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a b s t r a c t 

We analyse the circular Couette flow of Herschel–Bulkley fluids to investigate the validity of the assumption that 

the rate of strain distributions across the gap share a common point. It is demonstrated that this is true only with 

fully-yielded Bingham -plastic flow. In other cases, e.g., in partially-yielded Bingham-plastic flow or fully-yielded 

Herschel–Bulkley flow, the common point for the fully-yielded Bingham case provides a good approximation 

for determining material constants only if the gap is sufficiently small. We also revisit the important issue of 

determining material properties of viscoplastic fluids by using “true values ” for the rate of strain and demonstrate 

that the material properties can be very different from those obtained using “apparent’ values for the rate of strain. 
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. Introduction 

The main objective in viscometry is to determine objectively fluid

aterial constants independent of experimental and analysis errors. In

rinciple, these material constants are determined by curve fitting using

he measured values of stress and the rate of strain. However, in complex

uids, the rate of strain depends on both the velocity distribution and

he material constants whose values of course are unknown and they

re the objective of the analysis. Unfortunately, only in very few cases

he velocity distribution is both known a priori and independent of the

aterial constants. Traditionally then the velocity distribution is taken

rom the analytical solution of an a priori assumed constitutive model,

uch as the Newtonian or the power-law models. It turns out however

hat the rate of strain calculated using the predicted material constants

s usually different from the initially assumed rate. This is because the

nitially assumed constitutive model for an arbitrary fluid is not nec-

ssarily the same as that determined by the experiments. For example,

ne can assume initially a Newtonian behavior to end up predicting a

erschel–Bulkley flow curve! Therefore, analyses where the rheology is

ssumed a priori can only yield “apparent ” and not “true ” material con-

tants. As shown in [1] the introduced error in viscoplastic fluids can

e significant. In the present work, by using data for typical viscoplas-

ic fluids we demonstrate this fact and explain in detail of how “true ”

aterial parameters can be obtained. 
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In the following sections, we summarize already available analytical

olutions for the circular Couette flow of Herschel–Bulkley materials and

iscuss the existence of common intersection points. Then, we analyze

he flow in the general case and propose a systematic method for the

etermination of the material constants of Herschel–Bulkley fluids. We

ocus on an interesting approach proposed by Schummer and Worthoff

3] where in viscometric flows flow curves can intersect at a common

oint within the rheometer whose location is independent of the rheol-

gy of the fluids. Schummer and Worthoff [3] demonstrated this concept

or a number of flows and found approximate locations where the result-

ng experimental error is minimum. Obviously, this is a profound result

ecause one can experimentally get “true ” material constants without

teration or other corrections. We investigate this concept for the case

f Herschel–Bulkley fluids in a rotational rheometer whose basic flow

s represented by the classical circular-Couette flow. The general prob-

em of the rate of strain being a function of the material constants can be

esolved by proper iteration between the experimental data and the pre-

icted model parameters [2] . Finally, the method is applied to available

ata for a cosmetic emulsion and a coal-water mixture. To our knowl-

dge, this is the first time that comparisons between true and apparent

alues of the rheological parameters are made. For the particular exper-

mental data, the relative errors in the consistency index, the power-law

xponent, and the yield stress are found to be high, moderate, and very

mall, respectively. 
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Fig. 1. Schematic of the geometry of the flow. 
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. Theoretical framework 

Let us consider the steady flow of a viscoplastic material between two

o-axial, infinitely long cylinders of radii 𝑅 

∗ 
1 and 𝑅 

∗ 
2 , where 𝑅 

∗ 
2 > 𝑅 

∗ 
1 . It

hould be noted that throughout this work the stars denote dimensional

uantities. Symbols without stars will denote dimensionless variables

nd parameters. The inner cylinder is rotating at a constant speed Ω∗ 

hile the outer cylinder is fixed, as illustrated in Fig. 1 . The solution of

his flow can be found in the literature (see, e.g., [1] ). It is thus conve-

iently summarized here in order to provide the theoretical basis for the

etermination of “real ” material constants and to illustrate the range of

alidity of the assumption that there is a common point independent of

he fluid rheology. 

Under the assumption of axisymmetric flow only in the azimuthal

irection, the conservation of linear momentum for any fluid yields 

∗ 
𝑟𝜃

= 

𝑐 ∗ 

𝑟 ∗2 
(1)

nd the rate of strain is given by 

̇ ∗ = 𝑟 ∗ 
||||| 𝑑 

𝑑 𝑟 ∗ 

( 

𝑢 ∗ 
𝜃

𝑟 ∗ 

) ||||| = − 𝑟 ∗ 
𝑑 

𝑑 𝑟 ∗ 

( 

𝑢 ∗ 
𝜃

𝑟 ∗ 

) 

(2)

he constitutive equation for a Herschel–Bulkley fluid may be written

n scalar form as follows: 
 

𝛾̇∗ = 0 , 𝜏∗ ≤ 𝜏∗ 0 
𝜏∗ = 𝜏∗ 0 + 𝑘 ∗ 𝛾̇∗ 𝑛 , 𝜏∗ > 𝜏∗ 0 

(3)

here 𝜏∗ = |𝜏∗ 
𝑟𝜃
|, 𝜏∗ 0 is the yield stress, n is the power-law exponent, and

 

∗ is the consistency index. The above model is a combination of the

ingham-plastic model ( n = 1) and the power-law model ( 𝜏∗ 0 = 0) . The

ewtonian fluid corresponds to n = 1 and 𝜏∗ 0 = 0 . 
In what follows, we will work with non-dimensionalized equations.

he dimensionless variables are defined by 

 

𝜃
≡ 𝑢 ∗ 

𝜃

Ω∗ 𝑅 

∗ 
1 
, 𝑟 ≡ 𝑟 ∗ 

𝑅 

∗ 
1 
, 𝛾̇ ≡ 𝛾̇∗ 

Ω∗ , 𝜏 ≡ 𝜏∗ 

𝜏∗ 0 
(4)

ith the above scalings, the dimensionless form of the constitutive

quation (3) is 
 

𝛾̇ = 0 , 𝜏 ≤ 1 
𝜏 = 1 + 

1 
𝐵𝑛 

𝛾̇𝑛 , 𝜏 > 1 (5)

here 

𝑛 ≡ 𝜏∗ 0 
𝑘 ∗ Ω∗ 𝑛 (6)

s the Bingham number. Combining Eqs. (1) and (5) , the non-

imensional rate of strain in the yielded regime ( 𝜏 > 1) is given by 

𝛾̇ = 𝐵 𝑛 1∕ 𝑛 
(
𝑐 

2 − 1 
)1∕ 𝑛 

(7)

𝑟 

102 
here 𝑐 ≡ 𝑐 ∗ ∕ 𝑅 

∗2 
1 𝜏

∗ 
0 . To obtain the velocity 𝑢 ∗ 

𝜃
one simply needs to inte-

rate and apply the boundary conditions. Below a certain critical Bing-

am number, Bn crit , the fluid is yielded everywhere in the gap 1 ≤ r ≤ R 2 .

n this case the boundary conditions are 𝑢 
𝜃
(1) = 1 and 𝑢 

𝜃
( 𝑅 2 ) = 0 (no-slip

oundary conditions), which lead to the following expression for the ve-

ocity 

 

𝜃
( 𝑟 ) = 𝑟 

[ 

1 − 𝐵 𝑛 1∕ 𝑛 ∫
𝑟 

1 

1 
𝜉

( 

𝑐 

𝜉2 
− 1 

) 1∕ 𝑛 
𝑑𝜉

] 

, 1 ≤ 𝑟 ≤ 𝑅 2 (8)

here the constant c is calculated by demanding that 

 𝑛 1∕ 𝑛 ∫
𝑅 2 

1 

1 
𝜉

( 

𝑐 

𝜉2 
− 1 

) 1∕ 𝑛 
𝑑𝜉 = 1 (9)

bove the critical value Bn crit , the fluid is yielded only partially in the

ange 1 < r < r 0 , where r 0 < R 2 is the radial distance from the inner cylin-

er to the point where 𝜏 = |𝜏𝑟𝜃| = 1 . From Eq. (7) it is deduced that 

 = 𝑟 2 0 (10)

nd therefore 

𝛾̇ = 

⎧ ⎪ ⎨ ⎪ ⎩ 

𝐵 𝑛 1∕ 𝑛 
( 

𝑟 2 0 
𝑟 2 

− 1 
) 1∕ 𝑛 

, 1 ≤ 𝑟 ≤ 𝑟 0 

0 , 𝑟 0 ≤ 𝑟 ≤ 𝑅 2 

(11)

nd 

 

𝜃
( 𝑟 ) = 

⎧ ⎪ ⎨ ⎪ ⎩ 

𝑟 

[ 

1 − 𝐵 𝑛 1∕ 𝑛 ∫ 𝑟 

1 
1 
𝜉

( 

𝑟 2 0 
𝜉2 

− 1 
) 1∕ 𝑛 

𝑑𝜉

] 

, 1 ≤ 𝑟 ≤ 𝑟 0 

0 , 𝑟 0 ≤ 𝑟 ≤ 𝑅 2 

(12)

here r 0 is a root of 

 𝑛 1∕ 𝑛 ∫
𝑟 0 

1 

1 
𝜉

( 

𝑟 2 0 

𝜉2 
− 1 

) 1∕ 𝑛 

𝑑𝜉 = 1 (13)

. Special solutions when 1/ n is an integer 

For selected values of n , i.e. n = 1, 1/2, 1/3 etc., the equations used

n the general case can be integrated analytically [1] . 

.1. The Bingham plastic case (n = 1) 

For a Bingham plastic ( n = 1) it turns out that for Bn > Bn crit , 

 𝜃( 𝑟 ) = 𝑟 

[ 

1 − 𝐵𝑛 

{ 

𝑟 2 0 
2 

(
1 − 

1 
𝑟 2 

)
− ln 𝑟 

} ] 

, 1 ≤ 𝑟 ≤ 𝑟 0 (14)

nd 

𝛾̇ = 𝐵𝑛 

( 

𝑟 2 0 

𝑟 2 
− 1 

) 

, 1 ≤ 𝑟 ≤ 𝑟 0 (15)

here r 0 is a root of 

𝑛 = 

2 
𝑟 2 0 − 2 ln 𝑟 0 − 1 

(16)

bviously, the critical Bingham number Bn crit above which the flow is

artially yielded is: 

 𝑛 𝑐𝑟𝑖𝑡 = 

2 
𝑅 

2 
2 − 2 ln 𝑅 2 − 1 

(17)

t is instructive to plot Bn crit versus the outer radius R 2 , as in Fig. 2 .

he critical Bingham number increases exponentially with the rheome-

er gap ( 𝑅 2 − 1) . When the dimensionless gap is 0.01 ( 𝑅 2 = 1 . 01 ) the

ritical Bingham number is so high ( 𝐵 𝑛 𝑐𝑟𝑖𝑡 = 10033 ) that one can safely

ssume that the flow is fully yielded for all non-exotic viscoplastic mate-

ials. However, if the gap is big the critical Bingham number is low and

he possibility of having partially yielded flow cannot be excluded. For

xample, 𝐵 𝑛 = 103 . 2 and 26.54 when 𝑅 = 1 . 1 and 1.2, respectively. 
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Fig. 2. Variation of the critical Bingham Bn crit beyond which the flow is partially 

yielded with the dimensionless rheometer gap ( 𝑅 2 − 1) . 
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Fig. 3. Variation of r c with the dimensionless rheometer gap ( 𝑅 2 − 1) : (a) loga- 

rithmic plot; (b) linear plot; r m is the radius corresponding to the middle of the 

gap. 
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For Bn ≤ Bn crit (fully-yielded flow) the velocity is given by 

 𝜃( 𝑟 ) = 𝑟 

[ 

1 + 𝐵𝑛 ln 𝑟 − 

1 + 𝐵𝑛 ln 𝑅 2 (
1 − 1∕ 𝑅 

2 
2 
) (

1 − 

1 
𝑟 2 

)] 

, 1 ≤ 𝑟 ≤ 𝑅 2 (18)

ence, the shear rate is 

̇ = 𝑟 
|||| 𝑑 𝑑𝑟 

( 𝑢 𝜃

𝑟 

)|||| = 2 
1 + 𝐵𝑛 ln 𝑅 2 (
1 − 1∕ 𝑅 

2 
2 
)
𝑟 2 

− 𝐵𝑛, 1 ≤ 𝑟 ≤ 𝑅 2 (19)

t is easily verified that the critical radius r c at which 𝑑 ̇𝛾∕ 𝑑𝐵𝑛 = 0 is 

 𝑐 = 𝑅 2 

√ 

2 ln 𝑅 2 

𝑅 

2 
2 − 1 

(20) 

y substituting into Eq. (19) one finds that the corresponding rate of

train is 

̇ 𝑐 = 

1 
ln 𝑅 2 

(21) 

t this point the shear rate is independent of the Bingham number. By

etting Bn = 0 in Eqs. (18) and (19) the Newtonian expressions are re-

overed. It should be noted, however, that in this case a scaling different

rom that of Eq. (4) should be used for the shear stress. 

The variation of r c with the dimensionless gap ( 𝑅 2 − 1) is illustrated

n Fig. 3 . For very small gap sizes, i.e. ( 𝑅 2 − 1) < 0 . 1 this point essen-

ially coincides with the mean radius in the gap, r m 

. As the gap size is

ncreased, the common point moves closer to the rotating inner cylinder.

.2. The case for n = 1/2 

Even though the solutions for n = 1/2 and 1/3 are provided in [1] ,

e repeat the former here for convenience. When n = 1/2, the critical

ingham number is found to be given by 

 𝑛 𝑐𝑟𝑖𝑡 = 

2 √ 

𝑅 

4 
2 − 4 𝑅 

2 
2 + 4 ln 𝑅 2 + 3 

(22)

or Bn > Bn crit (partially-yielded flow), 

 𝜃( 𝑟 ) = 𝑟 

[ 

1 − 𝐵 𝑛 2 

{ 

ln 𝑟 − 𝑟 2 0 

(
1 − 

1 
𝑟 2 

)
+ 

𝑟 4 0 
4 

(
1 − 

1 
𝑟 4 

)} ] 

, 1 ≤ 𝑟 ≤ 𝑟 0 

(23) 

nd 

𝛾̇ = 𝐵 𝑛 2 

( 

𝑟 2 0 

𝑟 2 
− 1 

) 2 

, 1 ≤ 𝑟 ≤ 𝑟 0 (24)
103 
here r 0 is a root of 

 𝑛 2 = 

4 
𝑟 4 0 − 4 𝑟 2 0 + 4 ln 𝑟 0 + 3 

(25) 

For Bn ≤ Bn crit (fully-yielded flow), the velocity and the shear rate

re respectively given by 

 𝜃( 𝑟 ) = 𝑟 

[ 
1 − 𝐵 𝑛 2 

{ 

ln 𝑟 − 𝑐 

(
1 − 

1 
𝑟 2 

)
+ 

𝑐 2 

4 

(
1 − 

1 
𝑟 4 

)} ] 
, 1 ≤ 𝑟 ≤ 𝑅 2 (26)

nd 

𝛾̇ = 𝐵 𝑛 2 
(
𝑐 

𝑟 2 
− 1 

)2 
, 1 ≤ 𝑟 ≤ 𝑟 2 (27)

here 

 = 

2 𝑅 

2 
2 

1 + 𝑅 

2 
2 

⎡ ⎢ ⎢ ⎣ 1 + 

√ √ √ √ 1 + 

1 + 𝑅 

2 
2 

1 − 𝑅 

2 
2 

( 

ln 𝑅 2 − 

1 
𝐵 𝑛 2 

) ⎤ ⎥ ⎥ ⎦ (28) 

. Discussion of common intersection points 

As already mentioned, in the case of a Bingham plastic ( n = 1), the

ate of strain distributions within the rheometer gap share a common
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Fig. 4. Angular velocities and rates of strain for various Bingham plastics ( n = 1) for various radii ratios: (a) 𝑅 2 = 1 . 01 ( 𝐵 𝑛 𝑐𝑟𝑖𝑡 = 10033 ); (b) 𝑅 2 = 1 . 1 ( 𝐵 𝑛 𝑐𝑟𝑖𝑡 = 103 . 2 ); 
𝑅 2 = 1 . 2 ( 𝐵 𝑛 𝑐𝑟𝑖𝑡 = 26 . 54 ). The red circle corresponds to the common point that exists for 0 ≤ Bn ≤ Bn crit . (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 
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o  
oint that is independent of the Bingham number as long as the ma-

erial within the rheometer is fully yielded, i.e. there are no solid-like

egions ( Bn ≤ Bn crit ). Fig. 4 shows velocity and rate of strain distributions

or three different gap sizes, i.e. 𝑅 2 = 1 . 01 , 1.1 and 1.2. As the outer ra-

ius is increased, the fixed point moves from the mid-radius towards the

nner cylinder. For example, r c = 1.00498, 1.04802 and 1.09242 when

 2 = 1.01, 1.1 and 1.2, respectively. The corresponding values of 𝛾̇𝑐 are

00.5, 10.49, and 5.485. It should be noted that when Bn > Bn crit the

ield point r 0 eventually becomes less than r c . In other words, there

ay not be even flow at the “common ” point. 

The results obtained for a representative Herschel–Bulkley fluid with

 = 0.5 and R 2 = 1.01, 1.1 and 1.2 are shown in Fig. 5 . The results are

imilar to those for the Bingham case ( n = 1), the only difference being

t  

104 
hat the rate of strain distributions do not share a common point. This

s illustrated in Fig. 6 for the case R 2 = 1.1. 

Let us now consider the relative error when using the common point

 c for calculating the rate of strain rate. This is defined as 

𝑟𝑟𝑜𝑟 = 100 
||||| 𝛾̇𝑎 − 𝛾̇

𝑐 

𝛾̇
𝑎 

||||| (29)

here 𝛾̇
𝑎 

is the actual the rate of strain, and 𝛾̇
𝑐 

is the rate of strain eval-

ated at r c . In the case of a Bingham fluid ( n = 1) the relative error is

bviously zero when Bn ≤ Bn crit and non-zero when Bn > Bn crit , i.e. when

he flow is partially yielded. Moreover, for Bingham numbers greater
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Fig. 5. Angular velocities and rates of strain for various Herschel–Bulkley fluids with n = 0.5 for various radii ratios: (a) 𝑅 2 = 1 . 01 ; (b) 𝑅 2 = 1 . 1 ; 𝑅 2 = 1 . 2 . The red 

circle corresponds to the common point that exists in the case of fully-yielded Bingham flow. (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 
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𝐵

a  

1  

[  
han a second critical value, 

 𝑛 ′
𝑐𝑟𝑖𝑡 

= 

2 
𝑟 2 
𝑐 
− 2 ln 𝑟 𝑐 − 1 

> 𝐵 𝑛 𝑐𝑟𝑖𝑡 (30)

he flow is unyielded at r c and therefore the relative error defined above

ecomes infinite. The effects of Bn and R 2 on the relative error are il-

ustrated in Figs. 7 and 8 . In Fig. 7 , the relative errors for R 2 = 1.01,

.1 and 1.2 are plotted versus the Bingham number in the intervals

 𝐵 𝑛 𝑐𝑟𝑖𝑡 , 𝐵 𝑛 ′
𝑐𝑟𝑖𝑡 

) = [10,033,40,401), [103.2, 440.6), and [26.54, 120.6), re-

pectively. When Bn ≤ Bn crit the error is, of course, zero. As already men-

ioned, Bn crit is a decreasing function of R 2. For Bn > Bn crit the error in-

reases rapidly becoming infinite as the Bingham number tends to 𝐵 𝑛 ′
𝑐𝑟𝑖𝑡 

.

n Fig. 8 , the relative errors for Bn = 1, 10, and 100 are plotted versus

he gap ( R 2 -1). For relatively small Bn and 𝑅 

∗ 
2 the error can be very
105 
mall, well below other experimental errors. 𝑅 2 appears to have a more

ronounced effect: for small values of 𝑅 2 the error is rather small, even

or large values of Bn . 

The relative error becomes bigger for different values of the power-

aw exponent. For example, when for n = 0.5, the second critical Bing-

am number is given by 

 𝑛 ′
𝑐𝑟𝑖𝑡 

= 

2 √ 

𝑟 4 
𝑐 
− 4 𝑟 2 

𝑐 
+ 4 ln 𝑟 𝑐 + 3 

(31) 

nd the corresponding intervals for the Bingham number for R 2 = 1.01,

.1 and 1.2 are [ 𝐵 𝑛 𝑐𝑟𝑖𝑡 , 𝐵 𝑛 ′
𝑐𝑟𝑖𝑡 

) = [866.0,2465), [27.37,82.30), and

9.658,30.81), respectively. In this case, there is no common point
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Fig. 6. Angular velocities (a) and rates of strain (b) in the fully-yielded regime 

for various Herschel–Bulkley fluids with n = 0.5 and Bn = 0, 5, 10, 15, 20, 25, and 

27.37 when 𝑅 2 = 1 . 1 . The red circle corresponds to the common point that exists 

in the case of fully-yielded Bingham flow. (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this 

article.) 
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Fig. 7. Calculated error versus the Bingham number for n = 1 (Bingham fluid) 

and (a) R 2 = 1.01; (b) R 2 = 1.1; (c) R 2 = 1.2. The first vertical line corresponds 

to the critical Bingham number Bn crit below which the flow is fully yielded. The 

second vertical line corresponds to the critical Bingham number at which the 

radius of the yielded region coincides with r c . 

t  

i
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a  
hen the flow is fully yielded and hence the error is non-zero even for

n ≤ Bn crit . In general, the relative error increases as n is reduced. 

In an actual experiment then in order to use the concept of a common

oint we must first use Eq. (1) to get 𝑐 ∗ = 𝑅 

∗2 
1 ∕ 𝜏

∗ 
𝑤 1 where 𝜏∗ 

𝑤 1 is the

hear stress at the inner cylinder, obtained from the measured toque, as

xplained below. Therefore, the local stress at the common point 𝑟 ∗ 
𝑐 

is

alculated as 

∗ 
𝑐 
= 𝜏∗ 

𝑤 1 

𝑅 

∗2 
1 

𝑟 ∗2 
𝑐 

(32)

The significance of having a common intersection point is that the

ocal rate of strain 𝛾̇∗ 
𝑐 

can be calculated using the Bingham plastic con-

titutive relation. The flow curve ( 𝜏∗ 
𝑐 
, ̇𝛾∗ 
𝑐 
) can be constructed by varying

he rotational speed on the inner cylinder. The rheological parameters

an then be obtained by means of nonlinear regression. As long as the

aterial is Bingham plastic and the corresponding flow is fully yielded,

he evaluated constants are the “true ” material constants and no addi-
106 
ional corrections are needed. In all other cases, the relative error in 𝛾̇∗ 
𝑐 
,

s of course, non-zero and additional corrections may be needed. 

. The general case 

In the general case, such as when the theory is used to analyze

ctual experimental data, where the exponent 1/ n is not an integer,
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Fig. 8. Calculated error versus the gap ( R 2 -1) for n = 1 (Bingham fluid): (a) 

Bn = 1; (b) Bn = 10; (c) Bn = 100. The vertical lines indicate the maximum outer 

radius R 2m for which the material is fully yielded for each Bingham number 

(2.1226, 1.3313, and 1.1016, respectively). 
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Table 1 

Comparison between raw and corrected data. 

Corrected data Raw data Relative % error 

𝜏∗ 0 (Pa) 50.34 50.69 0.690 

k ∗ (Pa s n ) 37.10 50.08 34.99 

N 0.308 0.278 9.74 
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l  
qs. (8) and (9) or Eqs. (12) and (13) in the case of partial yielding,

ust be integrated numerically (there is no closed-form analytical solu-

ion when 1/ n is not an integer). 

The procedure to determine “true ” material constants consistent with

he theory involves four obvious major steps : (i) the solution of the

oundary condition Eq. (9) (or Eq. (13) when we have partial yield-

ng) in order to compute the unknown constant c or r 0 ; (ii) the evalua-
107 
ion/update of the rate of strain at the surface of the rotating cylinder

or each rotational speed using Eq. (7) ; (iii) the evaluation of the yield

tress 𝜏∗ 0 by extrapolating linearly to the zero rate of strain; and (iv)

he curve fitting using the yield stress 𝜏∗ 0 , the measured stress and the

onstructed rate of strain for each value of Ω∗ to obtain new values for

he material constants, k ∗ and n . The four steps are repeated until all

aterial constants converge up to eight significant digits. 

In principle, all four steps are straightforward to complete and one

an use a number of different numerical schemes. Here, step (i) was im-

lemented using a combination of Simpson’s integration and a Newton-

aphson iteration procedure for fast convergence of the non-linear equa-

ion. During this step care must be exercised to integrate the correct

ondition ( Eq. (13) when partial yielding occurs). The curve fitting

step (iv)) was implemented using least squares either by solving the

on-linear equation with the bi-section method or by solving directly

he linearized form of the equation obtained by taking the log of the

odel equation. Below we apply and compare the results using both

pproaches. 

The above procedure was tested on a number of different samples ex-

ibiting viscoplastic behavior. Here we have chosen data on a cosmetic

mulsion (dm, Balea Bodycremeocos sold by GmbH + Co. KG), obtained

sing a Searle-type rotational rheometer MCR501 by Anton Paar. The

up and rotational bob was made up with stainless steel. Reverting back

o dimensional quantities, the radius of the bob was 𝑅 

∗ 
1 = 11 mm and

hat of the cup 𝑅 

∗ 
2 = 13 mm, while the length of the concentric cylinders

as L ∗ = 20 mm. 

The experiments were conducted at a sample temperature of 25°C. A

olume of 9 ml from the sample was filled into the cup, the bob was im-

ersed into the sample until the tip reached a distance of 3 mm from the

ottom. A conditioning period of 300 s was conducted with rotational

peed of 5 1/s. After this, the torque was continuously increased from 0

o 1.5 Nm over 120 s. 

Conventionally the rate of strain is evaluated using the results of

chümmer and Worthoff [3] who have suggested that there is a repre-

entative point 𝑟 ∗ 
𝑐 

between 𝑅 

∗ 
1 and 𝑅 

∗ 
2 , where the shear stress and the

hear rate for a pseudoplastic material are equal to those for a Newto-

ian fluid with only a small error. This method was used here to evaluate

he stress and the strain rate from torque and rotational speed data. In

he result shown below these data are referred to as raw data. The shear

ate and the stress are calculated by means of 

̇ ∗ 
𝑐 
= 

2 Ω∗ 

1 − 𝛽

( 

𝑅 

∗ 
1 

𝑟 ∗ 
𝑐 

) 2 

(33) 

nd 

∗ 
𝑐 
= 

𝑀 

∗ 

2 𝜋𝐿 

∗ 𝑟 ∗2 
𝑐 
𝑐 ∗ 
𝑒 

(34) 

here M 

∗ is the measured torque, 

≡
( 

𝑅 

∗ 
1 

𝑅 

∗ 
2 

) 2 

= 

1 
𝑅 

2 
2 

(35) 

nd 𝑐 ∗ 
𝑒 

is a correction factor for end effects [4] . The iterative solution

or the true material constants employed here uses the stress 𝜏∗ 
𝑖 

at the

nner cylinder and the angular velocity Ω∗ as input. 

Fig. 9 shows a comparison between the raw data and the data once

he rate of strain has been corrected using the actual rheological param-

ters obtained from the curve fitting applied to the linear version of the

east square equation. Table 1 shows the parameters and the relative
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Fig. 9. Comparison of the rheological curves for a cosmetic emulsion. The upper 

curve (in red) was obtained using the traditional apparent values for the rate of 

strain while the green curve was obtained using the true (i.e. corrected) values. 

The blue line, corresponds to the Herschel–Bulkley model with fitted rheological 

parameters. (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 

Fig. 10. Comparison of the rheological curves for a coal-water suspension. The 

upper curve (in red) was obtained using the traditional apparent values for the 

rate of strain while the lower curve (in blue) was obtained using the true (i.e. 

corrected) values. The green line, which essentially coincides with the blue line, 

corresponds to the Herschel–Bulkley model with fitted rheological parameters. 

(For interpretation of the references to colour in this figure legend, the reader 

is referred to the web version of this article.) 
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rror when using respectively the corrected and the raw data. The com-

arison shows a big difference between the apparent values and the true

alues for the consistency index and the exponent. These results are, of

ourse, consistent with the theoretical predictions of [1] . 
108 
As a final check, we consider rheological data for a coal-water sus-

ension (with particle diameter 100 μm and mass solid fraction approxi-

ately 50%) at a temperature of 20°C, obtained with the same rheome-

er with a larger gap ( 𝑅 

∗ 
1 = 10 mm, 𝑅 

∗ 
2 = 13 mm, and L ∗ = 20 mm). To

void slip, the inner cylinder was grooved. Fig. 10 shows the difference

etween the results obtained from the rheometer (red line) using the tra-

itional apparent values for the rate of strain and those obtained using

he true values; the blue line corresponds to the experimental data and

he green line to the data obtained using the Herschel–Bulkley model

quation ( Eq. (3) ) with the parameters obtained using the true values of

he rate of strain. Fig. 10 shows clearly the large deviation between the

xperimental data when the apparent values are used. Here, the curve

tting is obtained using non-linear least square analysis for the parame-

ers k and n. Again, the yield stress is obtained independently by linear

xtrapolation of the lowest two values of the stress. As mentioned above

he curve fitting for Fig. 10 was obtained using least square fit and solv-

ng the linearized form of the Herschel–Bulkley model by taking the

og of the model equation. By comparison we clearly conclude that the

on-linear curve fitting yields better results. 

For both cases of experimental data considered here, i.e. for the cos-

etic emulsion and the coal-water suspension, the rheological param-

ter that is affected most is the consistency index; the power-law ex-

onent is affected to a less extent, while the yield stress is essentially

naffected. 

. Conclusions 

The circular Couette flow used to determine material constants of

erschel–Bulkley fluids has been revisited. It has been established that

n order to determine the material constants from rheological data it is

f crucial importance to use “true ” values for the rate of strain using the

onstitutive model used to describe the rheology and not Newtonian ap-

roximations. It has been also demonstrated that the rate-of-strain distri-

utions across the gap share a common point only in fully-yielded Bing-

am plastic flows. However, if the gap is sufficiently small the common

oint for the fully-yielded Bingham case provides a good approximation

or determining the material constants in other cases, e.g., for partially-

ielded Bingham plastics or fully-yielded Herschel–Bulkley materials.

his justifies the common-point concept originally presented by Schüm-

er and Worthoff [3] . 

As pointed out by an anonymous referee, since the calibration of a

ouette rheometer is based on "standard fluids", as is the case in most

xperimental processes, the experimental values of the rheological pa-

ameters are useful on a relative basis and this relative information is

ccurate. Finally, it should be underlined that the present analysis does

ot apply (i.e., it is not necessary) in other rheometric set-ups, e.g. in

one-and-plate rheometry, where the rate of strain is constant. 
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