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a b s t r a c t

The pressure-dependence of the viscosity becomes important in flows where high pressures are encoun-
tered. Applications include many polymer processing applications, microfluidics, fluid film lubrication,
as well as simulations of geophysical flows. Under the assumption of unidirectional flow, we derive ana-
lytical solutions for plane, round, and annular Poiseuille flow of a Newtonian liquid, the viscosity of which
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eywords:
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increases linearly with pressure. These flows may serve as prototypes in applications involving tubes with
small radius-to-length ratios. It is demonstrated that, the velocity tends from a parabolic to a triangular
profile as the viscosity coefficient is increased. The pressure gradient near the exit is the same as that of
the classical fully developed flow. This increases exponentially upstream and thus the pressure required
to drive the flow increases dramatically.
ressure-dependent viscosity
nnular Poiseuille flow

. Introduction

The viscosity of fluids, such as polymer melts and lubricants,
epends strongly on temperature and to a less extent to pressure
1]. In such fluids, the dependence of the viscosity on pressure may
e several orders of magnitude stronger than that of density [1,2].
enn [3] emphasized that at a pressure of about 5 MPa, which
an be reached in extrusion and in injection molding, the pres-
ure dependence of the viscosity is expected to become important
hile the flow is still incompressible. Therefore, it is reasonable

o study isothermal, incompressible flow of fluids with a pressure-
ependent viscosity.

The idea of a fluid with pressure-dependent viscosity was intro-
uced by Stokes [4]. Barus [5] proposed an exponential isothermal
quation of state for the viscosity of the form

(p) = �0eˇp, (1)

here � is the viscosity, p is the pressure, �0 is the viscosity at
tmospheric pressure, and ˇ is the pressure-viscosity coefficient
which is temperature dependent). In polymer melts, ˇ is typically
–5 × 10−8 Pa−1 [3]. For lubricants, ˇ varies from 10 to 70 MPa−1 [6].

enner and Lubrecht [7] reported that for mineral oils ˇ is generally

n the range between 10−8 and 2 × 10−8 Pa−1. Carreras et al. [8]
ompiled experimental values of the shear pressure coefficient ˇ.
ven though Eq. (1) is extensively used, it is valid as a reasonable
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approximation only at moderate pressures. A compilation of other
equations proposed for the pressure dependence of the viscosity
and useful references on the subject has been provided by Málek
and Rajagopal [9].

Numerous are the experimental studies concerning the deter-
mination of the pressure dependence of the viscosity of common
polymer grades, such as polyethylenes (LDPE, LLDPE, HDPE),
polypropylene and polystyrene. Comprehensive reviews are pro-
vided by Binding et al. [10] and Goubert et al. [11] who compared
measurement techniques in the literature for evaluating the pres-
sure dependence of viscosity.

As already mentioned high pressures sufficient to cause signifi-
cant change in the viscosity appear in many polymer processing
operations. Driving pressures of 50 and 100 MPa are routinely
required in extrusion and injection molding [12]. The strong effect
of pressure and its potential importance in plastics processing led
to the development of high-pressure rheometers based on pressure
driven or drag flow [13]. Cardinaels et al. [14] discussed different
methods to obtain pressure coefficients for different polymers, such
as PMMA and LDPE, from high-pressure capillary rheometer data.
More recently, Park et al. [15] also compared different experimen-
tal methods for the determination of the pressure coefficient of a
styrenic polymer.

The pressure-dependence of the viscosity becomes important in

other applications, such as fluid film lubrication, microfluidics, and
geophysics. In fluid film lubrication studies it is essential to include
the variation of the viscosity with pressure [16]. For technological
applications in elastohydrodynamic lubrication and in thrust bear-
ing or journal bearing applications, where the lubricant is forced

dx.doi.org/10.1016/j.jnnfm.2011.01.006
http://www.sciencedirect.com/science/journal/03770257
http://www.elsevier.com/locate/jnnfm
mailto:georgios@ucy.ac.cy
dx.doi.org/10.1016/j.jnnfm.2011.01.006
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o flow through a very narrow region which leads to very high
ressures, the reader is referred to the work of Gwynllyw et al.
17]. In the design of Micro Electro-Mechanical Systems (MEMS),
he pressure-dependence of the viscosity needs to be taken into
ccount. Experimental data for liquid flows in microtubes driven
y high pressures (1–30 MPa) show that the pressure gradient is
ot constant, an effect attributed to the pressure-dependence of
he viscosity [18,19]. In geophysical flows, the viscosity changes
ith the depth of the fluid. Convection in planetary mantles is most

ikely dominated by the strong variability of the mantle viscosity
epending on temperature and pressure [20]. In her mantle flow
imulations, Georgen [21] allowed the viscosity to vary over three
rders of magnitude from 1019 to 1022 Pa s.

Mathematical issues arising in the case of incompressible
ewtonian or non-Newtonian flows with a pressure-dependent
iscosity have been addressed by Renardy [22], Gazzola [23], and
álek et al. [24,25]. The existence of flows of fluids with pressure-

ependent viscosity and the associated assumptions have been
iscussed by Bulíček et al. [26]. The properties of such solutions
re also discussed by Málek and Rajagopal [9].

In addition to Eq. (1), Hron et al. [27] also assumed the following
xpression for the viscosity pressure dependence:

(p) = ˇp. (2)

hey showed that unidirectional flows are not possible between
arallel plates in the case of the former model, since a secondary
ow is necessary to that end. However, unidirectional flows are
ossible in the latter case.

Renardy [2] considered parallel shear flows of an incompress-
ble Newtonian fluid allowing a general pressure dependence for
he viscosity and proved that a sufficient condition for the exis-
ence of parallel pressure-driven flow in a pipe, regardless of its
ross-section, is the linear dependence of the viscosity on the
ressure:

(p) = �0(1 + ˇp). (3)

his condition is not necessary; Denn [28] showed that the
uadratic velocity profile in a circular pipe remains a solution if the
iscosity is an exponential function of the pressure. As indicated by
enardy [2] and also shown in the present work, the velocity profile

s not parabolic in the case of linear dependence of the viscosity; it
ay be almost parabolic when this dependence is weak. According

o Suslov and Tran [29], the major concern of linear constitutive
quation (3) is that it does not guarantee positive definiteness of
he viscosity which requires the pressure to remain positive. This
roblem is not encountered when using exponential constitutive
quation (1) or in flows where the pressure remains positive, such
s Poiseuille flows.

It seems that Eq. (2) has been the most popular one in the various
heoretical analyses presented in the literature. Analytical solutions
ave been reported by Renardy [2] and Vasudevaiah and Rajagopal
30] for the round Poiseuille flow of a Newtonian fluid and by Hron
t al. [27] and Huilgol and You [31] for the plane Poiseuille flow
f a generalized Newtonian fluid. The reason of avoiding Eq. (1)
s obvious, since this equation rules out the possibility of having
nalytical solutions, but Eq. (3) should be more preferable than
q. (2), since the latter predicts a vanishing viscosity at zero pres-
ure. Another advantage of Eq. (3) over Eq. (2) is that it involves
reference viscosity constant. However, as shown below, both

quations result in the same solution for the velocity in the case

f unidirectional Poiseuille flow. What is different is the pressure
istribution.

In the present work, we derive and discuss analytical solutions
f axisymmetric, annular, and plane Poiseuille flows of Newtonian
uids with pressure-dependent viscosity obeying Eq. (3).
luid Mech. 166 (2011) 413–419

The rest of the paper is organized as follows: in Section 2 the
governing equations are presented and the derivation of the ana-
lytical solution is described in the case of the round Poiseuille flow.
The solutions for the other two Poiseuille flows of interest are also
provided. In Section 3, the theoretical results and the effects of
the viscosity pressure-dependence are discussed. Finally, in Sec-
tion 4 we provide the conclusions and some suggestions for future
work.

2. Governing equations and analytical solutions

For an incompressible Newtonian fluid, the viscosity of which is
a function of pressure, the viscous stress tensor is given by

� = 2�(p)D, (4)

where

D = 1
2

[∇u + (∇u)T ] (5)

is the rate-of-deformation tensor and u is the velocity vector. It
can be shown in this case that the Navier–Stokes equation in the
absence of gravity becomes:

�

(
∂u
∂t

+ u · ∇u

)
= −∇p + �(p)∇2u + 2�′(p)∇p · D. (6)

It should also be noted that the continuity equation for incom-
pressible flow is

∇ · u = 0. (7)

In this paragraph we consider incompressible Poiseuille flows of
Newtonian fluids with pressure-dependent viscosity obeying Eq.
(3).

2.1. Axisymmetric Poiseuille flow

We consider the nondimensionalized governing equations of
axisymmetric Poiseuille flow in cylindrical coordinates with the
origin located at the exit of the tube. The radial coordinate, r,
is scaled by the radius R and the axial coordinate, z, by the
length L of the tube. Moreover the axial velocity is scaled by
the mean velocity U, the pressure by 8�0LU/R2 (chosen so that
the pressure at the inlet plane is equal to 1), and the viscosity
� by �0. Hence the dimensionless form of the viscosity equation
becomes

�∗ = 1 + εp∗, (8)

where stars denote dimensionless quantities and

ε ≡ 8ˇ�0LU

R2
. (9)

For convenience, stars will be dropped hereafter. Under the
assumption that the radial velocity component is zero, the con-
tinuity equation dictates that uz = uz(r); hence, only pressure is a
function of both r and z, p = p(r,z). As pointed out by Huilgol and You
[31], it is clear that as long as ∂�/∂p is nonzero, a pressure gradient
in the flow direction induces one in the direction of the velocity
gradient, unless inertia is present. The z- and r-components of the
momentum equation, defined over the domain [0,1] × [−1,0], are
simplified as follows:

∂p 1 d
(

duz
)

∂p duz
−8
∂z

+ (1 + εp)
r dr

r
dr

+ ε
∂r dr

= 0 (10)

and

−8
∂p

∂r
+ ε˛2 ∂p

∂z

duz

dr
= 0, (11)
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here

≡ R

L
(12)

s the tube aspect ratio. By eliminating ∂p/∂r and separating vari-
bles we find that

(1/r)(duz/dr) + (d2uz/dr2)

1 − (ε2˛2/64)(duz/dr)2
= 8

1 + εp

∂p

∂z
= −A (13)

here A is in general a function of r, taken here as a constant to be
etermined. We have thus two differential equations to be solved
or uz and p. By solving the first equation for uz and applying the
ymmetry boundary condition at the axis of symmetry and the no-
lip condition at r = 1, one finds that

z(r) = 64
Aε2˛2

ln
[

I0(Aε˛/8)
I0((Aε˛/8)r)

]
, (14)

here I0 is the modified Bessel function of kind one and zero order
32]. The above expression has been previously derived by Renardy
2] and Vasudevaiah and Rajagopalan [30] who employed Eq. (2)
nstead of Eq. (3). By integrating the other differential equation,
ssuming that p(0,0) = 0, and taking into account the velocity pro-
le, we find that

(r, z) = 1
ε

[
I0

(
A ε˛ r

8

)
e−Aεz/8 − 1

]
. (15)

he constant A is determined by demanding that the volumetric
ow rate is 2�. This leads to the following equation∫ 1

0

ln
[

I0

(
Aε˛r

8

)]
rdr − ln

[
I0

(
Aε˛

8

)]
+ Aε2˛2

64
= 0, (16)

hich is easily solved for A by means of Newton’s method combined
ith numerical integration.

If instead of Eq. (3), the following equation is used, as was done
y Hron et al. [27],

(p) = εp, (17)

he above procedure leads to Eq. (15) for the velocity and to the
xpression

(r, z) = 1
ε

I0

(
Aε˛r

8

)
e−Aεz/8 (18)

or the pressure. In both cases, the pressure increases exponentially
pstream, which means that an enormous pressure drop may be
chieved with a tube of finite length.

.2. Annular Poiseuille flow

Let us now consider the Poiseuille flow in an annulus of radii
R and R, where 0 < � < 1. Using the same scalings and assumptions
s in the axisymmetric case, we end up with the same separated
ifferential equations to be solved for uz(r) and p(r,z). An additional
imensionless number is introduced, i.e. the radii ratio �. With the
ssumption of no slip along the two walls, the following expression
s obtained for the slip velocity

z(r) = 64
Aε2˛2

ln
{

[K0(B) − K0(B�)] I0(B) − [I0(B) − I0(B�)] K0(B)
[K0(B) − K0(B�)] I0(Br) − [I0(B) − I0(B�)] K0(Br)

}
, (19)

here
≡ Aε˛

8
(20)

nd K0 is the modified Bessel function of the second kind of first
rder. Assuming that p(�,0) = 0, the pressure is found to be given
luid Mech. 166 (2011) 413–419 415

by

p(r, z) = 1
ε

ln
{

[K0(B) − K0(B�)] I0(Br) − [I0(B) − I0(B�)] K0(Br)
[K0(B) − K0(B�)] I0(B) − [I0(B) − I0(B�)] K0(B)

eεAz/8 − 1
}

.

(21)

Assuming that the (dimensionless) volumetric flow is equal to
2�, we find that the constant A is the root of the following equation:

2

∫ 1

�

ln [(K0(B) − K0(B�))I0(Br) − (I0(B) − I0(B�))K0(Br)]

×rdr − (1 − �2) ln [(K0(B) − K0(B�))I0(B) − (I0(B) − I0(B�))K0(B)]

+Aε2˛2

64
= 0. (22)

2.3. Plane Poiseuille flow

We consider the pressure-driven flow in a channel of half-width
H and length L and work in Cartesian coordinates with the origin
at the intersection of the midplane and the exit plane of the chan-
nel and the x-axis in the flow direction. We nondimensionalize the
governing equations scaling x by L, y by H, ux by the mean veloc-
ity U, and the pressure by 3�0LU/H2. The resulting dimensionless
numbers are

˛ ≡ H

L
and ε ≡ 3ˇ�0LU

H2
. (23)

One finds that the velocity and pressure are given by

ux(y) = 9
Aε2˛2

ln
[

cosh(Aε˛/3)
cosh((Aε˛/3)y)

]
(24)

and

p(x, y) = 1
ε

[
cosh

(
Aε˛y

3

)
e−Aεx/3 − 1

]
. (25)

The constant A is determined by demanding that the volumetric
flow rate is equal to unity. It turns out that A is the root of∫ 1

0

ln
[

cosh
(

Aε˛y

3

)]
dy − ln

[
cosh

(
Aε˛

3

)]
+ Aε2˛2

9
= 0. (26)

Solution (24) for the velocity has also been derived by Hron et al.
[27] and Huilgol and You [31], who employed Eq. (2) for the
pressure-dependence of the viscosity.

3. Discussion

In this section we discuss only results for the axisymmetric and
annular Poiseuille flows (the results for the plane flow are similar
to their axisymmetric counterparts). In order to construct solu-
tions for the velocity and pressure for the axisymmetric Poiseuille
flow, the constant A must be determined from Eq. (16). It turns out
that the latter equation has a unique nonzero root only when the
parameter

˛ε = 8ˇ�0U

R
(27)
is below the critical value (˛ε)crit = 8/3. As illustrated in Fig. 1, at
low values of ˛ε, A is insensitive to ˛�; this is not the case at higher
values and, as ˛ε approaches the critical value, A grows rapidly to
infinity. In Fig. 2, the calculated velocity profiles for various values
of the parameter ˛ε are shown. For ˛ε < 0.1 the velocity has the
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Fig. 3. Pressure distribution along (a) the axis of symmetry and (b) the wall, for
˛ = 0.01 and various values of ˛ε; axisymmetric Poiseuille flow.
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ig. 1. The constant A as a function of the parameter ˛ε in axisymmetric Poiseuille
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arabolic profile for incompressible flow and then gradually tends
o a linear profile:

z,crit = 3(1 − r). (28)

et us point out that (˛ε)crit can be calculated analytically as the
alue zeroing the denominator of the LHS of Eq. (13). The veloc-
ty profiles of Fig. 2 suggest that in the two-dimensional flow the
xial velocity is expected to change from a parabolic to a more
riangular profile as we move upstream. The velocity profiles of
ig. 2 are essentially the same as those obtained by Renardy [2] and
asudevaiah and Rajagopal [30] for a Newtonian fluid obeying Eq.

2) instead.
The pressure distributions obtained with ˛ = 0.01 and different

alues of ˛ε along the wall and the axis of symmetry are shown in
ig. 3. We observe that the pressure distribution remains linear only
ear the exit and that as the parameter ˛ε increases, the pressure
pstream as well as the pressure gradient increase exponentially
ith the length of the tube. Clearly, the pressure required to drive

he flow increases rapidly with the length of the tube. Assuming
hat this is given by 	P = p(0, − 1) and that A � 8 is a reasonable
pproximation for sufficiently small values of ˛ε, e.g. for very long
ubes, one gets

P ≈ 1
ε

(eε − 1). (29)

ow, if it is also assumed that ε is small, Eq. (30) gives
P ≈ 1 + ε

2
+ ε2

6
+ O(ε3). (30)

The above expression can be viewed as a correction factor for
he Hagen–Poiseuille formula and can be used in measuring the vis-
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and various values of ˛ε; axisymmetric Poiseuille flow.
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Fig. 5. Pressure contours for various values of ˛ε whe

osity from viscometric data obtained using capillaries of different

ength.

In Fig. 4, we show the pressure distributions along the inlet and
utlet planes of the tube. We observe that the pressure starts devi-
ting from the linear profile at sufficiently high values of ˛ε. At the
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ig. 6. The constant A as a function of the parameter ˛ε in annular Poiseuille flow
or � = 0.1.
˛ = 0.01 and (b) ˛ = 0.1; axisymmetric Poiseuille flow.

inlet plane the pressure seems to be insensitive to r, i.e. the relative

deviations are negligible. This is not the case at the outlet plane
where larger deviations are observed when moving from the axis
of symmetry to the wall. However, the absolute value of pressure
is essentially zero. These results are also illustrated in Fig. 5 where
the pressure contours for a short (˛ = 0.1) and a long (˛ = 0.01) tube
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Fig. 7. Velocity profiles in annular Poiseuille flow for � = 0.1, for various values of
the parameter ˛ε.
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Fig. 8. Pressure contours for various values of ˛ε when

re plotted. For small values of ˛, the contours appear to be verti-
al; the bending of the contours is more clearly shown for bigger
alues of ˛, i.e. in shorter tubes.

In the case of annular Poiseuille flow, we have chosen to show
esults for � = 0.1. In this case, the parameter A is a unique nonzero
oot of Eq. (22) when ˛ε is below the critical value 1.782, as illus-
rated in Fig. 6. It is easily shown that in general

˛ε)crit = 2(1 + �)(1 − �)2 (31)

nd

z,crit =

⎧⎪⎨
⎪⎩

4(r − �)

(1 + �)(1 − �)2
, � ≤ r ≤ � + 1

2
4(1 − r)

(1 + �)(1 − �)2
,

� + 1
2

≤ r ≤ 1
. (32)

n Fig. 7, the velocity profiles for various values of the parameter ˛ε
re shown. We notice that for ˛ε < 0.1 the velocity has the parabolic
rofile for incompressible flow which steadily tends to the trian-

ular profile described by Eq. (29) as ˛ε approaches the critical
alue.

As in round Poiseuille flow, the pressure gradient is roughly con-
tant only for low values of ˛ε. As the latter parameter increases,
he pressure increases faster with the distance from the exit plane.
0.01 and (b) ˛ = 0.1; annular Poiseuille flow for � = 0.1.

Fig. 8 shows the pressure contours for a short (˛ = 0.1) and a long
(˛ = 0.01) annulus and various values of ˛ε. The vertical contours
for small values of ˛ begin to bend for bigger values of ˛, i.e. in
shorter tubes.

4. Conclusions

Analytical solutions for the axisymmetric, annular, and plane
Poiseuille flows of an incompressible Newtonian fluid with
pressure-dependent viscosity, obeying Eq. (3), have been derived,
under the assumption of unidirectional flow. These solutions show
that as the pressure-dependence of the viscosity becomes stronger,
the velocity profile, which is independent of the axial coordinate,
tends from a parabolic-type to a triangular profile and the pres-
sure, which is a function of both the axial and the radial coordinate,
increases exponentially upstream. The latter result implies that the
pressure required to drive the flow increases rapidly with the length
of the tube.
The solution of the compressible Poiseuille flow of a Newto-
nian fluid with pressure-dependent viscosity is currently under
investigation. Ideas for future work include the investigation of
the combined effect of slip at the wall with viscosity pressure
dependence and the solution of generalized Newtonian flows with



nian F

p
a
e
b
z

R

[

[

[
[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

A. Kalogirou et al. / J. Non-Newto

ressure-dependent material parameters. Some interesting issues
rise in the case of Bingham and other viscoplastic fluids with the
xact definition of the pressure in the yielded regions which must
e a function which can be extended continuously into unyielded
ones [33].
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