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We solve numerically the Poiseuille flow of a Herschel–Bulkley fluid in a duct of rectangular cross section
under the assumption that slip occurs along the wall following a slip law involving a non-zero slip yield
stress. The constitutive equation is regularized as proposed by Papanastasiou. In addition, we propose a
new regularized slip equation which is valid uniformly at any wall shear stress level by means of another
regularization parameter. Four different flow regimes are observed defined by three critical values of the
pressure gradient. Initially no slip occurs, in the second regime slip occurs only in the middle of the wider
wall, in the third regime slip occurs partially at both walls, and eventually variable slip occurs every-
where. The performance of the regularized slip equation in the two intermediate regimes in which wall
slip is partial has been tested for both Newtonian and Bingham flows. The convergence of the results with
the Papanastasiou regularization parameter has been also studied. The combined effects of viscoplasticity
and slip are then investigated. Results are presented for wide ranges of the Bingham and slip numbers
and for various values of the power-law exponent and the duct aspect ratio. These compare favorably
with available theoretical results and with numerical results in the literature obtained with both regular-
ization and augmented Lagrangian methods.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

The class of viscoplastic fluids, i.e. fluids with yield stress,
includes materials of industrial importance, such as slurries, sus-
pensions, pastes, various food and pharmaceutical products, biofl-
uids (e.g., blood), and geomaterials (e.g., lava and crude oil). A
viscoplastic material behaves like a solid when it is not sufficiently
stressed and flows like a fluid when the yield stress is exceeded.
The simplest viscoplastic constitutive equation is that of the
Bingham plastic, which is generalized to the Herschel–Bulkley
constitutive equation [1,2]:

_c ¼ 0; s 6 s0

s ¼ s0
_c þ k _cn�1

� �
_c; s P s0

(
ð1Þ

where s0 is the yield stress, k is the consistency index, n is the
power-law exponent, _c � ruþ ðruÞT is the rate of strain tensor,
u is the velocity vector, and the superscript T denotes the transpose.
The magnitudes of s and _c, denoted respectively by s and _c, are
defined by
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where the symbol II stands for the second invariant of a tensor. For
n = 1, Eq. (1) is reduced to the Bingham plastic model and k denotes
the plastic viscosity. Other viscoplastic constitutive models are also
used, such as the Casson model [1].

To solve a viscoplastic flow one needs to overcome the difficulty
of determining the yielded regions, i.e. regions in the flow domain
where s > s0 and thus the material deforms, and the unyielded
regions, where s 6 s0. Unyielded regions include zones where the
material moves undeformed as a rigid body and dead zones where
it is stagnant. There are two main approaches in resolving the
above difficulty: (a) using augmented Lagrangian methods (ALMs)
which are based on variational inequalities; and (b) using regular-
ization methods. The ALMs are based on the variational formula-
tion of the Navier–Stokes equations and employ optimization
algorithms to determine the flow solution [2]. In the second
approach, the constitutive equation is actually modified by intro-
ducing an additional parameter in order to combine the two
branches of Eq. (1) into one smooth (differentiable) function, so
that the resulting regularized equation applies everywhere in the
flow field in both yielded and (practically) unyielded regions. The
most popular regularization in the literature is that proposed by
Papanastasiou [3]:

s ¼ s0½1� expð�m _cÞ�
_c

þ k _cn�1
� �

_c ð3Þ
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Fig. 1. Geometry of the rectangular tube.

Y. Damianou, G.C. Georgiou / Journal of Non-Newtonian Fluid Mechanics 214 (2014) 88–105 89
where m is the stress growth exponent. For sufficiently large values
of the parameter m, the above model provides a satisfactory
approximation of the Herschel–Bulkley model. Other regularized
models, e.g., that proposed by Bercovier and Engelman [4], have
been reviewed by Frigaard and Nouar [5]. The advantages and dis-
advantages of the two main approaches have also been recently
reviewed by Balmforth et al. [2]. The regularized approach is easier
to implement but eliminates yield surfaces replacing unyielded
regions with regions of very high viscosity. The ‘‘unyielded’’ areas
are determined as the areas where s 6 s0 (von Mises criterion) or
the areas where the strain rate is small.

Conduit flows of viscoplastic materials are of importance in the
processing or transport of slurries, suspensions or pastes and also
find applications in geophysical, debris, and glacier flows [6]. A
number of researchers have studied the two-dimensional flow of
Bingham or Herschel–Bulkley fluids in rectangular ducts using dif-
ferent methods. Mosolov and Miasnikov [7–9] analysed mathe-
matically the steady-state flow of Bingham plastics in a pipe of
an arbitrary cross-section and proved existence and uniqueness
theorems for the solution. They established the existence of a rigid
core region and of stagnant regions near corners with convex
boundaries toward the corners. They also obtained interesting
results for the shape of the unyielded zones in the flow field and
the critical value of the pressure gradient below which the flow
stops. Atkinson and El-Ali [10] carried out a local analysis of pres-
sure-driven Bingham flow near corners and showed the possible
existence of ‘plug’ regions in the neighbourhood of acute corners.
Based on the pioneering work of Mosolov and Miasnikov [7],
Huilgol [11] developed a systematic procedure to determine the
critical pressure gradient for the initiation of viscoplastic flow as
well as the shape of the yield surface when the flow is about to
commence in pipes of symmetric cross-section (including rectan-
gular ducts). He also showed that the Mosolov–Miasnikov
approach applies to all viscoplastic fluids with a constant yield
stress, such as Herschel–Bulkley and Casson fluids.

Taylor and Wilson [6] solved numerically the Bingham flow in
rectangular ducts by means of finite differences using the regular-
ization of the constitutive equation proposed by Bercovier and
Engelman [4]. They noted, however, that their numerical scheme
could not work for small values of the regularization parameter.
As a consequence, the computed yielded and unyielded regions
were not converged. Taylor and Wilson [6] pointed out that in
agreement with theory there may be stagnant regions at the cor-
ners depending on the flow parameters. However, due to the inac-
curacies in the solution the concavity of the dead regions is
reversed and the latter regions may merge with the rigid ones in
the center of the duct [12]. Stagnant regions were previously
obtained by Huilgol and Panizza [13] who used variational inequal-
ities to solve the Poiseuille flow of a Bingham plastic through a
duct of an L-shaped cross-section. They reported that the stagnant
zones are near acute-angled corners in agreement with the theo-
retical predictions of Atkinson and El-Ali [10]. Pham and Mitsoulis
[14] solved Bingham plastic flows in ducts of various cross-sections
using the Papanastasiou regularization. However, their results for
flow in a square duct were similar to those of Taylor and Wilson
[6] due to the low value of the regularization parameter employed.

Wang [15] studied the duct flow of generalized viscoplastic flu-
ids in a square duct and in eccentric annuli using a finite element
method and tracking the yield surface by means of a regularization
technique based on the theory of variational inequalities. He
reported that the plug zones are almost identical for various plastic
models despite their different shear-thinning behavior. Accurate
solutions of the steady-state Poiseuille flow of a Bingham fluid in
the case of a square duct were obtained by Saramito and Roquet
[16] by means of a new mixed anisotropic auto-adaptive finite ele-
ment method coupled with the augmented Lagrangian algorithm.
Saramito and Roquet [16] also noted that while the ALM is used
to solve the ideal Bingham flow, using the finite element method
for calculating the yield surface is not necessarily very precise.
According to Faria and Karam-Filho [7], one needs to resort to
higher-order approximations and/or mesh refinement, which lead
to a fast increase of the computational cost, while the accuracy of
the yield surface is improved rather slowly. The above difficulties
are overcome using the ‘‘regularization technique’’ [17]. Huilgol
and You [18] applied the ALM to the steady-state flow problems
of Bingham, Casson, and Herschel–Bulkley fluids in pipes of circu-
lar and square cross sections. Steady-state and time-dependent
studies of Bingham flow (start-up and cessation) in ducts of various
cross-sections have been carried out by Muravleva and Muravleva
[19,20].

Viscoplastic materials are dispersed systems known to exhibit
wall slip, which arises due to the depletion of particles adjacent
to the shearing surface ([21–23] and references therein). Wall slip
may have profound effects on the flow of complex materials [22].
The experimental data show that the slip velocity uw, defined as
the relative velocity of the fluid with respect to that of the wall,
depends on the wall shear and normal stresses, the temperature,
the properties of the material (e.g. molecular weight and its distri-
bution in polymers or particle size and concentration in suspen-
sions, etc) and the fluid/wall interface [24]. The simplest slip
equation is the Navier-slip law which can be written as follows

sw ¼ buw ð4Þ

where sw is the wall shear stress and b is the slip coefficient, which
includes the effects of all other factors mentioned above (e.g., that
of temperature). The no-slip and the perfect-slip cases are obtained
for b ?1 and b = 0, respectively.

In the present work, the following generalized slip model is
employed

uw ¼ 0; sw 6 sc

sw ¼ sc þ buw; sw > sc

�
ð5Þ

where sc is the slip yield stress, i.e. the critical value that should be
exceeded by the wall shear stress for slip to occur. Experimental
data on different fluid systems, ranging from Newtonian systems
to colloidal suspensions, supporting the existence of a non-zero slip
yield stress have been compiled in Ref. [25]. When sc = 0 the Navier
slip condition is recovered. In fact, Eq. (5) is the scalar analog of the
equation used by Fortin et al. [26] for sample numerical simulation
of Bingham flows, such as the round Poiseuille flow and the sudden
contraction flow. A more general form of Eq. (5), involving a power-
law exponent for the slip velocity was earlier proposed by Yilmazer
and Kalyon [27] to describe the behavior of viscoplastic materials,
namely highly filled suspensions, in capillary and parallel disk
torsional flows.

Given that it is not always known a priori which branch applies,
using the discontinuous Eq. (5) poses difficulties similar to those
encountered with the ideal Bingham constitutive model. For
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Fig. 2. Sketch showing the various flow regimes of Poiseuille flow in a rectangular
duct with wall slip and non-zero slip yield stress. G is the imposed pressure gradient
and Q is the resulting volumetric flow rate.
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example, in one-dimensional planar and axisymmetric Poiseuille
flows, slip occurs only above a critical value of the pressure gradi-
ent, which separates the no-slip from the slip regime [28]. One
then needs to calculate first this critical value in order to construct
the two-branch flow curve. The situation becomes more complex
in two-dimensional flows: slip may occur only along certain parts
of the wall and the points where there is a change in the branch of
the slip equation are part of the problem, which cannot be deter-
mined analytically even for Newtonian flows [28]. Roquet and
Saramito [29] noted that the determination of the parts of the wall
where the material slips or sticks is of practical importance in
extrusion and for earth cracks.

Fortin et al. [26] pointed out the analogy between Eqs. (5) and
(1) and applied the augmented Lagrangian method, i.e. variational
inequalities, to impose slip Eq. (5) together with the ideal Bingham
plastic constitutive equation. Roquet and Saramito [29], who
employed the term ‘‘stick–slip’’ for the slip boundary condition
(5), used the same method to solve the Newtonian Poiseuille flow
in a duct. The localization of the stick–slip transition points was
approximated by an anisotropic auto-adaptive mesh procedure.
In a subsequent work, they obtained systematic results for
Bingham flow in a square duct over wide ranges of values for s0

and sc [30].
Damianou et al. [31] followed the regularization approach for

the power-law generalization of Eq. (5) in their study of the cessa-
tion of axisymmetric Poiseuille flow of a Herschel–Bulkley fluid.
The regularized version of Eq. (5) is as follows:

sw ¼ sc½1� expð�mcuwÞ� þ buw ð6Þ

where mc is a growth parameter similar to the stress growth expo-
nent of the Papanastasiou model. Equation (6) is valid uniformly at
any wall shear stress level and is easy to use in numerical simula-
tions. Damianou et al. [31] showed that for sufficiently large values
of mc, Eq. (6) performs well and provides a satisfactory approxima-
tion of Eq. (5). In particular, they showed that in the case of Navier
slip (i.e. for zero slip yield stress), the fluid slips at all times, the
velocity becomes and remains uniform before complete cessation,
and the stopping time is finite only when the slip exponent is less
than unity; otherwise, the stopping time is infinite for any non-zero
Bingham number and the volumetric flow rate decays exponen-
tially. When the slip yield stress is non-zero, slip ceases at a finite
critical time, the velocity becomes flat only in complete cessation,
and the stopping times are finite, in agreement with theoretical
estimates.

In most experimental studies on various materials sc appears to
be much lower than s0 [32–34]. In general, the relative values of sc

and s0 may lead to different flow situations. For example, one of
these material parameters may be zero, which leads to the special
cases of a non-viscoplastic fluid exhibiting wall slip with non-zero
slip yield stress (s0 = 0, sc – 0) and of a viscoplastic fluid exhibiting
no- or Navier slip (s0 – 0, sc = 0). Even in the ideal case where the
two material parameters are constant, different flow regimes can
be observed depending on their relative values. Hence, in round
Poiseuille flow, if sc > s0, three regimes can be identified, defined
by two critical values G1 and G2 for the imposed pressure gradient
G: (a) for G 6 G1 no flow occurs; (b) for G1 < G 6 G2, the material
flows without slip and a central rigid zone appears the radius of
which is reduced with the pressure gradient; (c) for G > G2, the
material flows with wall slip. Another possibility is to have
0 < sc < s0, in which case there again exist three flow regimes: (a)
for G 6 G1, no flow occurs; for G1 < G 6 G2, all the material moves
as rigid body (with a speed equal to the slip velocity); (c) for
G > G2, we have flow with slip with only a central unyielded
rigid-body zone the radius of which decreases with the imposed
pressure gradient. It should be noted, however, that using a global
slip law in all regimes may be very simplistic, since in certain
systems different slip behavior is observed for different slip values
[22].

The objective of the present work is twofold. First we would like
to solve numerically the flow of Newtonian and viscoplastic fluids
in a rectangular duct assuming that wall slip with non-zero slip
yield stress occurs and to test the performance of the regularized
slip equation (5) in a two dimensional flow problem (so far this
has been tested in 1D Poiseuille flows). Second, to study systemat-
ically the performance of the Papanastasiou-regularized version of
the Herschel–Bulkley constitutive equation in this unidirectional
two-dimensional flow with wall slip. Using the regularization
approach for both the constitutive and the slip equations for solv-
ing Herschel–Bulkley flow in a rectangular duct are not the only
differences of the present work from that of Roquet and Saramito
[29,30] who solved both the Newtonian and the Bingham flow in
a square duct with the augmented Lagrangian method. These
authors chose to fix the slip number (i.e. the dimensionless number
corresponding to the slip coefficient b) and varied sc, as well as s0

in the Bingham case, in order to identify different flow regimes
with complex flow patterns. In the present work, the Newtonian
flow is systematically analyzed for different values of the slip coef-
ficient, flow curves are constructed, and the different flow regimes
are identified in terms of the imposed pressure gradient. In the
Bingham flow case, we assume that sc = s0 and vary both s0 and
b, in order to investigate the different viscoplastic flow patterns
in the presence of weak, moderate, and strong slip with non-zero
slip yield stress.

The rest of the paper is organized as follows. In Section 2 the
governing equations of the flow are presented. In Section 3, we
summarize the analytical solution for the Newtonian Poiseuille
flow in the case of slip with non-zero slip yield stress, which was
derived by Kaoullas and Georgiou [28]. It should be noted that
the flow problem is amenable to analytical solution only below
the critical pressure required for the initiation of slip along the
wider wall and above a second critical pressure gradient needed
for the occurrence of (non-uniform) slip everywhere along both
walls. Numerical solutions in these regimes but also in the
intermediate regime for which there is no analytical solution are
presented and discussed in Section 4, which is devoted to the New-
tonian flow. It is shown that the regularized slip Eq. (6) performs
well in this two-dimensional flow problem and that for sufficiently
high values of the growth parameter the discontinuous wall slip
velocity is predicted accurately. In Section 5, results for the Her-
schel–Bulkley flow are presented. The effect of the Papanastasiou
parameter is analyzed in the no-slip case. The cases of Navier slip



Fig. 3. Variation of G�c2 with the aspect ratio a for various slip numbers in the case of
Newtonian Poiseuille flow with non-zero slip yield stress. The first critical pressure
gradient G�c1, which is independent of B, is also plotted.
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and of non-zero slip yield stress with sc = s0 are then analyzed and
discussed. Finally, in Section 6 the main conclusions of this work
are summarized.

2. Governing equations

We consider the steady state, creeping Poiseuille flow in a duct
of rectangular cross-section and infinite length with
�b 6 y 6 b, � c 6 z 6 c, where b P c, as shown in Fig. 1. Only the
first quadrant is considered due to the symmetry with respect to
the planes y = 0 and z = 0. The flow is governed by the momentum
equation

r � s ¼ �G ð7Þ

where G is the pressure gradient and s is the viscous stress tensor.
In the present work s is given by the regularized Herschel–Bulkley
constitutive Eq. (3). To non-dimensionalize the governing equations
we scale the velocity and the pressure by appropriate scales,
denoted by Vs and Ps, respectively, and lengths by c. Hence the flow
domain becomes �a 6 y⁄ 6 a, � 1 6 z⁄ 6 1, where the stars denote
dimensionless variables and a � b/c P 1 is the aspect ratio of the
duct.

In the case the volumetric flow rate is imposed, the mean veloc-
ity V in the duct is used as the velocity scale, i.e. Vs = V, and we take
Ps = k(V/c)n. The non-dimensionalized forms of the momentum,
constitutive, and slip equations, given respectively by (7), (3) and
(6), are

r � s� ¼ �G� ð8Þ

s� ¼ Bn½1� expð�M _c�Þ�
_c�

þ _c�n�1
� �

_c� ð9Þ

and

s�w ¼ Bc½1� expð�Mcu�wÞ� þ Bu�w ð10Þ

In the dimensionless constitutive Eq. (9) there appear two dimen-
sionless numbers, the Bingham number, Bn, and the dimensionless
stress growth number, M, defined by

Bn � s0cn

kV
and M � mV

c
ð11Þ

Three additional dimensionless numbers appear in the slip Eq. (10):
the slip-yield-stress number, Bc, the slip number, B, and the growth
number, Mc, defined as follows:

Bc �
sccn

kV
; B � bcn

kVn�1 ; Mc � mcV ð12Þ

When the pressure gradient is imposed, we take Vs = c(s0/k)1/n and
Ps = s0. It turns out that the dimensionless forms of the governing
equations are identical to (8)–(10), the only differences being that
the Bingham number does not appear (Bn = 1) and the other dimen-
sionless numbers are defined by

M � m
s0

c

� �1=n
; Bc �

sc

s0
; B � bc

s0

s0

k

� �1=n
; Mc � mcc

s0

k

� �1=n

ð13Þ

It should be noted that in the case of Bingham flow (n = 1), the def-
initions of the slip number are the same in both non-
dimensionalizations.

3. Analytical solution for Newtonian flow

The analytical solution of the Newtonian flow with non-zero
slip yield stress is given in [28]. It is conveniently summarized here
in order to introduce the various flow regimes that appear in the
case of a rectangular duct and the associated critical values of
the pressure gradient. In the next section, it will also be used in
testing the numerical code. In the case of Newtonian flow in a rect-
angular duct, Eq. (7) is simplified to

@2ux

@y2 þ
@2ux

@z2 ¼ �
G
g

ð14Þ

where g is the viscosity. In the case of zero slip yield stress, non-
uniform slip occurs everywhere along the walls for any non-zero
value of the pressure gradient. In the case of non-zero slip yield
stress, there is no wall slip below a critical pressure gradient Gc1.
Hence, for G 6 Gc1 the velocity is the standard-textbook, no-slip
solution

uxðy; zÞ ¼
2Gc2

g
X1
i¼1

ð�1Þiþ1

a3
i

cosðaiz=cÞ 1� coshðaiy=cÞ
coshðaiaÞ

� �
ð15Þ

where ai = (2i � 1)p/2, i = 1, 2, . . . are the eigenvalues of the prob-
lem. The volumetric flow rate for G 6 Gc1 is

Q ¼ 8Gbc3

g
X1
i¼1

ai � tanhðaiaÞ=a
a4

i

ð16Þ

The wall shear stresses along the walls y = b and z = c are respec-
tively given by

swyðzÞ ¼ 2cG
X1
i¼1

ð�1Þiþ1

a2
i

tanhðaiaÞ cosðaiz=cÞ ð17Þ

and

swzðyÞ ¼ 2cG
X1
i¼1

1
a2

i

1� coshðaiy=cÞ
coshðaiaÞ

� �
ð18Þ

The maximum wall shear stress occurs at the middle of the wider
wall (z = c) of the rectangular duct. Hence, slip occurs first along this
wall. The pressure gradient Gc1 below which no slip occurs corre-
sponds to swz,max = swz(0) = sc. Hence,

Gc1 ¼
sc

2c
P1

i¼1
1
a2

i
½1� sec hðaiaÞ�

ð19Þ

When now the pressure gradient exceeds Gc1, slip initially occurs
only in the middle of the wider wall. As the pressure gradient
increases, slip also occurs in the middle of the narrower wall above



Fig. 4. Slip velocities along the boundary z⁄ = 1 for different values of the imposed
pressure gradient in the case of Newtonian Poiseuille flow with non-zero slip yield
stress in a square duct (a = 1): (a) B = 1 and (b) B = 2.

Fig. 5. Slip velocities for different values of the imposed pressure gradient in the
case of Newtonian Poiseuille flow with non-zero slip yield stress in a rectangular
duct (a = 2) with B = 1: (a) along z⁄ = 1; (b) along y⁄ = 2 .
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a critical pressure gradient GM, which cannot be determined analyt-
ically. Eventually, when the pressure gradient exceeds the critical
value Gc2, slip occurs everywhere (but non-uniformly) along both
walls. Gc2 is determined analytically, as discussed below. It is clear
that in the general case of a rectangular duct (a – 1) there exist four
flow regimes, as illustrated in Fig. 2:

(i) For G 6 Gc1, no slip occurs.
(ii) For Gc1 < G 6 GM, partial slip occurs only along the wider

wall.
(iii) For GM < G 6 Gc2, partial slip occurs along both walls.
(iv) For G > Gc2, non-uniform slip occurs everywhere.

It should be noted that GM applies when the channel is not
square and that no analytical solutions are possible in regimes
(ii) and (iii). This is indicated in Fig. 2 with the dashed line in the
schematic plot of Q versus G. In the case of a square duct, when
Gc1 < G 6 Gc2 partial slip occurs along both walls (the solution is
symmetric). In regime (iv), i.e. for G > Gc2, the velocity is given by

uxðy;zÞ¼
2c2G
g
X1
i¼1

cosðkiz=cÞ
k2

i ðkiþsinki coskiÞ
1� coshðkiy=cÞ

coshðkiaÞþki sinhðkiaÞ=B

� �
�scc

gB

ð20Þ
where B � bc/g (note that this is the inverse of the slip number used
by Kaoullas and Georgiou [28]) and ki; i ¼ 1;2; . . . are the roots of

k tan k ¼ B ð21Þ

The wall shear stresses along the walls y = b and z = c are
respectively

swyðzÞ ¼ 2cG
X1
i¼1

sin ki cosðkiz=cÞ
kiðki þ sin ki cos kiÞ½cothðkiaÞ þ ki=B� ð22Þ

and

swzðyÞ ¼ 2cG
X1
i¼1

sin2 ki

kiðki þ sin ki cos kiÞ
1� coshðkiy=cÞ

coshðkiaÞ þ ki sinhðkiaÞ=B

� �

ð23Þ

The minimum wall shear stress occurs at the corners of the rectan-
gular duct. If swy,min > sc, slip occurs everywhere. Therefore, the crit-
ical pressure gradient Gc2 above which slip occurs everywhere along
all walls corresponds to swy,min = swy(c) = sc. Hence,

Gc2 ¼
sc

2c
P1

i¼1
sin2 ki

kiðkiþsin ki cos kiÞ
1� 1

1þki tanhðkiaÞ=B

h i ð24Þ



Fig. 6. The volumetric flow rate Q⁄ in the case of Newtonian Poiseuille flow with
non-zero slip yield stress with B = 1: (a) square duct (a = 1) in which case
G�c1 ¼ 1:4808 and G�c2 ¼ 2:6289; (b) rectangular duct (a = 2) in which case
G�c1 ¼ 1:0752, G�M ¼ 1:2984 (calculated numerically) and G�c2 ¼ 2:2159.
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The volumetric flow rate in regime (iv) is given by

Q ¼8bc3G
g

X1
i¼1

sin2 ki

k4
i aðkiþsinki coskiÞ

kia�
sinhðkiaÞ

coshðkiaÞþki sinhðkiaÞ=B

� �
�4scbc2

gB

ð25Þ
Fig. 7. Numerical and theoretical velocity contours (uniformly distributed values
with a step of 0.05) for Newtonian flow with non-zero slip yield stress in a square
duct (a = 1) with B = 1 and different values of the dimensionless pressure gradient.
3.1. Non-dimensionalization

For this Newtonian flow, we use a different set of scales, i.e. we
scale the velocity by csc/g, the pressure gradient by sc/c, and y and z
by c. The non-dimensionalized velocity and volumetric flow rate
are as follows

u�xðy�; z�Þ ¼
2G�

X1
i¼1

ð�1Þiþ1

a3
i

cosðakz�Þ 1� coshðaiy
�Þ

coshðaiaÞ

h i
G� 6 G�c1

2G�
X1
i¼1

sinki cosðki z
�Þ

k2
i ðkiþsinki coskiÞ

1� coshðkiy
�Þ

coshðkiaÞþki sinhðkiaÞ=B

h i
� 1

B ; G� P G�c2

8>>>><
>>>>:

ð26Þ

and



Fig. 8. Numerical velocity contours (uniformly distributed values with a step of
0.05) for Newtonian flow with non-zero slip yield stress in a rectangular duct (a = 2)
with B = 1 and different values of the dimensionless pressure gradient.

Fig. 9. Effect of the regularization parameter of the slip equation on the slip velocity
in Newtonian Poiseuille flow in a square duct (a = 1) with B = 1: (a)
G� ¼ G�c1 ¼ 1:4808; (b) G� ¼ 2 < G�c2.
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Q � ¼
8G�
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where the dimensionless critical pressure gradients are

G�c1 ¼
1

2
P1

i¼1
1
a2

i
½1� sec hðaiaÞ�

ð28Þ

and

G�c2 ¼
1

2
P1

i¼1
sin2 ki

kiðkiþsin ki cos kiÞ
1� 1

1þki tanhðkiaÞ=B

h i ð29Þ

While G�c1 depends only on the aspect ratio a, G�c2 also depends on
the slip number B. As illustrated in Fig. 3, both G�c1 and G�c2 are
decreasing functions of a, eventually reaching a plateau. Moreover,
G�c2 increases with B and this increase becomes more pronounced at
higher values of a. In the extreme case when B ? 0 (full slip),
G�c2 ! 1þ 1=a, which provides a lower bound for G�c2.

4. Numerical results for the Newtonian flow

The Newtonian case was considered first, in order to obtain
solutions in the intermediate regime G�c1 < G� < G�c2

	 

where no



Fig. 10. Volumetric flow rate as function of the dimensionless growth parameter
versus k � 1=G� in the case of Bingham flow in a square duct (a = 1) with fixed
pressure gradient and no slip at the wall.

Fig. 11. Volumetric flow rate as function of the imposed pressure gradient in the
case of Bingham flow in a square duct (Bn = 1, a = 1) with no slip at the wall. Flow
starts at G�crit ¼ 1:8868.

Fig. 12. Unyielded areas (shaded) and velocity contours of Bingham flow in a
square duct (a = 1) with no slip at the wall for k = 0.5 (fixed pressure gradient) and
various values of M.
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analytical solutions are available and to check the performance of
the regularized slip equation. Due to symmetry, the flow problem
was solved only in the first quadrant, i.e. in [0, a] � [0, 1]. The finite
element method has been used with standard biquadratic ele-
ments for the velocity ux(y, z). A very fine uniform mesh consisting
of 200 � 200 rectangular elements (i.e., 160,801 nodal unknowns)
has been used in all calculations for the square duct (a = 1); in all
other cases (a > 1), a uniform mesh of 400 � 200 elements was
used. Simulations have been carried out either at constant volu-
metric flow rate (Q⁄ = 1) or at a given pressure gradient G⁄. In the
former case, the pressure gradient is an additional unknown of
the problem.

Figs. 4 and 5 show slip velocities calculated for a square (a = 1)
and a rectangular (a = 2) duct, respectively, using different values
of the imposed pressure gradient G⁄ above G�c1. In Fig. 4, slip veloc-
ities along the wall z⁄ = 1 for B = 1 and 2 are plotted. The theoretical
value of the first critical pressure gradient for the initiation of slip
in the middle of the duct wall is G�c1 ¼ 1:4808, while slip at the cor-
ners starts at G�c2 ¼ 2:6289 and 3.2016 for B = 1 and 2, respectively.
A higher B corresponds to less slip and thus slip velocity is lower
for B = 2. Similar slip velocity profiles for the Newtonian flow have
been presented by Roquet and Saramito [29] who employed the
augmented Lagrangian method. In Fig. 5, we plotted the slip veloc-
ities along the walls z⁄ = 1 and y⁄ = 2 of the rectangular duct for
B = 1 and various values of the pressure gradient. In this case, slip
at the wider wall is initiated at G�c1 ¼ 1:0752 and the critical pres-
sure for having slip everywhere is G�c2 ¼ 2:2159. The critical value
for the initiation of slip at the midlle of the narrow wall (y⁄ = 2)
was determined numerically to be G�M ¼ 1:2984.

In all cases examined, the numerical slip velocities for G� P G�c2

agreed perfectly with the analytical solution. It is easily deduced
from Eq. (26) that for any value of a the slip velocity along z⁄ = 1
can be written as follows

u�wðy�Þ ¼
G�

G�c2
u�w;c2ðy�Þ þ

1
B

G�

G�c2
� 1

� �
ð30Þ



Fig. 13. Unyielded areas (shaded) and velocity contours in the case of Bingham flow
in a square duct (a = 1) with no slip at the wall for various values of k (fixed pressure
gradient) obtained with M = 106.
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where u�w;c2ðy�Þ is the slip velocity for G� ¼ G�c2. Hence, the slip veloc-
ity at the duct corner is simply

u�wð1Þ ¼
1
B

G�

G�c2
� 1

� �
ð31Þ

which provides a convenient test for the validity and convergence
of the numerical solution.

In Fig. 6, the volumetric flow rate for B = 1 and two values of the
aspect ratio (a = 1 and 2) is plotted as a function of the imposed
pressure gradient G⁄. In the no-slip G�c1 6 G�
	 


and the complete
slip G� P G�c2

	 

regimes, Q⁄ varies linearly with G⁄ (with a higher

slope in the latter case). In the intermediate regime, where no ana-
lytical solution exists, Q⁄ starts increasing more rapidly due to slip.
In Fig. 7, the numerical velocity contours for B = a = 1 and three val-
ues of the dimensionless pressure gradient (G� ¼ G�c1;G

�
c2 and 4) are

compared with the analytical ones; in all cases the two solutions
are identical. Fig. 8 shows the velocity contours for the case of a
rectangular duct (a = 2) for B = 1 and various values of the pressure
gradient.

The effectiveness of the regularized slip equation has been
tested for a wide range of the flow parameters, imposing either
the pressure gradient or the volumetric flow rate. Of course, much
more interesting are the calculations in the regime G�c1 < G� < G�c2

where there is no analytical solution. Our calculations showed that
Mc = 105 is sufficient for getting accurate results in this regime,
with errors much smaller than the tolerance of 10�4 used in the
numerical code. The effect of Mc is illustrated in Fig. 9 in the
case of a square duct (a = 1) for B = 1 and two values of the imposed
pressure gradient, i.e. G� ¼ G�c1 ¼ 1:4808 and
G� ¼ 2 < G�c2 ¼ 2:6289. In the former case, there is no slip along
the wall and hence the slip velocity should be everywhere zero.
As shown in Fig. 9a, if the value of Mc is not sufficiently high, the
numerical slip velocity may be finite and higher than the tolerance
used in the numerical scheme, especially in the middle of the wall.
In the latter case, slip along the wall should be partial, i.e. no-slip in
the part of the wall near the corner. As illustrated in Fig. 9b, the
sudden change from the slip to the no-slip condition is better cap-
tured when Mc P 105. All the results presented in the rest of the
paper have been obtained with Mc = 105. Higher values of Mc and
extrapolation of the velocity profile are of course required if one
needs to obtain accurate estimates of the point of stick–slip
transition.
5. Numerical results for Herschel–Bulkley flow

5.1. No wall slip

We first tested the Papanastasiou regularization by obtaining
results for Bingham flow in a square duct with no wall slip at fixed
pressure gradient G⁄ and different values of the regularization
parameter M. In order to make comparisons with previous works
(e.g. [6]), results have been obtained for different values of the
parameter

k � 1
G�

ð32Þ

The above parameter is actually the Oldroyd number, Od � s0/(Gc),
used by Huilgol and You [18] and others. The effect of M is illus-
trated in Fig. 10, where the volumetric flow rate is plotted as a func-
tion of M for various values of k. It is clear that above a critical value,
kcrit , corresponding to the critical pressure gradient G�crit for the ini-
tiation of flow, Q⁄ decreases steadily becoming practically zero for a
sufficiently high value of M, as it should. For k < kcrit , Q⁄ decreases
rapidly at low values of M and then tends asymptotically to a finite
value. For k > 0:4, Q⁄ appears to converge for moderate values of M,
say M = 1000. However, as k approaches kcrit , much higher values of
M are necessary in order to obtain converged values of Q⁄. Fig. 11
shows the variation of Q⁄ with G⁄ when Bn = 1 (calculated with
M = 106). The numerical value for the critical pressure gradient is
G�crit ¼ 1:8868, which corresponds to kcrit ¼ 0:5295. The latter value
will be discussed in detail below.

The effect of M on the solution is more striking when the uny-
ielded regions (s 6 1) of the flow are calculated. Fig. 12 shows the
calculated unyielded regions and the velocity contours for k = 0.5



Fig. 14. Unyielded areas (shaded) and velocity contours in the case of Bingham flow
in a square duct (a = 1) with no slip at the wall for various values of k (fixed pressure
gradient) obtained with M = 106.

Fig. 15. Unyielded areas (shaded) and velocity contours in the case of Bingham flow
in a rectangular duct (a = 4) with no slip at the wall for various values of k (fixed
pressure gradient) obtained with M = 106.

Fig. 16. Maximum velocity (at the center of the duct) versus M for various values of
the Bingham number (fixed volumetric flow rate); square duct (a = 1), no slip at the
wall.
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and various values of M. It should be noted that the corresponding
Bingham number is rather high, i.e. Bn = 490.66. It is clear that the
shapes of the unyielded regions change dramatically with M, espe-
cially near the duct corner. In fact, the central plug region is ini-
tially connected with the stagnant zone in the corner of the duct,
which obviously cannot be true. Mosolov and Miasnikov [7–9]



Fig. 17. Unyielded areas (shaded) and velocity contours of Bingham flow in a
square duct (a = 1) with no slip at the wall for various Bingham numbers (fixed
volumetric flow rate) and M = 106.

Fig. 18. Unyielded areas (shaded) and velocity contours of Herschel–Bulkley flow in
a square duct (a = 1) with no slip at the wall for n = 0.5 and various Bingham
numbers (fixed volumetric flow rate) and M = 106.

Fig. 19. Calculated pressure gradient as a function of the slip number in the case of
Poiseuille flow of a Bingham fluid in a square duct (a = 1) with Navier slip. The
insets show representative unyielded regions and velocity contours for n = 1.
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proved that there always exists a core unyielded region and that
the boundary of the stagnant zone is always concave toward the
stagnant zone. The two regions are separated but yet not con-
verged at higher values of M. Note in particular the tips of the cor-
ner yield surfaces the concavity of which is eventually inverted
when M is not sufficiently high. It is also clear that when M is
not sufficiently high, the velocity in the central ‘‘unyielded’’ region
is not uniform (as it should) and the velocity contours may even
cross the boundary of that region. Hence, the value of M should
be very high in order to obtain acceptable approximations of the
ideal Bingham flow. Taylor and Wilson [6] presented results with
yielded and unyielded regions for various values of k (defined as
the half of our k). Because the value of the Bercovier–Engelman
regularization parameter was not sufficiently small, the sizes and
the shapes of the unyielded regions were not converged, i.e. they
look like the present results obtained with a rather low value of
M, e.g. M = 300, and those of Pham and Mitsoulis [14]. As illus-
trated in Fig. 12, the plug profile is better captured when M > 104.

In Fig. 13, we plotted the velocity contours and the unyielded
regions for different values of k (calculated with M = 106). For small
values of k (i.e. for high pressure gradients), there exists only an
unyielded rigid cylindrical core in the center of the duct. As k is
increased (i.e., as the pressure gradient is reduced) the rigid zone
decelerates and grows in size. There appears also a small unyielded
region near the duct corner, where the material is at rest (stagnant
zone). At even higher values of k, the rigid and the stagnant zones
grow further, being separated by thin layer of yielded fluid. The
central plug region grows at a faster rate than the corner stagnant
zone. Eventually, the two regions merge at kcrit forming a stagnant
unyielded body (no flow). According to our calculations the value
of kcrit is in the interval (0.5295,0.53). In this regime, the value
M = 106 is not sufficiently high, as illustrated in Fig. 10 as well as
in the last plot of Fig. 13 where the moving rigid core is connected
with the stagnant corner zone. Even if a much higher value of M is
employed, the values of the velocity are essentially zero, i.e. they
are much lower than the tolerance of our numerical calculations,
which does not allow the accurate calculation of kcrit .

For the rectangular duct, Mosolov and Miasnikov [7–9] showed
that the critical value is given by

kcrit ¼
2a

1þ aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða� 1Þ2 þ ap

q ð33Þ

Hence, in the case of a square duct (a = 1),
kcrit ¼ 2=ð2þ

ffiffiffiffi
p
p
Þ � 0:53019. The value kcrit = 0.5295 calculated in

the present work compares well with the analytical value; it is more
accurate than other numerical values reported in the literature,
despite the fact that the uniform mesh used is not optimal (better



Fig. 20. Unyielded areas (shaded) and velocity contours in the case of Poiseuille
flow of a Bingham fluid in a square duct (a = 1) with Navier slip for Bn = 1 and
various slip numbers.
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results will be obtained with a graded mesh having the same num-
ber of elements). Taylor and Wilson [6] who used a regularization
method reported the critical value kcrit ¼ 0:56. Values obtained by
means of the augmented Lagrangian method ranged from 0.52
[18] to as high as 0.66 [35]. Wang [15] and Muravleva and Muravl-
eva [20] reported the values 0.526 and 0.527, respectively. Roquet
and Saramito [16] reported initially the value of 0.535 obtained
using extrapolation of results for lower values of k. In a subsequent
work, they reported the approximate value k � 0:53, based on the
variation of the maximum velocity [30].

According to theory, at kcrit the yielded region degenerates into a
critical curve which is actually a circular arc of radius kcrit [20]. The
results for k = 0.529 appear to be in good agreement with the the-
oretical prediction.

In Fig. 14, we plotted the unyielded regions as well as the veloc-
ity contours for the three values of k used in Fig. 11 of the paper of
Saramito and Roquet [16], who employed only half of our domain.
For k = 0.25 and 0.45 the present results are identical to those of
Saramito and Roquet [16]. For k = 0.525, however, it seems that
the predicted yielded region (white) is slightly bigger, which indi-
cates that near kcrit , the value of the regularization parameter is still
not sufficiently high. It should be noted, however, that if we
demand that at the yield surface s = 1 + e (instead of s = 1) and take
e = 0.0005, the predicted unyielded region is essentially the same
as that predicted by Saramito and Roquet [16].

A higher aspect ratio, i.e. a = 4, has been used in Fig. 15, where
the unyielded regions and the velocity contours are plotted for
k = 0.2, 0.5, 0.8 and 0.82. Note that in this case, one finds from
Eq. (33) that kcrit = 0.8295, which is also the radius of the critical
curve for the flow cessation as can be roughly deduced from
Fig. 15d.

The effect of the regularization parameter in the other case of
interest, i.e. when the volumetric flow rate is imposed, is very sim-
ilar. As an example, in Fig. 16 the velocity at the center of the duct,
uc, is plotted as a function of M for various values of the Bingham
number. The maximum velocity uc initially decreases rapidly with
M and then tends asymptotically to a value approximating the
speed of the central unyielded zone of the ideal Bingham flow.
The higher the Bn the higher the value of M required for obtaining
a converged solution. The fact that in the case of fixed volumetric
flow the results appear to be converged say for M P 103, which
is much smaller than the value of 106 proposed for the fixed-pres-
sure-gradient case is not surprising given that the definitions of M
are different (see Eqs. (11) and (13)). However, unless otherwise
indicated, for all the results of this section the rather high value
of 106 has been used for M. In Figs. 17 and 18, plots of the unyiel-
ded regions and the velocity contours for n = 1 and 0.5, respec-
tively, and Bn = 0.1, 1, 10 and 500 are shown. Note that when the
volumetric flow rate is imposed, the unyielded regions are those
where s 6 Bn. By comparing the two figures, one observes that in
the shear-thinning case (n = 0.5) both the rigid and stagnant zones
are bigger in size and the velocity increase in the yielded region is
sharper.

5.2. Navier slip

In Poiseuille flows of viscoplastic fluids with Navier slip, the
material slides uniformly when the imposed pressure gradient
is below the critical value G�0 at which the material yields, i.e.
at a certain part of the flow domain the dimensionless stress
exceeds the Bingham number. Hence, for G� 6 G�0 the velocity
is given by u�xðy�; z�Þ ¼ u�w ¼ 1. This then implies that the wall
shear stress along both walls is constant, i.e. s�w ¼ Bu�w ¼ B. It is
also reasonable to assume that in the sliding regime the non-
zero shear stresses s�yx and s�zx vary linearly with y⁄ and z⁄,
respectively:
s�yx ¼ �
G�

1þ a
y� and s�zx ¼ �

aG�

1þ a
z�

so that

B ¼ s�w ¼
aG�

1þ a

Hence (for a given Bingham number),

G� ¼ 1þ 1
a

� �
B ð34Þ



Fig. 21. Bingham flow in a square duct (a = 1) with Navier slip at the wall for various slip numbers, Bn = 10, and M = 106: (a) unyielded areas (shaded) and velocity contours;
(b) velocity graphs.

100 Y. Damianou, G.C. Georgiou / Journal of Non-Newtonian Fluid Mechanics 214 (2014) 88–105
The critical value G�0 can be found by demanding that the maximum
stress at the duct corner is s�max ¼ Bn. Since, s�max ¼

ffiffiffi
2
p

s�w ¼
ffiffiffi
2
p

B, one
gets the critical slip number below which sliding is observed:

Bcrit ¼
Bnffiffiffi

2
p ð35Þ

This critical value applies to all viscoplastic fluids with a (constant)
yield stress. Therefore, the corresponding critical pressure gradient is
G�0 ¼
1ffiffiffi
2
p 1þ 1

a

� �
Bn ð36Þ
The above quantities are illustrated in Fig. 19, where we actually
plotted the numerical predictions of the pressure gradient versus
the slip number for Bn = 1 and n = 0.5 and 1 in the case of a square
duct (a = 1). Note that the curve for n = 0.5 is initially slightly above



Fig. 22. Slip velocities for various slip numbers in the case of Poiseuille flow in a
square duct (a = 1) with Navier slip: (a) Newtonian fluid (Bn = 0); (b) Bn = 1; (c)
Bn = 10.

Fig. 23. Unyielded areas (shaded) and velocity contours in the case of Poiseuille
flow of a Bingham fluid in a rectangular duct (a = 2) with Navier slip for Bn = 1 and
various slip numbers.
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Fig. 24. Unyielded areas (shaded) and velocity contours in the case of Poiseuille
flow of a Bingham fluid in a rectangular duct (a = 2) with Navier slip for Bn = 10 and
various slip numbers.

Fig. 25. Unyielded areas (shaded) and velocity contours in the case of Poiseuille
flow of a Herschel–Bulkley fluid in a square duct (a = 1) with Navier slip for Bn = 1,
n = 0.5 and various slip numbers.
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its Bingham plastic counterpart, since at small shear rates the
viscosity of the shear thinning fluid is actually higher.

In Figs. 20 and 21, we show the unyielded regions along with
the velocity contours in the case of Poiseuille flow of a Bingham
fluid in a square duct (a = 1) for Bn = 1 and 10, respectively, and
various slip numbers. For values of B slightly above Bcrit, most of
the fluid is unyielded translating at a constant speed and only a
small equilateral triangular yielded region appears near the duct



Fig. 26. Poiseuille flow of a Bingham plastic in a square duct (a = 1) with non-zero
slip yield stress with B = 0.1 and various values of Bn = Bc: (a) slip velocities; (b)
unyielded areas (shaded) and velocity contours.

Fig. 27. Poiseuille flow of a Bingham plastic in a square duct (a = 1) with non-zero
slip yield stress with B = 1 and various values of Bn = Bc: (a) slip velocities. (b)
unyielded areas (shaded) and velocity contours.
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corner, in which the velocity contours are straight lines intersect-
ing the walls at a 45� angle. As the slip number is increased the
unyielded region shrinks and eventually detaches from the wall
and becomes cylindrical. The three-dimensional plots of the veloc-
ity in Fig. 21b clearly show the variation of the velocity in the
yielded region. Fig. 22 shows the slip velocities Bn = 0 (Newtonian),
1, and 10 and for various slip numbers starting from Bcrit ¼ Bn=

ffiffiffi
2
p

.
Similar results have been obtained for the flow in a rectangular

duct, e.g. for a = 2, and for other values of the exponent n. Figs. 23
and 24 show the velocity contours and the unyielded areas for
Bn = 1 and 10, respectively, a = 2, and various slip numbers. Note
in particular that the shape of the yielded region for values of B just
above Bcrit remains the same (equilateral orthogonal triangle).
Fig. 25 shows the unyielded regions as well as the velocity con-
tours obtained for a Herschel–Bulkley fluid with n = 0.5, Bn = 1
and various slip numbers. As already mentioned the critical slip
number for the initiation of deformation is independent of the
power-law exponent, i.e. it is the same as that for Bingham flow.
A comparison with the Bingham plastic results (n = 1) in Fig. 20
shows that the unyielded core is larger and the velocity growth
in the yielded zone is faster.
5.3. Slip with non-zero slip yield stress

To simplify things, we restricted ourselves to the case Bn = Bc
(i.e., we assume that s0 = sc). In Figs. 26–28, we show representa-
tive results obtained for three values of the slip number, i.e. for
B = 0.1 (strong slip), 1 (moderate slip), and 10 (weak slip), and dif-
ferent values of the Bingham number. As shown in Fig. 26a, where
we plotted the slip velocity for B = 0.1, for small values of Bn (and
Bc) slip occurs everywhere along the wall and the slip velocity is
initially almost flat. As the value of Bn is increased, the slip velocity
is reduced dramatically near the duct corner and is increased
slightly near the middle of the wall. Eventually, above a certain
critical value of Bn, slip occurs only in the middle of the wall. More-
over, the unyielded area grows and touches the wall. Hence, the
slip velocity becomes flat in the middle of the wall where the flow
is unyielded and zero near the duct corner. As the Bingham number
is increased, another unyielded region appears at the duct corner,
which grows in size along with the inner unyielded region. For
small values of Bc, the velocity contours are almost circular around
the central unyielded region and linear near the duct corner. The
shape of the velocity contours in the latter region changes only



Fig. 28. Poiseuille flow of a Bingham plastic in a square duct (a = 1) with non-zero
slip yield stress with B = 10 and various values of Bn = Bc: (a) slip velocities; (b)
unyielded areas (shaded) and velocity contours.
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when the flow there becomes unyielded. When slip is not strong,
e.g. for B = 1 in Fig. 27 and B = 10 in Fig. 28, the velocity contours
in the corner region are bended and tend to become parallel to
the wall as slip is reduced. Similar solutions and slip velocity
profiles have been presented by Roquet and Saramito [29,30] using
the augmented Lagrangian method. It should be noted that in
Figs. 26–28, the surfaces of the unyielded regions for Bn = 100
and 500 was calculated using the criterion s = Bn + e with
e = 0.01, since otherwise the yield surface of the corner stagnant
zone is incorrect.

6. Conclusions

We used regularized versions of both the constitutive and the
slip equations along with finite elements in order to solve the
steady-state flow of a Herschel–Bulkley fluid in a rectangular duct
with wall slip and non-zero slip yield stress. Using a regularized
slip equation with a sufficiently high value of the regularization
parameter allows the accurate prediction of the slip velocity, which
may be zero along parts of the duct wall and non-zero elsewhere.
An advantage over the augmented Lagrangian method is that
the same regularization may also be applied to any other
non-viscoplastic flows, e.g. other generalized Newtonian or visco-
elastic flows, which do not exhibit yielded and unyielded regions.
The proposed regularized slip equation has been tested against
the analytical solution of the Newtonian flow imposing either the
pressure gradient or the volumetric flow rate. Moreover, the results
in the intermediate regime of pressure gradients, where slip along
the duct wall is partial and no analytical solution is available, were
checked by varying the value of the regularization parameter Mc

and confirming numerical convergence.
In the case of Bingham flow with no wall slip, it has been dem-

onstrated by means of comparisons with available theoretical
results and other numerical results from the literature that regu-
larizing the constitutive equation leads to accurate solutions even
for the unyielded regions, provided that the regularization param-
eter is sufficiently high (of the order of 106 and higher). Systematic
results have also been obtained in the case of Navier slip (zero slip
yield stress) for wide ranges of the Bingham and slip numbers. In
the numerical simulations of Bingham flow with non-zero slip
yield stress, the latter was taken equal to the yield stress. The
effects of the exponent and the aspect ratio have also been
examined.

As for the future work, our plan is to solve cessation and start-
up flows of a Bingham plastic in pipes of rectangular cross-section
with wall slip and non-zero slip yield stress. Muravleva and
Muravleva [20] studied the cessation flow of Bingham plastics in
ducts with no wall slip. Huilgol [36] analyzed the motion of the
yield surface in unsteady shearing flows of viscoplastic fluids and
found that this can be considered as a jerk wave, i.e. it is a singular
surface across which the velocity, the acceleration and the velocity
gradient are continuous, whereas the time derivative of the
acceleration, the spatial gradient of the acceleration and the second
gradient of the velocity are discontinuous. He also proposed the
numerical solution of the start-up Bingham flow in a pipe of square
cross-section in order to test the jerk wave hypothesis for the
motion of the yield surface.
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