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a b s t r a c t 

The start-up flow of a Bingham plastic in a channel is considered and Safronchik’s solution [1] for the initial 

evolution of the yield surface and the core velocity is revisited. Stricter time bounds for the validity of the above 

solution are derived and the solution is extended to include the velocity profile in the evolving yielded zone. 

Comparisons are made with another approximate solution derived under the assumption that the velocity in the 

yielded zone is parabolic adjusting with the evolving yield surface. This approximation performs well for small 

values of the yield stress, or, equivalently, for large values of the imposed pressure gradient. 
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. Introduction 

In non-Newtonian fluid mechanics, analytical solutions of initial-
oundary value problems are very rare. When one considers the flows
f a Bingham fluid, only four are known. Three of them were found
y Safronchik [1–3] , and the other by Sekimoto [4] . The problem of
nterest here is the solution to the start-up flow in a channel, or the
lane Poiseuille flow [1] . It is assumed that at 𝑡 = 0 + , a constant non-
imensional pressure drop per unit length G > 0 is suddenly applied and
he Bingham fluid is set in motion. The yield surface moves into the fluid
rom the upper and lower planes of the channel and a core forms in the
nterior. This core region continues to shrink until the flow becomes
teady. The solution to the problem requires both the velocity field as
ell as the location of the yield surface 𝛿( t ) be found at any given time t .
afronchik’s method [1] delivers these results for a finite period of time
nly due to the way the solution has been constructed; for a detailed
escription of the method and its limitations, see Huilgol [5] . 

Since the location of the yield surface at 𝑦 = 𝛿( 𝑡 ) has to be found
rom the solution of a nonlinear integral equation, an approximate so-
ution valid for a short period of time only can be derived. In Section 2 ,
afronchik’s method [1] is revisited and the result for 𝛿( t ) is given by
q. (2.15) , and the velocity u c ( t ) of the core appears in Eq. (2.18) and its
ime of validity t 1 is given by Eq. (2.19) . If one assumes that the velocity
 c ( t ) in the core is an increasing function of time till the flows becomes
teady, a different upper bound t 2 for the period of approximation arises;
ee Eq. (2.20) . Finally, a third bound t 3 can be derived if the size of the
ore is assumed to shrink and approach its final value when the flow is
teady; see Eq. (2.23) . It is found that t < t < t , which means that the
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olution by Safronchik [1] holds over a period of time interval less than
hat found by him. 

Next in Section 2 , using the Safronchik approximation, the velocity
eld 𝑢 = 𝑢 ( 𝑦, 𝑡 ) in the yielded region can be found; see Eq. (2.26) below.
his result complements the solution found in [1] and [5] , where only
he velocity in the core was given. It is worth noting that obtaining
he analytical solution for 𝑢 = 𝑢 ( 𝑦, 𝑡 ) takes considerable effort. In this
onnection, one notes that three integrals, 𝐼 𝑗 ( 𝑦, 𝑡 ) , 𝑗 = 1 , 2 , 3 , appear in
he solution; see Eq. (2.24) . It turns out that the last two are respectively
ne and two orders of magnitude less than that of the first one and
an be ignored as long as the yield surface is close to the boundary of
he channel. See Fig. 3 , where these integrals are depicted when the
ingham number Bn = 1 and 𝐺 = 1 . 2 . 

In Section 3 , a comparison of the velocity in the core u c ( t ) given by
q. (2.18) with that obtained from u ( 𝛿( t ), t ) in Eq. (2.26) is made when
he Bingham number Bn = 1 and the pressure drop G ∈ {5, 10, 100}. It
s found that these two values agree with one another as G increases. 

Since the derivation of the velocity field in the yielded region is com-
licated, one may assume that u ( y, t ) is parabolic and varies with time
s the size of the core decreases; see Eq. (3.2) . In Figs. 5 and 6 , we have
ompared the evolution of the velocity profile in Eq. (2.26) with that in
q. (3.2) over the time interval [0, t 3 ]. Once again, the Bingham num-
er Bn = 1, while G ∈ {10, 100}. It is found that the two profiles are
imilar for small t , when 𝐺 = 10 , and diverge as t → t 3 . The differences
re greater when 𝐺 = 100 . 

It is clear that the comparisons in Figs. 5 and 6 are not accurate,
or the velocity field u ( y, t ) in Eq. (2.26) is based on the assumption
hat 𝛿( 𝑡 ) = 1 . Therefore, in Figs. 7–9 , we compare the velocity profile
ber 2018 

https://doi.org/10.1016/j.jnnfm.2018.10.009
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jnnfm
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnnfm.2018.10.009&domain=pdf
mailto:raj.huilgol@flinders.edu.au
https://doi.org/10.1016/j.jnnfm.2018.10.009


R.R. Huilgol, A.N. Alexandrou and G.C. Georgiou Journal of Non-Newtonian Fluid Mechanics 265 (2019) 133–139 

p  

i  

i  

m
 

l  

t

2

2

 

o  

i  

t  

t

𝜏  

w  

I  

n  

s
 

i  

T  

[  

u

𝜌  

w
 

l

𝜏  

I  

(

 

O

𝑢  

O

2

 

i  

i

𝑥  

𝑢  

T

 

 

Fig. 1. The parameter 𝛼 as a function of the ratio Bn/G. 
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redicted by Eq. (2.26) with the parabolic approximation of the veloc-
ty field in Eq. (3.2) over the time interval [0, t 09 ], where t 09 is the time
nterval when 𝛿( 𝑡 09 ) = 0 . 9 . It is seen that the parabolic velocity approxi-
ation is adequate for small Bn/ G ratios. 

The Appendix describes the three integrals which appear in the ve-
ocity field in the yielded region; see Eq. (2.24) . It is found that one of
hem can be evaluated analytically, while the other two cannot be. 

. Formulation and solution of the problem 

.1. The problem 

We assume that an incompressible Bingham fluid occupies a channel
f width 2 H in the 𝑦 − direction. The flow occurs in the x -direction and
s symmetric about the centreline with a velocity field 𝑢 = 𝑢 ( 𝑦, 𝑡 ) . When
he fluid has yielded, the constitutive equation for the shear stress 𝜏 in
he Bingham fluid is given by 

= 𝜏𝑦 + 𝜂
𝜕𝑢 

𝜕𝑦 
, (2.1)

here 𝜏y is the yield stress and 𝜂 is the plastic viscosity of the fluid.
n the core where the fluid moves as a rigid body, the shear stress 𝜏 is
ot defined by a constitutive equation; rather it is bounded by the yield
tress. That is | 𝜏| < 𝜏y . 

We consider the start-up flow of the Bingham fluid in the channel
nitiated by a constant pressure gradient G > 𝜏y / H . That is, 𝜕 𝑝 ∕ 𝜕 𝑥 = − 𝐺.

he flow is divided into a yielded region ( h ( t ), H ] and an unyielded one
0, h ( t )]. In the latter, the central core moves with an unknown velocity
 c ( t ). 

Balance of linear momentum leads to the following equation: 

𝜕𝑢 

𝜕𝑡 
= 

𝜕𝜏

𝜕𝑦 
+ 𝐺, 0 ≤ 𝑦 ≤ 𝐻, 𝑡 > 0 , (2.2)

here 𝜌 is the density of the fluid. 
In the core, while the shear stress does not satisfy a constitutive re-

ation, its distribution is linear. That is 

= − 

𝜏𝑦 

ℎ ( 𝑡 ) 
𝑦, 0 ≤ 𝑦 ≤ ℎ ( 𝑡 ) . (2.3)

n this core, the velocity 𝑢 = 𝑢 𝑐 ( 𝑡 ) only, whence the equation of motion
2.2) reduces to 

𝑑𝑢 𝑐 

𝑑𝑡 
= 

1 
𝜌

[ 
𝐺 − 

𝜏𝑦 

ℎ ( 𝑡 ) 

] 
. (2.4)

n integration, one finds that 

 𝑐 ( 𝑡 ) = 

1 
𝜌

[ 
𝐺𝑡 − ∫

𝑡 

0 

𝜏𝑦 

ℎ ( 𝜉) 
𝑑𝜉

] 
. (2.5)

f course, 𝑢 ( 𝑦, 𝑡 ) = 𝑢 𝑐 ( 𝑡 ) , 0 ≤ 𝑦 ≤ ℎ ( 𝑡 ) . 

.2. Non-Dimensionlisation 

We shall now introduce the following non-dimensional variables, us-
ng H as the characteristic length scale and 𝑈 = 

√
𝜏𝑦 ∕ 𝜌 as the character-

stic velocity scale: 

̃ = 

𝑥 

𝐻 

, 𝑦̃ = 

𝑦 

𝐻 

, 𝑡 = 

𝜂

𝜌𝐻 

2 𝑡, 𝛿( ̃𝑡 ) = 

ℎ ( 𝑡 ) 
𝐻 

, (2.6)

̃ = 

𝑢 

𝑈 

, 𝜏 = 

𝐻 

𝜂𝑈 

𝜏, 𝐺̃ = 

𝐻 

2 

𝜂𝑈 

𝐺. (2.7)

hus, 

𝐺𝑡 

𝜌
= 

1 
𝜌
⋅
𝜂𝑈 

𝐻 

2 𝐺̃ ⋅
𝜌𝐻 

2 

𝜂
𝑡 = 𝑈 𝐺̃ ̃𝑡 . (2.8)

Next in analogy with 𝑡 = ( 𝜌𝐻 

2 ∕ 𝜂) ̃𝑡 , we let 𝜉 = ( 𝜌𝐻 

2 ∕ 𝜂) ̃𝜉, leading to 

1 
𝜌 ∫

𝑡 

0 

𝜏𝑦 

ℎ ( 𝜉) 
𝑑 𝜉 = 

1 
𝜌 ∫

𝑡 

0 

𝜏𝑦 

𝐻𝛿( ̃𝜉) 
⋅
𝜌𝐻 

2 

𝜂
𝑑 ̃𝜉 = ∫

𝑡 

0 

𝜏𝑦 𝐻 

𝜂𝛿( ̃𝜉) 
𝑑 ̃𝜉. (2.9)
134 
Let the Bingham number be defined through Bn = 𝜏y H / 𝜂U . Hence,
he right side becomes 

𝑡 

0 

𝜏𝑦 𝐻 

𝜂𝛿( ̃𝜉) 
𝑑 ̃𝜉 = 𝑈 Bn ∫

𝑡 

0 

1 
𝛿( ̃𝜉) 

𝑑 ̃𝜉. (2.10)

Since 𝑢 = 𝑈 ̃𝑢 , dropping the tildes for simplicity, the velocity in the
ore given by Eq. (2.5) takes on the following form: 

 𝑐 ( 𝑡 ) = 𝐺𝑡 − Bn ∫
𝑡 

0 

1 
𝛿( 𝜉) 

𝑑𝜉. (2.11)

In the yielded region, the partial differential Eq. (2.2) has the form:

𝜕 2 𝑢 

𝜕𝑦 2 
= 

𝜕𝑢 

𝜕𝑡 
− 𝐺, 𝛿( 𝑡 ) < 𝑦 < 1 , 𝑡 > 0 , (2.12)

here the tildes have again been dropped. The following conditions ap-
ly: 

 ( 𝑦, 0) = 0 , 0 ≤ 𝑦 ≤ 1; 𝑢 (1 , 𝑡 ) = 0 , 𝑡 ≥ 0 , (2.13)

𝜕𝑢 

𝜕𝑦 
( 𝛿( 𝑡 ) , 𝑡 ) = 0 , 𝑡 > 0 . (2.14)

The required equations have now been assembled. These are Eqs.
2.12)–(2.14) ; their solution provides the velocity in the core (2.11) ,
alid in 0 ≤ y ≤ 𝛿( t ). 

.3. Safronchik’s solution for the core and time of validity 

In his important work, Safronchik [1] found that the location of
he yield surface in the upper-half of the channel is given in a non-
imensional form by 

( 𝑡 ) = 1 − 2 𝛼
√
𝑡 , 0 ≤ 𝑡 ≤ 

1 
4 𝛼2 

. (2.15)

Here the constant 𝛼 is the solution of the equation 

 

− 𝛼2 − 2 𝛼 ∫
∞

𝛼

𝑒 − 𝑠 
2 
𝑑𝑠 = 

Bn 
𝐺 

, (2.16)

hich can also be written as follows: 

 

− 𝛼2 − 𝛼
√
𝜋

[ 
1 − erf ( 𝛼) 

] 
= 

Bn 
𝐺 

, (2.17)

here erf ( ⋅) is the error function. In Fig. 1 , we have depicted the way 𝛼
aries with the ratio Bn/ G . 

The velocity in the core is given by [1] 

 𝑐 ( 𝑡 ) = 𝐺𝑡 + Bn 
1 
𝛼

√
𝑡 + Bn 

1 
4 𝛼2 

ln 
[ 
1 − 2 𝛼

√
𝑡 

] 
. (2.18)
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Fig. 2. The three critical times t 1 , t 2 and t 3 versus the ratio Bn/G. 
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Fig. 3. The plots of 𝐼 𝑖 ( 𝛿( 𝑡 ) , 𝑡 ) , 𝑖 = 1 , 2 , 3 for Bn = 1 and 𝐺 = 1 . 2 . For this choice of 

parameters, 𝛼 = 0 . 09962 , 𝑡 3 = 0 . 6997 , and 𝛿( 𝑡 3 ) = 0 . 8333 . 
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We see that the solutions for 𝛿( t ) and the velocity field 𝑢 = 𝑢 ( 𝑦, 𝑡 ) are
alid provided t < t 1 , where 

 1 = 

1 
4 𝛼2 

. (2.19)

Next, the velocity in the core, u c ( t ), must be an increasing function of
ime till the flow becomes steady. In Eq. (2.18) , by putting 𝑑 𝑢 𝑐 ( 𝑡 )∕ 𝑑 𝑡 = 0 ,
e find that this velocity increases provided t ≤ t 2 , where 

 2 = 

( √ 

1 + Bn 2 ∕ 𝐺 

2 + 1 − Bn ∕ 𝐺 

) 2 

16 𝛼2 
. (2.20)

From Eq. (2.15) , we find that 

( 𝑡 2 ) = 

1 
2 

[ 
1 + 

Bn 
𝐺 

− 

√ 

1 + Bn 2 ∕ 𝐺 

2 
] 
. (2.21)

Next, the width of the rigid core when the flow is fully developed is
iven by 

∞ = 

Bn 
𝐺 

. (2.22)

Since 𝛿( t ) in Eq. (2.15) decreases with time, it will attain the value

∞ when 𝑡 = 𝑡 3 given by 

 3 = 

(1 − Bn ∕ 𝐺) 2 

4 𝛼2 
. (2.23)

In Fig. 2 , we have compared the three critical times t 1 , t 2 and t 3 
s they vary with ratio Bn/ G . It is apparent that t 3 < t 2 < t 1 . Thus, the
elocity in the core holds over a time interval less than t 1 found by
afronchik [1] . 

.4. Velocity field in the yielded region 

We now turn to the determination of the velocity field in the yielded
egion. This is given by Eqs. (6.1.19) and (6.1.34) in [5] , and takes the
ollowing form: 

 ( 𝑦, 𝑡 ) = 𝐺𝑡 + 𝐼 1 ( 𝑦, 𝑡 ) + 𝐼 2 ( 𝑦, 𝑡 ) + 𝐼 3 ( 𝑦, 𝑡 ) . (2.24)

Here, the 𝐼 𝑗 , 𝑗 = 1 , 2 , 3 , are integrals with complicated expressions. In
he Appendix, we have listed these integrals from Eqs. (6.1.35)–(6.1.37)
n [5] . At small t , the yield surface is close to 𝑦 = 1 . Since I 2 ( y, t ) and
 3 ( y, t ) approach zero as 𝑦 → 1 − , we can discard them [1] ; see also Eqs.
6.1.44) and (6.1.52) in [5] in this connection. 

The above assumption has also been tested by evaluating 𝐼 𝑗 ( 𝑦, 𝑡 ) , 𝑗 =
 , 2 , 3 , for various values of Bn and G numerically. These tests have ver-
fied that this assumption is reasonable as long as 𝛿( t ) is close to unity.
135 
n Fig. 3 , noting that the integrals are all negative, the absolute values
f 𝐼 𝑗 ( 𝛿( 𝑡 ) , 𝑡 ) , 𝑗 = 1 , 2 , 3 , for Bn = 1, 𝐺 = 1 . 2 have been plotted versus time
 up to 𝑡 3 = 0 . 6997 . For this choice of Bn and G , it is clear that − 𝐼 2 and
 𝐼 3 are respectively one and two orders of magnitude less than − 𝐼 1 . 

Hence, the velocity field in the yielded region is given by the follow-
ng approximation: 

 ( 𝑦, 𝑡 ) = 𝐺𝑡 + 𝐼 1 ( 𝑦, 𝑡 ) , 𝛿( 𝑡 ) ≤ 𝑦 ≤ 1 , 𝑡 > 0 . (2.25)

onsequently, from Eqs. (A.1) and (A.16) in the Appendix, we obtain 

 ( 𝑦, 𝑡 ) = 𝐺 ∫
𝑡 

0 
erf ( 𝛽( 𝑦, 𝜎)) 𝑑𝜎, 𝛿( 𝑡 ) ≤ 𝑦 ≤ 1 , 𝑡 > 0 , 

= 𝐺[ 𝑡 erf ( 𝑎 ∕ 
√
𝑡 ) + 

2 𝑎 √
𝜋

√
𝑡 𝑒 − 𝑎 

2 ∕ 𝑡 − 

4 𝑎 3 √
𝜋 ∫

∞

1∕ 
√
𝑡 

𝑒 − 𝑎 
2 𝑧 2 𝑑𝑧 ] 

= 𝐺[ 𝑡 erf [(1 − 𝑦 )∕2 
√
𝑡 ] + 

(1 − 𝑦 ) √
𝜋

√
𝑡 𝑒 [−(1− 𝑦 ) 

2 ∕4 𝑡 ] ] 

− 𝐺 

(1 − 𝑦 ) 2 

2 
(1 − erf [(1 − 𝑦 )∕2 

√
𝑡 )]) . (2.26) 

From the above, it follows that the core velocity u ( 𝛿( t ), t ) is given by

 ( 𝛿( 𝑡 ) , 𝑡 ) = 𝐺𝑡 [ erf ( 𝛼) + 

2 𝛼√
𝜋
𝑒 − 𝛼

2 − 2 𝛼2 erfc ( 𝛼)] , (2.27)

here erfc( · ) is the complementary error function. That is, the velocity
n the core is proportional to Gt and does not agree with that given by
 c ( t ) in Eq. (2.18) . The reason lies in the various approximations made
o arrive at these two values. In Fig. 4 , we have compared the two when
he Bingham number Bn = 1, and the pressure drop G ∈ {5, 10, 100}.

hen G is small, the profile of u c ( t ) given by Eq. (2.18) depends on 
√
𝑡

nd is curved, and at large values of G , the linear term is dominant and
he profile of u c ( t ) is almost linear. In this situation, the core velocities
n Eq. (2.18) and (2.42) are almost identical. 

. Numerical comparison 

Since the velocity field in Eq. (2.26) is difficult to find, one may
ssume that the velocity field in the yielded region is parabolic, with
he size of the core, 𝛿( t ), and the velocity in the core, u c ( t ), given by Eq.
2.15) and (2.18) respectively. That is, the parabolic approximation has
he form 

 ( 𝑦, 𝑡 ) = 𝑎 ( 𝑡 ) + 𝑏 ( 𝑡 ) 𝑦 + 𝑐( 𝑡 ) 𝑦 2 , 𝛿( 𝑡 ) ≤ 𝑦 ≤ 1 , 𝑡 ≥ 0 , (3.1)

here the functions a ( t ), b ( t ) and c ( t ) have to be determined. Here, one
ppeals to the following boundary conditions: 
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Fig. 4. Comparisons of the core velocity predicted by Eq. (2.18) (solid line) 

and Eq. (2.27) (dashed) line for Bn = 1: (a) G = 5 ( 𝛼 = 0.7231); (b) G = 10 

( 𝛼 = 0.9627); G = 100 ( 𝛼 = 1.6056). 

Fig. 5. Evolution of the velocity in the interval [0, t 3 ] for Bn = 1 and G = 10 us- 

ing the parabolic approximation (3.2) (solid lines) and approximation (2.26) for 

the velocity (dashed lines). 

Fig. 6. Evolution of the velocity in the interval [0, t 3 ] for Bn = 1 and G = 100 us- 

ing the parabolic approximation (3.2) (solid lines) and approximation (2.26) for 

the velocity (dashed lines). 
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1. The velocity at the boundary is zero. Hence, 𝑢 (1 , 𝑡 ) = 0 ⇒ 𝑎 ( 𝑡 ) + 𝑏 ( 𝑡 ) +
𝑐( 𝑡 ) = 0 . 

2. The velocity at the yield surface is that of the core. Thus, 𝑢 ( 𝛿( 𝑡 ) , 𝑡 ) =
𝑢 𝑐 ( 𝑡 ) ⇒ 𝑎 ( 𝑡 ) + 𝑏 ( 𝑡 ) 𝛿( 𝑡 ) + 𝑐( 𝑡 ) 𝛿( 𝑡 ) 2 = 𝑢 𝑐 ( 𝑡 ) . 

3. The shear rate at the yield surface is zero. Or, 𝜕 𝑢 ( 𝑦, 𝑡 )∕ 𝜕 𝑦 = 0 at 𝑦 =
𝛿( 𝑡 ) . Thus 𝑏 ( 𝑡 ) + 2 𝑐( 𝑡 ) 𝛿( 𝑡 ) = 0 . 

Using the above conditions, we obtain the velocity field in the fluid
s follows: 

 ( 𝑦, 𝑡 ) = 

⎧ ⎪ ⎨ ⎪ ⎩ 
𝑢 𝑐 ( 𝑡 ) , 0 ≤ 𝑦 ≤ 𝛿( 𝑡 ) , 𝑡 > 0 , [ 

𝑢 𝑐 ( 𝑡 )∕(1 − 𝛿( 𝑡 )) 2 
] 
(1 − 𝑦 )[1 + 𝑦 − 2 𝛿( 𝑡 )] , 𝛿( 𝑡 ) ≤ 𝑦 ≤ 1 , 𝑡 > 0 . 

(3.2) 

We shall now compare the velocity profile in the yielded region given
y Eq. (2.26) with the parabolic approximation in Eq. (3.2) . From Eqs.
2.22) and (2.23) , we note that 𝛿( 𝑡 3 ) = 𝛿∞ = Bn ∕ 𝐺. Hence, in Fig. 5 ,
here Bn = 1 and 𝐺 = 10 , one has 𝛿( 𝑡 3 ) = 𝛿∞ = 0 . 1 , with 𝛼 = 0 . 9627
nd 𝑡 = 0 . 2185 . In Fig. 6 , where Bn = 1 and 𝐺 = 100 , we see that
3 
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Fig. 7. Evolution of the velocity in the interval [0, t 09 ] for Bn = 1 and G = 10 us- 

ing the parabolic approximation (3.2) (solid lines) and approximation (2.26) for 

the velocity (dashed lines). 

Fig. 8. Evolution of the velocity in the interval [0, t 09 ] for Bn = 1 and G = 100 us- 

ing the parabolic approximation (3.2) (solid lines) and approximation (2.26) for 

the velocity (dashed lines). 
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Fig. 9. Evolution of the velocity in the interval [0, t 09 ] for Bn = 1 and 

G = 1000 using the parabolic approximation (3.2) (solid lines) and approxima- 

tion (2.26) for the velocity (dashed lines). 
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𝛽  
( 𝑡 3 ) = 𝛿∞ = 0 . 01 , with 𝛼 = 1∕6056 and 𝑡 3 = 0 . 09505 . In Figs. 5 and 6 ,
e have plotted 10 velocity profiles corresponding to 𝑡 𝑖 = 𝑡 3 ∕10 , 𝑖 =
 , 2 , ⋯ , 9 , and 𝑡 10 = 𝑡 3 . 

It is clear that the comparisons in Figs. 5 and 6 are not accurate, for
he velocity approximation in Eq. (2.26) is based on the assumption that
( t ) ≈1. Hence, in Figs. 7–9 , we have compared the velocity profile in
q. (2.26) with that given by the parabolic approximation in Eq. (3.2) in
he time interval [0, t 09 ], where t 09 is the time at which 𝛿( 𝑡 09 ) = 0 . 9 . It
urns out that 𝑡 09 = 0 . 0025∕ 𝛼2 . In these figures, we have let Bn = 1, and
 ∈ {10, 100, 1000}. Again, ten profiles are shown as t increases from
 1 = 0 . 1 𝑡 09 to 𝑡 10 = 𝑡 09 in equal instalments. The corresponding values of
are 0.0002698, 0.000009698 and 0.00005601 respectively. It is clear

hat the parabolic approximation for the velocity field performs well for
mall Bn/ G ratios. 

. Concluding remarks 

For a time interval of short duration, the determination of the ve-
ocity profile in the start-up flow of a Bingham fluid in a channel due
137 
o a constant pressure gradient is now complete. The earlier work of
afronchik [1] had delivered the location of the yield surface and the
elocity in the core; for a summary, see [5] . Here, we have found the ve-
ocity in the yielded zone. This exact solution approximates quite nicely
he velocity in the core for high values of the pressure gradient. A com-
arison of this exact solution with that obtained by a parabolic approx-
mation shows that the two differ from one another at low values of the
ressure drop G and converge as G increases. 

Finally, solutions to initial boundary value problems in Bingham flu-
ds using the Laplace Transform have appeared in the literature. Using
his method, Daprà and Scarpi [7] examined the start-up of channel
ow, which is the same as that studied here. Subsequently, they applied
he same technique to the start-up flow in a pipe of circular cross-section
8] . More recently, Wu and Liu [9] employed the Laplace transform
echnique to the start-up flow of a Bingham fluid between coaxial cylin-
ers under a constant wall shear stress. These solutions are incorrect
ecause one cannot use the Laplace transform method for these initial
oundary value problems. For a detailed explanation, see Huilgol [10] .
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ppendix 

In this Appendix, we shall list the three integrals I 1 ( y, t ), I 2 ( y, t ) and
 3 ( y, t ), which appear in Eq. (2.24) . We begin with [5] 

 1 ( 𝑦, 𝑡 ) = 

2 𝐺 √
𝜋 ∫

𝑡 

0 

( 

∫
𝛽

∞
𝑒 − 𝛼

2 
𝑑 𝛼

) 

𝑑 𝜎

= − 𝐺 ∫
𝑡 

0 
[1 − erf ( 𝛽( 𝑦, 𝜎))] 𝑑𝜎

= − 𝐺𝑡 + 𝐺 ∫
𝑡 

0 
erf ( 𝛽( 𝑦, 𝜎))] 𝑑𝜎, (A.1) 

here 

= 𝛽( 𝑦, 𝜎) = 

1 − 𝑦 

2 
√
𝑡 − 𝜎

, 𝑦 < 1 , 𝑡 ≥ 0 . (A.2)
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We can now evaluate the integral on the right side in Eq. (A.1) as
ollows. First of all, the error function erf( x ) is defined through 

rf ( 𝑥 ) = 

2 √
𝜋 ∫

𝑥 

0 
𝑒 − 𝑠 

2 
𝑑𝑠. (A.3)

Hence, using integration by parts, we obtain 

erf ( 𝑥 ) 𝑑𝑥 = 𝑥 erf ( 𝑥 ) − 

2 √
𝜋 ∫ 𝑥 𝑒 − 𝑥 

2 
𝑑𝑥 = 𝑥 erf ( 𝑥 ) + 

1 √
𝜋
𝑒 − 𝑥 

2 
. (A.4)

ext, 

erf ( 𝑎𝑧 ) 𝑑𝑧 = 

1 
𝑎 ∫ erf ( 𝑥 ) 𝑑𝑥, (A.5)

or any constant a . In Eq. (A.5) , let 

 = 

1 − 𝑦 

2 
, 𝑧 = 

1 √
𝑡 − 𝜎

. (A.6)

hus, 

𝑑𝑧 

𝑑𝜎
= 

1 
2 
𝑧 3 . (A.7)

ence, 

erf ( 𝛽( 𝑦, 𝜎)) 𝑑𝜎 = 2 ∫ erf ( 𝑎𝑧 ) 𝑧 −3 𝑑𝑧. (A.8)

Here, we appeal to the Tables of Integrals due to Ng and Geller [6] .
sing Eq. (14) in Section 4.1, we obtain 

𝑡 

0 
erf ( 𝛽( 𝑦, 𝜎)) 𝑑𝜎 = 2 ∫

∞

1∕ 
√
𝑡 

erf ( 𝑎𝑧 ) 𝑧 −3 𝑑𝑧 

= − lim 

𝑧 →∞

[ 
erf ( 𝑎𝑧 ) 
𝑧 2 

] 
+ 𝑡 erf ( 𝑎 ∕ 

√
𝑡 ) + 

2 𝑎 √
𝜋 ∫

∞

1∕ 
√
𝑡 

1 
𝑧 2 
𝑒 − 𝑎 

2 𝑧 2 𝑑𝑧

(A.9

Since erf( az ) is bounded as z →∞, the first term goes to zero in the
imit. Hence, 

𝑡 

0 
erf ( 𝛽( 𝑦, 𝜎)) 𝑑 𝜎 = 𝑡 erf ( 𝑎 ∕ 

√
𝑡 ) + 

2 𝑎 √
𝜋 ∫

∞

1∕ 
√
𝑡 

1 
𝑧 2 
𝑒 − 𝑎 

2 𝑧 2 𝑑 𝑧. (A.10)

Next, it is easy to see that 

𝑑 

𝑑𝑧 

[ 
1 
𝑧 
𝑒 − 𝑎 

2 𝑧 2 
] 
= − 

1 
𝑧 2 
𝑒 − 𝑎 

2 𝑧 2 − 2 𝑎 2 𝑒 − 𝑎 2 𝑧 2 . (A.11)

hus, 

2 𝑎 √
𝜋 ∫

∞

1∕ 
√
𝑡 

1 
𝑧 2 
𝑒 − 𝑎 

2 𝑧 2 𝑑𝑧 = − 

4 𝑎 3 √
𝜋 ∫

∞

1∕ 
√
𝑡 

𝑒 − 𝑎 
2 𝑧 2 𝑑𝑧 

− 

2 𝑎 √
𝜋

lim 

𝑧 →∞

[ 
𝑒 − 𝑎 

2 𝑧 2 

𝑧 

] 
+ 

2 𝑎 √
𝜋

√
𝑡 𝑒 − 𝑎 

2 ∕ 𝑡 . (A.12)

Since 𝑒 − 𝑎 
2 𝑧 2 → 0 as z →∞, we obtain 

2 𝑎 √
𝜋 ∫

∞

1∕ 
√
𝑡 

1 
𝑧 2 
𝑒 − 𝑎 

2 𝑧 2 𝑑 𝑧 = 

2 𝑎 √
𝜋

√
𝑡 𝑒 − 𝑎 

2 ∕ 𝑡 − 

4 𝑎 3 √
𝜋 ∫

∞

1∕ 
√
𝑡 

𝑒 − 𝑎 
2 𝑧 2 𝑑 𝑧. (A.13)

ext, 

2 √
𝜋 ∫

∞

1∕ 
√
𝑡 

𝑒 − 𝑎 
2 𝑧 2 𝑑 𝑧 = 

2 
𝑎 
√
𝜋 ∫

∞

𝑎 ∕ 
√
𝑡 

𝑒 − 𝑥 
2 
𝑑 𝑥 = 

1 
𝑎 

[ 
1 − erf ( 𝑎 ∕ 

√
𝑡 ) 
] 
. (A.14)

onsequently, 

 ∫
𝑡 

0 
erf ( 𝛽( 𝑦, 𝜎)) 𝑑𝜎 = 𝐺 

[ 

𝑡 erf ( 𝑎 ∕ 
√
𝑡 ) + 

2 𝑎 √
𝜋

√
𝑡 𝑒 − 𝑎 

2 ∕ 𝑡 − 

4 𝑎 3 √
𝜋 ∫

∞

1∕ 
√
𝑡 

𝑒 − 𝑎 
2 𝑧 2 𝑑𝑧 

]

= 𝐺 

[ 

𝑡 erf [(1 − 𝑦 )∕2 
√
𝑡 ] + 

(1 − 𝑦 ) √
𝜋

√
𝑡 𝑒 [−(1− 𝑦 ) 

2 ∕4 𝑡 ] 

] 

− 𝐺 

(1 − 𝑦 ) 2 

2 
(1 − erf [(1 − 𝑦 )∕2 

√
𝑡 ]) , 𝛿( 𝑡 ) ≤ 𝑦 ≤ 1 , 𝑡 > 0 . 

(A.15)
138 
We now turn to the other two integrals in Eq. (2.24) . First of all, I 2 
s given by (Huilgol [5] ) 

 2 ( 𝑦, 𝑡 ) = − 

1 √
𝜋 ∫

𝑡 

0 
𝜙′( 𝜎) 

( 

∫
𝑧 1 ( 𝑦,𝜎) 

𝑧 1 ( 𝑦,𝑡 ) 
𝑒 − 𝛽

2 
𝑑 𝛽

) 

𝑑 𝜎, (A.16)

here 

 1 ( 𝑦, 𝜎) = 

𝑦 − 𝛿( 𝜎) 

2 
√
𝑡 − 𝜎

, (A.17)

nd the lower limits are given by 

 1 ( 𝑦, 𝑡 ) = 

⎧ ⎪ ⎨ ⎪ ⎩ 
∞, 𝑦 > 𝛿( 𝑡 ) , 
0 , 𝑦 = 𝛿( 𝑡 ) , 

−∞, 𝑦 < 𝛿( 𝑡 ) . 
(A.18)

e recall from Eq. (2.15) that 

( 𝑡 ) = 1 − 2 𝛼
√
𝑡 . (A.19)

hus, 

 1 ( 𝛿( 𝑡 ) , 𝜎) = − 

𝛼( 
√
𝑡 − 

√
𝜎) √

𝑡 − 𝜎
≤ 0 . (A.20)

Hence, noting that when x < 0, one has erf ( 𝑥 ) = − erf (− 𝑥 ) , we ob-
ain 

 2 ( 𝛿( 𝑡 ) , 𝑡 ) = − 

1 √
𝜋 ∫

𝑡 

0 
𝜙′( 𝜎) 

( 

∫
𝑧 1 ( 𝛿( 𝑡 ) ,𝜎) 

0 
𝑒 − 𝛽

2 
𝑑 𝛽

) 

𝑑 𝜎, 

= 

1 
2 ∫

𝑡 

0 
𝜙′( 𝜎) erf (− 𝑧 1 ( 𝛿( 𝑡 ) , 𝜎)) 𝑑𝜎, (A.21) 

here [5] 

′( 𝜎) = − 

Bn 
𝛿( 𝜎) 

= − 

Bn 

1 − 2 𝛼
√
𝜎
. (A.22)

Unlike I 1 ( y, t ), we have been unable to evaluate I 2 ( y, t ) analytically.
Next, 

 3 ( 𝑦, 𝑡 ) = 

1 √
𝜋 ∫

𝑡 

0 
𝜙′( 𝜎) 

( 

∫
𝑧 2 ( 𝑦,𝜎) 

𝑧 2 ( 𝑦,𝑡 ) 
𝑒 − 𝛽

2 
𝑑 𝛽

) 

𝑑 𝜎, (A.23)

here 

 2 ( 𝑦, 𝜎) = 

2 − 𝑦 − 𝛿( 𝜎) 

2 
√
𝑡 − 𝜎

, (A.24)

nd 

 2 ( 𝑦, 𝑡 ) = 

⎧ ⎪ ⎨ ⎪ ⎩ 
∞, 𝑦 > 𝛿( 𝑡 ) , 
0 , 𝑦 = 𝛿( 𝑡 ) , 

−∞, 𝑦 < 𝛿( 𝑡 ) . 
(A.25)

ow, 

 2 ( 𝛿( 𝑡 ) , 𝜎) = 

𝛼( 
√
𝑡 + 

√
𝜎) √

𝑡 − 𝜎
≥ 1 . (A.26)

hus, one can derive 

 3 ( 𝛿( 𝑡 ) , 𝑡 ) = 

1 √
𝜋 ∫

𝑡 

0 
𝜙′( 𝜎) 

( 

∫
𝑧 2 ( 𝛿( 𝑡 ) ,𝜎) 

0 
𝑒 − 𝛽

2 
𝑑 𝛽

) 

𝑑 𝜎, 

= 

1 
2 ∫

𝑡 

0 
𝜙′( 𝜎) erf ( 𝑧 2 ( 𝛿( 𝑡 ) , 𝜎)) 𝑑𝜎. (A.27) 

nce again, we have been unable to evaluate I 3 ( y, t ) analytically. 

upplementary material 

Supplementary material associated with this article can be found, in
he online version, at doi: 10.1016/j.jnnfm.2018.10.009 . 

https://doi.org/10.1016/j.jnnfm.2018.10.009
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