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Synopsis

The effect of pressure-dependent slip at the wall in steady, isothermal, incompressible Poiseuille

flows of a Newtonian liquid is investigated. Exponential dependence of the slip coefficient on the

pressure is assumed and the flow problems are solved using a regular perturbation scheme in terms

of the exponential decay parameter of the slip coefficient. The sequence of partial differential

equations resulting from the perturbation procedure is solved analytically up to second order. The

two-dimensional solution reveals the effects of the slip decay coefficient and the other

dimensionless numbers and parameters, in the flow. The average pressure drop and the skin friction

factor are also derived and discussed. VC 2013 The Society of Rheology.
[http://dx.doi.org/10.1122/1.4769823]

I. INTRODUCTION

The importance of slip at the wall in viscous flows has been emphasized in many stud-

ies during the past few decades. Barnes (1995) reviewed and discussed wall depletion

(i.e., slip) of polymer solutions, emulsions, and suspensions in viscometers, while Denn

(2001) reviewed theories of slip and the relation between slip and extrusion instabilities.

Recent review papers of wall slip cover the literature not only of molten high-molecular-

weight polymers [Hatzikiriakos (2012)] but also of Newtonian liquids [Neto et al.
(2005)]. Neto et al. (2005) reviewed experimental studies regarding the phenomenon of

slip of Newtonian liquids at solid interfaces, which is of interest in the fields of
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microfluidic and microeletromechanical devices. They emphasized in particular the im-

portance of surface roughness, wettability, and gaseous film or nanobubbles at the inter-

face. The violation of the classical no-slip boundary condition becomes more pronounced

in the case of non-Newtonian fluids, such as suspensions, emulsions, and polymer melts

and solutions, leading to more interesting phenomena and instabilities [Denn (2011)].

Sochi (2011) notes that slip effects become more important in non-Newtonian systems,

since they affect the shear rate near the wall and therefore all parameters depending on

the latter. Molten polymers are known to slip macroscopically at solid surfaces above a

critical wall shear stress [Hatzikiriakos (2012)]. In fact, beyond a second critical wall

shear stress, transition from a weak to strong slip takes place [Wang and Drda (1996);

Hatzikiriakos (2012)].

Hatzikiriakos (2012) reviewed both static and dynamic slip models and discussed their

significance on the rheology and flow simulations of molten polymers. Most static mod-

els assume that the slip velocity u�w, defined as fluid velocity relative to the wall, depends

on the instantaneous value of the wall shear stress, s�w. (In the present work, we use star

superscripts to denote dimensional quantities.) A simple slip equation employed by vari-

ous researchers [Lau and Schowalter (1986); Hill et al. (1990); Hatzikiriakos and Dealy

(1992); Barnes (1995)] is the power-law expression

u�w ¼ a�s�mw ; (1)

where a* is the slip coefficient and m is the power-law exponent. The slip coefficient

varies in general with temperature, normal stress and pressure, molecular parameters, and

the characteristics of the fluid/wall interface. When m¼ 1, the slip coefficient is also

defined as the ratio of the extrapolation length (i.e., the characteristic length equal to the

distance that the velocity profile at the wall must be extrapolated to reach zero) to the vis-

cosity [Hatzikiriakos (2012)]. The no-slip boundary condition is recovered when a*¼ 0,

whereas perfect slip is achieved when a* becomes infinite.

Experimental observations also suggest that the slip velocity may also depend on the

normal stresses, which include pressure, as well as on the past states of the local wall shear

[Hatzikiriakos (2012), and references therein]. In general, the dependence of the slip ve-

locity on the normal stress is weaker than that on the shear stress. The slip coefficient as

well as the slip velocity decreases with the normal stress. This implies, for example, that

slip is weak or completely suppressed upstream and becomes stronger downstream and

near the exit of a tube. Experimental evidence for this phenomenon has been reported by

various investigators. The early capillary extrusion experiments of Vinogradov and Iva-

nova (1968) showed that at elevated pressures melt fracture is suppressed, due presumably

to the reduction of slip at high pressures. White et al. (1991) tested various elastomeric

compounds in a biconical rheometer and found that decreasing the pressure leads to higher

slip velocities while high pressures suppress slip. Hatzikiriakos and Dealy (1992) demon-

strated that Mooney’s technique of calculating slip velocities from capillary dies of differ-

ent diameters fails either if the viscosity or the slip velocity depends upon the pressure or

if there are significant temperature gradients, and proposed a revised technique that

accounts for the effects of normal stresses and pressure. Hatzikiriakos and Dealy (1992)

proposed a slip equation accounting also for temperature effects in which the slip coeffi-

cient is a decreasing function of the wall normal stress. A different slip model has been

proposed by Stewart (1993), which involves the dependence of slip on the density.

Hill et al. (1990) used the theory of elastomer adhesion and proposed a framework of

adhesive failure between the polymer melt and the wall according to which the slip coef-

ficient decays exponentially with the isotropic pressure p*:
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a� ¼ A�e�e�p� ; (2)

where A* is the slip coefficient at zero pressure and e* is the pressure decay parameter.

Equation (2) was later used by Person and Denn (1997) in a study of the flow of a power-

law fluid in a channel. The slip equation proposed by Wang et al. (2010) includes an

additional exponential term accounting for temperature effects. Similarly, Hatzikiriakos

and Dealy (1992) formulated a theoretical model based on an extension of analysis of

Lau and Schowalter (1986), which, despite its different theoretical basis, was of form

similar to that of Eq. (2). However, Hatzikiriakos and Dealy (1992) found a stronger pres-

sure dependence at moderate pressures and saturation at higher pressures.

The effects of the pressure-dependence of slip have also been investigated by means of

numerical simulations and/or asymptotic analyses. Kumar and Graham (1998) modified the

arbitrary nonmonotonic, pressure-independent slip equation proposed by Georgiou and

Crochet (1994) to add pressure-dependent slip in their study of polymer extrusion instabil-

ities. Rao and Rajagopal (1999) solved the Newtonian flow in a channel using three differ-

ent slip equations in which the slip velocity depended (a) only on the shear stress, (b) only

on the normal stress, and (c) on both the shear and the normal stresses. In the latter case,

the slip velocity was actually expressed as a function of the ratio of the shear stress to the

normal stress. Their finite volume solutions showed that the flow is qualitatively different

(that is, two-dimensional) and that the pressure gradient is no longer constant along the

channel. Ramos (2007) performed an asymptotic analysis of incompressible flow of a New-

tonian fluid in a channel assuming that the slip length depends on the pressure and/or the

axial pressure gradient and derived analytical solutions of the leading order equations for

several slip lengths. He showed that, in general, the pressure gradient is not constant and

depends on both the inlet and the outlet pressures. Tang and Kalyon (2008a, 2008b) also

developed a mathematical model describing the time-dependent pressure-driven flow of

compressible polymeric liquids subject to pressure-dependent slip. They assumed that the

slip coefficient a* is inversely proportional to the pressure. Tang and Kalyon (2008a) also

noted that the main underlying mechanisms for the pressure-dependence of wall slip in the

case of polymer suspensions are the entrainment of air into the binder phase and the resi-

dence time dependence of the establishment of the apparent slip condition.

Recently, Damianou et al. (2013) derived approximate semi-analytical solutions of the

steady plane and axisymmetric weakly compressible Poiseuille flows of a Herschel–Bulkley

fluid using the lubrication approximation and assuming that the slip coefficient follows either

Eq. (2) or decreases linearly with pressure. Under the lubrication approximation, Tang (2012)

also derived analytical time-dependent solutions of the same flows. As in Tang and Kalyon

(2008a, 2008b), he assumed that a� � 1=p� and pointed out that such a dependence, also pro-

posed for low-density compressible flow [Bird et al. (2002)], is similar to that of Eq. (2).

Here, we investigate the effect of slip at the wall in incompressible Newtonian Pois-

euille flows (both planar and axisymmetric) by assuming an exponential type dependence

of the slip coefficient on the pressure as in Eq. (2). The technique that we use to solve

these flow problems is a regular perturbation procedure according to which the dependent

flow variables are expanded as series solutions in terms of the exponential slip coeffi-

cient. The perturbation technique, in conjunction with the requirement for a separable so-

lution, leads to two-dimensional expressions for the velocity and the pressure. Such

analytical solutions have not been reported before in the literature.

The rest of the paper is organized as follows. In Sec. II, the governing equations

accompanied with the suitable boundary and symmetry conditions are presented in both

dimensional and dimensionless forms. The perturbation procedure is described in Sec. III

and the analytical solution up to second order in terms of the pressure decay parameter is
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presented. In Sec. IV, the most important results are presented and discussed. The main

conclusions are summarized in Sec. V.

II. GOVERNING EQUATIONS

We consider the isothermal, steady, pressure-driven flow of a Newtonian fluid in two

different configurations; a straight channel of length L� and height 2R� and a circular

tube of length L� and radius R� (Fig. 1). Hereafter, the auxiliary constant n will denote

the geometrical configuration; n¼ 0 and n¼ 1 correspond to the planar and axisymmetric

configurations, respectively. For isothermal, steady flow under zero gravity, the conserva-

tion equations for mass and momentum are

r� � u� ¼ 0; (3)

q�u� � r�u� ¼ �r�p� þ g�r�2u�; (4)

where q� is the constant mass density of the fluid, u� ¼ ezu
�
z þ eru

�
r is the velocity vector,

with u�z ; u�r being the velocity components along the main- and wall normal directions,

respectively, ez; er being the unit vectors, and g� is the constant viscosity.

The system of Eqs. (3) and (4) will be solved over the rectangular flow domain (Fig. 1)

with appropriate boundary and auxiliary conditions. We assume that pressure-dependent

slip occurs along the wall (r� ¼ R�) following Eqs. (1) and (2) with m¼ 1. Symmetry con-

ditions are applied along r� ¼ 0, i.e., at the symmetry plane (for the planar configuration)

or the axis of symmetry (for the axisymmetric configuration). Also, the pressure is taken as

zero at a point of the exit plane (r� ¼ R�; z� ¼ L�), and the volumetric flow rate is specified

at the outlet plane (z� ¼ L�). Hence, the boundary and auxiliary conditions are as follows:

u�z ðR�; z�Þ þ A�e�e�p�g�
@u�z
@r�
þ @u�r
@z�

� �
ðR�; z�Þ ¼ 0; 0 � z� � L�; (5)

u�r ðR�; z�Þ ¼ 0; 0 � z� � L�; (6)

FIG. 1. The geometrical configurations: planar (n¼ 0, top) and axisymmetric (n¼ 1, bottom).
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@u�z
@r�
ð0; z�Þ ¼ u�r ð0; z�Þ ¼ 0; 0 � z� � L�; (7)

p�ðR�; L�Þ ¼ 0; (8)ð
S�ðwÞ

u�z dS�ðnÞ ¼ _Q
�

at z� ¼ L�; (9)

where _Q
�

is the constant volumetric flow rate, dSð0Þ ¼ W�dr�, W� being the dimension of

the slit in the transverse direction, and dSð1Þ ¼ 2pr�dr�. No boundary conditions are

specified at the inlet plane ðz� ¼ 0Þ, as discussed in previous works on compressible Pois-

euille flows [Poinsot and Lele (1992); Venerus (2006); Taliadorou et al. (2009);

Housiadas and Georgiou (2011); Housiadas et al. (2012)].

A. Dimensionless governing equations and auxiliary conditions

Equations (3) and (4) and the auxiliary conditions (5)–(9) are made dimensionless as

follows. The axial distance z� is scaled by L�, and the wall normal distance r� by R�. The

axial velocity u�z is scaled by the mean velocity

U� �

_Q
�

2W�R�
; n¼ 0

_Q
�

pR�2
; n¼ 1

8>><
>>: (10)

and the transverse velocity u�r is scaled by U�R�=L�. Finally, the pressure is dedimension-

alized using as a scale the characteristic pressure P�, defined so that the dimensionless

pressure drop along the main flow direction is unity in the case of no slip at the wall:

P� �

3g� _Q
�
L�

2W�R�3
; n¼ 0

8g� _Q
�
L�

pR�4
; n¼ 1

:

8>><
>>: (11)

The dimensionless forms of the continuity equation and the two components of the

momentum equation, respectively, are

@ðrnurÞ
@r

þ @ðr
nuzÞ
@z

¼ 0; (12)

Re ur
@uz

@r
þ uz

@uz

@z

� �
¼ �dðnÞ

@p

@z
þ c

@2uz

@z2
þ 1

rn

@

@r
rn @uz

@r

� �
; (13)

cRe ur
@ur

@r
þ uz

@ur

@z

� �
¼ �dðnÞ

@p

@r
þ c2 @

2ur

@z2
þ c

@

@r

1

rn

@

@r
ðrnurÞ

� �
; (14)

where dð0Þ ¼ 3 and dð1Þ ¼ 8,

Re � q�U�R�2

g�L�
(15)

is the Reynolds number, and
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c � R�

L�

� �2

(16)

is the square of the aspect ratio of the channel or the tube.

The flow domain is f�1 � r � 1; 0 � z � 1g and f0 � r � 1; 0 � z � 1g for the pla-

nar and axisymmetric configurations, respectively. The dimensionless boundary and aux-

iliary conditions are

uz þ Ae�ep @uz

@r
þ @ur

@z

� �
¼ 0; at r ¼ 1; 0 � z � 1; (17)

ur ¼ 0; at r ¼ 1; 0 � z � 1; (18)

@uz

@r
¼ ur ¼ 0; at r ¼ 0; 0 � z � 1; (19)

p ¼ 0 at r ¼ z ¼ 1; (20)ð
SðnÞ

uzdSðnÞ ¼ 1 at z ¼ 1; (21)

where dSð0Þ ¼ dr and dSð1Þ ¼ 2rdr for the planar and axisymmetric configurations,

respectively. Two additional dimensionless numbers appear in the slip equation (17): The

slip number

A � A�g�

R�
(22)

and the slip decay coefficient

e � e�P�: (23)

Obviously, when A¼ 0 the no-slip boundary condition is obtained, whereas when e¼ 0

wall slip is pressure-independent and the classical Navier slip condition is recovered.

III. PERTURBATION SOLUTION

A regular perturbation scheme in terms of the slip decay coefficient, e, is employed up

to second order:

p ¼
X2

j¼0

pje j

½1þ ð3þ nÞA�2jþ1
þ Oðe3Þ

ur ¼
X2

j¼1

ur ;je j

½1þ ð3þ nÞA�2jþ1
þ Oðe3Þ

uz ¼
X2

j¼0

uz;je j

½1þ ð3þ nÞA�2jþ1
þ Oðe3Þ

9>>>>>>>>>>=
>>>>>>>>>>;
: (24)

Note here that the quantities ½1þ ð3þ nÞA�2jþ1
in the expansions (24) have been intro-

duced only in order to have a more compact solution. Substituting expansions (24) into

the governing equations and collecting terms of the same order lead to a sequence of
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partial differential equations and accompanying boundary conditions. The zero-, first-,

and second-order problems are solved analytically by following a procedure similar to

that used by Taliadorou et al. (2009), Housiadas and Georgiou (2011), and Poyiadji et al.
(2012). Details of the derivations are provided in Panaseti (2012).

A. Solution for the planar configuration (n 5 0) up to Oðe2Þ
Pressure

p ¼ 1� z

1þ 3A
þ 3eA

2ð1þ 3AÞ3
cð1� r2Þ � 6Reð2þ 7AÞ

35ð1þ 3AÞ2
ð1� zÞ þ ð1� zÞ2

( )

þ e2A

ð1þ 3AÞ5
c
�1� 9Aþ 90A2

10ð1þ 3AÞ þ 3
1

2
� 3A

� �
r2

� �
ð1� zÞ þ � 1

2
þ 3A

� �
ð1� zÞ3

�

þ Re

1þ 3A

c

140

3ð5� 54A� 315A2Þ
ð1þ 3AÞ þ 3ð�12þ 61Aþ 399A2Þ

ð1þ 3AÞ r2

��

þ35ð1� 3AÞr4 þ 7ð�2þ 3AÞr6

�
þ 9ð1� 8A� 42A2Þ

35ð1þ 3AÞ ð1� zÞ2
�

þRe2 156þ 5690Aþ 27909A2 � 12474A3 � 166320A4

13475ð1þ 3AÞ4
ð1� zÞ

" #)
: (25)

Velocity in the main flow direction

uz ¼
3ð1þ 2A� r2Þ

2ð1þ 3AÞ þ 3eA

2ð1þ 3AÞ3
ð1� 3r2Þð1� zÞ þ ReuðReÞ

z

1þ 3A

� �

þ e2A

ð1þ 3AÞ5
uðRe;0Þ

z þ Re uðRe;1Þ
z

1þ 3A
þ Re2uðRe;2Þ

z

ð1þ 3AÞ2

" #
; (26a)

where

uðReÞ
z ¼5þ52Aþ147A2

140ð1þ3AÞ �
3ð11þ91Aþ210A2Þ

140ð1þ3AÞ r2þ1þ3A

4
r4� 1

20
r6;

uðRe;0Þ
z ¼3ð1�6AÞ

4
ð1�3r2Þþc

3ð�1�7AÞ
5ð1þ3AÞ þ

3ð1þ5AÞ
2ð1þ3AÞr

2�r4

� �
�ð1�3r2Þð1�zÞ2

� �
;

uðRe;1Þ
z ¼3ð1�zÞ

8

2ð�5�116A�225A2þ882A3Þ
7ð1þ3AÞ þ6ð11þ122Aþ63A2�1260A3Þ

7ð1þ3AÞ r2

þð�1þ3Aþ18A2Þr4þ1�9A

5
r6

8>><
>>:

9>>=
>>;;

uðRe;2Þ
z ¼�4852þ117346Aþ977871A2þ3001572A3�979209A4�15467760A5

280ð1þ3AÞ2

�9ð�422þ1110Aþ61281A2þ359370A3Þ
140ð1þ3AÞ2

r2þ3ð�28�250A�63A2þ2520A3Þ
2240

r4

þ3ð46�264Aþ525A2þ4725A3þ3780A4Þ
10

r6þ9ð�4þ6Aþ57A2Þ
4480

r8þ5�24A

5600
r10:

(26b)
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Transverse velocity

ur ¼
3Ae rð1� r2Þ
2ð1þ 3AÞ3

1� e

ð1þ 3AÞ2
ð1� 6AÞð1� zÞ þ Re

140ð1þ 3AÞ

�(

	 5þ 116Aþ 225A2 � 882A3

1þ 3A
� 6ð1� 2A� 21A2Þr2 þ ð1� 9AÞr4

� ���
: (27)

B. Solution for the axisymmetric configuration (n 5 1) up to Oðe2Þ
Pressure

p ¼ 1� z

1þ 4A
þ eA

ð1þ 4AÞ3
cð1� r2Þ þ 2ð1� zÞ2 � Re

2ð1þ 4AÞ ð1� zÞ
� �

þ e2A

ð1þ 4AÞ5
2

3
ð�1þ 8AÞð1� zÞ3 þ Re

1þ 4A

1

4
� 4A

� �
ð1� zÞ2

�

þð1� zÞ cð�1� 4Aþ 96A2Þ
6ð1þ 4AÞ þ cð1� 8AÞr2 þ Re2 33þ 716A� 408A2 � 11520A3

2160ð1þ 4AÞ3

" #

þ cARe

1þ 4A

2� 39A

36
þ�1þ 10A

8
r2 þ 1� 2A

8
r4 þ�2þ 3A

36
r6

� ��
: (28)

Velocity in the main flow direction

uz ¼
2ð1þ 2A� r2Þ

1þ 4A
þ eA

ð1þ 4AÞ3
�

4ð1� 2r2Þð1� zÞ

þRe
2ð1þ 6AÞ
9ð1þ 4AÞ � r2 þ 1þ 2A

1þ 4A
r4 � 2

9ð1þ 4AÞ r
6

� ��

þ e2A

ð1þ 4AÞ5
uðRe;0Þ

z þ Reð1� zÞ
1þ 4A

uðRe;1Þ
z þ Re2

ð1þ 4AÞ2
uðRe;2Þ

z

( )
; (29a)

where

uðRe;0Þ
z ¼�2ð1�8AÞð1þ2r2Þð1�zÞ2þcð�1þ64A2Þ

3ð1þ4AÞ þ
4cð1�2A�48A2Þ

3ð1þ4AÞ r2�ð1�8AÞr4;

uðRe;1Þ
z ¼2

9
ð�1�9Aþ48A2Þþð1�32A2Þr2þð�1þ8Aþ16A2Þr4þ2

9
ð1�12AÞr6;

uðRe;2Þ
z ¼�78�1049A�2248A2þ18240A3þ67200A4

5400ð1þ4AÞ

þ 87þ844A�312A2�20160A3�46080A4

1080ð1þ4AÞ r2

þ�9�10Aþ336A2þ576A3

72
r4þ3�12A�104A2�64A3

36
r6

þ�2þ15Aþ36A2

72
r8þ3�28A

900
r10: (29b)
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Transverse velocity

ur ¼
2e Arð1� r2Þ
ð1þ 4AÞ3

1� e

ð1þ 4AÞ2
�

2ð1� 8AÞð1� zÞ
(

� Re

36ð1þ 4AÞ f4ð1� 9A� 36A2Þ � ð5� 36A� 96A2Þr2 þ ð1� 12AÞr4g
��
: (30)

IV. DISCUSSION

We first check the validity of the perturbation scheme. Since the dimensionless slip

coefficient aðpÞ ¼ A expð�e pÞ is always positive, this must be hold for the perturbation

solution as well, i.e., the reduced slip coefficient is approximated as follows:

expð�epÞ 
 1� ep0

1þ ð3þ nÞAþ
e2

½1þ ð3þ nÞA�3
1þ ð3þ nÞA

2
p2

0 � p1

� �
> 0: (31)

The worst case scenario is for r¼ z¼ 0 for which inequality (31) gives e < ec where

ec ¼

2

1þ 3Aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 3AÞ½6Að1þ cÞ � ð1þ 3AÞ� � 36

35
Að2þ 7AÞRe

r ; n ¼ 0

2

1þ 4Aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 4AÞ½�ð1þ 4AÞ þ 2Að4þ 2c� ReÞ�

p ; n ¼ 1

8>>>><
>>>>:

(32)

is the biggest admissible value of e. Expression (32) is valid under the requirement that the

quantities in the square root are positive; otherwise, inequality (31) is satisfied for any e.
Given that the flow is assumed to be laminar, the Reynolds number in the planar case

(based on the channel height and the average velocity) must be less than 1800, approxi-

mately. Similarly, in the axisymmetric case the Reynolds number (based on the pipe diam-

eter and the mean velocity) must be less than 2300. In terms of the Reynolds number as

defined in Eq. (15), one finds that it should be Re � 900
ffiffiffi
c
p

and Re � 1150
ffiffiffi
c
p

for the planar

and axisymmetric cases, respectively. The precise upper limit for the Reynolds number

requires stability analysis, which however is beyond the scope of the present work.

A. Primary flow variables

Obviously, the zero-order solution is the standard Poiseuille flow solution with Navier

(i.e., pressure-independent) wall slip, which is unidirectional; uz is parabolic, p is linear,

and ur¼ 0. From Eqs. (22) and (25), it is deduced that at first order uz deviates from the

parabolic profile, due to the combined effect of wall slip and inertia. The deviations,

duz ¼ uz � uz0, for A¼ 0.05, Re ¼ 1, e ¼ 0:1, and various axial positions (z¼ 0.1, 0.5,

and 0.9) are shown in Fig. 2. For both configurations, the deviation decreases upstream,

as expected. The deviation is positive near the entrance and negative near the exit.

Changing the slip coefficient A changes the magnitude but the shape of the deviation duz

remains the same.

As far as the transverse velocity component, ur, is concerned, Eqs. (27) and (30)

reveal that inertia contributes only to second order. Note that the dependence on the

Reynolds number is linear. However, the dependence of ur on the slip coefficient is very
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complex. For instance, it is easily shown that juyj � eAffiffi
3
p
ð1þ3AÞ3 þ Oðe2Þ and jurj �

4eA
3
ffiffi
3
p
ð1þ3AÞ3 þ Oðe2Þ for the planar and axisymmetric configurations, respectively. Note that

in both cases the upper bound corresponds to r ¼ 1=
ffiffiffi
3
p

 0:577. The transverse velocity

is zero for A¼ 0 (no slip) and increases as A is increased, up to a maximum at A ¼ 1=6,

and then decreases exponentially; in the limiting case A!1, the flow is plug and the

transverse velocity tends to zero.

The contours of ur for the planar configuration, A¼ 0.05, Re ¼ 1, e ¼ 0:2, and

c ¼ 10�4, are shown in Fig. 3. The transverse velocity vanishes along the symmetry

plane (r¼ 0) and along the wall (r¼ 1). It is clear from Eq. (27) that at first order ur is

always positive and reaches a maximum approximately at r 
 0:58. The maximum value

increases downstream due to the contribution of the second order. It should be noted that

this contribution is positive provided that A< 1/6. Hence, the fastest transverse motion of

the fluid takes place at the exit plane of the channel.

Fluid motion in the transverse direction and the deviation from parabolic profile are

induced by the pressure gradient. At zero order, the dimensionless pressure and its gradi-

ent depend only on the slip number A. However, a first order slip effects are combined

with those of inertia. It is interesting to note that the derivative @p=@r is independent of

the Reynolds number. In Fig. 4, we compare the pressure contours obtained with Re ¼ 1

and c ¼ 10�4 in the case of no slip (A ¼ 0, dotted lines) with those obtained in the case

of pressure-dependent slip with A¼ 0.05 and e¼ 0.2. The effect of the slip coefficient is

significant; although the contours are similar, almost vertical and equidistant, they are

shifted toward the entrance of the channel in the case of slip. This is of course expected

given that the pressure gradient is reduced downstream due to slip. It is easily deduced

from Eq. (28) that at zero order the pressure is independent of r and varies linearly z.

Moreover, the cross-section averaged pressure varies quadratically with z at first order

and cubically at second order.

FIG. 2. Deviation from the parabolic velocity profile, duz ¼ uz � uz0, for n¼ 0 (planar configuration) and n¼ 1

(axisymmetric configuration); Re¼ 1, A¼ 0.05, e¼ 0.1, and c¼ 10�4.
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Damianou et al. (2013) employed the lubrication approximation [i.e., they assumed

that ur¼ 0 and p¼ p(z)] to derive approximations of the pressure and the axial velocity in

the case of the axisymmetric Poiseuille flow with pressure-dependent slip, such that

aðpÞ ¼ Að1� epÞ: (33)

With the notation of the present work, the lubrication solution reads

FIG. 3. Contours of the transverse velocity in plane Poiseuille flow; Re¼ 1, A¼ 0.05, e¼ 0.2, and c¼ 10�4.

FIG. 4. Pressure contours for the planar configuration for A¼ 0 (no slip, dotted lines) and A¼ 0.05 with e¼ 0.2

(solid lines); Re¼ 1 and c¼ 10�4.
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pðzÞ ¼ 1þ 4A

4eA
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 8eAð1� zÞ
ð1þ 4AÞ2

s" #
(34)

and

uzðr; zÞ ¼ 1þ 1� 2r2

ð1þ 4AÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 8eAð1� zÞ
ð1þ 4AÞ2

s : (35)

It is easily shown that Eqs. (34) and (35) coincide up to first order with Eqs. (28) and

(29), respectively, only when Re¼ 0 and c¼ 0, i.e., when the basic conditions of the

lubrication approximation are satisfied.

In Fig. 5, we plotted the reduced slip coefficient, exp(�ep), calculated along the wall

for Re¼ 1, c ¼ 10�4, e¼ 0.1, and various slip numbers. It is interesting to note that the

pressure-dependence effect is more pronounced in the case of weak slip, since the pres-

sure required to drive the flow is higher. Another interesting feature of the reduced slip

coefficient is that, up to Oðe2Þ, does not depend on the square of the aspect ratio, c. The

effect of the slip decay parameter e on the slip velocity uwðzÞ ¼ uzð1; zÞ is illustrated in

Fig. 6, where we show results for the planar flow with A ¼ 0:1, c ¼ 10�4, and Re ¼ 1.

For this choice of parameters, the distribution of the slip velocity is almost linear and its

slope increases with the slip decay parameter.

B. Pressure drop and friction factor

We use the symbol D to denote the difference of a quantity /ðr; zÞ between the inlet

and the outlet planes, i.e., D/ � /ðr; 0Þ � /ðr; 1Þ. We also define the average of a

FIG. 5. The reduced slip coefficient across the channel (planar configuration) for various slip coefficients A,

e¼ 0.1, Re¼ 1, and c¼ 10�4.
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variable / at a cross section of the channel or circular tube by h/i � ð1þ nÞ
Ð 1

0
rn/dr.

Then, by virtue of Eq. (25), the average pressure drop for the planar case, up to Oðe2Þ, is

given by

Dhpi ¼ 1

1þ 3A
þ 3Ae

2ð1þ 3AÞ3
1� 6ð2þ 7AÞ

35ð1þ 3AÞ2
Re

" #

þ e2A

ð1þ 3AÞ6
�
ð�1þ 6AÞ½5ð1þ 3AÞ � 4c�

10
þ 9ð1� 8A� 42A2Þ

35ð1þ 3AÞ Re

þ 156þ 3Að5690=3þ 9303A� 4158A2 � 55440A3Þ
13475ð1þ 3AÞ3

Re2

�
: (36)

Similarly, by means of Eq. (28), one gets the corresponding expression for the axisym-

metric case:

Dhpi¼ 1

1þ4A
þ 2eA

ð1þ4AÞ3
1� 1

4ð1þ4AÞRe

� �
þ e2A

ð1þ4AÞ6
�
ð�1þ8AÞð2þ8A�cÞ

3

þ1�16A

4
Reþ33þ4Að179�102A�2880A2Þ

2160ð1þ4AÞ2
Re2

�
: (37)

Equations (36) and (37) are generalizations of the corresponding dimensionless Hagen–

Poiseuille formulas in the case of pressure-dependent slip.

Another quantity of interest is the friction factor, which actually represents a dimen-

sionless shear stress at the wall. The Darcy friction factor, f , is defined as follows:

FIG. 6. Slip velocity in plane Poiseuille flow (planar configuration) for different values of the slip decay coeffi-

cient when A¼ 0.05, Re¼ 1, and c¼ 10�4.
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f � �4g�
@u�z
@r�

� �
r¼R�

	
1

2
q�U�2

� �
: (38)

Using the characteristic scales mentioned in Sec. II, the dimensionless average Darcy

friction factor, �f , along the entire tube, results from the integration of Eq. (38) from the

entrance (z¼ 0) to the exit (z¼ 1) of the tube. In addition, by using the solution for the

velocity in the main flow direction, we find that at second order

Re

24
ffiffiffi
c
p �f ¼ 1

1þ 3A
þ 3eA

2ð1þ 3AÞ3
1� 2ð4þ 21AÞ

105ð1þ 3AÞ2
Re

" #

þ e2A

ð1þ 3AÞ6
�
ð�1þ 6AÞ½5ð1þ 3AÞ � 4c�

10
þ 2� 30A� 189A2

35ð1þ 3AÞ Re

þ 160þ 3Að1378þ 8967Aþ 8316A2 � 41580A3Þ
40425ð1þ 3AÞ3

Re2

�
(39)

for the planar case and

Re

32
ffiffiffi
c
p �f ¼ 1

1þ 4A
þ 2eA

ð1þ 4AÞ3
1� 1

12ð1þ 4AÞRe

� �

þ e2A

ð1þ 4AÞ6
�
ð�1þ 8AÞð2þ 8A� cÞ

3
þ 1� 24A

12
Re

þ 15þ 4Að53þ 6A� 720A2Þ
2160ð1þ 4AÞ2

Re2

�
(40)

for the axisymmetric case. Expressions (39) and (40) can also be derived with the aid of

the momentum balance in the flow direction. Multiplying Eq. (13) by ð2rÞn, integrating

with respect to r, simplifying the result by means of the continuity equation (12), and

using the definition of the Darcy friction factor [Eq. (38)], one gets an ordinary differen-

tial equation which can be integrated from z¼ 0 to 1 to give

Re

ð24þ 8nÞ
ffiffiffi
c
p �f ¼ Dhpi þ Re

dðnÞ
Dhu2

z i: (41)

In Eq. (41), it has been taken into account that huzi ¼ 1 which gives dhuzi=dz ¼ 0,

given that the flow is incompressible. It is worth noting that Eq. (41) is exact, i.e., no

approximation or assumptions have been made for its derivation. It is actually a balance

between the skin friction factor (dimensionless viscous forces), the pressure drop, and

the difference of the average Reynolds stress between the inlet and the outlet planes. In

Fig. 7(a), we plot the quantities ð1þ 3AÞDhpi and Reð1þ 3AÞ�f =24
ffiffiffi
c
p

for the planar

case as functions of the Reynolds number for A¼ 0.05 (solid lines) and A¼ 1 (dash

lines), e ¼ 0:1, and c ¼ 10�4. Similarly, in Fig. 7(b) we plot the corresponding quanti-

ties for the axisymmetric case, i.e., ð1þ 4AÞDhpi and Reð1þ 4AÞ�f =32
ffiffiffi
c
p

. In both con-

figurations, the pressure drop and the Darcy friction factor decrease with the Reynolds

number after an initial plateau. It is also clear that the difference between these quanti-

ties also increases, which can also directly be deduced from Eq. (41). This difference is

due to fluid inertia, as Eqs. (37) and (41) show. Regarding the effect of the constant slip

coefficient A, on
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P � ½1þ ð3þ nÞA�Dhpi (42)

and

F � Re½1þ ð3þ nÞA�
ð24þ 8nÞ

ffiffiffi
c
p �f (43)

FIG. 7. The Darcy friction factor, F � Re½1þ ð3þ nÞA��f =½ð24þ 8nÞ
ffiffiffi
c
p
�, and the average pressure drop,

P � ð1þ ð3þ nÞAÞDhpi, as functions of the Reynolds number, Re: (a) planar configuration; (b) axisymmetric

configuration. The solid lines correspond to A ¼ 0:05 and the dashed lines to A ¼ 1, e¼ 0.1, and c ¼ 10�4.
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this is not monotonic. As the slip coefficient, A, increases, for constant Reynolds number,

P and F decrease. However, a further decrease on A results in an increase for both P and

F. Finally, as A goes to zero, P and F go to unity (as they should).

In Fig. 8, we plotted the quantities P and F as functions of the slip coefficient A, for

both the planar and the axisymmetric configurations, with e ¼ 0:1, Re ¼ 1, and c ¼ 10�4.

In contrast to Fig. 7, the pressure drop and the friction factor are practically indistinguish-

able (for both configurations). As usual, the pressure drop and the friction factor are

lower in the axisymmetric case. They decrease in a sigmoidal fashion as A increases; for

A less than approximately 0.01, both quantities are close to unity, in the region 0:01 <
A < 10 they decrease substantially, and for A > 10 they approach zero asymptotically. It

should also be noted that the effect of the square of the aspect ratio, c, is very small; it

affects the solution only at second order, which is also seen from Eqs. (36), (37), (39),

and (40). The Reynolds number affects the solution at first order but its net effect is very

small due to the fact that the slip number A quickly dominates all other contributions.

V. CONCLUSIONS

Perturbation solutions for the laminar, isothermal, incompressible planar and axisym-

metric Poiseuille flows of a Newtonian liquid with an exponential dependence of the slip

coefficient on the pressure have been derived. The velocity vector and the pressure were

expanded as power series of the exponential slip coefficient and the solution was obtained

up to second order. Expressions for the pressure drop and the friction factor have been

obtained. The derived solution shows that as the constant slip coefficient increases, the

effect of the pressure becomes progressively weaker and the slip velocity at the wall

becomes more uniform throughout the channel or tube. The analytical solution derived

here may be useful in capillary rheometry and for validating numerical algorithms for

FIG. 8. The Darcy friction factor, F � Re½1þ ð3þ nÞA��f =½ð24þ 8nÞ ffiffifficp �, and the average pressure drop,

P � ½1þ ð3þ nÞA�Dhpi, as functions of the slip coefficient, A, when e¼ 0.1, Re¼ 1, and c¼ 10�4.
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flows with pressure-dependent wall slip. In the former case, a modified Mooney tech-

nique should be applied using capillaries of different lengths and diameters.
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