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a b s t r a c t

The Newtonian Poiseuille flow is considered for various geometries, under the assumption that wall slip
occurs above a critical value of the wall shear stress known as, the slip yield stress. In the axisymmetric
and planar cases, there are two flow regimes defined by a critical value of the pressure gradient above
which slip occurs. Two critical pressure gradients characterise the annular and rectangular Poiseuille
flows. Below the first critical value no-slip occurs while above the second-one, slip occurs at all walls.
In the intermediate regime for the annular problem, slip occurs only at the inner-wall, while for the rect-
angular problem, there are two intermediate regimes for which there are no analytical solutions. In the
first regime slip occurs only in the middle sections of the wider walls and in the second-one partial slip
also occurs along the narrower walls. Analytical solutions of all flow problems (with the exception of the
two intermediate regimes of the rectangular Poiseuille case) are derived and discussed.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Slip at the wall occurs in many industrial applications involving
complex fluids, such as suspensions, emulsions, and polymer melts
and solutions [1–3]. Newtonian fluids are known to obey the clas-
sical no-slip boundary condition of fluid mechanics. However,
recent developments concerning biological and engineering de-
vices and systems in microscale which involve fluid flow through
microchannels have demonstrated that the no-slip boundary con-
dition is not valid [4]. A number of experiments have shown that
under certain conditions slip occurs at the wall [5–7].

Denn [2] notes that according to the experimental data, the slip
velocity, i.e. the relative velocity of the fluid with respect to that of
the wall, is in general a function of the wall shear stress, the wall
normal stress, the temperature, the molecular weight and its dis-
tribution, and the fluid/wall interface, e.g. the interaction between
the fluid and the solid surface and surface roughness. Navier [8]
was the first to propose a slip model stating that the slip velocity
is proportional to the wall shear stress:
uw ¼
sw

b
; ð1Þ
where b is the slip coefficient, which varies in general with temper-
ature, normal stress, pressure, molecular parameters, and the char-
acteristics of the fluid/wall interface [2]. As b ? 0 the-no slip
ll rights reserved.
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boundary condition is recovered, while for b ?1 one gets perfect
slip. The slip coefficient is also defined by

b � g
b
; ð2Þ

where g is the viscosity and b is the extrapolation length, i.e. the
characteristic length equal to the distance that the velocity profile
at the wall must be extrapolated to reach zero. Many experimental
results (see Refs. [4,9]) provide evidence to support the Navier slip
condition. Other slip equations are also used in the literature, the
most important of which are the generalisations to power-law
and dynamic slip equations [3]. In the present work, we are inter-
ested in models allowing slip only above a certain critical value of
wall shear stress, sc as suggested by experimental data on several
fluid systems (see Ref. [10] and references therein). This critical wall
shear stress value is called slip yield stress and is similar to a Cou-
lomb friction term. A simple extension of Navier’s law to include
slip yield stress is the following

uw ¼
0; sw 6 sc;
1
b ðsw � scÞ; sw > sc:

(
ð3Þ

The extension of the above slip equation with the introduction
of a power-law exponent is also very often used. Such a slip equa-
tion was employed, for example, by Estellé and Lanos [11] in the
analysis of squeeze flow of Bingham fluids, and more recently, by
Ballesta et al. [12] in their study of slip and flow of concentrated
colloidal suspensions.

Analytical solutions of Newtonian Poiseuille flows with Navier
slip (i.e. with zero yield stress) have been presented for different
geometries such as axisymmetric, planar, annular, and rectangular.
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These include steady-state solutions [13–16], or transient [9,17,18]
and periodic [19–21] solutions. Recently, Ferrás et al. [22] pre-
sented analytical solutions for both Newtonian and inelastic non-
Newtonian fluids with slip boundary conditions in Couette and
Poiseuille flows using the Navier linear and non-linear slip laws.

The purpose of this paper is to give analytical results for steady-
state, Newtonian Poiseuille flows in the case of slip with non-zero
slip yield stress for the annular and rectangular geometries. For
completeness the solutions for the axisymmetric and planar
Poiseuille flows are first provided in Section 2. In Section 3 we give
the steady state solution for the annular Poiseuille flow. In Section 4
solutions for the two-dimensional rectangular problem are given.
Finally, in Section 5 the conclusions of this work are provided.
Fig. 1. The dimensionless volumetric flow rate Q⁄ in the axisymmetric case for
various values of B.
2. Axisymmetric Poiseuille flow

We consider the steady, creeping, pressure-driven flow of an
incompressible, Newtonian fluid in a circular tube of radius R un-
der the assumption of zero gravity. The flow is thus unidirectional
and, in cylindrical polar coordinates, the z-velocity component
satisfies

Gþ g
d2uz

dr2 þ
1
r

duz

dr

 !
¼ 0; ð4Þ

where G � (�@p/@z) is the pressure gradient. The wall shear stress is
defined as

sw ¼ jsrzjr¼R ¼ �g
duz

dr

����
r¼R

: ð5Þ

Thus, from Eq. (3) the boundary condition at the wall is

uw ¼
0; sw 6 sc;

� 1
b g duz

dr þ sc
� �

; sw > sc;

(
ð6Þ

while symmetry is assumed at the axis of symmetry. It is clear that
there are two flow regimes: (i) the no-slip and (ii) the slip regime.
The wall shear stress given by

sw ¼
GR
2
; ð7Þ

only depends on the pressure gradient. The critical value of the
pressure gradient for the occurrence of slip Gc, is found by setting
sw = sc. Thus,

Gc ¼
2sc

R
: ð8Þ

It is easily shown that

uzðrÞ ¼
R2G
4g 1� r

R

� �2
h i

; G 6 Gc;

R2G
4g 1þ 2B� r

R

� �2
h i

� scBR
g ; G > Gc;

8><
>: ð9Þ

where

B � g
bR

; ð10Þ

is the dimensionless slip number. When G 6 Gc the no-slip solution
applies and if G > Gc and sc = 0 we have the standard velocity profile
with Navier slip. It should be noted that the no-slip case corre-
sponds to B ? 0. The volumetric flow rate is given by

Q ¼
pR4G

8g ; G 6 Gc;

pR4ð1þ4BÞG
8g � sc BpR3

g ; G > Gc:

8<
: ð11Þ

Introducing the following non-dimensional quantities
u�z ¼
uzg
scR

; G� ¼ RG
sc
; s� ¼ s

sc
; Q � ¼ Qg

pscR3 ; r� ¼ r
R
; ð12Þ

where the stars denote non-dimensional variables, the
non-dimensional critical pressure gradient becomes G�c ¼ 2. The
non-dimensional velocity and volumetric flow rate are respectively
given by

u�z ¼

G�ð1�r�2Þ
4 ; G� 6 2;

G�ð1þ2B�r�2Þ
4 � B; G� > 2;

8><
>: ð13Þ

and

Q � ¼
G�

8 ; G� 6 2;
ð1þ4BÞG�

8 � B; G� > 2:

(
ð14Þ

The dimensionless volumetric flow rate Q⁄ for different values
of the slip number is shown in Fig. 1. As deduced from Eq. (14),
the first branch is independent of the slip number B. The slope of
the second branch increases with B, ranging from 1/8 (no-slip) to
infinity (full slip).

2.1. Plane Poiseuille flow

For completeness, we provide here the dimensionless solution
for the plane Poiseuille flow. Using similar scales,

u�x ¼
uxg
scH

; G� ¼ HG
sc

; s� ¼ s
sc
; Q � ¼ Qg

scH3 ; y� ¼ y
H
; ð15Þ

one finds that the critical pressure gradient for the occurrence of
slip is G�c ¼ 1. The non-dimensional velocity is

u�x ¼
G�ð1�y�2Þ

2 ; G� 6 1;
G�ð1þ2B�y�2Þ

2 � B; G� > 1:

8<
: ð16Þ

and the non-dimensional volumetric flow rate is

Q � ¼
2G�

3 ; G� 6 1;
2ð1þ3BÞG�

3 � B; G� > 1;

(
ð17Þ

where B � g/(bH) is the slip number.
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3. Annular Poiseuille flow

Here, we consider the one-dimensional, steady problem for an
annulus of radii kR, with 0 < k < 1, assuming that the two walls
are of the same properties (so that the same slip equation applies
on both walls). Therefore, the axial velocity uz(r) is subject to the
boundary conditions

uw1 ¼
0; sw1 6 sc;

� 1
b �g duz

dr þ sc
� �

; sw1 > sc;

(
on r ¼ kR; ð18Þ

uw2 ¼
0; sw2 6 sc;

� 1
b g duz

dr þ sc
� �

; sw2 > sc;

(
on r ¼ R; ð19Þ

where the subscripts 1 and 2 denote the quantities at r = kR and
r = R, respectively. It is easy to see that sw1 > sw2 and hence as the
pressure gradient is increased slip first occurs at the inner wall
and then at the outer wall [16]. Thus, there are three flow regimes
and two critical pressure gradients in this problem.

(i) No-slip

For swi 6 sc, i = 1, 2 one gets the classical no-slip solution

uzðrÞ ¼
R2G
4g

1� r
R

� �2
þ 1� k2

lnð1=kÞ ln
r
R

" #
; ð20Þ

with

Q ¼ pR4

8g
1� k4 � ð1� k2Þ2

lnð1=kÞ

" #
G: ð21Þ

The two wall shear stresses are given by

sw1 ¼
R
4

1� k2

k lnð1=kÞ � 2k

" #
G; sw2 ¼

R
4

2� 1� k2

lnð1=kÞ

" #
G: ð22Þ

Therefore, the first critical pressure gradient Gc1 corresponds to
sw1 = sc,

Gc1 ¼
4k lnð1=kÞsc

½�2k2 lnð1=kÞ þ 1� k2�R
: ð23Þ
(ii) Slip only at the inner wall

Once the critical pressure gradient Gc1 is exceeded sw1 > sc but
in a certain range still sw2 6 sc. In other words, slip occurs only
along the inner wall. One finds that

uzðrÞ ¼
R2G
4g

1� r
R

� �2
þ 2Bkþ 1� k2

lnð1=kÞ þ B=k
ln

r
R

" #
þ scBR

g

� 1
lnð1=kÞ þ B=k

ln
r
R
; ð24Þ

and

Q ¼ pR4

8g
1� k4 � ð1� k2Þ2 � 4Bk½k2 lnð1=kÞ � 1þ k2�

lnð1=kÞ þ B=k

" #
G

þ pscBR3

2g
½2k2 lnð1=kÞ � 1þ k2�

lnð1=kÞ þ B=k
: ð25Þ

The wall shear stresses are now given by

sw1 ¼
R
4
�2kþ 2Bkþ 1� k2

k½lnð1=kÞ þ B=k�

" #
Gþ scB

k½lnð1=kÞ þ B=k� ; ð26Þ

and
sw2 ¼
R
4

2� 2Bkþ 1� k2

lnð1=kÞ þ B=k

" #
G� scB

lnð1=kÞ þ B=k
: ð27Þ

The second critical pressure gradient Gc2 for the occurrence of
slip at the outer wall corresponds to sw2 = sc. Thus,

Gc2 ¼
4½lnð1=kÞ þ Bð1þ 1=kÞ�sc

½2 lnð1=kÞ þ 2B=kð1� k2Þ � 1þ k2�R
: ð28Þ
(iii) Slip at both walls

Once the second critical pressure gradient Gc2 is exceeded,
swi > sc, i = 1, 2, and slip occurs along both walls. The velocity and
the volumetric flow rate are given by

uzðrÞ ¼
R2G
4g

1þ2B� r
R

� �2
þ 2Bð1þkÞþ1�k2

lnð1=kÞþBð1þ1=kÞ ln
r
R
�B

� �" #
�scBR

g
;

ð29Þ

and

Q ¼ pR4

8g
1� k4 þ 4B
h

�ð1� k2 þ 2BÞ2 � 4Bk½k2 lnð1=kÞ � 1þ k2 � 2Bþ Bk2�
lnð1=kÞ þ Bð1þ 1=kÞ

#
G

� pscBR3ð1� k2Þ
g

: ð30Þ

In the special case where we have no slip setting B = 0 leads to
the no-slip expression (20). The stress is given by

szðrÞ ¼
G
4
�2r þ 2Bð1þ kÞ þ 1� k2

lnð1=kÞ þ Bð1þ 1=kÞ
R2

r

" #
: ð31Þ

The two wall shear stresses are

sw1 ¼
R
4

2Bð1þ kÞ þ 1� k2

k½lnð1=kÞ þ Bð1þ 1=kÞ� � 2k

" #
G;

sw2 ¼
R
4

2� 2Bð1þ kÞ þ 1� k2

lnð1=kÞ þ Bð1þ 1=kÞ

" #
G: ð32Þ

Using the non-dimensional variables in (12) gives the two non-
dimensional critical pressure gradients

G�c1 ¼
4k lnð1=kÞ

�2k2 lnð1=kÞ þ 1� k2 ;

G�c2 ¼
4½lnð1=kÞ þ Bþ B=k�

2 lnð1=kÞ þ 2Bð1� k2Þ=k� 1þ k2 : ð33Þ

The non-dimensional velocity is

u�zðrÞ ¼

G�

4 1� r�2þ 1�k2

lnð1=kÞ lnr�
h i

; G� 6G�c1;

G�

4 1� r�2þ 2Bkþ1�k2

lnð1=kÞþB=k lnr�
h i

þ B
lnð1=kÞþB=k lnr�; G�c1 <G� 6G�c2;

G�

4 1þ2B� r�2þ 2Bð1þkÞþ1�k2

lnð1=kÞþBð1þ1=kÞ ðlnr� �BÞ
h i

�B; G� >G�c2:

8>>>><
>>>>:

ð34Þ

The non-dimensional volumetric flow rate is given by

Q � ¼

1
8 ð1� k4Þ � ð1�k2Þ2

lnð1=kÞ

h i
G�; G� 6 G�c1;

1
8 ð1� k4Þ � ð1�k2Þ2�N1

lnð1=kÞþB=k

h i
G� þ B

2
½2k2 lnð1=kÞ�1þk2 �

lnð1=kÞþB=k ; G�c1 < G� 6 G�c2;

1
4 1� k4 þ4B� ð1�k2þ2BÞ2�N2

lnð1=kÞþBð1þ1=kÞ

h i
G� � Bð1� k2Þ; G� > G�c2;

8>>>><
>>>>:

ð35Þ
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where N1 � 4Bk[k2ln(1/k) � 1 + k2] and N2 � 4Bk[k2ln(1/k) � 1 + k2 -
� 2B + Bk2]. Fig. 2 shows the dimensionless velocity profiles for
k = 0.1 and B = 1 at various pressure gradients including the two
critical values separating the three flow regimes. It should be noted
that at very high pressure gradients the velocity profile tends to be-
come uniform (full slip). In Fig. 3 the non-dimensional volumetric
flow rate is shown for k = 0.1 and three slip numbers (B = 0.1, 1,
and 10). As indicated by Eq. (33), while the first branch and Gc1

are independent of B, Gc2 is decreased reduced as B is increased
and the slopes of the last two branches increase as B is increased.
For the two slip velocities one gets

u�w1 ¼

0; G� 6G�c1;

1
4 1�k2� ð2Bkþ1�k2Þ lnð1=kÞ

lnð1=kÞþB=k

h i
G� � B lnð1=kÞ

lnð1=kÞþB=k ; G�c1 < G� 6G�c2;

1
4 1þ2B�k2� 2Bð1þkÞþ1�k2

lnð1=kÞþBð1þ1=kÞ ½lnð1=kÞþB�
h i

G� �B; G� >G�c2;

8>>><
>>>:

ð36Þ
Fig. 2. The velocity profile u⁄ in annular Poiseuille flow for k = 0.1, B = 1 and various
values of the pressure gradient.

Fig. 3. The volumetric flow rate Q⁄ in annular Poiseuille flow with k = 0.1 for various
slip numbers.

Fig. 4. The wall velocities u�w in annular Poiseuille flow with k = 0.1 and B = 1.
u�w2 ¼
0; G� 6 G�c2;

1
4 2B� 2Bð1þkÞþ1�k2

lnð1=kÞþBð1þ1=kÞB
h i

G� � B; G� > G�c2:

(
ð37Þ

Fig. 4 shows the variation of the two slip velocities as the
dimensionless pressure gradient is increased for k = 0.1 and B = 1.

In the case where the two walls are made of different properties
the critical yield stress and the slip number are different at each
wall. The flow regimes are again three, however slip may occur
first at the outer wall. The solution to this more general flow is
summarised in the Appendix A.

4. Rectangular Poiseuille flow

We now consider, the steady Poiseuille flow in a tube of rectan-
gular cross-section with �b 6 y 6 b, �c 6 z 6 c, where b P c. This
flow is governed by the two-dimensional Poisson’s equation

@2ux

@y2 þ
@2ux

@z2 ¼ �
G
g
: ð38Þ

Assuming that slip with non-zero slip yield stress occurs at the
walls, which share the same properties, the boundary conditions of
the flow are

uw ¼
0; sw 6 sc;

� 1
b g @ux

@y þ sc

� �
sw > sc;

(
on y ¼ �b; �c 6 z 6 c;

ð39Þ
uw ¼
0; sw 6 sc;

� 1
b g @ux

@z þ sc
� �

sw > sc;

(
on z ¼ �c; �b 6 y 6 b:

ð40Þ
4.1. The no-slip regime

The classical no-slip solution [13] is

uxðy; zÞ ¼
2Gc2

g
X1
k¼1

ð�1Þkþ1

k3
k

cosðzkk=cÞ 1� coshðykk=cÞ
coshðbkk=cÞ

� �
; ð41Þ

and the volumetric flow rate is given by

Q ¼ 8Gbc3

g
X1
k¼1

1
k4

k

kk �
c tanhðbkk=cÞ

b

� �
; ð42Þ
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where kk = (2k � 1)/2p, k = 1,2, . . .. The wall shear stresses along
walls y = b and z = c are respectively

swyðzÞ ¼ 2cG
X1
k¼1

ð�1Þkþ1

k2
k

tanhðbkk=cÞ cosðzkk=cÞ; ð43Þ

swzðyÞ ¼ 2cG
X1
k¼1

1
k2

k

1� coshðykk=cÞ
coshðbkk=cÞ

� �
: ð44Þ

The maximum stresses occur at the middle of each side of the
rectangular duct: swy,max = swy(0), swz,max = swz(0). It can be seen
that swz,max P swy,max, thus slip occurs first at the wider wall
(z = c). Hence, the critical pressure gradient below which no slip oc-
curs corresponds to swz,max = sc and is given by

Gc1 ¼
sc

2c
P1

k¼1
1
k2

k
1� sechðbkk=cÞ½ �

: ð45Þ

Once the critical pressure gradient is exceeded, slip occurs only
at the middle of the wider walls. As the pressure gradient is in-
creased, slip eventually occurs in the middle of the narrower walls
as illustrated in Fig. 5. It is only at a certain critical value of the
pressure gradient that non-uniform slip occurs everywhere along
all walls. When slip along the walls is partial the problem is not
amenable to analytical solution.

4.2. The solution in the case of ‘‘full’’ slip

The full slip solution is given by

uxðy; zÞ ¼
2c2G
g
X1

k¼1

cosðzkk=cÞ sin kk

k2
kðkk þ sin kk cos kkÞ

� 1� coshðykk=cÞ
coshðbkk=cÞ þ Bkk sinhðbkk=cÞ

� �
� scBc

g
ð46Þ

where

B � g
bc

ð47Þ

and kk, k = 1,2, . . ., are the roots of

kk tan kk ¼
1
B
: ð48Þ

The wall shear stresses along y = b and z = c are respectively,

swyðzÞ ¼ 2cG
X1
k¼1

sinhðbkk=cÞ
coshðbkk=cÞþBkk sinhðbkk=cÞ

� �
sinkk cosðzkk=cÞ

kkðkkþ sinkk coskkÞ
;

ð49Þ

and
Fig. 5. Sketch (not drawn to scale) showing the various flow regimes for the
rectangular problem in the case of non-zero slip yield stress. Here, b > c.
swzðyÞ ¼ 2cG
X1
k¼1

sin2 kk

kkðkk þ sin kk cos kkÞ

� 1� coshðykk=cÞ
coshðbkk=cÞ þ Bkk sinhðbkk=cÞ

� �
: ð50Þ

The maximum stresses at each wall are now given by swy,max = -
swy(0), swz,max = swz(0), and the minimum stress occurs at the cor-
ners of the rectangular duct: swy,min = swy(c), swz,min = swz(b). If
swz,min 6 sc < swz,max and swy,max 6 sc slip does occur but only in
the central part of the wider sides (see (ii) in Fig. 5) and if {swy,min,-
swz,min} 6 sc < swy,max slip does occur but only in the central parts of
all walls (see (iii) in Fig. 5). If swy,min > sc slip occurs everywhere on
all walls and the corresponding critical pressure gradient is

Gc2 ¼
sc

2c
P1

k¼1
sin2 kk

kkðkkþsin kk cos kkÞ
1� 1

1þBkk tanhðbkk=cÞ

h i : ð51Þ

The volumetric flow rate is given by

Q ¼ 8bc3G
g

X1

k¼1

sin2 kk

k4
kðkk þ sin kk cos kkÞ

� kk �
c
b

sinhðbkk=cÞ
cosh bkk=c þ Bkk sinh bkk=c

� �
� 4scBbc2

g
: ð52Þ

Introducing the scalings

u� ¼ uxg
scc

; G� ¼ cG
sc
; Q � ¼ Qg

scbc2 z� ¼ z
c
; y� ¼ y

b
; a ¼ c

b
;

ð53Þ

gives the following expressions for the non-dimensional critical
pressure gradients

G�c1 ¼
1

2
P1

k¼1
1
k2

k
1� sechðkk=aÞ½ �

; ð54Þ

and

G�c2 ¼
1

2
P1

k¼1
sin2 kk

kkðkkþsin kk cos kkÞ
1� 1

1þBkk tanhðkk=aÞ

h i : ð55Þ

The non-dimensional velocity is

u� ¼
2G�

X1
k¼1

ð�1Þkþ1

k3
k

cosðz�kkÞ 1� coshðy�kk=aÞ
coshðkk=aÞ

h i
; G� 6 G�c1;

2G�
X1
k¼1

sin kk cosðz�kkÞ
k2

k ðkkþsinkk cos kkÞ
1� coshðy�kk=aÞ

coshðkk=aÞþBkk sinhðkk=aÞ

h i
� B; G� > G�c2;

8>>>><
>>>>:

ð56Þ

and the non-dimensional volumetric flow rate

Q� ¼
8G�

X1
k¼1

kk�a tanhkk=a
k4

k
; G� 6G�c1;

8G�
X1
k¼1

sin2 kk

k4
k ðkkþsinkk coskkÞ

kk� asinhkk=a
coshðkk=aþBkkÞsinhðkk=aÞ

h i
�4B; G� >G�c2:

8>>>><
>>>>:

ð57Þ

The non-dimensional volumetric flow rate as a function of the
pressure gradient is shown in Fig. 6 for different slip numbers.
The lower branch corresponds to the no-slip flow regime. The
upper-branch corresponding to the ‘‘full’’ slip case has a higher
slope depending on the slip number B. The dashed lines in the re-
gion between the dotted lines correspond to partial slip cases (ii)
and (iii) for which there are no analytical solutions.

Finally, in Fig. 7 the velocity contours at different values of the
dimensionless pressure gradient are shown for B = 1. It should be



Fig. 6. The volumetric flow rate Q⁄ for the rectangular problem is plotted against
the pressure gradient for various values of B and arbitrary sc. The region between
the dotted lines, corresponds to the intermediate regimes (ii) and (iii) for which
there are no analytical solutions.

Fig. 7. Velocity contours for B = 1 and different values of the dimensionless
pressure gradient.
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noted that the magnitude of the velocity increases with pressure
gradient.
5. Conclusions

We have derived analytical solutions for the steady,
incompressible Newtonian Poiseuille flow in various geometries
assuming that slip occurs along the wall, following a Navier-type
slip law with a non-zero slip yield stress. For the axisymmetric
problem there are two distinct flow regimes corresponding to
no-slip and slip, defined by a critical value of the imposed pressure
gradient, which depends solely on the slip yield stress.

The annular problem is more complicated with three distinct
flow regimes defined by two critical values of the pressure gradient
corresponding to the triggering of slip at the inner and outer walls
of the annulus. The first depends solely on the slip yield stress
while the second critical value also depends on the slip coefficient.

In the rectangular Poiseuille flow case, below a first critical
pressure gradient there is no-slip and above a second critical value,
non-uniform slip occurs everywhere along the walls. Between
these two critical pressure gradients there are two intermediate
flow regimes, for which there are no analytical solutions. In the
first intermediate regime there is only partial slip along the middle
section of the wider walls. In the second intermediate regime par-
tial slip along the middle sections of the narrower walls is ob-
served. (In the special case of a square cross-section there is only
one intermediate flow regime). The numerical solution of the flow
in these intermediate regimes and other geometries are the subject
of our current investigations.
Appendix A

Here, we consider the case where the two walls in annular
Poiseuille flow are of different properties so that the boundary con-
ditions read:

uw1 ¼
0; sw1 6 sc1;

� 1
b1
�g duz

dr þ sc1
� �

; sw1 > sc1;

(
on r ¼ kR; ðA:1Þ

uw2 ¼
0; sw2 6 sc2;

� 1
b2

g duz
dr þ sc2

� �
; sw2 > sc2;

(
on r ¼ R: ðA:2Þ
Obviously the solution in the no-slip regime is that given by
Eqs. (20)–(22). Depending on the values of the slip parameters b1

and b2 and the slip yield stresses sc1 and sc2, for the two walls, slip
may occur first in either wall. The first critical pressure gradient for
the occurrence of slip is

Gc1 ¼
4 lnð1=kÞ

R

� min
ksc1

�2k2 lnð1=kÞ þ 1� k2 ;
sc2

2 lnð1=kÞ � 1þ k2

( )
: ðA:3Þ

If slip occurs first at the inner wall the velocity is given by

uzðrÞ ¼
R2G
4g

1� r
R

� �2
þ 2B1kþ 1� k2

lnð1=kÞ þ B1=k
ln

r
R

" #
þ sc1B1R

g

� 1
lnð1=kÞ þ B1=k

ln
r
R

; ðA:4Þ

otherwise

uzðrÞ ¼
R2G
4g

1þ 2B2 �
r
R

� �2
þ 2B2 þ 1� k2

lnð1=kÞ þ B2
ln

r
R
� B2

� �" #

� sc2B2R
g
� sc2B2R

g
1

lnð1=kÞ þ B2
ln

r
R
� B2

� �
; ðA:5Þ

where Bi, i = 1, 2 are the dimensionless slip numbers at each wall
defined by Bi � g/(biR), i = 1, 2. The second critical pressure gradient
for the occurrence of slip at the other wall is
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Gc2 ¼
4
R

min
sc2ðlnð1=kÞ þ B1=kÞ þ sc1B1

2 lnð1=kÞ þ 2B=kð1� k2Þ � 1þ k2 ;

(

sc1kðlnð1=kÞ þ B2Þ � sc2B2

�2k2 lnð1=kÞ þ 2Bð1� k2Þ þ 1� k2

)
: ðA:6Þ

Therefore, for G > Gc2 slip occurs at both walls and the velocity is
given by

uzðrÞ ¼
R2G
4g

1þ 2B2 �
r
R

� �2
þ 2ðB1kþ B2Þ þ 1� k2

lnð1=kÞ þ B2 þ B1=k
ln

r
R
� B2

� �" #

� sc2B2R
g
þ R

g
ðsc1B1 � sc2B2Þ

½lnð1=kÞ þ B2 þ B1=k� ln
r
R
� B2

� �
:

ðA:7Þ

The wall shear stresses are given by

sw1 ¼
R
4

LðB1;B2Þ
k

� 2k
� �

G�M
k
; sw2 ¼

R
4

2� LðB1;B2Þ½ �GþM;

ðA:8Þ

where

LðB1;B2Þ ¼
2ðB1kþ B2Þ þ 1� k2

lnð1=kÞ þ B2 þ B1=k
; MðB1; B2Þ ¼

sc1B1 � sc2B2

lnð1=kÞ þ B2 þ B1=k

ðA:9Þ

Finally, the volumetric flow rate is

Q ¼ pR4

8g
1� k2 þ 4B2

h

�ð1� k2 � 2B2Þ2 � 4B1k½k2 lnð1=kÞ � 1þ k2 � 2B2 þ B2k2�
lnð1=kÞ þ B2 þ B1=k

#
G

� psc2B2R3

g
þ pR3M

2g
2k2 lnð1=kÞ � ð1� k2Þ 1þ 2B2ð Þ
h i

: ðA:10Þ
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