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A standard method used to determine material properties of semi-solid slurries is the squeeze flow
experiment; a fixed amount of material is squeezed under constant force or velocity and the relation
between the force and the displacement of the sample provides information about the rheology of the
slurry. The objective of this work is to contribute to the further development of the squeeze flow meth-
odology in order to accurately determine material properties. This is achieved by a model that accounts
for the finite yield stress and the thixotropy of the slurry. More specifically a structural viscoplastic model
based on the Bingham plastic constitutive equation is proposed. The yield stress is assumed to vary lin-
early with the structural parameter which follows a first-order rate equation accounting for the material
structure break-down and build-up. Numerical experiments of squeeze flow under either constant load
or constant velocity are presented and discussed. Comparisons with their non-thixotropic counterparts
are made in the case of compression under constant load. The development of the yielded/unyielded
regions in relation to material structural changes is analyzed. The numerical results show that initially
thixotropy does not affect the flow. However, once the structure is destroyed, the unyielded regions grow
slower than the non-thixotropic case allowing for longer compression of the sample. Under constant
force the structure may be destroyed at the early stages of the compression but at a later time it re-builds
steadily till the cessation of the flow experiment. Under constant velocity, however, the structure is
destroyed steadily. Depending then on the case, the final internal structure of the squeezed material
can vary significantly. This is an important issue that needs to be taken into consideration in the
evaluation of the material parameters.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

The motivation of the present work comes from our interest in
the processing of semi-solid slurries. These are relatively dense
suspensions of specially prepared spheroidal particles, known to
be viscoplastic, i.e. they flow only if a finite stress value is ex-
ceeded; otherwise, they behave as solids [1,2]. The viscoplastic
behavior of semi-solid slurries is due to particle welding, dry fric-
tion, and hydrodynamic forces. Semi-solid slurries also exhibit
thixotropic behavior, i.e. their viscosity decreases with time under
constant shearing [3,4]. However, in contrast to other thixotropic
materials, the rheological properties of semi-solid slurries are par-
tially reversible [5,6]. Other materials exhibiting similar behavior
are greases, waxy crude oils, and fermentation broths [7]. Under-
standing the influence of thixotropy on the flow behavior and the
structural evolution of these materials during flow is of great
importance to the industry.

An early review on thixotropy is that of Mewis [8], who dis-
cussed the various experimental techniques for detecting and
ll rights reserved.
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evaluating thixotropy in real materials. Later, Barnes [9] discussed
typical experimental methods for measuring thixotropy and the
related mathematical theories. He also pointed out the need of
developing more accurate models to describe the microstructure
evolution, taking into account the time dependence of viscosity.
The concept of thixotropy and its various rheological manifesta-
tions with focus on particular suspensions have been recently
reviewed by Mewis and Wagner [7], who pointed out that a gen-
eral rheological model, capable to describe its different features,
has not yet been developed. Useful discussions of the thixotropy
literature were also provided by Mujumdar et al. [10] and de Souza
Mendes [11].

Mewis and Wagner [7] categorized thixotropic models into
three classes: the phenomenological models, which are based on
the general principles of rational continuous mechanics, the mod-
els that use an internal or ‘‘structure’’ parameter to describe the
material structure, and those that are based on a microstructure
approach. The first two classes can generate both inelastic and
viscoplastic equations of state and form a continuous spectrum
of models. Phenomenological models include those incorporating
a memory function based on continuum mechanics principles
and those that employ a structure parameter. In the latter models
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Fig. 1. Geometry and boundary conditions of the squeeze flow experiment. At t = 0
the sample is at rest.
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the rheological response is associated to the instantaneous struc-
ture, which is governed by the kinetic equation for structure
parameter. As noted by Mewis and Wagner [7], structural param-
eter models can be viewed as extremely simplified microstructural
models. On the other hand, such simple models are more general
and may be applied to a wider class of materials.

In a recent work, Alexandrou and Georgiou [12] introduced a
modified Herschel–Bulkley model that included a structural param-
eter and applied a novel computational method suitable for moving
free-boundary problems to study the flow of a thixotropic semi-
solid material between two coaxial cylinders. The strength of the
slurry or the yield stress, which is attributed to welded bonds, dry
friction, and hydrodynamic forces, was assumed to be a function of
the structural parameter. The same authors subsequently employed
a similar structural model to simulate the flow of a thixotropic shear
thinning material (e.g. semi-solid suspension) in a concentric cylin-
drical rheometer and investigated the effects of shear rejuvenation,
aging and shear banding phenomena [3]. Their numerical simula-
tions were found to be in agreement with certain experimental data
of Beris et al. [13] for concentrated star polymer suspensions and
demonstrated that the rate of breakdown and build-up equilibrium
is reached in shorter times for fluids with large build-up coefficients,
which may be important in shearing applications. It was also noted
that the time scales needed for the shear banding to develop are
similar to those found in semi-solid processes [3].

Structural thixotropy models for semi-solid materials have also
been employed by Gautham and Kapur [14] and by Koeune and
Ponthot [15]. The former authors proposed a model for unsteady
state shear stress of semi-solid suspensions with a structural
parameter representing the degree of connectivity or aggregation
in the fluid. This model focuses on the fast transient stage of the
process, simulates the structure build-up in the absence of applied
shear, and computes the steady state structure for a given shearing
rate after long shearing time. It was found that, depending on the
initial conditions of the structure (time, temperature, shear cycle,
etc.), the build-up increases rapidly in the beginning and thereafter
more slowly, eventually reaching the maximum value of a fully-
structured material. Koeune and Ponthot [15] proposed a thermo-
mechanical model for semi-solid thixoforming to describe the
proper degeneration to pure solid or liquid as well as free solid sus-
pension behavior. They considered as an internal material param-
eter the effective liquid fraction, which excludes the entrapped
liquid inside the solid grains and does not contribute to the flow.
The proper degeneration of the suspension to pure solid and pure
liquid as well as to free solid suspension aims to overcome the lim-
itations of their previous model of semi-solid thixoforming.

A microstructural model has been proposed by Favier and
Atkinson [4] who analyzed the transient behavior of concentrated
semi-solid materials in rapid compression test simulations. Their
model is based on micromechanical and homogenization tech-
niques, which assumes that semi-solids exhibit elastic–viscoelastic
response under rapid compression. It was shown that the experi-
mental load–displacement curve initially increases up to maxi-
mum and thereafter decreases and increases again. They also
found that the effect of solid fraction on mechanical response is
in qualitative agreement with experiments.

The objectives of the present work are: (a) to investigate numer-
ically the structural changes of a thixotropic yield-stress material in
squeeze flow, and (b) to contribute to the use of squeeze flow for the
rheological characterization of semi-solid slurries. To that end, we
employ a thixotropic model based on the Bingham plastic constitu-
tive equation with the yield stress depending linearly on a structural
parameter [3,12]. This can be viewed as an extension of our previous
work, where the flow and shape evolution during the squeeze flow of
a finite amount of a non-thixotropic Bingham plastic were investi-
gated by means of numerical simulations [16].
It should be noted that while the motivation and most of the lit-
erature reviewed above concern the behavior of semi-solid slurries,
the theory and the model presented below apply to a much larger
family of materials. The importance of considering thixotropy in
flow analysis of viscometric flows has been recently emphasized
by Potanin [17] and Ardakani et al. [18]. Early theoretical analyses
and numerical studies of the squeeze flow of viscoplastic materials
have been reviewed by Smyrnaios and Tsamopoulos [19].
Engmann et al. [20] also presented a comprehensive review of
squeeze flow theory and its applications to rheometry for a wide
class of materials, including generalized Newtonian, yield-stress,
and viscoelastic fluids, and provided a long list of useful references.
Additional references may be found in [21] and in the recent paper
of Shaukat et al. [22].

In Section 2, the thixotropy model as well as the governing
equations and boundary and initial conditions for the squeeze flow
experiment are presented. The sample is compressed on the top
either under constant load or constant velocity while its bottom
side is fixed. In Section 3, the numerical method is briefly dis-
cussed. In Section 4, the numerical results are presented and the
evolution of the structural parameter in the sample, which is
important in understanding the structural and rheological changes
during flow, is discussed. Two-dimensional (time-dependent) re-
sults for the distribution of the structural parameter in the sample
are presented for the first time and compared with the correspond-
ing evolution of the yielded and unyielded regions. Finally, con-
cluding remarks are provided in Section 5.

2. Governing equations

It is assumed that a cylindrical sample of the material, of initial
radius R0 and height H0, is placed between two parallel discs
(Fig. 1) and is then compressed from the top under constant load
or constant velocity and isothermal conditions, while the lower
disc remains fixed. In incompressible flow under zero gravity, the
continuity and momentum equations for any fluid become:

r � u ¼ 0 ð1Þ

and

q
Du
Dt
¼ �rpþr � s ð2Þ
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where u is the velocity vector, p is the pressure, s is the viscous
stress tensor, t is the time, Du=Dt is the material velocity derivative,
and q is the density of the fluid.

It is also assumed that the materials under study obey the
Bingham constitutive equation,

_c ¼ 0; s < s0

s ¼ s0
_c þ l

� �
_c; s � s0

9=
; ð3Þ

where l is the plastic viscosity, s0 is the yield stress of the material,

_c � ruþ ðruÞT ð4Þ

is the rate of strain tensor, and the superscript T denotes the trans-
pose. The magnitudes of _c and s, denoted respectively by _c and s,
are defined by

_c �
ffiffiffiffiffiffiffiffiffi
1
2

II _c

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2

_c : _c
r

and s �
ffiffiffiffiffiffiffiffiffi
1
2

IIs

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
s : s

r
ð5Þ

where the symbol II stands for the second invariant of a tensor. In
order to overcome the inherent singularity exhibited by the discon-
tinuous Bingham plastic constitutive model and the associated
implementation difficulties in computational codes, we adopt the
regularized version of the constitutive Eq. (3), as proposed by Papa-
nastasiou [2,23]:

s ¼ so½1� expð�m _cÞ�
_c

þ l
� �

_c ð6Þ

where m is the stress growth parameter. Eq. (6) is valid uniformly at
all levels of _c and provides a satisfactory approximation of the Bing-
ham plastic model for sufficiently large values of m [16,19,24]. It
should be noted, however, that the value of m must be chosen very
carefully, since very large values might lead to convergence difficul-
ties [3,12,25].

2.1. The thixotropic model

To characterize the time-dependent flow behavior of the thixo-
tropic, non-linear visco-plastic material and to capture its internal
structure evolution during flow, we employ a structural parameter
model, which has been extensively used in previous works on
semi-solid slurries. A structural parameter, k, which is a function
of time, characterizes the state of the material structure, being
unity for fully developed skeleton structure and zero for com-
pletely broken structure [3,5,24,26]. The material parameters of
the Bingham plastic model, i.e. the plastic viscosity and the yield
stress are, in general, functions of k [24]. In the present work, we
assume that the plastic viscosity is constant and that the yield
stress in Eq. (3) or its regularized version in Eq. (6) varies as
follows:

s0ðtÞ ¼ sykðtÞ ð7Þ

where sy is the yield stress of the fully-structured slurry. This sim-
ple approach was selected instead of the more complex functional
relationship presented by Burgos et al. [24], since the interest here
is the very fast structure breakdown associated with the compres-
sion test. The evolution of the structural parameter is assumed to
follow the first-order rate equation:

Dk
Dt
¼ a0ð1� kÞ � b0k _cec0 _c ð8Þ

where a0 is the recovery parameter and b0 and c0 are the breakdown
parameters determined from experimental data. The two terms in
the RHS of Eq. (8) describe the rates of structure build-up and
break-down. The exponential in the second term accounts for the
fact that the shear stress evolution in shear rate step-up experiments
is typically faster than in the step-down one. This is in line with the
experimental data of Modigell and Koke [5,27] on semi-solid slur-
ries, where a strong dependence of the yield stress on the micro-
structure and the degree of agglomeration of the solid phase was
observed, which is further strengthened with rest time. At steady-
state the shear rate is constant and the rates of break-down and
build-up are equal. One can then determine the equilibrium value
of k:

ke ¼
1

1þ ðb0=a0Þ _ceec0 _ce
ð9Þ
2.2. Dimensionless equations

To non-dimensionalize the constitutive and the governing
equations in the case of squeeze flow under constant velocity U,
we scale the lengths by the initial height H0, the velocity U, the
time by H0/U, and the pressure p and the stresses by the yield stress
lU/H0. By means of these scalings, the dimensionless forms of Eqs
1, 2, and 6 are as follows:

r � u ¼ 0 ð10Þ

Re
Du
Dt
¼ �rpþr � s ð11Þ

and

s ¼ Bnk
1� expð�M _cÞ

_c
þ 1

� �
_c ð12Þ

where for the sake of simplicity, we keep the same symbols for the
dimensionless variables. As a result of the non-dimensionalization,
there are three dimensionless numbers, namely the Reynolds
number,

Re � qUH0

l
ð13Þ

the Bingham number

Bn � syH0

lU
ð14Þ

and the growth number,

M � mU
H0

ð15Þ

In the case of squeeze flow under constant load F, the following
velocity scale is used:

U ¼ F
lH0

ð16Þ

It is implied that the applied load is such that flow does occur, i.e.
F � ps0R2

0 > 0.
The dimensionless form of Eq. (8) is

Dk
Dt
¼ að1� kÞ � bk _cec _c ð17Þ

where

a � a0H0

U
; b � b0; c � c0H0

U
ð18Þ

are the dimensionless recovery and breakdown parameters.
The boundary conditions of the flow are shown in Fig. 1. Sym-

metry boundary conditions are imposed along the axis of symme-
try and the velocity is set to zero along the bottom. On the free
surface it is assumed that surface tension is zero. When the sample
is compressed at constant load in the direction of gravity, i.e. the



Table 1
Characteristics of the meshes used in the simulations.

Elements Nodes Unknowns

Mesh 1 (15 � 15) 225 961 2148
Mesh 2 (20 � 20) 400 1681 3763
Mesh 3 (24 � 24) 576 2401 5379
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Fig. 2. Evolution of the sample height and the mean structural parameter during
squeeze flow under constant load for Re = 1, Bn = 1, a = 1, b = 1, and c = 0.01. The
dashed line is the sample height in the case of a non-thixotropic material
(a = b = c = 0).
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Fig. 3. Evolution of the minimum, maximum and mean structural parameter during
squeeze flow under constant load for Re = 1, Bn = 1, a = 1, b = 1, and c = 0.01. For the
calculation of kmin the last two nodes (top of the right edge) have been omitted; the
broken line corresponds to the minimum value of k0min when these two nodes are
included.
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dimensionless load is of the form F = �Fez, the dimensionless
boundary condition at the top of the sample is given byZ

s
ð�pI þ sÞ � ez dS ¼ �ez ð19Þ

where S is the surface of the top side of the sample, and I is the unit
tensor. As for the initial conditions, the velocity is everywhere set to
zero at t = 0.

3. Numerical method

The flow problem is solved in Lagrangian coordinates and thus
the position of the free surface is calculated automatically together
with the other unknown fields (free surface nodes move with the
fluid velocity). The governing equations are discretized using the
mixed-Galerkin finite element method with standard nine-node
quadrilateral elements for the velocity and four-node ones for
the pressure. The resulting non-linear system of equations is
solved using a Newton–Raphson iteration procedure with an error
tolerance equal to 10�5. Remeshing is achieved by using a Laplace-
type discretization algorithm, i.e. a smooth mesh is constructed to
conform to the evolving free surface [16]. Care is taken to construct
a finer mesh at critical corners. When free-surface nodes touch a
solid boundary (i.e. the surface of a disk) they are treated as non-
slip boundary nodes, i.e. as nodes that follow the plate. The flow
field variables are reassigned new values based on the old mesh
[16,28].

4. Numerical results

As already mentioned, in our numerical simulations it is assumed
that an incompressible material is compressed only from the top
side while the bottom side remains fixed (Fig. 1). The sample is com-
pressed from rest either under constant load or constant velocity. In
the former case, the simulations are carried out up to a time when
the flow becomes very slow, i.e. the squeeze rate is reduced signifi-
cantly and no further significant changes in the sample height and
shape are observed. In the case of constant velocity, in which the
sample height decreases steadily, the simulation is stopped when
h becomes 0.15–0.20, that is when the finite elements are very dis-
torted (especially those adjacent to the free surface). Before any
meaningful analysis, the effects of the mesh refinement and the
magnitude of the growth exponent M on the numerical results have
been investigated. Three different meshes have been used, the char-
acteristics of which are tabulated in Table 1. The numerical results
presented in this section have been obtained using Mesh 2
(20 � 20), which gives converged results without significant differ-
ences from those obtained with the more refined Mesh 3 (24 � 24).
As for the growth exponent M, we have considered three different
values: 100, 300, and 800. The value of M = 300 was found to be suf-
ficiently high so that the regularized Papanastasiou model provides
a good approximation for the ideal Bingham model; no significant
differences were observed from the results obtained with M = 800.
As already mentioned, very high values of M are undesirable, since
they lead to longer computational times and convergence difficul-
ties [18,25,29,30]. Finally, as far as the time step is concerned, this
is chosen after extensive numerical experimentation and is kept
constant throughout the simulation.

4.1. Simulations under constant load

We first consider as base flow the thixotropic squeeze flow un-
der constant load with Re = 1, Bn = 1, a = 1, b = 1 and c = 0.01. For
the discussion, we also consider the mean structural parameter k
of the sample, defined by
kðtÞ � 2p
V0

Z hðtÞ

0

Z RðtÞ

0
kðr; z; tÞrdrdz ð20Þ

where V0 is the total volume of the incompressible sample. The evo-
lution of the sample height and the mean structural parameter are
presented in Fig. 2. The sample height decreases monotonically and
eventually reaches a plateau, which is, of course, a well-known
characteristic of non-thixotropic viscoplastic materials (see, for
example, Refs. [16,22]). For comparison purposes the height of a
non-thixotropic sample (a = b = c = 0) is also plotted. With the inclu-
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sion of the structural parameter the duration of the squeeze flow
experiment increases and the final sample height is reduced. This
is due to the fact that the structure breaks down, resulting in re-
duced yield stress. This result is consistent with the squeeze flow
results of Shaukat et al. [22] on aqueous Laponite suspensions
which showed that the final gap height increases with an increase
in age of the material as well as with a decrease in the applied force.
The mean structural parameter, k initially decreases reaching a min-
imum before the leveling of the sample height, after which build-up
is observed. The evolution of k is shown in Fig. 3, where the
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maximum and minimum values are also plotted. It seems that kmax

is close to unity (kmax > 0.99), which means that there are always re-
gions where structure is preserved. The behavior of kmin is similar to
that of k. Note that in our base flow no regions with completely bro-
ken structure (k = 0) are observed. A minimum of about 0.2 is
reached at t � 0.5 and then structure builds up again. It should also
be noted that for the calculation of kmin the last 2 nodes at the right
upper corner of the sample have been omitted, because they are
associated with artificial oscillations of k (see Fig. 3), as at this place
the structure break-down appears to be more intense. These oscil-
lations are due to unavoidable numerical singularities introduced
locally due to remeshing and have no significant influence on the
global solution.

In Fig. 4 we compare representative snapshots of the yielded
(gray) and unyielded (black) regions of our thixotropic base flow
to those of its non-thixotropic counterpart (a = b = c = 0), obtained
under constant load. In the case of non-thixotropic flow, the unyiel-
ded regions appear around the axis of symmetry at both the top and
bottom of the sample, with the one at the bottom being initially
much larger. Both unyielded regions reduce in size as the experi-
ment proceeds. Above a critical time (t � 0.5), these regions become
almost symmetric and then start expanding up to a point that almost
the entire material behaves as a rigid solid (at t = 1.018). This behav-
ior agrees with previous results for the non-thixotropic flow [16].
Similarly, in the thixotropic case, unyielded regions are initially
observed at the top and the bottom of the sample around the axis
of symmetry with the latter being larger than the former. It should
be noted that in the thixotropic case the unyielded regions are deter-
mined based on the local yield stress, i.e. on Bn0 = Bnk(t). As the
squeeze flow proceeds, both unyielded regions initially reduce in
size and thereafter increase in size again. Eventually they merge to
cover almost the entire sample area. The behavior of the thixotropic
material may be similar initially, but it gradually becomes quite
different. After the initial stage of the experiment, the unyielded re-
gions of the thixotropic material grow in size and eventually a higher
squeeze rate is achieved. In addition to the unyielded regions at the
top and bottom sides of the sample around the axis of symmetry, a
third one appears in the middle of the outer area, which grows and
merges with the other two. Apparently, with thixotropy taken into
account the build-up phase in the end of the experiment is pro-
longed so that the sample is compressed more and the unyielded re-
gion grows more slowly, allowing the observation of more
interesting patterns.

The evolution of the structural parameter is of particular interest
in this work. The contours of k at different times of the squeeze flow
experiment are shown in Fig. 5. Initially, the sample is in a fully
structured state, i.e. k = 1 everywhere. Once the squeeze flow exper-
iment starts, break-down of the inter-particle bonds and structure
rearrangement occur at the upper edge of the sample and spread
towards the axis of symmetry. As the experiment proceeds, the
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structure changes everywhere in the sample. The lower values of k
occur at the middle of the sample around the axis of symmetry,
and at its top and bottom edges, closer to the outer surface of the
sample than to the symmetry axis. Therefore, important phenomena
occur in the initial stages of the squeeze flow experiment. However,
during squeeze flow, the structural parameter, k, at the top and the
bottom sides of the sample around the axis of symmetry remains
close to unity. As also indicated in Fig. 3, after the initial break-down,
a build-up is observed and the structural parameter increases every-
where in the sample approaching unity. Comparing Figs. 4b and 5 we
observe that the unyielded regions in the sample occur mainly in
places where higher values of k are calculated, i.e. where more par-
ticles are welded together. The squeeze flow of the sample fails to
proceed at the time where k > 0.7 everywhere in the sample and
the entire material behaves as a rigid solid. To our knowledge, this
is the first time where contours of the structural parameter are pro-
vided in the case of a squeeze flow experiment.

The effect of the Bingham number on the height and the mean
structural parameter is illustrated in Fig. 6. In agreement with pre-
vious works for non-thixotropic yield stress fluids [16,31], the
squeeze rate becomes lower and the final sample height increases
with the Bingham number. In Fig. 6b, we observe that the break-
down of the welded particles becomes slower at higher Bingham
numbers and continues reaching a minimum value after which a
build-up occurs [3,12,32]. The resulting minimum is thus higher
and is shifted to the right. In the build-up stage the material re-
gains its structure faster as Bn increases, due to reduced shearing.

In Fig. 7 we ploted evolution of h and k, for different Reynolds
numbers. The squeeze rate appears to decelerate with the Reynolds
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number, which is counter-intuitive. However, this is due to our non-
dimensionalization; increasing the Reynolds number is equivalent
to increasing the density of the fluid, while all other parameters
remain the same [16]. The overlapping of the curves corresponding
to different Reynolds numbers is due to the fact that the effective
stress field in the sample is eventually reduced below the material’s
yield stress. The curves of the mean structural parameter show that
as the Re increases the breakage of the welded particles decelerates
and the minimum value of k is slightly lowered.

The effects of the recovery and break-down parameters on the
squeeze rate and the mean structural parameter of the base flow
are illustrated in Figs. 8 and 9, respectively. The squeeze rate ap-
pears not to be affected initially by a, but as the experiment pro-
ceeds, the flow decelerates at higher values of a with significant
reduction on the final height of the compressed sample (Fig. 8).
Naturally, the mean structural parameter increases significantly
with the recovery parameter, i.e. the effect of build-up due to par-
ticle interaction becomes more intensive, causing the material to
regain its solid structure faster and k to go to unity. For a = 0.1,
structure build-up is so slow that the experiment stops when k is
slightly above its minimum value. Obviously, the effect of the
break-down parameter b is opposite to that of a. Therefore, as
shown in Fig. 9, the rate of squeezing increases with b, i.e. the
structure break-down becomes faster. The results for k confirm
that by increasing b the material bonds are forced to break-up fas-
ter with significant reduction of the mean structural parameter.
When b = 5, k is reduced significantly down to 0.1 in a relatively
short time and then increases steadily as structure is build-up.
4.2. Simulations under constant velocity

Let us now consider the squeeze flow under constant velocity
with Re = 1, Bn = 1, a = 1, b = 1, and c = 0.01. The required load for
compressing the material is plotted in Fig. 10. Initially the load is
very high and decreases rapidly reaching a minimum after which a
progressive increase occurs. Later, as the sample top surface ex-
pands, the load increases exponentially. As already mentioned, at a
certain critical time the simulation is stopped, due to excessive dis-
tortion of the finite elements (the sample becomes very thin). It
should be noted that a smoothing of the load curve has been em-
ployed, in order to eliminate artificial spikes in the pressure (and
hence in the calculation of the load) due to the discrete advancing
of the nodal points on the solid surface. The plots of the sample
height and the mean structural parameter are given in Fig. 11. In
contrast to the flow under constant load, the mean structural param-
eter is reduced monotonically reaching a final value of 0.1, which im-
plies that in squeeze flow the structure is destroyed steadily.

The evolution of the yielded (gray) and unyielded (black)
regions is illustrated in Fig. 12. An unyielded region is observed ini-
tially at the bottom of the sample around the axis of symmetry.
This appears to somehow increase in size and then to decrease.
Later on an unyielded region appears at the top side of the sample
(around the axis of symmetry). As the squeeze flow proceeds both
unyielded areas decrease in size and they finally disappear. The
evolution of the structural parameter contours during squeeze flow
under constant velocity is illustrated in Fig. 13. As with the
experiment under constant load (Fig. 5) the break-down of the
inter-particle bonds begins with the squeeze flow initialization,
starting from the upper edge of the sample and spreading towards
the axis of symmetry. The average broken bonds and particle
rearrangement increase along the whole material with the value
of k < 0.1 occurring at the top and the bottom edges near the outer
surface. At the top and bottom sides of the sample around the axis
of symmetry k increases steadily approaching unity. As already
mentioned, no build-up of the material structure is observed in
contrast to the constant load experiment.

The effects of the recovery and the break-down parameters on
the resulting load and the mean structural parameter are illus-
trated in Figs. 14 and 15, respectively. The necessary load for com-
pressing the sample under constant velocity increases very slightly
with the recovery parameter. It is clear that break-down occurs
faster for lower values of a and the entire phenomenon is irrevers-
ible (Fig. 14), while the resulting load decreases for higher values of
the break-down parameter (Fig. 15a). As expected, the structural
parameter decreases significantly at higher values of b (Fig. 15b),
a phenomenon which appears to be also irreversible. Obviously,
the reduction of k for b = 5 occurs in a relatively short time leading
to a value lower than 0.1.

The present simulations show clearly that the results from the
squeeze flow experiment can vary and they depend on whether
the sample is squeezed under constant force or under constant
velocity. These differences, of course, cannot be seen when thixot-
ropy is not accounted for. As the slurries are indeed thixotropic, it
is important to exploit these differences by isolating the effects of
built up and breakdown. When the sample is squeezed under con-
stant velocity the average rate of strain is fixed by the velocity. The
average strain everywhere within the sample increases with
increasing compression. Hence, during compression the structure
everywhere within the sample breaks down continuously. There-
fore, except for extreme values of the recovery parameter, the
structure is destroyed in relatively short times and the rate of
buildup is not important. Possible unyielded regions within the
sample disappear in a very short time. When, however, the sample
is squeezed under constant force the situation is very different.
During compression as the sample is squeezed the compressed
area increases. Therefore the imposed stress on the sample de-
creases. The flow and topography of the yielded and unyielded re-
gions result from a competition between the local stress, the rate of
strain and both, the breakdown and recovery parameters. Both the
flow field and the unyielded regions are more complex than the
case of compression under constant velocity. These differences
and the complexity of the resulting flow field show clearly that
the only way to extract reliable data is by using computational rhe-
ology and reverse engineering.
5. Concluding remarks

A thixotropic model based on the Bingham plastic constitutive
equation with the yield stress linearly dependent on a structural
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parameter has been employed in order to study the flow behavior
of a thixotropic, viscoplastic material and the evolution of its struc-
tural state during squeeze flow either under constant load or con-
stant velocity. A first-order rate equation was used to describe the
evolution of the internal structure of the sample.

Two-dimensional results for the evolution of the structural
parameter have been presented for the first time and compared
to the evolution of the corresponding yielded and unyielded re-
gions. In the case of squeeze flow under constant load, the average
value of the structural parameter, k, appears to decrease initially
reaching a minimum, after which build-up is observed. The maxi-
mum value of the structural parameter in the sample remains close
to unity (kmax > 0.99), which means that there are always regions
where structure is preserved. This is not the case in squeeze flow
under constant velocity, where k decreases monotonically down
to values as low as 0.1, which indicates that structure is almost
broken everywhere in the sample. During the initial stage of the
compression, thixotropy does not affect the flow. However, as
the experiment proceeds, a higher rate of compression and a
slower growth of the unyielded regions are observed for the thixo-
tropic material.

The present numerical simulations are encouraging as they
could contribute to the development of a methodology for the
determination of the material constants of semi-solid slurries used
in the processing of alloys, which behaves as thixotropic, non-linear
visco-plastic material with history-dependent material-parame-
ters. Evidently, further investigation of the time-dependent behav-
ior of thixotropic materials and the internal structural evolution is
needed for achieving this objective.

It will be interesting to employ the present model in simulating
squeeze flow experiments in which the sample is squeezed down
to a given height and then is left at rest for a specified time after
which compression continues. Such experiments have been carried
out by Rodts et al. [33] on bentonite suspensions; they reported
that starting from different times of rest the material undergoes
similar changes in structure and only the force is reduced.
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