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a b s t r a c t 

Numerical simulations of the flow in an extrusion damper are performed using a finite volume method. 

The damper is assumed to consist of a shaft, with or without a spherical bulge, oscillating axially in 

a containing cylinder filled with a viscoplastic material of Bingham type. The response of the damper 

to a forced sinusoidal displacement is studied. In the bulgeless case the configuration is the annular 

analogue of the well-known lid-driven cavity problem, but with a sinusoidal rather than constant lid 

velocity. Navier slip is applied to the shaft surface in order to bound the reaction force to finite values. 

Starting from a base case, several problem parameters are varied in turn in order to study the effects 

of viscoplasticity, slip, damper geometry and oscillation frequency to the damper response. The results 

show that, compared to Newtonian flow, viscoplasticity causes the damper force to be less sensitive to 

the shaft velocity; this is often a desirable damper property. The bulge increases the required force on 

the damper mainly by generating a pressure difference across itself; the latter is larger the smaller the 

gap between the bulge and the casing is. At high yield stresses or slip coefficients the amount of energy 

dissipation that occurs due to sliding friction at the shaft-fluid interface is seen to increase significantly. 

At low frequencies the flow is in quasi steady state, dominated by viscoplastic forces, while at higher 

frequencies the fluid kinetic energy storage and release also come into the energy balance, introducing 

hysteresis effects. 

© 2016 Elsevier B.V. All rights reserved. 
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1. Introduction 

Viscous dampers dissipate mechanical energy into heat through

the action of viscous stresses in a fluid. A common design involves

the motion of a piston in a cylinder filled with a fluid, such that

large velocity gradients develop in the narrow gap between the

piston head and the cylinder, resulting in viscous and pressure

forces that resist the piston motion. The potential of such dampers

can be enhanced by the use of rheologically complex fluids. For ex-

ample, use of a shear-thinning fluid such as silicon oil [1,2] weak-

ens the dependency of the damper reaction force on the piston

velocity, which is often desirable as it maximises the absorbed en-

ergy for a given force capacity. The same effect can be achieved to

a higher degree if the fluid is viscoplastic. 

Viscoplastic materials flow as liquids when subjected to a

stress that exceeds a critical value, but respond as rigid solids

otherwise. More specifically, according to the von Mises yield

criterion, flow is assumed to occur when the stress magnitude
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related to the second invariant of the stress tensor) exceeds a

ritical value called the yield stress. Such materials are usually

oncentrated suspensions of solid particles or macromolecules.

hey are classified as generalised Newtonian fluids because their

iscosity depends on the local shear rate, while they do not exhibit

lastic effects. Broad surveys of yield-stress materials are given by

ird et al. [3] , Barnes [4] and Balmforth et al. [5] . The simplest

iscoplastic materials are Bingham fluids, where the magnitude

f the stress increases linearly with the rate of strain once the

ield stress has been exceeded. Herschel–Bulkley fluids exhibit

hear-thinning (or thickening) after yielding. 

Damper fluids often exhibit viscoplasticity. For example,

lectrorheological (ER) and magnetorheological (MR) fluids are

uspensions of particles that align themselves in the presence

f electric or magnetic fields and form structures that provide

he fluid with a yield stress. They can be modelled as Bingham

r Herschel-Bulkley fluids whose rheological parameters depend

n the strength of the electric or magnetic field [6,7] . Thus, the

peration of ER / MR dampers can be tuned by adjusting the

eld strength. Another example of a damper that works with

 yield-stress fluid is the extrusion damper. Here the “fluid” is

ctually a ductile solid material which is forced to flow through an

nnular contraction. Such dampers can carry significant loads and
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ave been proposed and used for seismic protection of structures

sing lead as the plastically-deforming material [8–10] . Lead

ecrystallises at room temperature and thus recovers most of its

echanical properties immediately after extrusion, so that lead

xtrusion dampers can undergo a large number of cycles of op-

ration without performance degradation. The present study was

otivated by the participation of the authors in a project investi-

ating the design of an extrusion damper employing sand instead

f a metallic damping medium. The behaviour of sand is nearly

emperature independent, whereas the yield strength of lead drops

ith the temperature rise that is due to the energy absorption by

he damper [11] . Sand is a granular material, and the behaviour of

ranular materials is known to be described well by the Bingham

onstitutive equation. Nevertheless, the present study is not lim-

ted to this particular design but aims to provide results of greater

enerality. 

In the literature there exist only a few studies on the flow

nside viscous dampers, whether viscoplastic or otherwise. Usually,

t is assumed that the gap between the piston and the cylinder is

arrow enough such that the flow can be approximated by a one-

imensional planar Couette - Poiseuille flow. Although simplified,

his analysis can offer some insight on how flow characteristics

uch as viscoplasticity [12,13] , inertia [2,14,15] or viscoelasticity

2,16] affect the damper response. However, it would be desirable

o have complete simulations of the flow, which can be assumed

o be axisymmetric under normal operating conditions. In the

amper literature there appears to be a lack of such studies, with

ery limited results given in [2,17] . Progress in Computational

luid Dynamics (CFD) has made such simulations feasible at a

elatively modest computational cost. 

The goal of the present work is to examine in detail the vis-

oplastic flow inside a damper whose shaft reciprocates sinu-

oidally. The fluid is assumed purely viscoplastic of Bingham type;

his helps to isolate the effects of viscoplasticity from other phe-

omena such as shear-thinning, elasticity and thixotropy which

ay be examined in a future study. The shaft has a protruding

pherical bulge that acts like a piston, but in order to investigate

he effect of this bulge, the “bulgeless” configuration is also inves-

igated to some extent. The bulged configuration is therefore pre-

isely that of an “extrusion damper” [8–10] , whereas the bulgeless

onfiguration is simply the flow in an annular cavity whose inner

ylinder reciprocates sinusoidally. The latter is the annular ana-

ogue of the popular lid-driven cavity problem, and is of interest on

ts own. The present simulations span the range of Bingham num-

ers ( Bn ) from Bn = 0 to Bn = 320 , which correspond to relatively

oft materials (e.g. an ER fluid – see the next Section for the pre-

ise details). This allows for the investigation also of inertia effects,

hich become weaker as the Bingham number is increased. Fur-

hermore, the qualitative behaviour of the damper changes very lit-

le beyond some value of the Bingham number, and this behaviour

s clearly seen in the present results for Bn = 320 , so that increas-

ng the Bingham number beyond that would not offer additional

nsight while at the same time it would significantly increase the

omputational cost. For simplicity, the effects of temperature in-

rease are not examined and the flow is assumed isothermal, al-

hough some results on energy dissipation are included because

hey pertain to damper operation. 

To the best of our knowledge there do not exist any previous

tudies for the bulged case, but, rather surprisingly, we have not

ound any studies for the bulgeless case either, with the exception

f [18] which, however, focuses on flow instabilities arising at

eynolds numbers significantly higher than those examined here.

 related, simpler problem, is the flow in a planar lid-driven cavity

ith sinusoidal lid motion, for which a few Newtonian studies are

vailable. Among them is that of Iwatsu et al. [19] who performed

imulations for a range of Reynolds numbers and oscillation fre-
uencies and found that these parameters have a similar effect on

he flow as in Stokes’ second problem (sinusoidal oscillation of an

nfinite plate in an infinite medium); in particular, at low Reynolds

umbers and frequencies the flow is in quasi steady state whereas

t high Reynolds numbers and frequencies the flow is localised to

 thin layer near the lid, while the influence of the lid motion is

nly weakly felt by the fluid that is farther away. Interestingly, in

hat paper the force that the lid exerts on the fluid is calculated (a

esult that is of great interest in the case of dampers); this force

s rarely given in lid-driven cavity studies, as the computed value

ends to infinity with grid refinement due to the singularities at

he lid edges. Therefore, the force reported in [19] is questionable,

ut nevertheless the results suggest a time lag between the force

nd the lid velocity which increases with the oscillation frequency.

 newer study is [20] which reproduces the findings of Iwatsu

t al. [19] and where one can find references to a few other

vailable related published studies. 

The oscillating lid-driven cavity problem has not been solved

or viscoplastic flow. The closest problem for which we have found

esults is the even simpler oscillating plate problem (Stokes’ sec-

nd problem), which was solved for viscoplastic flow by Balmforth

t al. [21] (this problem has also been solved for other types of

on-Newtonian flow - see the literature review in [22] ). We should

lso mention the study of Khaled and Vafai [23] on oscillating plate

ow although dealing with Newtonian flow only, because it in-

ludes the effects of wall slip; the latter will also be employed in

he present study in order to overcome the aforementioned infinite

orce hurdle. The oscillating plate flow and the present oscillating

nnular cavity (or damper) flow are driven by the same sinusoidal

oundary motion, yet their different geometries lead to significant

ifferences between them. For example, the role of the pressure is

rivial in the former and very important in the latter. 

On the other hand, if one searches for problems that share

 similar geometry to our problem rather than a similar driving

orce, then the axial viscoplastic Couette–Poiseuille flow through

n annulus naturally comes to mind. This problem differs from our

wn (in the bulgeless case) in that the cylinders extend to infinity

ather than form a closed cavity, and the flow is in steady-state;

ut it could be a good approximation to our flow if the length-

o-radius ratio of the cavity is relatively large and the Reynolds

umber is small enough such that the flow is in quasi steady state.

arly solutions of the annular viscoplastic Poiseuille flow (driven

y a pressure gradient only) appear in [24,25] , while more recent

ontributions include [26–28] , the latter including effects of wall

lip. The corresponding solution for annular Couette flow (driven

y the axial motion of the inner cylinder only) for a Bingham fluid

an be found in [3] (see also Appendix A , where the yield line is

iven in closed form, something missing from the literature). But

he combination of these, i.e. annular Couette–Poiseuille Bingham

ow, has only recently been solved for all possible types of flow

y Liu and Zhu [29] (another notable contribution is [30] ). Daprà

nd Scarpi [31] move a step closer to our problem by providing

esults for annular Couette–Poiseuille flow where the pressure

radient and/or the inner cylinder velocity oscillate sinusoidally;

owever, their focus is on how the flow rate is affected, whereas

n order to approximate the flow in a closed annular cavity the

nstantaneous pressure gradient must be adjusted so that the total

ow rate is zero. 

The rest of the paper is organised as follows. The problem

s defined in Section 2 , where the governing equations are also

iven. Then, in Section 3 an outline of the computational method

mployed to solve the equations is given, together with refer-

nces where more details can be found. The results then follow

n Section 4 , where the effects of viscoplasticity, slip, damper ge-

metry, and oscillation frequency on the damper response are in-

estigated. Finally, conclusions are drawn in Section 5 . 
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Fig. 1. Layout of the damper. In (a) part of the cylinder is removed to reveal the bulged shaft. The flow is axisymmetric and can be solved on a single plane θ = 0 (coloured 

in (a)). The viscoplastic material is shown shaded in (b). 
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2. Problem definition and governing equations 

The layout of the damper is shown in Fig. 1 . A shaft of ra-

dius R i with a spherical bulge of radius R b at its centre recipro-

cates sinusoidally inside a cylinder of bore diameter R o and length

L , filled with a viscoplastic material of Bingham type. A system of

cylindrical polar coordinates ( x, r, θ ) can be fitted to the problem

( Fig. 1 (a)), with e x , e r , e θ denoting the unit vectors along the co-

ordinate directions. The geometry and the flow are assumed to

be axisymmetric, so that the solution is independent of θ and

the problem is reduced to two dimensions. The fluid velocity is

denoted by u , and its components are denoted by u = u · e x and

v = u · e r . The azimuthal velocity component, u · e θ , is zero. Ini-

tially, the bulge is located midway along the cylinder and the vis-

coplastic material is at rest. At time t = 0 the bulged shaft starts to

move, forcing the confined material to flow. The shaft reciprocates

along the axial direction such that the x −coordinate of any point

on the shaft changes in time as 

x (t) = x 0 + α sin (ωt) (1)

where x 0 is the position at t = 0 , α is the amplitude of oscilla-

tion, and ω is the angular frequency related to the frequency f by

ω = 2 π f . The period of oscillation is T = 1 / f = 2 π/ω. The velocity

of the shaft, dx / dt , is therefore u sh (t) = U cos (ωt) where U = ωα is

the maximum shaft velocity. The damper reacts to its imposed mo-

tion by a reaction force F R which dissipates the mechanical energy.

The force F R and the associated energy dissipation are the quanti-

ties of interest. 

It is assumed that the properties of the material such as the

density ρ , the plastic viscosity μ and the yield stress τ y are con-

stant. The governing equations are the continuity and momentum
alances: 

∂ρ

∂t 
+ ∇ · ( ρu ) = 0 (2)

∂(ρu ) 

∂t 
+ ∇ · ( ρu u ) = −∇p + ∇ · τ (3)

here p is the pressure and τ is the deviatoric stress tensor. Due

o the density ρ being constant, Eqs. (2) and (3) can be simplified,

lthough these more general forms are shown here. The stress ten-

or is related to the velocity field through the Bingham constitutive

quation, 
 

 

 

˙ γ = 0 , τ ≤ τy 

τ = 

(
τy 

˙ γ
+ μ

)
˙ γ , τ > τy 

(4)

here ˙ γ is the rate-of-strain tensor, defined as ˙ γ ≡ ∇ u + (∇ u ) T .

he tensor magnitudes, τ ≡ ( 1 2 τ : τ ) 1 / 2 and ˙ γ ≡ ( 1 2 ˙ γ : ˙ γ ) 1 / 2 , also

ppear in the above equation. Thus, the material flows only where

he magnitude of the stress tensor exceeds the yield stress. 

An aspect of the problem that complicates things is the fact

hat at the contact points between the shaft and the flat sides

f the cylinder the velocity jumps discontinuously from non-zero

alues at the moving shaft to zero at the cylinder. If the no-slip

oundary condition is used, this results in stress varying as 1/ δx

here δx is the distance from the discontinuity [32] , and the force

xerted on the shaft becomes infinite. This result is spurious, and

n fact molecular dynamics simulations have shown that the no-

lip boundary condition is to be blamed, being unrealistic near the

ingularities where an amount of slip is exhibited that bounds the

tress and the total force to finite values [33,34] . In fact, even with-

ut the corner singularity, when it comes to viscoplastic flows, wall
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Table 1 

Values of the dimensional and dimensionless parameters defining the base case. 

Fluid properties ρ = 10 0 0 kg / m 

3 , μ = 1 . 0 Pa s , τy = 31 . 416 Pa 

Geometry R i = 10 mm, R o = 50 mm, R b = 20 mm, L = 200 mm 

Oscillation f = 0 . 5 Hz, α = 20 mm 

Slip β = 4 . 7619 × 10 −5 m / Pa s ( l = 4 . 7619 × 10 −5 m) 

Dimensionless 

parameters 

Re ∗ = 0 . 12 ( Re = 2 . 51 ), Sr = 3 . 14 , Bn = 20 , 

˜ β = 0 . 025 ( ̃ l = 1 . 19 × 10 −3 ), 

R i /R o = 0 . 2 , R b /R o = 0 . 4 , L/H = 5 

T  
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lip appears to be the rule rather than the exception [35] . Navier

lip is the simplest alternative to the no-slip boundary condition,

ut nevertheless it is asserted in [34] that it is a realistic condition

or Newtonian flows with corner singularities. It bounds the stress

istribution and makes it integrable so that the total force can be

alculated, as shown in [36] . 

According to the Navier slip condition, the relative velocity be-

ween the fluid and the wall, in the tangential direction, is propor-

ional to the tangential stress. More formally, for two-dimensional

r axisymmetric flows such as the present one, this is expressed

s follows: Let n be the unit vector normal to the wall, and s be

he unit vector tangential to the wall within the plane in which

he equations are solved. Let also u and u w 

be the fluid and wall

elocities, respectively. Then, 

( u − u w 

) · s = β( n · τ ) · s (5)

here the parameter β is called the slip coefficient. 

For non-Newtonian flows the slip behaviour may be more com-

lex than that described by the Navier slip condition; for example,

he slip velocity and the wall stress may be related by a power-law

elationship [37] , or there may be a “slip yield stress”, that is, slip

ay occur only if the wall stress has exceeded a certain value [38] .

 recent review of wall slip possibilities in non-Newtonian flows

an be found in [39] . Concerning the present application, the in-

erface between the shaft and the extruded material is often lubri-

ated and the shaft surface is polished [8,9] . Hence, in the present

tudy, in order not to overly increase the complexity of the prob-

em, it was decided to apply the simple Navier slip boundary con-

ition on the polished shaft and the no-slip boundary condition

 Eq. (5) with β = 0 ) on the cylinder bore, whose surface has no

pecial treatment. 

It will be useful to express the governing equations in dimen-

ionless form. So, let lengths be normalised by the distance be-

ween the shaft and the cylinder H = R o − R i , velocities by the

aximum shaft speed U , time by the oscillation period T , and pres-

ure and stresses by a characteristic stress τref = τy + μU/H. The

atter is composed of a plastic component ( τ y ) and a viscous com-

onent ( μU / L ) in order to better represent a typical viscoplastic

tress. Then, combining Eq. (3) with Eq. (4) , and using the fact that

is constant, one obtains for the yielded part of the material 

e ∗
(

1 

Sr 

∂ ̃  u 

∂ ̃  t 
+ 

˜ ∇ · ( ̃  u ̃

 u ) 

)
= − ˜ ∇ ̃

 p + 

Bn 

Bn + 1 

˜ ∇ ·
[(

1 

˜ ˙ γ
+ 

1 

Bn 

)
˜ ˙ γ

]
(6) 

here tildes ( ̃  ) denote dimensionless variables. Note that the di-

ensionless rate-of-strain tensor and its magnitude are equal to

heir dimensional counterparts normalised by U / H . Eq. (6) contains

hree dimensionless numbers. The Bingham number Bn , defined as

n ≡ τy 

μU/H 

(7) 

s a measure of the viscoplasticity of the flow. The effective

eynolds number Re ∗ [40] is defined as 

e ∗ ≡ ρU 

2 

τy + μU 
H 

= 

ρU 

2 

τref 

= 

Re 

Bn + 1 

(8) 

nd is an indicator of the ratio of inertia forces to viscoplastic

orces, just like the usual Reynolds number Re ≡ ρU 

2 / (μU/H) =
UH/μ is an indicator of the ratio of inertia forces to viscous

orces. Finally, the Strouhal number Sr is defined as 

r ≡ T 

H/U 

(9) 

rom T = 2 π/ω and U = ωα it follows that Sr = 2 πα/H = 2 πA,

here A = α/H is the dimensionless amplitude of oscillation.
herefore, the fact that the characteristic velocity U is inherently

nversely proportional to the characteristic time T removes the de-

endance of Sr on T . So, Sr is only a dimensionless expression of

he amplitude. 

The boundary conditions are also expressed in nondimensional

orm. On the motionless cylinder walls where the no-slip condition

pplies, the boundary condition is just ˜ u = 0 . The dimensionless

haft velocity is ˜ u sh = cos (2 π ˜ t ) , and can be seen not to depend on

ny of the dimensionless numbers. However, another dimension-

ess number enters through the dimensionalisation of the Navier

lip condition (5) , which is applied on the shaft: 

( ̃  u − ˜ u sh ) · s = 

˜ β
(
n · ˜ τ

)
· s (10) 

he dimensionless Navier slip coefficient is given by: 

˜ ≡ βμ

H 

( Bn + 1 ) = 

˜ l ( Bn + 1 ) (11) 

here l = βμ is the slip (or extrapolation) length and 

˜ l = l/H is its

imensionless counterpart. In Newtonian flows the use of the slip

ength is preferred to the use of the slip coefficient, and therefore

n the simulations we will occasionally mention the values of the

lip length as well. 

Finally, three additional dimensionless numbers are needed to

etermine the boundary geometry. Different choices are possible.

ne such choice leads to the following set of seven dimensionless

ariables that define the problem: Re ∗, Sr, Bn , ˜ β, R i / R o , R b / R o and

 / H . 

The code used for the simulations solves the dimensional

quations. However, the results will be presented mostly in di-

ensionless form because this form offers greater insight into the

henomena and greater generality. An important result for the

resent application is the force acting on the shaft, which in the

resent study is dedimensionalised by a reference force F ref : 

 ref = (2 πR i L ) τref where τref = τy + μU/H (12)

hus the reference force is that which results from the reference

tress τ ref acting on the whole shaft surface, of area 2 πR i L , in the

bsence of a bulge. 

Due to the large number of parameters, it was decided to set

 base case, which is defined in Table 1 , and then vary several of

he problem parameters, each in turn, in order to investigate their

ffect on the damper response. The base case was defined using

ypical values for the parameters, choosing values that lie in the

arameter range of the damper literature cited in Section 1 and re-

ult in “nice” (rounded) values of the dimensionless parameters. In

articular: The geometry is of the “extrusion” type and is closer to

he compact design of [10] rather than the older, bulky designs of

8,9] . The oscillation amplitude is near the average of that found in

he referenced studies (e.g. [1,13,15,41] ), while the base frequency

s near the low end of the spectrum of frequencies in the refer-

nced studies. For example, for seismic applications frequencies in

he range 0.1 – 2.5 Hz are reported in [41] , but they can be as high

s 10 Hz for short buildings [16] . Here the chosen base frequency is

.5 Hz but numerical experiments with frequencies of up to 8 Hz

re performed in Section 4 . The rheological properties resemble
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Fig. 2. Sample grids, (a) at a time instant when the bulge is located midway along 

the cylinder, and (b) at a time when the bulge is offset towards the right. For clarity, 

coarse 64 × 16 volume grids are shown instead of the 1024 × 256 grids actually 

used. 
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those of an ER or MR fluid, modelled as a Bingham fluid, [12,16,17] ,

with yield stresses of up to 500 Pa employed in Section 4 . 

Finally, we note that the present results do not apply to lead

extrusion dampers since metal extrusion is governed by other con-

stitutive equations, where plasticity is dominant. However, such

equations are not much different than viscoplastic constitutive

equations such as the Bingham equation in the limit of high plas-

ticity; for example, in [42] metal extrusion is modelled using a

regularised Levy–Mises flow rule to which the Bingham equation

reduces when μ = 0 . In fact, the methodology and finite volume

solution method of that study are very similar to those employed

in the present study. The Bingham constitutive equation, which is

adopted here, allows the investigation of inertial, viscous, and plas-

tic effects and therefore gives more generality to the results. As

will be seen in Section 4 , in the present numerical experiments, at

the higher Bingham numbers tested here plasticity is also domi-

nant over other flow mechanisms (inertia, viscosity). Another study

where the finite volume methodology is applied to solve metal ex-

trusion problems is [43] , where further references can be found. 

3. Numerical method 

The problem defined in Section 2 was solved using a finite vol-

ume method, which will be described in the present section only

briefly, providing pertinent references. A detailed description of the

method will be presented in a separate publication. It is an exten-

sion of that presented in [44,45] , with extensions for transiency,

axisymmetry, grid motion and the slip boundary condition. 

The method employs second-order accurate central differences

for both the convective and viscous terms, with correction terms

included to account for grid non-orthogonality, skewness and

stretching [44] . All variables are stored at the volume centres and

spurious pressure oscillations are avoided by the use of momen-

tum interpolation [44,46] . The gradients of the flow variables are

calculated using a least-squares procedure [47] . These gradients are

needed for the calculation of the aforementioned correction terms

and also for the calculation of the magnitude of the rate-of-strain

tensor and hence of the viscosity ( Eq. (13) below). Time derivatives

are approximated by a fully implicit, second-order accurate three-

time-level backward differencing scheme [48] . To account for ax-

isymmetry, the original planar finite volume code was adjusted as

described in [48] , and, in addition, the calculation of the magni-

tude of the rate-of-strain tensor must take into account that the

component ˙ γθθ = 2 v /r is, in general, non-zero. 

Since it is axisymmetric, the problem can be solved in any sin-

gle x − r plane. Such a plane is partitioned into a number of finite

volumes, using grids of sizes of 1024 × 256 volumes in the x - and

r -directions, respectively. When the shaft is bulgeless, the grid is

stationary; but when a bulged shaft is used the grid changes in

time to follow the deformation of the domain due to the bulge

motion. Fig. 2 shows a couple of coarser grids at different time in-

stances. The grid above the bulge and small margins on either side

of it along the x -direction remains fixed, while the rest of the grid

is compressed / expanded accordingly as the bulge moves. 

Grid motion requires that the convective terms of the equations

use the relative velocity of the fluid relative to the volume faces,

rather than the absolute fluid velocity. In the present method this

is implemented by a scheme that ensures that the so-called space

conservation law [49] is obeyed, i.e. that the fluid volume “swal-

lowed” by the faces during a time step is equal to the volume in-

crease of the cell that owns the faces. The details will be presented

in a future publication, but we note that in the present case such a

specialised scheme is not really necessary as the fact that only one

set of grid lines move ensures space conservation anyway [49] . 

A difficulty with simulations involving yield stress fluids is

that the domain of application of each branch of their constitu-
ive equation, such as (4) , is not known in advance. A popular

pproach to overcoming this difficulty is to approximate Eq. (4) by

 regularised equation which is applicable throughout the material

ithout branches. Several such regularised equations have been

roposed; some of them are compared in [50] . In the present

ork we adopt the one proposed by Papanastasiou [51] , which

s perhaps the most popular and has been used successfully for

imulating many flows of practical interest (see, e.g., [52–55] ,

mong many others). It is formulated as follows: 

= 

[
τy 

˙ γ

(
1 − e −m ̇ γ

)
+ μ

]
˙ γ = η( ˙ γ ) ̇ γ (13)

r, in non-dimensional form: 

˜ = 

Bn 

Bn + 1 

[
1 − e −M ̃

 ˙ γ

˜ ˙ γ
+ 

1 

Bn 

]
˜ ˙ γ = ˜ η( ˙ γ ) ̃  ˙ γ (14)

here the term in square brackets in Eq. (13) , η, is the effective

iscosity and m is a stress growth parameter which controls the

uality of the approximation: the larger this parameter the better

q. (13) approximates (4) . This parameter is nondimensionalised

s M = mU/H. Increasing the value of M also makes the equations

tiffer and harder to solve, so a compromise must be made. In

ur previous study for the lid-driven cavity test case [45] it was

ound that increasing M beyond 400 caused numerical problems.

owever, in the present case it was possible to use a value of M =
0 0 0. Thus, Eq. (13) assumes all of the material to be a generalised

ewtonian fluid whose effective viscosity is given by the term

n square brackets, and the unyielded material is approximated

y assigning very high values to the viscosity. To identify the

nyielded material we employ the usual criterion τ < τ y , or, in

erms of dimensionless stress, ˜ τ < ˜ τy = τy /τref = Bn/ (Bn + 1) (the

atio Bn/ (Bn + 1) is sometimes called the effective Bingham number

n ∗ [40] ); see [56,57] for discussions on the use of this criterion. 

The use of a regularised constitutive equation is also justified

y the fact that experiments have not shown definitively that the

ransition from solid-like to fluid behaviour is completely sharp [4] .

n this respect, Eq. (13) could be regarded as a more realistic con-

titutive equation. Nevertheless here it will be considered an ap-

roximation to Eq. (4) . The accuracy of the regularisation approach

o solving viscoplastic flows is discussed in [50,58] ; their main dis-

dvantage is the difficulty sometimes exhibited in accurately cap-

uring the yield surfaces, but for the present application this is not

f main concern. For alternative approaches, see [58,59] . 
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Table 2 

Computed values of (dimensional) force on the shaft as a 

function of the grid density, for a couple of steady state 

problems. The problem parameters are listed in Table 1 , 

with a constant shaft velocity of U = 2 π fα, and there is no 

bulge. In addition, the second problem involves Newtonian 

flow ( τy = Bn = 0 ). The grid convergence index q is calcu- 

lated from formula (15) if M is replaced by the number of 

volumes in either the x - or the r -direction. 

Grid size Bn = 20 q Bn = 0 q 

128 × 32 0.8643 0.1372 

256 × 64 0.8436 0.1475 

512 × 128 0.8379 1.85 0.1565 0.21 

1024 × 256 0.8385 – 0.1635 0.34 

2048 × 512 0.1683 0.56 

4096 × 1024 0.1710 0.84 

8192 × 2048 0.1722 1.12 
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To ensure that the value M = 10 0 0 is sufficient to obtain an

ccurate solution, a series of steady-state simulations was per-

ormed with varying values of M , where a shaft without a bulge

oves at a constant velocity equal to the maximum velocity of the

ase case ( Table 1 ; U = 2 π fα). The dimensionless numbers for this

teady-state problem have the same values as in Table 1 , except for

he Strouhal number which is infinite, due to the problem being

teady-state. So, solving this steady state problem we obtain val-

es of 2.01988, 2.02156, 2.02241 and 2.02286 for the nondimen-

ional force ˜ F exerted on the shaft, for M = 125, 250, 500 and

0 0 0, respectively. The dependency of the force on M appears to be

eak, with the force values F ( M ) converging towards a value, say

 

∗. If it is assumed that convergence of F ( M ) to F ∗ follows the for-

ula F (M) = F ∗ + cM 

−q , where q is the order of convergence and

 a constant, then q can be estimated using the results from using

hree different values of M related through a fixed ratio, say M , 2 M

nd 4 M , to give: 

 = 

log 
(

F (M) −F (2 M) 
F (2 M) −F (4 M) 

)
log (2) 

(15) 

pplying this formula to the above values gives q ≈ 1, which

eans that doubling the value of M reduces the error cM 

−q to

alf. This result can be used to estimate the error F ∗ − F (M) ≈
 F (M) − F (M/ 2)] / (2 q − 1) = F (M) − F (M/ 2) (for q = 1 ). Therefore,

he error due to regularisation at M = 10 0 0 is about 0.02%, which

s very small. In fact, for most engineering applications, even lower

alues of M would provide acceptable accuracy. 

The system of non-linear algebraic equations that arises from

he discretisation is solved using the SIMPLE algorithm [60] with

ultigrid acceleration. The Navier slip condition can be easily ac-

ounted for in SIMPLE using the deferred correction approach of

hosla and Rubin [61] . The details will be provided in a forthcom-

ng publication focusing on the numerical method employed here.

lternative treatments, including treatments for more complicated

lip conditions, can be found in [62] . 

An important issue concerning numerical solutions is grid con-

ergence: the grid must be fine enough so that the solution is suf-

ciently accurate. The existence of singularities at the grid corners

oes not pose problems concerning the bulk of the flow; thus, the

ccuracy of the present method for grids of resolution compara-

le to the present case is demonstrated in [45,57] . But the present

tudy examines a new result, the force exerted on the shaft, and it

urns out that the accuracy of this result is heavily affected by the

ingularities at the shaft endpoints. The reason is the following. As

iscussed in Section 2 , the Navier slip boundary condition results

n finite stress and pressure at the shaft endpoints for any β � = 0.

owever, the smaller the value of β the larger the stress and pres-

ure there, and the larger the overall force on the shaft, tending

o infinity as β → 0. So, by varying the slip parameter the shaft

orce can obtain values in the whole range from zero to infinity.

sing smaller values of β results in steeper rise of the stress near

he shaft ends, which requires finer grids to maintain an accurate

alculation of the force. The present section therefore ends with a

rid convergence study. 

Fig. 3 (a) demonstrates that grid convergence of the stress dis-

ribution near the corners is much faster when 

˜ β is large than

hen it is small. Column “Bn = 20 ” of Table 2 lists the computed

alues of force on grids of varying density for a steady-state vari-

nt of the base case of Table 1 without a bulge, along with the

rder of grid convergence. Up to the 512 × 128 grid the force de-

reases with grid refinement and appears to converge with order

 = 2 , but on the 1024 × 256 grid the force increases slightly. This

ehaviour can be explained, with reference to Fig. 3 (a), by the fact

hat grid refinement causes the computed stress to decrease over

ost of the length of the shaft, except near the ends where it in-

reases due to the singularities. At high grid densities the stress
ncrease near the corners dominates over the stress decrease over

he rest of the shaft because the latter has already converged,

hereas the former has not. The need therefore arises to estimate

he force error on the 1204 × 256 grid, and assess whether it is

cceptable. 

The error can be estimated by comparing against the solu-

ion on a finer grid, but due to the deterioration of the SIM-

LE/multigrid algorithm on Bingham problems which is discussed

n [45] this is not practical. A more appropriate treatment would

e to use adaptively refined grids with large densities near the

orners, using techniques such as those described in [57] . How-

ver, the adaptive mesh refinement algorithm has not yet been

xtended to time-dependent problems and moving grids in the

vailable code. So, it was decided instead to solve a Newtonian

teady-state problem (which is easier to solve) on a series of very

ne grids with up to 8192 × 2048 volumes, and estimate the

rror of that problem. The results are also listed in Table 2 , and

hey show that the force value does converge, although the full

econd-order rate of convergence has not yet been attained even

n the finest grid. Assuming that the rate of convergence on grid

192 × 2048 is approximately first order, the error on grid 1204

256 is estimated at about 0.01 N, or 0.01 / 0.17 = 6% which

s rather large. But for higher Bingham numbers this percentage

rops, as Fig. 4 suggests. The large stresses near the shaft ends are

ue to steep velocity gradients, which induce stress components

elated to fluid deformation, μ ˙ γ . When the yield stress τ y is

ncreased, the proportion of the deformation-induced component

˙ γ within the total stress τy ( ̇ γ / ̇ γ ) + μ ˙ γ falls. So, assuming that

he component μ ˙ γ does not change much between the Bn = 0

nd Bn = 20 cases, the force error on grid 1024 × 256 for the

n = 20 case of Table 2 would also be about 0.01 N, or 0.01 / 0.84

 1.2%, which is acceptable. So, the value ˜ β = 0 . 025 selected for

he base case offers accurate computation of the shaft force on the

024 × 256 grid, while at the same time Fig. 3 (b) suggests that it

esults in a flow field that is negligibly different from that of the

o-slip condition, except very close to the ends of the shaft. 

For the temporal discretisation a time step of 
t = T / 400 was

sed; it will be shown in Section 4 that the time step size has a

mall effect on the accuracy, because for most of the test cases

tudied the temporal term in the momentum equation is small

ompared to the other terms. 

. Results 

We start with a general description of the flow inside the

amper for the base case, which is visualised in Fig. 5 . A first ob-

ervation is that at the extreme points of the shaft motion, Fig. 5 (a)

nd (b), when the shaft velocity is zero, the fluid velocity is also
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Fig. 3. Nondimensional shear stress distributions ˜ τrx along the shaft surface near the end of the shaft, for a steady state problem (shaft velocity = U = 2 π fα) without a 

bulge. The problem parameters are as displayed in Table 1 , except for the slip coefficient, which is varied to obtain the non-dimensional values indicated on each figure. In 

(a) the stress is plotted for ˜ β = 0.025 (red), 0.1 (blue) and 0.4 (green), as calculated on grids 1 (1024 × 256 volumes), 2 (512 × 128 volumes) and 3 (256 × 64 volumes). 

In (b) the stress is plotted for different values of ˜ β, indicated on each curve, calculated on a 1024 × 256 grid. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article). 

Fig. 4. Shear stress ˜ τrx along the shaft surface near the end of the shaft, for a steady 

state problem without a bulge, for various Bingham numbers, as computed on the 

1024 × 256 grid. For each Bn , the stress is normalised by its minimum value along 

the shaft. The problem parameters are as displayed in Table 1 , except that the shaft 

velocity is constant at U = 2 π fα, there is no bulge, and the value of the yield stress 

is chosen so as to obtain the Bingham numbers shown. 
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zero and the material is in fact completely unyielded. The same

observation has been made for almost all test cases studied in the

present work, except for Newtonian flow and flow at high fre-

quency. Therefore, there is no point in extending the duration of

each simulation beyond a single period T , as the flow has already

reached a periodic state from t = T / 4 . For a few exceptional cases

we extended the simulation duration to two periods, although the

results which will be presented in this paragraph show that the

periodic state is reached sooner. 
As the shaft retracts from its extreme right position and accel-

rates (left column of snapshots in Fig. 5 ), increasingly more of

he material yields. The amount of yielded material becomes max-

mum when the shaft is at its central position and its velocity is

aximum ( Fig. 5 (i)); at this point the unyielded material is re-

tricted only to the outer corners of the cylinder. Yet, most of the

ow occurs in the vicinity of the bulge, as shown by the density

f the streamlines. The bulge motion causes the fluid immediately

ownstream of it to be pushed out of the way, and following a

ircular-like path it is transported behind the bulge. Away from the

ulge, the fluid, although mostly yielded, moves extremely slowly. 

The right column of snapshots in Fig. 5 corresponds to time in-

tances when the shaft displacement and velocity are either equal

r opposite to that of the snapshot immediately to the left. It is

vident from comparing the left and right columns of the figures

hat symmetry or equality in the instantaneous boundary condi-

ions implies also symmetry or equality of the flow field. The flow

istory does not play a significant role; it is mostly the instan-

aneous boundary conditions that determine the flow field. This

an be attributed to the low Reynolds number of the base case,

e ∗ = 0 . 12 ( Table 1 ) which makes the left hand-side of the mo-

entum Eq. (6) , i.e. the inertia forces, very small compared to the

ight hand side (pressure and viscoplastic forces). The time deriva-

ive term in the left-hand side of Eq. (6) thus plays an insignificant

ole and the flow is in a quasi steady state where at each time in-

tance the flow field is determined by the instantaneous boundary

onditions and not by the history of the flow. As a side-effect, the

ccuracy of the simulation depends only weakly on the time step

t . 

A feel of the effect of the bulge can be obtained by compar-

ng the snapshots of Fig. 6 , obtained also for the parameters of

he base case but in the absence of a bulge, against those in the

eft column of Fig. 5 . The bulge causes larger stresses in its vicin-

ty, causing more of the material to yield. The streamline pattern

hows that it also causes significant flow around it as it moves.

n the contrary, in the absence of a bulge the streamline pat-

ern shows that the motion of the material is concentrated in a
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Fig. 5. Snapshots of the flow field for the base case ( Table 1 ). The shaft is shown in grey. The black lines are streamlines; within each figure they correspond to equispaced 

values of the streamfunction, from zero (at motionless walls) to the instantaneous maximum value. The colour contours represent dimensionless pressure ˜ p = p/τref , in the 

range from −10 (blue) to +10 (red) with a step of 0.8. Regions of unyielded material ( τ < τ y ) are shown in white. The left column of figures are in chronological order from 

top to bottom, starting with the shaft motionless in its extreme right position at time t = T / 4 (a) and ending with the shaft in the middle position, moving with maximum 

velocity, at time t = T / 2 (i). The right column of figures is not in chronological order, but each figure exhibits some sort of symmetry compared to the figure immediately 

to its left. This is indicated with a pair of signs in the caption of each figure in the form D/U, where D is a “+ ” if the displacement of the shaft is the same as in the figure 

immediately on the left, and a “−” if it is opposite to that, and U gives the same information for the shaft velocity. (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article). 
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ery thin layer close to the shaft, whereas in the rest of the do-

ain the material moves very slowly. Also, the variation of the

ize and shape of the unyielded regions during the oscillation is

eaker than in the bulged shaft case; in fact in the bulgeless case,

hroughout the oscillation, the central unyielded plug zone extends

ver most of the domain leaving only thin yielded layers over the

haft and outer cylinder, while its axial extent varies weakly with

ime. 

In the paragraphs that follow, the effect of various parameters

n the flow is examined. 

.1. Effect of viscoplasticity 

The most important result of the simulations is the damper

eaction force F as a function of the shaft displacement or veloc-
R 
ty. This force can be analysed into two components, a viscoplastic

omponent ∫ sh n ·τ d A and a pressure component 
∫ 

sh −p n dA, where

ntegration is over all the shaft surface and n is the unit vector

ormal to this surface. Due to symmetry, the net force is in the

xial direction e x only. Fig. 7 shows how the total force and its

eparate viscoplastic and pressure components are affected by the

iscoplasticity of the material. The different curves correspond to

aterials with different yield stress, while the rest of the material

roperties are the same, as listed in Table 1 . The Bingham number,

eing representative of the viscoplasticity of the material, is used

o differentiate between the curves, but by changing the yield

tress other dimensionless numbers change as well: the effective

eynolds number Re ∗ (but not the usual Re ) decreases as τ y 

ncreases ( Eq. (8) ), reflecting the fact that by increasing the yield

tress the viscoplastic forces become more dominant over inertia;
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Fig. 6. Snapshots of the flow field for the base case ( Table 1 ) in the absence of a bulge. See caption of Fig. 5 for details. The arrow below each figure indicates the shaft 

displacement. The snapshots correspond to the times of the left column of figures in Fig. 5 . At t = T / 4 the material is completely unyielded. 
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and the slip coefficient ˜ β ( Eq. (11) ) increases as τ y increases,

reflecting the fact that, for a given shaft velocity U , increasing

τ y generally increases the overall levels of stress in the domain

leading to more slip at the walls. 

The effect of viscoplasticity is summarised in Fig. 7 (a). At time

 = 0 the material is initially at rest, but the shaft suddenly starts

to move towards the right at a finite velocity of U = αω. This cre-

ates a very large initial inertial reaction force (towards the left, i.e.

with negative sign) whose magnitude drops very rapidly due to

the small value of Re ∗; this drop is illustrated by the nearly ver-

tical part of the curves at zero displacement. The test case where

the relative importance of inertia is greatest is the Newtonian case

( Bn = 0 ) where indeed the initial force drop can be seen to be

more gradual, but nevertheless the periodic state is quickly at-

tained when the displacement is about 0.4 α and from that point

on the force at time t is indistinguishable from that at time t + T 

(the Newtonian case was solved for a duration of 2 T ). The force–

displacement curves for Bn = 0 , and to a lesser extent for Bn = 5 ,

are skewed; that is, the reaction force is smaller when the shaft

is approaching an extreme position x = ±α and decelerating, than

when it is retracting from it and accelerating. This is due to iner-

tia: when the shaft is accelerating then it also has to accelerate the

surrounding fluid, whereas when it is decelerating it does not have

to do so because the fluid has already acquired momentum in the

direction of motion. This effect is insignificant when the viscous

forces greatly surpass the inertia forces, i.e. at low Re ∗ numbers.

This is shown more clearly in the force–velocity diagram, Fig. 7 (d),

where the curves for Bn = 0 and 5 exhibit some hysteresis, i.e. the

force does not depend only on the current velocity but also on the

flow history. For each shaft velocity there are two values of force: a

higher one, when the shaft is accelerating, and a lower one, when

it is decelerating. On the contrary, for Bn ≥ 20 no such hysteresis is

observable, and the curves are symmetric with respect to the zero

displacement line in Fig. 7 (a). Thus for these cases Re ∗ is so small

that the inertia terms in Eq. (6) are negligible. The weakening of

the hysteresis effect with increasing the Bingham number can be

seen in the experimental results reported in [14] . 

In the diagrams of Fig. 7 the force is dimensionalised by F ref , Eq.

(12) , and so increasing τ y makes the force appear smaller whereas

in fact it becomes larger. The obvious effect of increasing τ y is to

make the force curves flatter, i.e. the larger τ y the less the force

varies during the motion of the shaft. For some applications this is

considered an advantage of the damper, since it maximises the en-

ergy absorbed for a given force capacity. The explanation is simple:
he total viscoplastic stresses consist of two components, one of

onstant magnitude (plastic) and one of variable magnitude (vis-

ous), τ = τy + μ ˙ γ . The Bingham number is an indicator of the

atio of the constant to the variable component. Thus, the larger

n the smaller the variation of τ and of the resulting force during

he shaft motion. Hence, the circular shape of the force vs. dis-

lacement cycle in the Newtonian case tends to a rectangular one

s the Bingham number is increased. Of course, the force also has

 pressure component, but the momentum equation suggests that

ressure forces behave similarly to viscoplastic ones when Re ∗ is

mall. These theoretical findings are confirmed experimentally, see

.g. [14,41] . In fact, force-displacement diagrams for varying Bing-

am numbers can be found in most ER and MR damper studies, as

hey are obtained for different strengths of the electric or magnetic

elds. However, usually it is the dimensional forces that are plot-

ed, under the same scale, and since even at low field strengths

he Bingham number is rather high, it is difficult to discern the

ifferences in the curvature of the plots (for example, in Fig. 7 (a)

he differences between the curves for Bn = 20, 80 and 320 would

ot be easily discernable had the dimensional forces been plotted

nstead). 

Fig. 7 (b) and (c) shows the viscoplastic and pressure contri-

utions to the total force. In Fig. 7 (b) the force that would result

ad there been no bulge is also plotted with dashed lines. It can

e seen that the presence of the bulge increases the viscoplastic

orce only slightly. On the other hand, the pressure force is due

olely to the bulge; in its absence there is no pressure force in the

 -direction, since the projection of the shaft’s surface in that direc-

ion is zero. Fig. 7 (c) shows that the pressure force, normalised by

 ref , is almost independent of the Bingham number, having a value

f about 0.7. This will be shown later to depend on the damper ge-

metry. The viscoplastic force on the other hand does depend on

n for lower values of Bn , but tends to unity as Bn is increased. The

ressure forces appear rather small compared to the viscoplastic

orces, but become more important as the Bingham number is in-

reased. This implies also that the role of the bulge becomes more

mportant as Bn is increased; however, as noted, asymptotically as

n is increased, the ratio of viscoplastic to pressure forces tends to

 certain limit. 

It is interesting to examine what happens when the shaft

eaches an extreme position and momentarily stops ( x = ±α, shaft

elocity = 0). It is most clearly seen in Fig. 7 (d) that in the New-

onian case the fluid continues to flow, resulting in a non-zero

eaction force, but in all the viscoplastic cases shown the fluid
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Fig. 7. Various components of force as a function of either shaft displacement or shaft velocity, for several different Bingham numbers which are indicated on each curve. 

Forces are dedimensionalised by F ref , displacement by the oscillation amplitude α, and velocity by U . The dimensional parameters of each experiment are as shown in Table 1 , 

except that the yield stress τ y has been adjusted to obtain the Bingham numbers shown. All simulations have a duration of one period T , except the Newtonian case which 

has a duration of 2 T . Each curve is traversed in a counterclockwise sense with respect to time. In (b), the dashed lines indicate the force in the absence of a bulge. 
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φ

tops (actually it becomes completely unyielded) and the reaction

orce F R becomes zero. Nevertheless, even the slightest shaft mo-

ion causes non-zero rates of deformation and therefore yielding

f the fluid, with the stress magnitude jumping from zero to the

ield stress. Thus the force also immediately jumps from zero to

ome non-zero value, and then gradually increases further as the

ate of deformation increases due to shaft acceleration. A depar-

ure from this behaviour can be noticed for the Bn = 320 case both

n Fig. 7 (d) and in Fig. 7 (a), where a relatively smaller jump in F R 
ccurs relative to the smaller Bn cases, followed by a more gradual
ncrease of F R until it reaches a nearly constant value. This is due

o the Navier slip boundary condition and will be explained in the

ollowing subsection. 

Another interesting quantity that would help shed more light

n the damper operation is the rate of dissipation of mechanical

nergy to thermal energy inside the fluid. For generalised Newto-

ian fluids, this rate, per unit volume, is given by the dissipation

unction 

≡ τ : ∇ u = η ˙ γ 2 (16) 
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Fig. 8. Plots of the dimensionless dissipation function ˜ φ = φ/φref ( Eq. (16) ) for the 

test cases of Fig. 7 , at t = T / 2 . 
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The second equality is valid for generalised Newtonian fluids, for

which τ = η ˙ γ . The term τ : ∇ u gives the rate of work done in

deforming the fluid, per unit volume. For viscoelastic fluids, some

of this work is stored as elastic energy in the material, but for gen-

eralised Newtonian fluids, including the Bingham material consid-

ered here, this work concerns only conversion of mechanical en-

ergy into heat [63] . The dissipation function is dedimensionalised

here by 

φref = τref U/H = τy 
U 

H 

+ μ
U 

2 

H 

2 
(17)

Fig. 8 shows plots of the dissipation function for the various

cases, at a time instance when the shaft velocity is maximum. It is

evident that as the viscoplasticity of the material increases, energy

dissipation becomes more localised, confined to a thin layer of

fluid surrounding the shaft and to a ring of rotating fluid between
he bulge and the outer cylinder. The maximum energy dissipation

ppears to occur at the endpoints of the shaft, where it meets the

uter damper casing, and at the top of the bulge. For low Bingham

umbers, the energy dissipation at the shaft endpoints is very

ignificant, and it is due to the very large velocity gradients there,

espite the Navier slip boundary condition. At higher Bingham

umbers the contribution of these areas to the overall energy

issipation diminishes – see also Fig. 4 . The ring of material that

otates between the bulge and the outer cylinder also decreases in

ize as the yield stress is increased. For Bn = 80 ( Fig. 8 (d)) and 320

 Fig. 8 (e)) the ring does not extend all the way up to the outer

ylinder. This suggests that for these and higher Bingham numbers

he chosen radius R o of the enclosing cylinder has a negligible

ffect on the produced force, and that using a larger radius would

ot change the magnitude of the reaction force. 

.2. Effect of slip 

In the next series of simulations we start from the base case

 Table 1 ) and change the slip coefficient β . The only dimensionless

umber affected is ˜ β . Fig. 9 shows how the force ˜ F R and its com-

onents vary with the shaft displacement or velocity, for various

alues of this coefficient. As expected, increasing the slip coeffi-

ient decreases the reaction force and its components. Note that

ince the reference force F ref used for the dedimensionalisation

oes not depend on the slip coefficient, the forces in the diagrams

f Fig. 9 are directly comparable, unlike those of Fig. 7 . All graphs

n Fig. 9 show that the forces resulting from 

˜ β = 0 . 025 (the base

ase) and 

˜ β = 0 . 00625 are nearly identical. This suggests that for

he base case, the slip coefficient is too small for the slip to have

 significant impact on the flow. But for larger slip coefficients the

ow is affected significantly. 

We first turn our attention to Fig. 9 (d) which refers to a bulge-

ess configuration and shows how the force varies with respect to

haft velocity (in the absence of a bulge the total force is equal to

he viscoplastic force). For low 

˜ β the force behaves as expected:

hen the shaft velocity is zero, all of the material is unyielded

nd the force is also zero; then, the slightest movement of the

haft causes fluid deformation and therefore yielding and the

tress jumps to τ y , resulting in a sharp rise of the reaction force to
˜ 
 R ≈ 1 . From that point on, ˜ F R continues to rise more slowly as the

haft velocity increases and so does the component of stress that

s proportional to fluid deformation. Actually, the increase of force

hen the shaft starts to move is very sharp but not completely

ertical. Of course, this could be attributed to regularisation (13) ,

ut one cannot help but notice that this force increase becomes

uch more gradual as ˜ β is increased. The explanation lies in the

avier slip boundary condition (10) . Taking a closer look at what

appens when the shaft starts to move from a still position, we

ote that initially the material is completely unyielded. Suppose

hat after a small time the shaft has acquired a small velocity ˜ u sh .

ccording to the Navier slip condition (10) this causes the shaft

o impose a stress ˜ τ = 

˜ β−1 ( ̃  u sh − ˜ u ) ≤ ˜ β−1 ˜ u sh on the viscoplastic

aterial. If this is smaller than the yield stress then the material

ill remain unyielded, and thus motionless. The shaft then simply

lides over the motionless material without moving it, and the

tress that develops in the shaft / material interface is due to the

riction between them. Since the material is motionless, ˜ u = 0 and

he boundary condition is ˜ τ = 

˜ β−1 ˜ u sh . As the shaft accelerates

nd ˜ u sh increases, the stress ˜ τ also increases proportionally and

ventually it reaches the yield stress ˜ τy = Bn/ (Bn + 1) . This is the

nset of yielding, and occurs at a critical shaft velocity of 

˜ 
 

y 

sh 
= 

˜ β
Bn 

Bn + 1 

(18)
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Fig. 9. Various force components as a function of shaft velocity, for different values of the dimensionless slip parameter ˜ β, indicated on each curve. Forces are 

dedimensionalised by F ref and velocity by U . The dimensional parameters of each experiment are as shown in Table 1 , except that the slip parameter β has been ad- 

justed to obtain the indicated values of ˜ β . Each curve is traversed in a counterclockwise sense with respect to time. Fig. (d) refers to the viscous force in an experiment 

without a bulge (this is also the total force, because the pressure force is zero in this case). 
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Fig. 10. Flow field snapshots at times when the wall stress is close to the yield 

stress of the material. The parameters of the problems are as in Table 1 unless 

otherwise indicated. Figures (a) and (b) correspond to the “ ˜ β = 0 . 4 ” case of Fig. 9 , 

while Figs. (c) and (d) correspond to the “Bn = 320 ” case of Fig. 7 . See captions of 

Figs. 5 and 8 for visualisation details. 
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These theoretical results are confirmed by Fig. 9 (d). Indeed, since

Bn/ (Bn + 1) ≈ 1 for Bn = 20 , the material should yield when

the shaft velocity has reached ˜ u 
y 

sh 
≈ ˜ β, i.e. ˜ u 

y 

sh 
≈ 0 . 1 for ˜ β = 0 . 1

and ˜ u 
y 

sh 
≈ 0 . 4 for ˜ β = 0 . 4 . This is confirmed by Fig. 9 (d). Fur-

thermore, up to the yield point the dimensionless force should

be proportional to ˜ τ = 

˜ β−1 ˜ u sh , which is again confirmed by the

linear variation of force in Fig. 9 (d), for velocities of magnitude

| ̃  u sh | ≤ ˜ u 
y 

sh 
. For shaft velocities larger than ˜ u 

y 

sh 
the material yields

so that the slip velocity ˜ u sh − ˜ u increases more slowly than before

(as now ˜ u � = 0 ), causing the slope of the force curves to decrease. 

The existence of the bulge has the consequence that even the

slightest shaft motion changes the domain shape and thus causes

deformation and yielding of the material. Therefore, the only in-

stance when the material may be completely unyielded is when

the shaft velocity is zero. To see what happens, Fig. 10 (a) and (b)

shows snapshots of the flow field as the shaft is decelerating, at

two time instances, when its velocity is just above ˜ u 
y 

sh 
( Fig. 10 (a))

and when it is just below ˜ u 
y 

sh 
( Fig. 10 (b)). In Fig. 10 (a) the stress at

the shaft / material interface is everywhere above the yield stress

and the shaft is everywhere surrounded by a layer of yielded ma-

terial. In Fig. 10 (b) the stress at the shaft / material interface is

mostly below the yield stress so that the shaft is in direct contact
ith, and sliding on, unyielded material over most of its length;

owever, the bulge is surrounded by a bubble of yielded material.

he consequences of this on the force can be seen by comparing

he ˜ β = 0 . 4 curves of Fig. 9 (d) and (b); when there is a bulge, at

he onset of shaft motion there is an immediate albeit relatively

mall increase in the force, contrary to the no-bulge case, due to

ielding of the material surrounding the bulge. Thus, slip may ob-

cure the viscoplastic nature of the material by causing apparent

ow that hides the existence of a yield stress, but it cannot do

o completely if the shaft has a bulge. Note that this phenomenon

ill occur for any finite value of the slip coefficient; it occurs also

or ˜ β = 0.00625 and 0.025 in Fig. 9 only that it is difficult to dis-

ern because the corresponding values of ˜ u 
y 

sh 
are very small. Slip

s known to introduce such increased complexity to viscoplastic

ows, see e.g. [39,64] for other examples. As far as the pressure

orce is concerned, Fig. 9 (c) shows that it is relatively independent

f the slip coefficient. 

These phenomena become more pronounced not only when the

lip coefficient is increased, but also when the yield stress is in-

reased; in the latter case a higher shaft velocity is required for

ielding to occur. This is reflected on the dimensionless slip co-

fficient, Eq. (11) , which depends not only on β but also on Bn .

hus the slip phenomena are more pronounced for Bn = 320 in

ig. 7 than for lower Bn numbers. In fact the Bn = 320 case of

ig. 7 has ˜ β = 0 . 38 which is very close to the ˜ β = 0 . 4 case of Fig. 9 ,

nd so they have very similar yield shaft velocities ˜ u 
y 

sh 
. Fig. 10 (c)

hows a snapshot of the Bn = 320 case at the same time instance

s for Fig. 10 (b); the two flow fields can be seen to be very sim-

lar. Also, the dissipation function is plotted in Fig. 10 (d) and, as

xpected, it can be seen to be non-zero only within the yielded

bubble” surrounding the bulge. 

Other differences in the dissipation function distribution that

re due to slip can be seen by comparing Figs. 11(a) and 11 (b). In-

reasing slip can be seen to reduce energy dissipation in the bulk

f the material, especially at the shaft ends and at the tip of the

ulge, by relaxing the large velocity gradients there. The weaken-

ng of the flow also makes the effect of the outer cylinder weaker,

ith the ring of rotating material not extending up to the outer

ylinder in Fig. 11 (b). Finally, one can notice in Fig. 11 (a) (and in

ther low slip cases) that there is some material trapped in the

orners between the bulge and the shaft; but in Fig. 11 (b) (and

lso in Fig. 8 (e), where slip is again large) there is no such en-

rapment. This is reminiscent of the unyielded cups which are ob-

erved at the poles of a sphere falling through a viscoplastic mate-

ial [65] ; actually, Fig. 5 shows that the material at the bulge cor-

ers is yielded, but the low rates of deformation suggested there

y Figs. 8 and 11 indicate that the material is close to the un-

ielded state. It would not be unreasonable to suspect that in-

reasing the grid resolution locally might reveal small amounts of

yielded material at the corners. 

Figs. 10 (d) and 11 (b) do not show the whole picture as far as

nergy dissipation is concerned. The dissipation function only ac-

ounts for the mechanical energy that is converted into heat due to

uid deformation. But, whenever there is slip, mechanical energy

s also converted into heat by the sliding friction between the shaft

nd the material. Fig. 12 shows two curves on each plot: the rate

f work done by the shaft and the rate of energy dissipation within

he material. The area between the two curves is the energy con-

erted to heat due to sliding friction. When the slip coefficient is

mall, almost all of the energy is dissipated within the bulk of the

aterial due to fluid deformation, and the sliding friction plays a

ery minor role. On the contrary, when the slip coefficient is large,

liding friction plays a crucial role, converting mechanical energy

nto heat directly on the fluid / shaft interface, whereas energy dis-

ipation in the bulk of the material is weak. In Fig. 12 (f), which

orresponds to a bulgeless shaft, the energy dissipation in the bulk
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Fig. 11. Plots of the dimensionless dissipation function ˜ φ = φ/φref ( Eq. (17) ) for var- 

ious cases. The dimensional parameters have the values listed in Table 1 , unless 

otherwise indicated in each figure caption. 
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f the material (red line) is zero over the time intervals during

hich the material is completely unyielded ( u sh < u 
y 

sh 
). On the con-

rary, in Fig. 12 (c) (bulged shaft) this is never zero except when the

haft is stopped, as otherwise the bulge always causes some yield-

ng, as discussed previously. We note, finally, that Fig. 12 (a) and

d) provide further evidence that the flow is in quasi steady state,

ince all the instantaneous shaft work is dissipated, eventually by

iscous forces. The work done in accelerating the fluid, i.e. increas-

ng its kinetic energy, is negligible. This shows that the inertia of
he system is negligible as well. Cases with increased significance

f inertia will be examined later. 

.3. Effect of the damper geometry 

The effect of the bore radius R o on the reaction force is illus-

rated in Fig. 13 . The radii selected are 50 (base case), 37.15, 29.8

nd 25.6 mm, while the rest of the dimensional parameters have

he values displayed in Table 1 . The selected values of R o are such

hat the length of the gap R o − R b decreases by a constant ratio of

.75. Since lengths are dedimensionalised by H = R o − R i , changing

 o affects all the dimensionless parameters. In particular, compared

o the base case of R o = 50 mm, in the R o = 25.6 mm case Bn has

allen from 20 to 7.8, Re ∗ has fallen from 0.12 to 0.11 (but Re has

allen from 2.51 to 0.98), Sr has increased from 3.14 to 8.05, and 

˜ β
as increased slightly from 0.025 to 0.027. Therefore, judging from

hese numbers, reducing the bore radius in the present configura-

ion should in general reduce the viscoplasticity of the flow and

lso mildly reduce its inertial character. 

We first examine the case where the shaft has no bulge.

ig. 13 includes results for bulgeless shafts, drawn in dashed lines,

or all the selected R o values. This is hard to see in the Figure

hough, because all the dashed curves nearly coincide. Therefore,

or the range of values considered, the normalised force ˜ F R is nearly

ndependent of R o in the absence of a bulge; the actual force F R 
ncreases slightly because ˜ F R is normalised by F ref which is pro-

ortional to τref = τy + μU/H, which increases from about 33 Pa at

 o = 50 mm to about 35.5 Pa at R o = 25.6 mm. However, if Bn

s an appropriate indicator of the viscoplasticity of the flow, one

ould expect a greater difference between the force curve for R o 
 50 mm ( Bn = 20) and that for R o = 25.6 mm ( Bn = 7.8) – com-

are for example the curves for Bn = 20 and Bn = 5 in Fig. 7 (b).

s it is easily deduced from Figs. 14 (a) and 6 (d), despite the Bing-

am number being lower, a larger percentage of the material is

nyielded when R o = 25.6 mm than when R o = 50 mm. This can

e attributed to the geometrical confinement of the former case,

hich forces the streamlines to be straight over a longer distance,

hus reducing the deformation rates and favouring the unyielded

tate. 

In order to obtain more insight, we find it useful to discuss a

ne-dimensional flow that shares some similarity with the present

ow, that of annular Couette flow where the inner cylinder moves

ith a constant velocity and the outer one is stationary. This

ow is described in the Appendix, where it is shown that the

uter radius R o is important only if the flow is completely yielded,

hich occurs if R o does not exceed a critical value R y (given by

q. (A.7) in the Appendix), that depends on the dimensionless

umber 

 = 

τy R i 

μU 

(19) 

an alternative definition of the Bingham number, depending only

n R i and not on R o ). If R o exceeds R y then the material from R i to

 y is yielded with its velocity independent of R o , and from R y to

 o it is unyielded with zero velocity. Thus in this case it would be

isleading to use the Bingham number Bn as an indicator about

he flow; the alternative Bingham number B conveys all the rele-

ant information ( Eqs. (A.7) , (A.8) ). 

Fig. 15 shows that something similar happens in the bulgeless

amper cases, in the middle of the bore length. Fig. 15 (a) shows

hat the velocity gradient at the inner cylinder, and therefore also

he force F R , is relatively independent of R o ; thus F R is relatively

nsensitive to changes in Bn that are due to changes in R o , as

igs. 13 (a)–(b) also show. On the other hand, Fig. 15 (b) shows that

he velocity gradient at the inner cylinder, and therefore also the

orce, depends strongly on τ y ; thus F R is sensitive to changes in
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Fig. 12. Rate of energy dissipation for various values of the dimensionless slip coefficient ˜ β, with (top) and without (bottom) a bulge. The continuous blue line is the 

instantaneous total power consumption of the damper, calculated as −F R u sh . The dashed red line is the rate of dissipation of mechanical energy into heat due to fluid 

deformation, i.e. the integral of the dissipation function (16) over the computational domain. Both the power consumption and the dissipation rate are normalised by 

φref �tot where �tot is the total volume occupied by the fluid and φref is defined by Eq. (17) . The flow parameters are as listed in Table 1 , except for the slip coefficient which 

is varied to obtain the values of ˜ β shown. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article). 
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Bn that are caused by changes in τ y , as shown in Fig. 7 (b). So,

one must be careful when using Bn to assess the viscoplasticity of

the flow. Fig. 15 includes the corresponding yield lines for annu-

lar Couette flow (dash-dot lines). Obviously, there are differences

from the damper cases, but the trends are similar: R o has a min-

imal effect on the yield surfaces, while the effect of τ y is much

more important. 

A one-dimensional flow that is even closer, although not as en-

lightening, is annular Couette–Poiseuille flow in which the pres-

sure gradient is precisely that which results in zero overall flow

between the two cylinders. The equations are given again in the

Appendix, and the velocity profiles are drawn in dashed lines in

Fig. 15 . The similarity with the annular cavity flow is striking;

the profiles are nearly identical, and any differences can be at-

tributed to the boundary conditions: for annular Couette–Poiseuille

flow we used no-slip conditions. This explains why the discrep-

ancy becomes larger with the Bingham number, since viscoplas-

ticity leads to more slip as was discussed earlier. It is expected

that annular Couette–Poiseuille flow is a good approximation for

annular cavity flow away from the cavity sides, especially for long

cavities, when inertia effects are weak. This has not been inves-

tigated further, although it could be useful for certain practical

applications. 

In the case with a bulge, R o has a significant impact, for the

cases studied. It is evident from Fig. 13 that the narrower the

cylinder, the greater the force, and the less “viscoplastic” (flat) the

shape of its graph. An explanation can be sketched with the help
f Fig. 14 . As the gap between the bulge and the outer cylinder

ecomes narrower, larger fluid deformations and shear stresses de-

elop there. This causes a moderate increase in the total viscoplas-

ic component of F R , as seen in Fig. 13 (b), because the extent of

his high-shear area is rather small. However, these high localised

tresses make it more difficult for the material to flow through the

onstriction, and this requires higher pressure gradients to push it

hrough. This is evident by comparing Fig. 14 (c) and (d). The in-

reased pressure gradient does not just have a localised effect, but

t increases the pressure differences across the whole bulge re-

ulting in a significant increase of the pressure force ( Fig. 13 (c)).

lso, since the pressure gradient has to counteract the viscous

tresses that oppose the fluid flow through the constriction, and

he latter have a large μ ˙ γ component (compared to their τ y com-

onent) due to the narrowness of the constriction, the resulting

ressure force is more proportional to the shaft velocity (more

Newtonian-like”) the narrower the constriction is (again, see

ig. 13 (c)). 

In another set of simulations, the bore radius R o is held con-

tant while the bulge radius R b is varied. This also has the effect

f varying the narrowness of the constriction, but without chang-

ng any of the dimensionless numbers characterising the flow, ex-

ept the geometric ratio R b / R o ( Table 1 ). Fig. 16 shows that again,

ike when R o was varied, constricting the stenosis increases F R 
nd it does so mostly through the pressure component. The ex-

lanation is the same as for the variation of R o . It is interesting

o note in Fig. 16 (a) and (c) that some hysteresis is exhibited for
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Fig. 13. The dimensionless reaction force and its components as a function of dimensionless shaft displacement or velocity, for various bore radii, R o = 50, 37.15, 29.8 and 

25.6 mm. The rest of the parameters are as listed in Table 1 . In (a) and (b) the dashed lines depict results for bulgeless shafts. 

Fig. 14. Comparison between the flow fields for R o = 25.6 mm and 50 mm (the base case), at t = T . The rest of the parameters are as listed in Table 1 . The flow is visualised 

as described in the caption of Fig. 5 , only that the dimensionless pressure contours have a step of 2.4. 
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Fig. 15. Solid lines depict profiles of the axial velocity u along the radial direction, at x = L /2 and t = T ( t = 2 T in the Newtonian case), for bulgeless shafts. Dashed lines 

depict the corresponding profiles for steady annular Couette–Poiseuille flow with zero net flow (see Appendix), of the same R i , R o , U τ y and μ as the corresponding damper 

cases. Dash-dot lines are the yield lines of corresponding steady annular Couette flow (again, see Appendix), calculated from Eq. (A.7) . In (a) profiles are shown for various 

values of R o , while the rest of the dimensional parameters have the values shown in Table 1 ; there is only one dash-dot line because it is independent of R o . In (b) profiles 

are shown for various values of Bn , obtained by varying τ y and keeping the rest of the dimensional parameters as listed in Table 1 . 

Fig. 16. The dimensionless reaction force and its components as a function of dimensionless shaft displacement or velocity, for various bulge radii, R b = 0 (no bulge), 15, 20, 

25 and 30 mm. The rest of the parameters are as listed in Table 1 . 
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R b = 30 mm, meaning that the relative magnitude of inertia forces

increases with R b , despite the Reynolds number being constant.

Fig. 17 helps to explain why: increasing R b results in increased ve-

locities in a larger part of the domain as the constriction becomes

narrower but also the bulge occupies a larger part of the axial ex-

tent of the shaft. The increased velocities imply increased velocity

variations in time and space, and therefore increased inertia forces,

as the flow is transient and the streamlines are curved. 

Fig. 11 (c) and (d) shows plots of the dissipation function when

the shaft velocity is maximum, for the cases of minimum bore ra-

dius and maximum bulge radius tested. In 11 (c) one can discern

very high dissipation rates also at the cylinder bore, opposite to

the bulge. In 11 (d) the rate of dissipation does not reach so high
 t  
alues near the bore, because the gap between the bulge and the

ore is wider than in 11 (c), but there is extensive energy dissipa-

ion in a wide area of the domain. 

The results of this paragraph show that when changing the

amper geometry it is important not to rely too much on what

appens to the Bingham and Reynolds numbers in order to make

onjectures about the effects of the geometry change on the vis-

oplastic and inertial character of the flow. 

.4. Effect of the frequency 

Finally, we study the effect of the oscillation frequency on

he damper response. In particular, in addition to the f = 0.5 Hz
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Fig. 17. Non-dimensional velocity magnitude ‖ u ‖ / U at t = T for two different bulge radii R b . The rest of the flow parameters are as listed in Table 1 . Unyielded material is 

shown in white. The streamlines drawn correspond to equispaced values of the streamfunction from zero to the maximum value of each case. 

Fig. 18. The dimensionless reaction force as a function of dimensionless shaft displacement and velocity, for various oscillation frequencies, f = 0.5 (base case), 2 and 8 Hz. 

The rest of the parameters are as listed in Table 1 . 
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c  
ase case, we performed simulations for f = 2 and 8 Hz, while

eeping the rest of the dimensional parameters of Table 1 unal-

ered. The variation of the reaction force F R with respect to shaft

isplacement and velocity is plotted in Fig. 18 . For f = 2 Hz it was

bserved that all the material became unyielded when the shaft

topped, and so the simulation duration was set to t ∈ [0, T ], like

or most other simulations; but for t = 8 Hz the material continues

o flow even at the instances when the shaft is still, and so the

imulation duration was extended to t ∈ [0, 2 T ], which, as the re-
ults show ( Fig. 18 (a)), is more than enough to attain the periodic

tate. 

Increasing the frequency while holding the amplitude of oscil-

ation constant means that the maximum velocity U is increased

roportionally. This results in a reduction of the Bingham num-

er Bn and in an increase of the Reynolds number Re ∗. Unlike the

ituation presented in Section 4.3 , now the geometrical parame-

ers of the problem do not change between the different frequency

ases studied, and therefore Bn and Re ∗ are appropriate indicators
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Fig. 19. Instantaneous power consumption of the damper (blue, solid line) and rate 

of energy dissipation due to fluid deformation (red, dashed line) for different oscil- 

lation frequencies. For details see the caption of Fig. 12 . (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version 

of this article). 
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of the viscoplastic and inertial character of the flow, respectively.

As far as the rest of the dimensionless numbers are concerned,

the Strouhal number, being proportional to the dimensionless am-

plitude of oscillation, is not affected, while the slip coefficient ˜ β
drops, approaching its Newtonian value βμ/ H . 

Evidently, as f increases, the invariability of the reaction force,

which is characteristic of viscoplasticity, is lost. Fig. 18 ( b) shows

that the relationship between F R and the shaft velocity becomes

more linear as f increases, a sign that the μ ˙ γ component of stress

becomes dominant over the τ y component. This is reflected in

the reduction of the Bingham number, which falls from 20 at f =
0.5 Hz, to 5 at f = 2 Hz, and to 1.25 at f = 8 Hz. 

Similarly, the skewness of the force curve for f = 8 Hz

in Fig. 18 (a) and the hysteresis of the corresponding curve in

Fig. 18 ( b) reveal that when f is increased inertia becomes more

important. This is reflected in the increase of the Reynolds number

Re ∗, which increases from 0.12 at f = 0.5 Hz, to 1.68 at f = 2 Hz,

and to 17.9 at f = 8 Hz. This is in agreement with previous studies

[14,15] . We note that with the present modelling assumptions hys-

teresis is only associated with inertia effects. In the literature it is

often reported that in ER/MR dampers hysteresis is exhibited also

under low inertia conditions, when the displacement approaches

its extreme values (e.g. [13,17,41,66] ). It has been proposed that this

is due to the fluid exhibiting pre-yield elastic behaviour [66] or to

compressibility effects [13] , neither of which are accounted for by

the present Bingham model. 

Fig. 19 shows the time history of the rate of energy absorption

by the damper, −F R u sh , together with the rate of energy dissipation

in the bulk of the material due to its deformation, calculated as the

integral of the dissipation function, for f = 2 and 8 Hz. The corre-

sponding plot for f = 0.5 Hz is shown in Fig. 12 (b). Obviously, as

the frequency increases, there develops a phase difference between

the total rate of energy absorption and the rate of energy dissipa-

tion due to fluid deformation. In Fig. 12 (b) they are in phase with

each other and with the shaft velocity. However, in Fig. 19 (a), and

even more so in Fig. 19 (b), the variation of the total rate of energy

absorption is shifted towards earlier times, while the dissipation

due to fluid deformation remains in phase with the shaft veloc-

ity. This can be attributed to the role of inertia, which becomes

more important when the frequency is increased. In what follows,

a simple explanation for this will be presented which results in an

algebraic formula that describes well the main characteristics of

the damper response. 

Taking the dot product of the velocity vector with the momen-

tum equation and integrating over the whole volume � of the vis-

coplastic material, one obtains, after some manipulation, an energy

balance for the whole of that material [63] : ∫ 
∂�

(
−p n · u + n · τ · u 

)
dA ︸ ︷︷ ︸ 

Rate of work done by external forces 
= −F R u sh 

= 

∫ 
�

τ : ∇ u d�︸ ︷︷ ︸ 
Rate of energy dissipation 
due to fluid deformation 

+ 

∫ 
�

ρu · D u 

D t 
d�︸ ︷︷ ︸ 

Rate of increase of the 
kinetic energy of the fluid 

(20)

where ∂� is the boundary of the material, consisting of its inter-

face with the shaft and the containing cylinder. The vector n is the

outward unit vector normal to this surface, d A is an infinitesimal

area of the surface, and D / D t = ∂ /∂ t + u · ∇ is the substantial time

derivative. The above equation says that all the work done on the

fluid by the motion of the shaft is either dissipated or stored as ki-

netic energy of the fluid. Actually, the left hand side is only equal

to −F R u sh in the absence of slip; otherwise it is smaller. But for this

simplified analysis we will neglect slip. The goal is to make conjec-

tures about the temporal variation of the terms of the right-hand
ide of Eq. (20) and combine them to estimate the overall tempo-

al variation of the damper work. To proceed, we will assume that

he terms of the right-hand side can be expressed as products of

 characteristic force, viscoplastic or inertial, respectively, times a

haracteristic fluid velocity. 

Velocities and velocity gradients in the fluid can be assumed to

e roughly proportional to the shaft velocity u sh = U cos (ωt) . Then,

f the flow is viscoplastic, the viscoplastic forces would be expected

o be of the form F V = F 0 
V 

(b sign ( cos (ωt)) + cos (ωt)) / (b + 1) , for

ome constant b proportional to the Bingham number. But the

unction b sign(cos ( ωt )), which is a square wave of the same fre-

uency as cos ( ωt ), bears some resemblance to cos ( ωt ) and their

um can be replaced by just (b + 1) cos (ωt) for the purposes of

his simplified analysis. A typical viscoplastic force would then

ave the form F V = F 0 
V 

cos (ωt) . The maximum value F 0 
V 

would in-

rease with the maximum shaft velocity U = αω but not pro-

ortionally, due to the constant plastic component of the force;

ut it should tend to become proportional to U (and ω) at high

requencies. 

Similarly, we assume that accelerations in the fluid are pro-

ortional to the shaft acceleration, ˙ u sh = −ω U sin (ω t) , so that a

ypical inertia force such as that appearing in the last term of

q. (20) has the form F I = ρD u / D t = −F 0 
I 

sin (ωt) . The maximum

alue F 0 
I 

would be proportional to the maximum shaft acceleration

 U = ω 

2 α. Thus, increasing the frequency favours inertial forces
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ver viscous forces: the ratio F 0 
I 

/F 0 
V 

tends to become proportional

o ω. 

Under these assumptions Eq. (20) can be approximated by 

F R u sh = c 
(
F 0 V cos (ωt) − F 0 I sin (ωt) 

)
U cos (ωt) 

= cU 

√ 

(F 0 
V 
) 2 + (F 0 

I 
) 2 ︸ ︷︷ ︸ 

c ′ 

( 

F 0 V √ 

(F 0 
V 
) 2 + (F 0 

I 
) 2 

cos (ωt) 

− F 0 I √ 

(F 0 
V 
) 2 + (F 0 

I 
) 2 

sin (ωt) 

) 

cos (ωt) 

= c ′ ( cos δ cos (ωt) − sin δ sin (ωt) ) cos (ωt) 

= c ′ cos ( ωt + δ) cos (ωt) 

= (c ′ / 2) [ cos δ + cos (2 ωt + δ) ] (21) 

here we have used some simple trigonometric identities, c and

 

′ are constants (actually, c ′ depends on ω but not on t ), and δ
s the angle adjacent to the side of length F 0 

V 
of a right trian-

le whose perpendicular sides have lengths F 0 
V 

and F 0 
I 

. Thus δ =
rctan (F 0 

I 
/F 0 

V 
) , and when the viscous forces dominate ( F 0 

I 
/F 0 

V 
→ 0 ),

.e. when the Reynolds number is very small, then δ is close to

ero; and when the inertia forces are much larger than the viscous

orces ( F 0 
I 

/F 0 
V 

→ ∞ ), i.e. when the Reynolds number is very large,

hen δ tends to π /2. 

According to Eq. (21) , the rate of energy absorption by the

amper is proportional to cos δ + cos (2 ωt + δ) ; this has two parts:

 constant part, cos δ, and a time-varying part, cos (2 ω + δ) . It fol-

ows that the rate of energy absorption by the damper varies with

 frequency of 2 ω, twice that of the shaft oscillation. This is con-

rmed by Figs. 12 and 19 , and is easily explained by the fact

hat each shaft oscillation can be split into two half-periods, one

hen the shaft is moving from left to right and one when the

haft is moving from right to left. The variation of the rate of

nergy absorption is exactly the same in both half-periods, due

o flow symmetry: F R (t + T / 2) u sh (t + T / 2) = (−F R (t))(−u sh (t)) =
 R (t) u sh (t) . Therefore each of these two half-periods is a full pe-

iod of the variation of the rate of energy absorption. 

When Re ∗ is small and inertia is negligible then δ ≈ 0 and

os ( δ) ≈ 1 and Eq. (21) predicts that −F R u sh is proportional to

 + cos (2 ω) , which is always positive or zero. This is confirmed by

igs. 12 (b) and 19 (a). It is also in phase with the shaft oscillation,

lbeit at twice the frequency; when the shaft moves with max-

mum velocity (either positive or negative) −F R u sh is maximum,

nd when the shaft momentarily becomes still −F R u sh drops to

ero. This is because the only forces of importance are the viscous

orces, and they are proportional to the shaft velocity, according to

ur assumptions. Fig. 12 , corresponding to a low Reynolds number,

onfirms this. 

On the other hand, if the relative magnitude of the inertia

orces is increased, i.e. at higher Re ∗, Eq. (21) predicts that the vari-

tion of the rate of energy absorption −F R u sh will precede the vari-

tion of shaft velocity by an increasing phase difference δ (which

owever will never exceed the value π /2). This is confirmed by

igs. 12 (b), 19 (a) and (b), where higher frequencies are seen to

orrespond to larger δ. A consequence is that the maximum energy

bsorption occurs not when the shaft velocity is maximum, like

n the low Re ∗ cases, but earlier. It is a matter of balance between

iscous and inertia forces: as the shaft accelerates from a still po-

ition (maximum displacement) to its maximum velocity position

zero displacement) the velocity rises but the acceleration drops.

ccordingly, viscous forces rise from zero to their maximum, while

nertial forces drop from their maximum to zero; the maximum

ate of energy absorption occurs somewhere in between. This

ituation is similar to that described by Iwatsu et al. [19] for the
scillating lid driven cavity problem, who report that the time lag

etween the lid force and the lid velocity increases with frequency.

Another consequence of the phase difference δ, which can be

een clearly only in Fig. 19 (b), is that, roughly during the shaft

cceleration phase, the rate of energy absorption (blue curve) is

arger than the rate of viscous dissipation (red curve) because

ome of the absorbed energy becomes kinetic energy of the fluid

ather than being dissipated. Conversely, during the shaft deceler-

tion phase, the rate of viscous dissipation is larger than the rate

f energy absorption by the damper, as it is not only this absorbed

nergy but also the kinetic energy of the contained fluid that are

issipated. But the integrals of both lines in Fig. 19 (b) over an in-

eger number of cycles must be equal (if slip is neglected), because

he kinetic energy at t = t 0 is equal to that at t = t 0 + kT for k in-

eger and therefore all the absorbed energy has been converted to

eat. 

The fact that δ > 0 also means that cos δ + cos (2 ωt + δ) will

ecessarily become negative during certain time intervals, because

os δ < 1. Indeed, this can be seen in Fig. 19 (b), where −F R u sh be-

omes negative during short time intervals just before the shaft

ecomes still. During these time intervals the flow of energy is re-

ersed, i.e. instead of going from the shaft to the fluid it returns

rom the fluid (kinetic energy) to the shaft (mechanical energy).

he fact that −F R u sh < 0 means that F R and u sh have the same sign,

o that during such a time interval as the shaft is decelerating, in-

tead of having to push away the fluid in front of it, it is pushed

orward by the fluid behind it. This is because the fluid has ac-

uired momentum in the direction of the shaft motion, and the

nertia of the fluid is significant. 

The maximum rate of work is roughly proportional to the con-

tant c ′ in (21) , which increases with ω, so that increasing the fre-

uency results in higher rates of energy absorption. This can be

een in Figs. 12 (b), 19 (a) and (b), but the exact relationship be-

ween the magnitude of energy absorption and ω is a bit compli-

ated and things are made even more complicated by the fact that

n the figures the rate of work is normalised by φref �tot (see cap-

ion of Fig. 12 ) which also depends on ω, through the velocity U

 Eq. (17) ). 

This simplified analysis is useful, but it has its limitations. In

ig. 19 (b) it may be seen that for f = 8 Hz the integral of the dis-

ipation function is not exactly proportional to the shaft velocity.

n particular, its value is minimum but non-zero when the shaft

elocity is zero. In fact the dissipation function is never zero be-

ause the fluid never ceases to flow, due to inertia, even when

he shaft is still. This is demonstrated in Fig. 11 (f), which shows

 plot of the dissipation function for f = 8 Hz at a time instance

hen the shaft is still. On the other hand, maximum energy dissi-

ation occurs when the shaft velocity is maximum, as in Fig. 11 (e),

here one can notice the asymmetry that is due to the substan-

ial inertia of the fluid. One can also notice in the same Figure the

ncreased importance of the regions near the shaft endpoints in

erms of energy dissipation, where the increased velocities at high

requencies produce high velocity gradients, and reduce the role of

iscoplasticity. 

. Conclusions 

In this paper we studied numerically the viscoplastic flow in

n extrusion damper where a sinusoidal displacement is forced on

he damper shaft. The flow is assumed axisymmetric, and, except

hen the shaft is bulgeless, the shape of the domain changes with

ime. To cope with this, a finite volume method applicable to mov-

ng grids was employed. As the calculation of the force on the shaft

s crucial, the usual no-slip boundary condition is inappropriate

ue to the velocity discontinuities at the shaft endpoints, and the

avier slip boundary condition was employed instead. A series of
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simulations was performed, where several parameters were varied,

in order to study the effects of viscoplasticity, slip, damper geom-

etry, and oscillation frequency on the damper response. 

The reciprocating motion of the bulged shaft creates a ring-

shaped flow around the bulge, as the latter pushes away the fluid

in front of it; away from the bulge the fluid motion is very weak.

The bulge creates a stenosis through which the fluid is pushed

(“extruded”). In order to overcome the resisting viscous stresses

and push the fluid across, high pressure gradients develop; in turn

these result in pressure differences between the two sides of the

bulge that give rise to significant pressure forces. These pressure

forces are the major contribution of the bulge to the total reac-

tion force, and they are larger when the constriction is narrower,

i.e. when the bulge diameter is larger or when the outer cylinder

diameter is smaller. 

The bulgeless case, an annular analogue of the lid-driven cavity

problem, was studied as well. It was shown that at low Reynolds

numbers, away from the damper end walls, the flow can be

approximated very accurately by annular Couette–Poiseuille flow

where the pressure gradient is precisely that required for zero net

flow across the annulus. The flow pattern is different from the

bulged case, with most of the flow occurring in a thin layer sur-

rounding the shaft; the radius of the outer cylinder plays a minor

role in this case. 

The more viscoplastic the flow is the less the force varies dur-

ing the damper operation. This is often desirable, because it max-

imises the energy absorbed for a given force capacity. In combina-

tion with slip, viscoplasticity can result in a situation where the

shaft moves while the fluid is unyielded and stationary. In this

case, but also in every case that there is slip, even if the fluid is

yielded, mechanical energy is dissipated not only in the bulk of the

fluid due to deformation, but also directly at the fluid-shaft inter-

face due to friction. The percentage of energy lost in this way can

be significant if the slip coefficient is large, but also if the yield

stress is high (these two are combined in the dimensionless slip

coefficient ˜ β). 

Increasing the frequency of oscillation makes the inertia of the

system more significant and introduces hysteresis into the damper

response to the sinusoidal forcing. It also brings the kinetic energy

of the fluid into the energy balance, introducing a phase shift of

the energy absorption rate relative to the sinusoidal forcing. Fur-

thermore, increasing the frequency weakens the viscoplastic char-

acter of the damper response, i.e. it results in greater dependency

of the reaction force on the shaft velocity. 

Plots of the dissipation function reveal that most of the energy

dissipation occurs near the outer part of the bulge and near the

shaft ends. When the constriction between the bulge and the outer

cylinder is narrow, high dissipation occurs also at the outer cylin-

der, at the region opposite to the bulge. At the shaft ends there

develop high velocity gradients, even when slip occurs. However,

these high velocity gradients contribute less to the overall force

when the flow is more viscoplastic. 

Overall, a two-dimensional simulation can reveal more details

about the operation of a damper than a simplified one-dimensional

analysis. The present work investigated only dampers operating

with Bingham fluids, but in practice the fluids used may exhibit

more rheologically complex behaviour, possibly with temperature

effects, shear-thinning, viscoelasticity, and thixotropy. The present

methodology could be extended to cover these cases as well. 
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ppendix A. Annular Couette and Couette–Poiseuille flow of a 

ingham fluid 

Consider first the steady, annular Couette flow of a Bingham

uid between two concentric cylinders of infinite length, of which

he inner one, of radius R i , moves with a constant velocity U in the

xial direction while the outer one, of radius R o , is stationary. The

ressure gradient is zero, the only non-zero velocity component is

he axial component u , and the only non-zero stress component is

rx . The flow is one-dimensional and steady so that u = u (r) and

rx = τrx (r) are functions only of the radial coordinate r . No-slip

oundary conditions are assumed. This flow has an analytical so-

ution which is presented in [3] , but the location of the yield line

s not given there explicitly in closed form. Here we will do so

ith the help of the Lambert W function [67] . For this flow, the

omentum equation simplifies to 

rx = 

c 

r 
(A.1)

or some constant c . Therefore, the stress decreases monotonically

rom r = R i to r = R o and thus it is maximum at R i . Since the rel-

tive motion between the cylinders implies that yielding is always

resent, the inner cylinder is always in contact with yielded mate-

ial and the stress there exceeds the yield stress. Substituting the

ne-dimensional version of the constitutive equation (4) into Eq.

A.1) , integrating, and using the boundary condition that u (R i ) = U,

e arrive at the following equation which is valid from r = R i up

o any radius where the material is yielded: 

u 

U 

= 1 − c 

μU 

ln 

(
r 

R i 

)
+ 

τy 

μU 

(r − R i ) (A.2)

Let us assume at first that the yielded region extends up to the

uter cylinder, i.e. that R o is not large enough for τ rx to fall below

y . Using the boundary condition u (R o ) = 0 we can determine the

onstant c : 

 = 

τy (R o − R i ) + μU 

ln (R o /R i ) 
(A.3)

his can then be substituted in Eq. (A.2) to obtain the velocity: 

u 

U 

= 1 − ln ( ̃ r ) 

ln ( ̃  R o ) 
− Bn 

[
ln ( ̃ r ) 

ln ( ̃  R o ) 
− ˜ r − 1 

˜ R o − 1 

]
(A.4)

here ˜ r ≡ r/R i , ˜ R o ≡ R o /R i and Bn is the familiar Bingham number,

q. (7) (with H = R o − R i , as usual). The term in square brackets in

A.4) is always positive, or zero for r = R i ( ̃ r = 1 ) and r = R o ( ̃ r =
˜ 
 o ), so that increasing the Bingham number reduces the velocity.

q. (A.4) is valid as long as the stress at R o has not fallen below τ y .

he larger R o the lower τ rx ( R o ) will be; for all the material to be

ielded R o must not exceed a value, say R y , such that τrx (R y ) = τy ,

r, using Eqs. (A.1) and (A.3) : 

τy (R y − R i ) + μU 

ln (R y /R i ) 
· 1 

R y 
= τy 

mploying the alternative Bingham number 

 ≡ τy R i / (μU) (A.5)

hich is based on the radius R i instead of the gap H = R o − R i , as

ell as the ratio 

˜ 
 y ≡ R y /R i (A.6)

fter some rearrangement, one obtains: 

˜ 
 y 

(
ln 

˜ R y − 1 

)
= B 

−1 − 1 

his equation can be solved using the Lambert W function, which

s the inverse function of f (x ) = x e x : x e x = y ⇔ x = W (y ) . Noting

hat 1 = ln e , we can manipulate the above equation to get: 

˜ 
 y = e 

W 

(
B −1 −1 

e 

)
+1 

(A.7)
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he Lambert W function is double-valued on the interval (−1 /e, 0) ,

here we follow its upper branch because the lower branch results

n 

˜ R y < 1 , an unrealistic result. 

So, for R i < R o ≤ R y the velocity is given by Eq. (A.4) . What

appens when R o > R y ? In that case, at the outer cylinder τ rx < τ y 

nd therefore that cylinder is in contact with a layer of unyielded

aterial, where the velocity is zero due to the no-slip boundary

ondition and the fact that the outer cylinder is stationary. So, in

his case there are two layers of fluid: a yielded one in contact

ith the inner cylinder, and an unyielded one in contact with the

uter cylinder. The velocity variation in the yielded layer together

ith the location of the interface between the two layers can be

ound from Eq. (A.2) by using the boundary conditions u = 0 and

rx = τy at the interface. But we have already done that; the loca-

ion of the interface is R y , Eq. (A.7) , and the velocity is given by Eq.

A.4) with R o replaced by R y . With a little manipulation the result

or this partially yielded case is 

 

 

 

 

 

 

 

 

 

u 

U 

= 1 − ln ( ̃ r ) 

ln ( ̃  R y ) 

−B ( ̃  R y − 1) 
[ 

ln ( ̃ r ) 

ln ( ̃ R y ) 
− ˜ r −1 

˜ R y −1 

] 
, R i ≤ r ≤ R y 

u = 0 , R y ≤ r ≤ R o 

(A.8) 

he thickness of the yielded layer ˜ R y − 1 is a strictly decreasing

unction of B . We note that according to Eqs. (A.7) and (A.8) the

hickness and the velocity of the yielded layer are independent of

he outer cylinder diameter, contrary to the fully yielded case ( Eq.

A.4) ). This is reflected in the use of B instead of Bn in the partially

ielded case. 

Next, consider the case of annular Couette–Poiseuille flow, i.e.

et there also be an axial pressure gradient d p /d x � = 0. This case

an be solved in a similar manner, but it is more complex and

here are many possible flow types depending on the importance

f the pressure gradient relative to the inner cylinder velocity. All

he possibilities are reported by Liu and Zhu [29] , but here we are

nly interested in the case where the pressure gradient opposes

he cylinder motion and causes a zero net flow through any annu-

ar section. This may be a good approximation to the flow in an

nnular cavity, where the sides of the cavity restrict the flow in

he axial direction. This case falls under “Case I” of Liu and Zhu

29] , and the flow pattern consists of two yielded layers adjacent

o the two cylinders, with an unyielded layer in between. The in-

er yielded layer moves mostly along with the inner cylinder, but

ts outer part moves in the opposite direction; the unyielded layer

nd the outer yielded layer move opposite to the inner cylinder.

uppose the yield lines are at r = y 1 and y 2 ( ̃ r = ˜ y 1 and ˜ y 2 ). Then

he velocity is given by 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

u 
U 

= 1 + B ( ̃ r − 1) + 

1 
4 

P ( ̃ r 2 − 1) 

−
(
B ̃

 y 1 + 

1 
2 

P ̃  y 2 1 

)
ln ( ̃ r ) , R i ≤ r ≤ y 1 

u = u (y 1 ) = u (y 2 ) , y 1 < r < y 2 

u 

U 

= B ( ̃  R o − ˜ r ) − 1 
4 

P ( ̃  R 

2 
o − ˜ r 2 ) 

+ 

(
B ̃

 y 2 − 1 
2 

P ̃  y 2 2 

)
ln 

(
˜ r 

˜ R o 

)
, y 2 ≤ r ≤ R o 

(A.9) 

here P is a dimensionless pressure gradient 

 ≡ d p 

d x 

R 

2 
i 

μU 

(A.10) 

he yield lines can be found from the fact that the velocities are

qual there, u (y 1 ) = u (y 2 ) , using also the relation 

˜ 
 2 = 

˜ y 1 + 2 B/P (A.11) 
hich derives from the momentum balance on the unyielded layer.

he result is 

 + B 

(
B 

P 
− ˜ R o − 1 

)
+ 

1 

4 

P ( ̃  R 

2 
o − 1) + B ̃

 y 1 

+ 

(
B ̃

 y 1 + 

1 

2 

P ̃  y 2 1 

)
ln 

(
˜ y 1 + 2 B/P 

˜ R o ̃  y 1 

)
= 0 (A.12) 

q. (A.12) can be solved numerically to obtain ˜ y 1 , and then ˜ y 2 is

btained from (A.11) . Thus Eq. (A.9) contains no unknown terms

nd can be integrated to obtain the flow rate Q = 2 π
∫ R o 

R i 
ur d r . For

 given geometry, fluid, and inner cylinder velocity, the flow rate

epends on the pressure gradient, Q = Q(P ) . We seek the pres-

ure gradient that results in Q(P ) = 0 . This is solved numerically

n the present work, using the Newton–Raphson method, with

 Q /d P calculated numerically by perturbing Q . The results shown

n Fig. 15 were obtained in this manner. 

For completeness, we also give the velocity when the flow is

ewtonian (also shown in Fig. 15 (b)): 

u 

U 

= 1 + 

1 

4 

P ( ̃ r 2 − 1) −
[ 

1 + 

1 

4 

P ( ̃  R 

2 
o − 1) 

] 
ln ( ̃ r ) 

ln ( ̃  R o ) 
(A.13)
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