1,1)=0 (22)
1
M:/ puxdy =1 atx=1 (23)
0

Note that no boundary conditions are specified at the inlet plane (x =0), as discussed by Venerus [23], Poinsot and Lele [26], and Taliadorou
etal. [21].
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3. Perturbation solution

We employ a regular perturbation scheme in terms of the compressibility parameter, . Hence, the primary dependent variables are
expanded as follows:

P =Dpo +&p1 +&°p2 + 0(e3)

Ux = Uy + Elix1 + E2Uyp + 0(83)
uy = 0+ guyy + 2uy; + 0(e3)
Txx = Txx0 + ETxx1 + &2 Txx2 + 0(83) (24)
Txy = Txyo + ETxy1 + &? Txy2 + 0(e?)
Tz = Tp20 + Tzl + 82Tz + O(83)
p=1+¢ep1 +&%py +0(&3)

The transverse velocity is assumed to be zero at zero order. The expansion of p is suggested explicitly by Eq. (17). The same choice of
perturbation parameter was also made by Venerus [23] and, more recently, by Taliadorou et al. [21] and Joseph et al. [22] and Venerus and
Bugajsky [24]. Schwartz [27] also employed the equivalent quantity MaZ/Re.

Substituting the expansions of Eq. (24) into the governing equations and collecting together terms of the same order, a sequence of
partial differential equations together with the accompanying boundary conditions is formed. The zero-, first-, and second-order problems
are solved analytically below.

3.1. Zero-order problem

Zero-order equations are trivial and their solution is the following:

po=1-x
o = 21 -?)
Uy =0
o0 = 18Wey2
o2 (25)
Txy0 = —éy
o
Tyyo =0
Tz20 =0
Po =1

Eq. (25) is the standard solution for incompressible Poiseuille flow of an Oldroyd-B fluid. With the exception of 74, which depends on the
Weissenberg number, the solution is the same as that for a Newtonian fluid [21,24].

3.2. First-order problem

The first-order terms of the equation of state is p; = pg which gives
pr=1-x (26)

The first-order terms of the continuity equation then becomes:
2( Uxo + U )+3(u )=0 (27)
W P1Uxo0 X1 3y y1) =

Assuming that u,; =0 (an assumption also made in [21-24] for the Newtonian flow), so that we can derive a separable solution, and
integrating the above equation with respect to x, we get the following expression for iy :

U1 (X, y) = Xuxo(y) + () (28)

where f=f{y) is a function to be determined. From Eq. (28) and the boundary conditions for uy in Egs. (20), (21) and (23), it is deduced that
fsatisfies the following three conditions:

df !
f(1)=g,(0)=0 and / Fy)dy = -1 (29)
0

The y-momentum at O(¢!) takes the form:

p1 2, 1 5 15 05
T G LA L GO
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which is integrated with respect to y to give the following expression for pq:

1, 1 1 4 Ty
pi= 30 (mp - 3n¢) + 3@ np/ 2Ly + g(x) (31)

where g=g(x) in another unknown function to be determined. The extra stress component Ty, can be found from the first-order xy-
component of the constitutive model. However, in this equation 7y is required. Following the procedure described in Appendix A, and
solving the corresponding first order equation for 7, as well, we find that

Tyy1l = Tzz1 =y2 -1 (32)
Similarly, we get
1 d
Ty = V(-3 +2Weuo)+ ] (33)

Substituting the above expression into Eq. (31) and simplifying we get:
1
p1 =50 +8(x) (34)

From Eqgs. (34) and (22), we obtain the following condition for g:

0[2
s(1)="% (35)

Next, we calculate t,,; from the corresponding component of the constitutive model, following once again the procedure described in
Appendix A:

12We

d 4
Tod =~ [3y2 (x — uxoWe) +y (ZyWe Uyo — %)] + 310 (36)

Substituting Eq. (36) into the first-order terms of the x-momentum equation and separating variables lead to

9a 5 2 2 d2f _ dg

FRe0? — 1) =3, We(l +.9y%) - 55 = =3 (a+x) 37)
The above equation is valid when each side is equal to a constant, c;; thus, we obtain the following ODEs for fand g:

9a_ ., 2 5y d*f

ZRe(y —1)" —3np, We(1 + 9y )—qu (38)
and

d

3 (G +x) = (39)
Integrating Eq. (38) and applying the conditions for f(see Eq. (29)), we calculate the two integration constants and then ¢y, getting:

€1 = %(9aRe—49ane)—3 (40)
and

F1) = (1-y2) [ + 55oRe(-5 +285> ~ 7y) + iy We(—1+ 5y2)] (41)

2 ' 280 207

Integrating now Eq. (39) and using Eqs. (34) and (40), we get:
a1 5 2
g(x) = 5~ i(1 —X) +£(1 — X)[9a Re — 491, We] (42)
Substituting fin Eqgs. (28), (33) and (36), and g into Eq. (34) completes the first-order solution.
3.3. Second-order problem

From the second-order terms of the equation of state, we get

o2
6
Now, the second-order component of the continuity equation can be written as follows:

02 =p1= —%azyz + %(1 —x?+ %(1 — X)(9a Re — 491, We) (43)

E)uxz allyz 0 8p1 _
X + Ty + &(POUMH‘ W“xo =0 (44)

Assuming that uy, =u,»(y) and integrating with respect to x give:

du 2
U = Po (d; - ux1> — p1uxo + F(y)



78 K.D. Housiadas, G.C. Georgiou / J. Non-Newtonian Fluid Mech. 166 (2011) 73-92

where F is a function to be determined. Substituting pg, t1, p1 in the above equation we get:
3, o duy, duyz a? w1
Uy = 5X uxo—xKl 3)ux0 -f+ dy + —f+F- €(1—y)+§+§ (45)

Integrating the second-order terms of the y-momentum equation,

L0 402 d’uyp a2 B?uy, o [ g 0Ty
0= 38y +s (3 dy? T3y ) TP Ty (46)

with respect to y and rearranging some terms, we obtain the following expression for p,:

du du dz
p2 = %(Xz <4dyy2 + a;2> + %az (‘Cy}q +a/ 8Xy2 dy) ( ) (47)

where G is another function to be determined. The second-order stress components Ty, and 7y, can be found by solving the corresponding
components of the constitutive equation:

0tyy2 4du,, 2 0u
Tz + Wetho T = 5 <5 (48)

0Ty 1 0u 3uy; duy,, du 1 ou du
Tz + Weo —= = £ -5 + We [oiv Tyt — Tyl + Txyo (diJr ) ta Ty Ty (49)

where the relations g = 0ty /0 X and 7y, =0 Txy1/d X have been used. Taking into account that 02u,,/0x2 =0, using Eq. (45), and following
the procedure described in Appendix A, we can solve Eq. (48) for 7y, :

d
Ty = —2Uxo (x — Uyg We — 1 + C—l) 2 Yo (50)

379 dy 3

The shear stress component Ty, can now be found from Eq. (49):

9 1
Ty = _Fy (Wezuﬁ0 — We ux + sz) +a1(y)(x — Weuyg) + ag(y) (51)
where
1
a(y) = p {— ,y)} (52)
and
1 0u 3(uyy + du u 1 d du
ap(y) = — x2 (0 y)+We {yzayf) + UxoTay1(0, ¥) + Tayo |:dyy2 + 3)):2 (O»Y):| +a |:Tyy1%+d7;0fyy2(0’Y):| } (53)

The second-order component of the x-momentum equation is:

iy Julyy duxo | ap2 2 ux 0Tz |, 0Ty2
aRe [“XO (’Olax S A T R e ) e\ * T Ty (>4

From the second-order xx-component of the constitutive equation,

4 2du
0Txx2 _ duxz _ 4 dty2 L We [—uxl 0Txx1 — Uy dtxxo 4%k Ouxp

dy 0x

Txx2 + We llyg

allxz 8ux1 duxo
% 3 9x 3 7dy X Txx0 + 2Ux0Tax1 + = ( Txy0 + —— Txy1 + foyz

(55)
and following the procedure described in Appendix A, we solve for Ty :
144 We 1
02 = — s y2 (We uZ, — Wetyox + §x2> +b1(¥)(x — Weiyg) + bo(y) (56)
where
3Wey\? T d?uy;, d 3 9
B1(y) = 4to [1 +(252) ] +2We {suxorxxo + 220 [ v (1-9) +2d’;] 2 [51(0.9)+ ZWeto + ar(y)] }
(57)
and
36 We2y(yf + uy») BT 2 duy,
bo(y) = ~ 2T 4 (24 2Wero) H2(0.9) - §d—y

9 d
+2We [uxorm(o y)+ ( g;Z(O,J/)TxyOwL d{]"—'xyl(o J/)+ &y Txy2(0 y))] oo
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In Eq. (58), dux2/9x(0, y) and du,, /3 y(0, y) are found from Eq. (45) while the terms Txx1(0, ¥), Txy1(0, ) and 7xy2(0, y) are found from Eqs.
(35),(32) and (51), respectively. Substituting the expressions for p1, x1, Txx2, Txy2 and p, into Eq. (54) and simplifying the result leads to
an equation of the following form:

xs1(y, uy2(¥)) + 520y, uy2(y), F(¥)) + s3(x, G(x)) = 0 (59)
where s1, s and s3 are known functions:
59 y2 129 2) d3uyp
, =9aR 1-= W —— +81 - 60
510w ) = 9 e{ o ( 2)]+ enp (5= +812) - 2 (60)
9, dG
s3(x, G(x)) = —5x+ 9x — 3a (61)

while s, is too long to be given here; however, it is available upon request. Eq. (59) is valid for any x and y, only if s; =y, sy =c,, and
Xy +cy +s3=0, where y and ¢, are constants to be determined. These three equations, together with the appropriate auxiliary conditions,
determine the unknowns functions uy, =uy,(y), F=F(y) and G =G(x). Indeed, the first equation, s; =y, is solved with the required auxiliary
conditions, which also allow for the evaluation of y.

First, Eq. (20) at second order gives uy,(x, 1) =0, which in conjunction with Eq. (45), results in:

(1—x )[ 4y 2(1) — Xtyo(1 )—f(1)] —p1(1, Y)uxo(1) + F(1) = 0. (62)

Since f{1)=uy(1)=0 and the latter equation must hold for any x, it follows that (duy,/dy)(1)=F1)=0. Egs. (20) and (21) give
uy2(0)=u,2(1)=0. Moreover, by differentiating Eq. (45) with respect to y and using boundary condition (21) give

dy y dy
Since (duxoldy)(O) =(dfldy)(0)=0,and (dp1/0y)(x, 0)=0 (see Eq. (34)), we get

2
O 0)—(1-x) (d ke _x o _ df) 0) = 21 (x, 0)u10(0) - p1(x. 0) 12 (0) + F(0) = 0 (63)

(

)=

and therefore (d2 uyz/dyz)(O) = F'(0) = 0. Summarizing, the boundary conditions for uy, are:

w2(0) = (1) = 21 = d;;’iz ©0)=0 (64)
Then, the solution of s; =y is:

ty2 = Tosy(1 ~ Y2 laRe(5 ~y2) + 631, We] (65)
and

y=- 216aRe+42ane (66)

35

It is clear that inertia and viscoelasticity give rise to non-zero transverse velocity, ;.
Now, from xy +c, +s3 =0 and Eq. (61) we have:

9, dG
—ix +(9+yx— 3d— —C (67)

which can be integrated to yield:
. 1 3 1 2 C
G(x) = ix + 6(9 + Y+ gx +C3 (68)

where ¢3 is another constant to be determined. Last, by substituting uy; in sy(y, uy, F)=c, we get a second-order ordinary differential
equation for F which is integrated twice with respect to y along with the required auxiliary conditions for F:

1
/F(y)dy:O, F(1)=0, -——(0)=0 (69)
0

Eq. (69) results from the total mass flow-rate, Eq. (23), at second order, which is

o
M, = 5/ (p2uxo + P1Ux1 + Uy )dy =0 atx =1
-1

and from p5(1, ¥)=p1(1,¥). p1(1)=po(1)=0 and uxx(1, y) = — p1(1, y)uxo(y) + Fy).
Solving s, =c, and applying the three auxiliary conditions given in Eq. (69), c; and F can be determined:

(70)

9 2(17_9;75 9132 Re? aRe 1478 )
2+Ol

12 )
Cp=—= 3 - 13’475)—4217pWe-|-17577;,We (—829 + 589n;5) + 35 (216+ 5 np W
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3a2 Re?

23120002193 + 9163y? + 6853y* — 5159y° + 616y8)

2
F(v) = (1-y%) {“;(1 57+

We? WeR
—?"71"470;[—201175 + 561 + (42075 — 2520)y2 + (136575 — 665)y*] —%(1303 —1413y2 — 13, 563y* + 2985y6)}
(71)
The constant c3 is determined with the aid of the suitable boundary condition for the pressure, which results from Eq. (22) at O(£2):
p2(1,1)=0 (72)
Indeed, using Eq. (47) and (duy,/dy)(1)=(0ux2/dx)(1, 1)=Ty,»(1, 1)=0, we get:
ot
0=py(1.1)= o3 22 gy ) (1. 1)+ G(1) (73)
3 ox
The integral in Eq. (73) is calculated using Eq. (51). The solution for c3 is:
157 4 2 1p We
€3 = 5 + 5550 Nlp Re — 25z ARe(270 + 7397, We) + — == ¢ — 1225 + 4 We(~829 + 5891;)
17 3044 3
2|1/ 2 _ 2 2
+a [ 3 +13’475Re We(3+2ns)+ns(2+5We)} } (74)
Substituting y, c3, c3 into Eq. (68) and simplifying the result we find the solution for G:
1 3 17-9ns 5 36 2 3044 ,
G(x) = j(1 —-X) - —5 ¢ (1-x)— gozRe(l —X)" + 13’47505 Re<(1 —x)
57 4 2 2, 2
+ o150 Re + 1y We {a (20 = 3)+ 7(1 20 + 5= (1~ 0[6 We(829 — 5897) - 739aRe]} (75)
The second-order solution is completed by solving the zz-component of the constitutive equation,
afzzz _ 2 auxz duyz
T2 + We iy w =3\ + dy (76)
which gives:
1 ¢ 2
rzzz:—3(1—y2)<x—Weuxo—§+§])—?f (77)

3.4. The perturbation solution up to second order

By combining the zero-, first- and second-order solutions derived above and rearranging some terms, we get the following expressions
for the pressure, the velocity, and the extra stress components.

3.4.1. Pressure

2 2
peT-xte|%-y)- 21 -x?+ 21— x0aRe - 49y, We)| +2d L1 —xP + (1 —x)(-11+3y2)

6 2 35 2 6
30440°Re? | ) 36 et —x)? + CRE( _y2)07 14092 4 35%)
13,475 35 ga0 - Y v 4

2
2% 2y 2y 1478 gy AWe v
+Wen,p [7(1 X) 30(1 y2) (=13 + 75y°) 52501Re(1 X) 175 (1 —x)(—829 + 589n;5) (78)

3.4.2. Velocity components

e = 2(1—y?) {1 +e [7(1 x4+ 2R 5 ogyr gyay  3WE 5y2)} +52ax2} (79)
2 140 10
where
2 ReW
fly = %(1 —x)p? - %(1 +3y%)+ 3;’4%6(1 —x)(—19 — 28y2 + 7y*) — %(1303 — 1413y% — 13, 563y* + 2985y°)
27y W 2y_ o We? 2 4
+2np We(1 - X)(2 - 3y%) = T2 561 — 20115 + (4207, — 2520)y2 + (1365775 — 665)/°]
a? Re?
(2193 — 9163y? — 6853y* + 5159y° — 616y8) (80)

"~ 215, 600
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81

uy = 25y(1 — ¥V’ [Re(5 — y?) + 631, We] (81)
3.4.3. Extra stress components
T = 1i\ﬁley2+e{z(1 —yty W I8 22 7 eny?]
+Wey? [?;[6()<—1)—|-Re};2 (—239574—18y2—257y4)]}+82txxz (82)
where
T = [%a Re — 6(1 —x) + %(89175 - 119)] + [—19067”589070 Re? We + (24, 421 - 15’;)595225 +10267%)wWe?
e <6a _ 3(-4868 ;5101(103;75)We2 ~ 108 W7e(§x - 1))} e [3(_25 11 We — 243 1%2 We

_ 2yWe3 _ 2 _
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Fig. 2. The volumetric flow rate at the inlet of the channel, Q(0), versus the pressure drop, A1, for a Newtonian and three viscoelastic fluids. Parameter values are o =0.01,
Re =100, ns=1/9, n, =8/9. For each case, the critical compressibility number, &, is also reported.
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{1179 Re2We  27(481 — 5291; + 1382)We3 -+ Re (Za ~ 9(—328+18975)We? 108 We(x — 1)” 45

00 10a2 5 10a 5a
459Re?We 9ReWe ¢ 1287 L,
+ [— 70 + Z0a (325175—554)}3/ +WR6 Wey (83)
3 3(1 - x 3 3Re .
Txy=—&y+9Y|: ( 5 )+9We(1 —ns)(g—yz) +3We(1-y?)+ m(33—70y2+21y4)] + 82T (84)
where:
.o 8517 2 3 2 Re 6
B2 = 5 + 53 509 ORE + 50pg (~ 13- 264 + 634315 + 6213 — 175511721+ 679715 + 810(1 — )] — S We(7 ~ 5351 ~)
- 3(1 —X+Xx2)+ {3—" ~ 9 4Re? + i(572 — 41915 + 27n2)We? + iRe[(1481 — 405n;)We — 420(1 — x)]
2a 2 140 10a s 2105 280 s
12 2 [351 2. 9 2y, 9Re } 4
+ Wl - 3001 —x)}y - {7OOaRe + 552 (280~ 259, + 3912) + L [(477 ~ 1797)We +30(1 - )] by
3 2y,,6 3 2,8
+ 280(459— 199ns — 30aRe“)y° — 7OaRe y (85)
5 We 5, «aRe 5 4
Ty =—6(1-y°)q1—¢|3(1-x)+ ﬁ(103—587)s+15(—13+10ns)y )—m(37+196y —49y%) (86)
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T = —&(1 —y?) {1 —¢ [3(1 —X)+ %(—764—31775 —15(=4 + n5)y?)

aRe

o (674287 —7y4)]} (87)

It is readily verified that for We =0 the above expressions are reduced to the Newtonian solution obtained by Taliadorou et al. [21] and
subsequently by Venerus and Bugajsky in [24].

4. Results and discussion

The basic features of the perturbation solution derived in Section 3 are the following:

(a) At zero order, the dimensionless pressure is independent of all dimensionless numbers in the flow problem. At first order both Re
and We contribute separately, while at second order they contribute to the solution not only separately but also in combination. The
y-dependence of pressure becomes stronger as « increases, i.e. as the length of the channel is reduced. At first order, the pressure
gradient in the wall normal direction, dp;/dy, is always positive below the midplane (respectively, negative above the midplane) and
is due to viscous forces only, while dp;/dx depends on viscous forces, inertia and fluid viscoelasticity.

(b) The streamwise velocity component, uy, deviates from the parabolic, incompressible, solution at first order in ¢, due to fluid inertia and
viscoelasticity. The contribution of the latter is negative for |y| < 1/+/5 and positive otherwise, i.e. the streamwise velocity decreases
close to the centerline and increases close to the walls. At second order, the effects of fluid inertia and viscoelasticity are combined.

(c) The transverse velocity component, uy, is by assumption second order in . This is always positive above the midplane and varies
linearly with the aspect ratio, the Reynolds, and the Weissenberg number.

(d) The density follows the same trends as the pressure (see Eq. (17)). At the exit of the channel (x=1), we get:

2a2
px=1)=1+2201 —yz){l +eWen, (25y2 - g) +saRe (%y“ 2y %>}+O(e4) (88)
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Fig. 5. Pressure field contours for We=0.4, «=0.01, n,=1/9, and Re=1: (a) £=0.05 and (b) £=0.2.

It is clear that at first order there is no effect of fluid inertia and viscoelasticity on the density. Since only very small variations of the density
are acceptable at the exit of the channel (the fluid is decompressed and the mass density reaches its lowest values at x=y =1), it is deduced
that there must be £2a2/6 « 1.

(e) All non-zero components of the extra-stress tensor depend linearly on the Reynolds and Weissenberg numbers. In addition, there
is a combined fluid inertia - viscoelasticity effect in the expression for txx. For long channels and moderate Re and We, the major
contribution to Txy at first order is that of We/a. For Txy, however, the viscous contribution is the most important at all orders, since
this component is inversely proportional to the aspect ratio, ¢, for which o « 1, dominating the viscoelastic and inertia contributions.
Therefore, the differences of the 7y, between the Newtonian and the viscoelastic cases are negligible. The expressions for 7y, and 7,
are similar; their magnitudes are much smaller than 74y and 7y, while both depend linearly on the Reynolds and the Weissenberg
numbers.

With the aid of Egs. (24), (79) and (80), the volumetric flow-rate, Q(x) = fol ux(x, y)dy, is given by:

Qx) =1 — (1 —x) + &2 {_2{';2 (—%aRe-i- %We np) (1-x)+ %(1 _ x| +0(e3) (89)
At x=0, the above expression gives

Q(0)~1—e+ce? (90)
where

C:Ef&flsaReJr Wen, >0 (91)
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Hence, Q(0) is a parabola with the minimum at &. = 1/(2c). Since increasing ¢ must lead to more compression, i.e. to lower value at Q(0) (in
dimensional units), the perturbation solution is valid only when ¢ < &.. Similar conclusions have been reported for the Newtonian Poiseuille
flows in capillaries [23] and slits [21]. Expressions (90) and (91) reveal that the presence of viscoelasticity reduces &, i.e. it reduces the
upper limit of validity of the perturbation solution, while the presence of inertia has the opposite effect. Fig. 1 shows the volumetric flow
rates at the inlet of the channel, Q(0), as a function of the compressibility parameter, &, for two Newtonian and two viscoelastic cases
with ns=1/9 and a=0.1. In the Newtonian cases the critical compressibility values are &.=0.51 and &.=0.33 with and without inertia,
respectively. The corresponding values in the viscoelastic cases are .~ 0.25 and &, ~ 0.20. Note also, that the difference in the volumetric
flow rate between the inlet and the outlet plane of the channel is

AQ =Q(1)-Q(0)~ &(1 —ce) (92)

In a similar fashion, we define the average pressure I1(x) = fo1 p(x, y)dy, which, by virtue of Eqs. (24) and (78), is

2 3
Hx)=(1-x)—¢ [_(192 + (1 —zx) + (—%aRe—i— gane> (1 —x)} + &2 [(1 _ZX) _ gaZ(] —X)— %aRe(l —x)2

+aRe <£a2 + 3044
35 13,475

2, [ 1478 We ) ,
aRe(1 —x)) +77pWe{—Ea + (—%aRe+ﬁ(3316—2356n5))(1—x)+7(1 _x) H—i—O(s )
(93)

Thus, the pressure difference between the entrance and the exit of the channel up to second order is found to be:

- N 1 18 14 L1 5, 36 3044 ,
AH:1'[(0)—17(1)~1—8<j—§aRe+§ane)+8 (§—§a - JeRet pogosa Re)

1478 We
2 _ = Ve _
+&2np, We [7 =z ¢Re+ 1=(3316 2356775)} (94)



86

K.D. Housiadas, G.C. Georgiou / J. Non-Newtonian Fluid Mech. 166 (2011) 73-92

1.0

0.8

0oy 2 1E4—

>—
0.4 4
7E3
0.2 4
a
OO T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
X
1.0
T 624
] 53E4— |
0'8_4444‘44‘44\‘4‘4‘“«‘“ﬁx\‘_ﬁ‘\%\f.4E4
3.5E4
Y  ———————26E4
0.6
1.7E4—
>
044 g3
0.2 -
b
0.0 T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
X
>—

Fig. 7. Contours of extra stress component Syx = 75 ¥xx + 1p Twx for =0.01, 75 =1/9, and Re=1: (a) We=0.4, £=0.05; (b) We=0.4, £=0.2; and (c) We=0, £=0.2.



K.D. Housiadas, G.C. Georgiou /J. Non-Newtonian Fluid Mech. 166 (2011) 73-92

1.0
-2.9E2
-2.6E2
0.8
-2.3E2
-2E21
0.6 -
-1.6E2
> -1.3E2
0.4 -
98
[~
0.2 65
-33
a
0.0 T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
X
1.0
-\-zsa
08 -2.5E2
-2.1E2
06 -1.8E2
-1.4E2
>
044 1.1E2
70
0.2
35
b
0.0 T T T T T T T T T
0.0 0.2 04 0.6 0.8 1.0
X
1.0
2.6E2___|

W

o6

044

0.2

0.0 N U N I N I N I N
0.0 0.2 04 06 0.8 1.0

X

Fig. 8. Contours of extra stress component Sy, = 75 ¥xy + 1pTxy for =0.01, ns=1/9, and Re=1: (a) We=0.4, £ =0.05; (b) We=0.4, £=0.2; and (c) We=0, £=0.2.



88 K.D. Housiadas, G.C. Georgiou / J. Non-Newtonian Fluid Mech. 166 (2011) 73-92

1.0

-0.004

] -0.0085
- 0013
0.8

0.6

0.4 4

0.2

0.8

0.6+

0.4 H

0.2 +

C 0.021——
//// 0.042

-0.063

0.6
0.4 4

0.2+

00084 / ' : i : . /

0.0 0.2 0.4 0.6 0.8 1.0
X

Fig. 9. Contours of extra stress component Sy, = 1s)yy + 1pTyy for «=0.01, ns=1/9, and Re=1: (a) We=0.4, £=0.05; (b) We=0.4, £=0.2; and (c) We=0, £=0.2.

For We =0, Eq. (94) reduces to the result of Venerus and Bugajsky [24] for a compressible Newtonian fluid with zero bulk viscosity. In
Fig. 2, we plot the dimensionless flow curves, i.e. plots of the volumetric flow rate at the entrance of the channel versus the pressure
drop, constructed by varying the compressibility number ¢ from € =0 to € = & (the upper limit of validity of the perturbation solution) and
calculating Q(0) and AT from Eqgs. (90) and (94), respectively. For the Newtonian fluid (We = 0) and the weakly viscoelastic fluid (We=0.1)
itis seen that the flow curves are monotonic. However, as the Weissenberg number increases (We =0.2 and 0.4) there is a range of AT for
which two solutions for Q(0) are admissible.
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Let us now discuss in more detail the effects of the Weissenberg number and compressibility by fixing the values of the solvent viscosity
ratio ns=1/9, np=8/9, the aspect ratio to «=0.01, and the Reynolds number to Re=1. The effect of the Weissenberg number on the
streamwise and the normal velocity components is shown in Fig. 3. In particular, Fig. 3a illustrates the deviation of the streamwise velocity
component from the incompressible (parabolic) profile near the channel exit (x = 0.9) for £ = 0.2 and various Weissenberg numbers (We =0,
0.1, 0.2, and 0.4). The value of the compressibility parameter is actually the upper limit of validity of the perturbation solution (for We =0.4
and Re=1, .~ 0.201). It is seen that the effect of viscoelasticity decreases as we move away from the midplane center and diminishes at
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the wall. A similar behavior has also been observed for the effect of Reynolds number on the streamwise velocity [21]. The effect of the
Weissenberg number on the transverse velocity component, which is an odd function of y, is illustrated in Fig. 3b. As implied by Eq. (81),
this velocity component varies linearly with the Weissenberg number.

The effect of the compressibility parameter on the velocity components near the exit of the channel, x=0.9, is illustrated in Fig. 4. As the
compressibility parameter increases, the deviation of the streamwise velocity from the incompressible profile also increases. As pointed
out earlier, this deviation is reduced from the midplane to the wall. As dictated by Eq. (81), uy increases quadratically with e.

In Fig. 5 the pressure contours for We=0.4 and two values of the compressibility parameter, € =0.05 and 0.2, are shown. It should be
noted that in both cases s2a2/6 « 1 while &, ~ 0.201. Also, the Reynolds numbers is set equal to 1 (and the same holds for Figs. 6-11). It is
seen that the contours are similar, almost vertical and equidistant, and slightly shifted towards the exit of the channel. This is due to the
fact that y-dependent terms are multiplied by the aspect ratio (see Eq. (78)), which in the present case is a very small. More pronounced
differences are observed, however, in the axial velocity contours. As illustrated in Fig. 6, the contours of uy, which are parallel everywhere
in the case of incompressible flow and near the exit of the channel otherwise, are curved upstream towards the midplane. This is obviously
due to the fact that for the mass to be preserved the flow accelerates downstream to counterbalance the reduction of the density.

In Figs. 7-10, we plotted the contours of the four non-trivial components of the extra stress tensor,

S=nsy+npT (95)

(i.e. of Sxx, Sxy, Syy, and S;;) for three different combinations of We and ¢: (a) We=0.4, £=0.05; (b) We=0.4, £=0.2; and (c) We=0, £=0.2.
For We =0 (Newtonian flow) Sy is a strong function of ¢ and the transverse coordinate y. This dependence becomes weaker by increasing
the value of the Weissenberg number and the contours of Syx are almost horizontal. The effect of compressibility on Sy, appears to be weak.
Nevertheless, it is clear from Fig. 8 that compressibility causes more rapid changes of Sy, near the wall. The effects are more dramatic on
the other two extra stress components, provided that We is sufficiently high. For a given value of x, the values of Sy in Fig. 9b (We=0.4,
£=0.2) pass through a minimum as y is increased from 0 to 1. A similar trend is observed for S, in Fig. 10b.
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Finally, the contours for the first normal stress difference, N = Sxx — Syy, for We=0.4 and £=0.05 and 0.2 are presented in Fig. 11. These
follow the same pattern as those of Sxx, which is expected, since Syx dominates Syy,. The second normal stress difference, N, =Sy — Sz, is
non-zero but very small. Even for highly viscoelastic liquids, its values are of the order of 10~4.

5. Conclusions

A perturbation solution for the laminar, isothermal, weakly compressible plane Poiseuille flow of an Oldroyd-B fluid has been derived.
The primary variables of the flow, namely the velocity, pressure, mass density and polymer extra-stress fields, are expanded as power
series of the compressibility number and the solution is obtained up to second-order. Expressions for the volumetric flow and the pressure
drop between the entrance and the exit of the channel, up to second-order, are also derived. It is demonstrated that fluid compressibility,
inertia and viscoelasticity have a significant effect on the transverse velocity component, the extra stress tensor, and the first normal
difference.

Appendix A. Extra stress components of the constitutive equation
From the zero-, first- and second-order terms of the constitutive model, one gets a first-order differential equation of the form:
at
We ux07k + T = My, (A1)

where g is a function of y, given by Eq. (25), 7y is the k-order contribution to any stress component and m;, is a known function, which
for the three cases of interest is given by:

mo(y) = Co(y)
my(x,y) = B1(y)x + C1(¥) (A2)
ma(x,y) = A2(0)x? + Ba(y )X + Ca(y)

The general solution of (A1) is:
_ 1 _
T = K(y)e (X[Weuyo) + e uxoe (x[Weuyo) / mkex/we“xodx (A3)

However, for a continuous dependence of the solution on the Weissenberg number, we set K=0. In addition, substituting (A2) into (A3)
and integrating by parts, we get:

1,5\ 9 0
T = (Wezuﬁ0 — Weuyox + jx2> a;rzlk +(x —We uxo)%(o,y) +m(0,) (A4)

The above solution for the three cases of interest is simplified as follows:

7o = Co(¥)
71 = (x = Weuy)B1(y) + C1(y) (A5)
Ty = 2(We?uZ ) — We tiyox + x2[2)Az(y) + (x — We tixg)Ba(y) + C2(¥)
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