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Synopsis 

The steady and transient behavior of jets generated by circular and slit nozzles 
are analyzed by the Galerkin finite-element method with free-surface para- 
metrization and Newton iteration. A novel constitutive equation is used to 
approximate Bingham liquids that is valid uniformly in yielded and unyielded 
domains and which approximates the ideal Bingham model and the Newtonian 
liquid in its two limiting behaviors. At steady state the influence of yield stress 
on the die swell is equivalent to that of surface tension; that is, suppression of jet 
diameter at low Reynolds numbers and necking at high Reynolds number. The 
predictions at high Reynolds numbers agree with the asymptotic behavior at 
infinite Reynolds number of the jet far downstream. In the transient analysis, 
surface tension destabilizes round jets and increases the size of satellite drops. 
Yield stress was found to retard jet breakup times in addition to producing 
smaller satellites. Shear thinning was found to result in shorter collapse times 
than those for Newtonian fluid; furthermore, the satellite drop size increased 
with increasing shear thinning. The nonlinear analysis predicts that, although 
round jet breakup may occur spontaneously by surface tension, an external 
factor, commonly air shear, must be applied to break a planar jet at Reynolds 
numbers below its transition to a turbulent jet. 

I. INTRODUCTION 

A class of materials exhibit little or no deformation up to a certain 
level of stress, called the yield stress. These materials are often called 
Bingham plastics, after Bingham,’ who first described paint in this way 
in 1919, and were first analyzed by Oldroyd,2 Reiner,3 and Prager.4 
Paint, slurries, pastes, and food substances like margarine, mayonnaise, 
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and ketchup are good examples of Bingham plastics. A list of several 
materials exhibiting yield was given recently by Bird et aL5 Production 
of composite materials usually involves processing of fiber suspensions 
that often exhibit yield behavior.6 Concentrated suspensions of solid 
particles in Newtonian liquids show a yield stress followed by nearly 
Newtonian behavior after yielding and flow. 

To model the stress-deformation behavior, several constitutive rela- 
tions have been proposed,7*8 and different yield criteria have been used.’ 
The state of affairs is empirical and relatively undeveloped, partially due 
to the difficulty of obtaining accurate, reliable data on these materials at 
vanishingly small deformation, which is necessary to determine the ex- 
istence and the level of the yield stress. The most common three- 
dimensional constitutive relation uses the von Mises criterion which 
predicts that the material flows and deforms significantly only when the 
second invariant of the stress tensor exceed the yield stress; otherwise 
the material behaves like a strained solid. 

Figure 1 shows this behavior of stress as a function of the rate of 
strain for a shear flow. The existence of a true yield stress, and therefore 
the accuracy of the von Mises criterion, has been questioned by several 
investigators. In a recent paper, lo Barnes and Walters concluded that no 
yield stress exists given accurate measurements, however this was dis- 
puted recently by Hartnett and Hu.” Given these “engineering 
realities”,12 the material can be well approximated uniformly at all 
levels of stress as a liquid that exhibits infinitely high viscosity in the 
limit of low shear rates followed by a continuous transition to a viscous 
liquid. The approximation can be made more and more accurate at even 
vanishingly small shear rates by means of a material parameter that 
controls the exponential growth of stress, according to the following 
constitutive equation proposed by Papanastasiouf3 and shown in Fig. 1: 

[1 -exp( -mjIlD/1’2)] D. 
I 

Here TV is the apparent yield stress and m is a stress growth exponent. 
D is the rate of strain tensor, and IID its second invariant. Equation ( 1) 
approximates the von Mises criterion for relatively big exponent m, and 
holds uniformly in yielded and unyielded regions. Actually, extensive 
experimental results,“+16 including ours with solvent-based paints (Fig. 
1) show that, in most instances, Eq. ( 1) provides a better approxima- 
tion to real data than the ideal Bingham plastic model as shown in Fig. 
1. The data of Fig. 1 were taken by means of a Brookfield viscometer 
equipped with a relaxation mechanism to measure stress down to shear 
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FIG. 1. Experimental data for a sample water-borne paint demonstrating the applicability 
of Eq. (1) to Bingham-plastic liquids. (0 is a white baaccoat-DuPont 408-6-80179.) 

rates of the order of 10 - 3 s - ‘, where the yield stress becomes impor- 
tant. Thus Eq. ( 1) is exact for these nearly ideal Bingham liquids and 
approximates well the ideal Bingham liquid-which may be only a 
theoretical idealization since rheological measurements with existing 
rheometers are incapable of conducting measurements at vanishingly 
small deformations where the yield stress is detected. In the limit of 
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m + 03, the predictions of Eq. ( 1) become virtually independent of m at 
finite values of m > 50 which practically may be taken to correspond to 
the ideal Bingham liquid, as will be demonstrated in the discussion of 
the results. 

From the computational point of view, Eq. ( 1) is by far superior to 
the von Mises criterion because it holds uniformly in both yielded and 
unyielded regions and so the necessity to track yield surfaces or lines is 
eliminated which significantly simplifies computations in complex ge- 
ometries. Computational methods for Bingham liquids track yield lines 
which separate regions of the two states” or else rely on biviscosity 
discontinuous representations.t*-20 Two recent methods’4Y21 avoided 
the tracking of yield surfaces by employing constitutive equations that 
hold everywhere continuously by replacing the mathematical interface 
between yielded and unyielded regions with a sigmoidal transition of 
viscosity which can be made steeper by increasing the exponent m as 
shown by Fig. 1. Thus, it appears that Eq. ( 1) is appropriate for Bing- 
ham plastics both, with respect to physical significance and, primarily, 
computational efficiency. The material parameters T,, and m can easily 
be fitted from data as suggested by Fig. 1. 

Numerous fundamental yet pioneering studies concerning jet stabil- 
ity are present in the literature with the earliest being that of Lord 
Rayleigh. Rayleigh examined the breakup of an inviscid axisymmetric 
liquid jet using linear stability theory in which the growth of infinites- 
imal periodic disturbances is determined. Chandrasekhar later extended 
the results of Rayleigh and provided a full account of the contributions 
of large viscosity and magnetic stress to jet breakup.23 

The stability analysis of non-Newtonian jets,24 particularly Bingham- 
plastic jets is still relatively undeveloped. Among the earliest to consider 
a completely nonlinear jet stability analysis were Keunings2’ and Bous- 
field et .i.26 where the stabilizing influence of viscoelasticity was inves- 
tigated. This was in good agreement with experimental observations and 
demonstrated the inadequacy of linear theory which, in their case, gave 
contradictory results. The only experimental investigation concerning 
fluids with yield stress was conducted by Goldin et ~1.~~ in which a 
linear theory, based on a constant bulk average viscosity, was used to 
predict jet breakup lengths. In this work, steady finite jets emerging 
from slit and round orifices and infinite transient jets are examined by 
means of a two-dimensional, steady and transient analysis, respectively, 
for Newtonian, viscous shear thinning, and Bingham-plastic liquids ap- 
proximated by Eq. ( 1). This analysis is important in understanding a 
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FIG. 2. Domain, governing equations, and boundary conditions for the round jet. 

number of processes such as coating or painting by atomization, ink-jet 
printing, and the development of antimisting agents for flammable ma- 
terials. 

II. FORMULATION 

The flow configuration and coordinates for the steady axisymmetric 
jet are defined in Fig. 2 (a similar configuration exists for the planar 
jet). The flow is steady and incompressible and is governed by the 
momentum and continuity equations along with the boundary condi- 
tions. The inflow and outflow boundaries are taken at finite distances L1 
and L2, sufficiently far from the exit so that the Bow can be considered 
fully developed at the inlet, and uniform at the outflow plane. Thus the 
boundary conditions at the outlet are 

1 
T:nn= -- 

Ca hft 
v=o, (2) 

where T is the dimensionless total stress tensor, n the normal to outflow 
plane, u the radial velocity, Ca=p U/o the capillary number, and hf the 
dimensionless final jet radius. The scales used for the length, velocity, 
and stress are R, U, and pU/R, where R is the radius of the pipe or the 
half-width of the slit and (I is the average fluid velocity. 

The analytic solution of slit or pipe flow is used as the essential 
condition at the inlet. The dimensionless inlet velocity for these flows is 
given by 

u=$( 1 - 2) - T,( 1 - r), H<r<l 
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and 

u=fC(l -H2) - T,,(l -H), Oq<H, 
respectively, where 

(4) 

H= T/C, (5) 
is the distance of the yield surface from the midplane at the inlet and 
C = LIP/AL is the dimensionless constant pressure gradient of a fully 
developed flow at the inlet corresponding to a defined flow rate and 
T,, = T$/~U is the dimensionless yield stress. It transpires for the slit, 
that 

C=(2+Ty)(~+cos~~cos-1[ 1-(2~;y11]]). (6) 

For the pipe, C is the largest root of 

36’- 4(3 + Ty)C3 + $2-0. (7) 

In the finite-element formulation the unknown velocities, pressures, 
and jet profile (u, p, and h) are expanded in terms of biquadratic @‘I, 
bilinear qi and quadratic @‘I ,,= 1, basis functions, respectively: 

M s 
II= 5 U~@‘C~*~), p= C piY’(~*rl), lZ= j& h~@‘(~*ll=l), 

i=l i=l 
(8) 

where 6 and 7 are the isoparametric coordinates. The Galerkin residuals 
are calculated by weighting the continuity, momentum, and kinematic 
equations with Yi, W, and @‘I 17= 1, respectively: 

R& 
s 

V&Pi dV=O, i= 1,2 ,..., kf, (9) 
V 

RL= [V-T - Re wVu]@‘dV=O, i=1,2 ,..., N, (10) 
V 

&= mu@‘) 11=1 dV=O, i= I,2 ,..., S. (11) 

Here Re = 2pUR/p is the Reynolds number. The Galerkin procedure, 
including the projection of the three-dimensional domain onto a tessel- 
lation of an r-z plane, and the isoparametric ma ping to the rectilinear 
computational domain, can be found elsewhere. 2r The final forms of the 
weighted equations on the computational isoparametric domain are 
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R:= - 14:, Ib” [ ($+;)ra+au]Fi,J,dgdv, 

i= 1,2 ,..., M, (12) 

i= 1,2 ,..., N, 

4, LL..,N, (14) 

R;= 
s 

Lz (-z~h~+uz~)@~l,,~~h~d& i=1,2 ,..., S. (15) 
0 

Here, M is the number of pressure unknowns, N the number of velocity 
unknowns, and S the number of free surface unknowns. Also, 1 JI is the 
Jacobian of the isoparametric transformation, and a is a constant uti- 
lized to include the planar case in the final equations; for the planar jet 
r is substituted by y and a = 0, whereas a = 1 for the axisymmetric jet. 
The stresses in these equations at this point are substituted by 
T= -pI+rwhere7isgivenbyEq. (1). 

The boundary terms of the momentum equations are substituted by 
the known normal and shear tractions at the free surface in terms of 
surface tension and curvature,29 
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where n and t are the unit normal and tangent vectors to the free surface 
S, respectively. Along symmetry planes the shear traction is zero while 
elsewhere on the boundary the entire momentum equation is replaced 
by the essential conditions of known velocities. 

The nonlinear system of Eqs. (12)-( 15) can be written as 

R(x) =O, (17) 

where x is the column vector of the nodal unknowns, and R is the 
column vector of the nonlinear weighted equations. This system is 
solved by Newton iteration 

J(xn) [x” + ’ -x”]= -R(x”), (18) 

where J=aR/& is the Jacobian matrix. The set of linear equations is 
repeatedly solved by the frontal technique of HoodS3’ The tessellation is 
updated at each iteration by the newly found free-surface location val- 
ues hi, which are determined simultaneously with the primary 
unknowns ai, vi, and pp 

In the transient formulation the time-dependent unknowns u( r,z, t) , 
p(r,z,t), and h(z,t) are expanded in terms of biquadratic 4’ bilinear @, 
and quadratic 4’1 B= 1, basis functions, respectively, 

N 
u(r,z,t)= c q(Od’(&rlL (19) 

(20) 

S 

h(r,z,t)= f: hi(t)#‘(l,v) lq=l, (21) 

where now the unknown nodal coefficients, Ui( t), pi( t), and hi(t) are 
made time dependent. The time-dependent Galerkin residuals R are also 
obtained by weighting each of the governing equations with the basis 
functions themselves as in the steady case. 

The spatial discretization reduces the time-dependent versions of 
Eqs. ( 12)-( 15) to a system of ordinary differential equations, 

Me ;+ R(q)=O, 
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where q = [ul(r,z,t),vl(r,z,t),...,h,(z,t)] is the vector of all the time- 
dependent nodal unknowns. The time derivatives are discretized by a 
standard backward-difference scheme, 9 n+l - q” I 1 At 

=R(q” + ‘). (23) 

Care must be taken when evaluating time derivatives on a moving tes- 
sellation, as it is the case here. The temporal derivatives are adjusted 
according to3 * 

(24) 

The left-hand side in Eq. (24) represents the actual local change of a 
variable with time. The first term on the right-hand side is the actual 
total change in a variable with time while the second term represents 
convective changes due to the moving tessellation. Equation (24) is 
substituted into Eq. (22) so that the term &/at is removed, allowing 
Eq. (23) to be solved at each time step by Newton iteration for the 
correct values of u, p, and h. The initial conditions are those of a 
sinusoidally perturb jet from its steady state. This condition is imposed 
by perturbing the free surface of the initial basic flow. The correspond- 
ing perturbed initial velocity and pressure field is then determined from 
the steady-state governing equations after fixing the location of the free 
surface. 

III. STEADY BINGHAM-PLASTIC JETS 

A part of the mesh used for the finite axisymmetric jet is shown in 
Fig. 2. To check the accuracy of the finite-element predictions, we first 
compared the centerline and free-surface velocities, and the free surface 

elevation of the planar jet at Re = 0 and Ca = 10 - 5 with the analytic 
solution to the stick-slip roblem (plane creeping jet at infinite surface 

tension) by Richardson. % The predictions agree with the theory to 
within 0.1%. Significantly, these predictions were obtained as a limiting 
case, at Re = 0 and Ca = lo- 5, of the general solution, i.e., the loca- 
tion of the free surface was not fixed a priori. The expected planar 
interface in this limiting case was predicted to within 0.01%. 

To analyze jets of Bingham plastic fluid, the tessellations for the 
Newtonian case were reused. The convergence was in general quadratic; 
however, at the continuation of the exponent m, convergence became 
slower as m increased. A zero-order continuation was used for all five 
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FIG. 3. Effect of exponent m on predicted free-surface profiles of a planar Bingham-plastic 
jet at Re = pUR/p = 0 and T, = RT/~ U = 0.1. The predictions become independent of 
m for m > 50, which is taken to correspond to the ideal Bingham liquid. 

parameters, in the order of Re, T,,, m, Ca, starting from lower Re, 
T,,, and m, and higher Ca. Continuation from one value of yield stress 
to a higher one failed to converge at high values of m. This pathology 
was cured by continuation with respect to m at constant yield stress, 
followed by continuation with respect to the yield stress at constant m 
as detailed in Papanastasiou.‘3 Figure 3 shows the effect of the exponent 
m on the free-surface profiles of a plane jet; at relatively big values of m, 
where the ideal Bingham plastic is approached, the swelling becomes 
insensitive to the value of m. For our calculations, we demanded that 
the value of m was adequate to describe the ideal Bingham-plastic fluid, 
if the results deviated less than 0.01% from those at m/10. The value 
m = 100 proved to be sufficiently large to meet this criterion for all the 
ranges of the dimensionless parameters examined. Figure 3 indeed 
shows that Eq. (1) mimics the ideal Bingham plastic at large exponent 
m>lOO. 

No data for Bingham-plastic jets were found in the literature. How- 
ever, a good test for the model and the finite element mesh would be the 
comparison of the predicted jet expansion at high Re with the theoret- 
ical limit at infinite Re. The asymptotic values of the expansion of round 
and planar jets at infinite Re as functions of T, are derived by assuming 
that the velocity profile at the exit of the die is given by Eqs. (3) and 
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FIG. 4. Predicted free surface profiles for a round Bingham plastic jet at Re =pUR/ 
p= 2GO0, Ca = pLT/o = 106, and dimensionless T,, = RT,J~LI = 2. 

(4), respectively, and is flat at a plane very far downstream. Mass and 
momentum balances between the two locations show that the theoreti- 
cal final half thickness is 

60C3 
hfm= (SC+7T,W- Ty14 

for the planar jet, and the final radius is 

60 1 
l/2 c2 

hrm= 5ti+6TyC+4c CC- T,? 

(25) 

(26) 

for the round jet. C is the constant pressure gradient given by Eqs. (6) 
and (7). The above expressions give the Newtonian limits, 0.83333 and 
0.8660 for cylindrical and planar jets, respectively, for zero yield stress 
T,, and they both go to 1 as Ty- 00. The finite-element predictions at 
Re = 2000 agree with the theoretical results of Eqs. (25) and (26). As 
it is shown in Fig. 4 , the predicted expansions approach their theoret- 
ical limit very far downstream, independent of the value of m. 

The effect of the yield stress T,, on the calculated profiles at Re = 0 
and 15 is illustrated in Figs. 5 and 6, respectively. As the yield stress 
increases, the swelling at low Re and the contraction at higher Re are 
reduced. These results are due to the increased tendency for the center 
core of the jet to exit the die as a solid plug when T, is increased. The 
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FIG. 5. Effect of dimensionless yield stress, T,, = RT,J~U, on free-surface profiles 
round Bingham-plastic jet at Re = pUR/p = 0, Ca = pU/a = 106, and m = 1000. 
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FIG. 6. Effect of dimensionless yield stress, T, = R7,/pU, on free-surface profiles of a 
round Bingham-plastic jet at Re = pUR/p = 15, m = 100, and Ca = pU/a = 106. 
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FIG. 7. Effect of dimensionless surface tension, Ca = pU/u, on free-surface profiles of a 
round Bingham-plastic jet at Re = pUR/p = 0, m = 1000, and T,, = RT~/CLU = 0.2. 

effect of yield stress is analogous to that of surface tension. Necking of 
the jet occurs as T, increases for higher Re. Nevertheless, for even 
higher values of T, the necking vanishes. This can be attributed to the 
fact that the free surface of the yielded liquid under negligible surface 
tension tends to follow the interior line dividing the yielded and the 
solid-like unyielded region. As the material exits the die, there is a 
depression of the unyielded core13 (and therefore extension of the 
yielded region to the interior) due to the large velocity gradient near the 
exit singularity, which serves to produce the neck for finite values of 
T,. Predictions at various capillary numbers, Re = 0, and T,, = 0.2 are 
shown in Fig. 7 . As it is expected, surface tension reduces swelling. At 
low surface tension the swelling is reduced more than that of the New- 
tonian liquid, due to the superimposed yield-stress effect. However, the 
profiles at Ca~0.5 are close to those of the Newtonian jet and therefore 
the effect of yield stress weakens at high surface tension. 

IV. TRANSIENT ANALYSIS 

The results presented here are for infinite circular and planar jets. 
The jet is assumed to be in a steady state of plug flow at t < 0 and at 
t = 0 a sinusoidal perturbation of 5% of the diameter or thickness is 
imposed according to the expression 
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FIG. 8. The appropriate periodic boundary conditions for the infinite jet, with a typical 
tessellation. Each element shown is a biquadratic Lagrangian element. 

h=l.O +O.O5*sin(-rz//2), (27) 

where A is the wavelength of the disturbance. Strictly speaking, such a 
study should be performed at the most unstable (fastest growing) wave- 
length. Unfortunately, a nonlinear analysis of the most unstable wave- 
length for each of the many parameter settings is not practical given the 
fact that this wavelength function of all of the dimensionless groups. For 
this reason, the dimensionless wavelength was fixed to a value of A = 20 
which lies between the theoretical values23 of A = 9.8 an inviscid jet and 
A - m for a jet dominated by purely viscous stresses. The progression of 
the finite disturbance is monitored at times t> 0 by solving the time- 
dependent conservation equations for the velocities, pressures, and free 
surface locations jet radius of thickness. Since it is assumed that there is 
no interaction with the surrounding air, the coordinate system was 
translated with the steady plug flow velocity. This allows the jet to be 
viewed as a stationary liquid cylinder at t = 0. Consequently, there is no 
physical reference velocity in the problem and all velocities are scaled 
with the quantity u/p, where p is the viscosity of the liquid and u is the 
surface tension, The governing equations are those given earlier with the 
following replacements: 
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where Z is the Ohnesorge number. J has the physical significance of 
being the ratio (surface tension force) (inertial force) /( viscous force) .2 
All other dimensionless groups can be modified by taking U = a/,~. The 
domain and the boundary conditions are illustrated in Fig. 8 along with 
a typical tesselation; due to the assumed infinite length, there is sym- 
metry at the beginning and the end of a half-wavelength so that the 
problem can be examined on a finite domain, accordingly. 
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FIG. 10. The final jet flow domain is shown for various values of J = poR/p2 for a 
Newtonian filament. 

In addition to a common power-law (shear-thinning) viscosity 
which is widely used in steady flow calculations, a second strain-rate 
viscosity was examined in Eqs. ( 13) and (14) by using the more real- 
istic Carreau mode1,33 

P-P, -= [ 1 + (A*&))*] cn - I)‘*, 
Pa-Pm 

where n is the power law exponent that yields shear thinning and New- 
tonian liquids for n < 1 and n = 1, respectively. The constants ~0 and 
IL, are the zero-shear and infinite-shear viscosities while A* is a char- 
acteristic relaxation time. The Carreau model was used to cure the 
pathology of the power-law model, which at vanishingly small strain 
rates predicts an infinitely large viscosity and is, therefore, inappropriate 
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FIG. 11. The neck radius evolution near the jet break point is shown as a function of time 
for J = poR/p2 = 5 and several values of dimensionless yield stress, r, = ~y/Ru. 

in regions where the disturbance becomes vanishingly small. Indeed, as 
it will be demonstrated below, this pathology may lead to incorrect 
stability results. 

Typical stability results are shown in Fig. 9 for an infinite Newtonian 
cylinder with dominating viscous forces (J = 0). The dimensionless 
time increment At, used for this and all subsequent computations was 
0.05. This value for At was arrived at by demanding that successive runs 
with decreasing At produce similar results. It is obvious that in the case 
of J = 0 the plug-flow infinite cylinder is unstable because the amplitude 
of its disturbance grows with time and reaches half-diameter after 29 
time units. The initial growth rate was found to agree well with that 
obtained by linear theory23 as shown in Fig. 13. The cylinder is about to 
break forming a single droplet per wavelength of the disturbance. 

Figure 10 illustrates the final jet dimensions (close to the final break- 
age) for various values of J. The results shown for J = 10.8 correspond 
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FIG. 12. The final jet flow domain is shown for various values of dimensionless yield 
stress, T, = r,,/Ro, with J = poR/p’ = 5. 

to a glycerine and water solution and agree with results reported 
elsewhere.25P26 The tendency to form a droplet which has a minimum 
surface energy to volume ratio is clearly seen. It is also evident from this 
figure that a ligament is formed between successive main drops which is 
well documented experimentally.27’3”36 This ligament would, at later 
times, form another droplet referred to as a satellite drop which is 
generally considered to be detrimental to processes involving 
atomization3’ As J increases, larger and larger ligaments are formed 
leading to larger satellite droplets. 

The same numerical experiments, with surface tension, were repeated 
for Bingham liquids and for liquids with shear-rate dependent viscosity. 
The results are summarized in Figs. 11 through 14. It should be noted 
that these calculations were made possible because of the convenient 
constitutive equation that does not require tracking of yield surfaces, in 
time or in space. 

From an intuitive standpoint, the introduction of yield stress (here 
measured in units of u/R 1 should delay the breakup process or, in other 



BINGHAM-PLASTIC JET BEHAVIOR 805 

0.25 

0.00 l- 
0 

Newtonian 

Power Law -.-.- 

3 

FIG. 13. The neck radius evolution near the jet break point is shown as a function of time 
for a Carreau fluid (p,/h = 0. I) and a power-law fluid with J = puR/p* = 0. Also 
shown is the prediction of linear theory for a Newtonian fluid (Ref. 23). 

words, move the jet closer to neutral stability. This behavior is illus- 
trated in Fig. 11 in which the progression of the disturbance at the final 
jet breaking point is plotted as a function of time for different values of 
the dimensionless yield stress T, = IT$/LT. As the yield stress increases, 
the collapse of the jet is delayed and the final breakup time is prolonged. 
Figure 12 shows the effect of yield stress on the volume of the satellite 
droplet. An increased yield stress first produces very thin ligaments, 
then no ligaments at all. Thus, the introduction of yield stress produces 
smaller satellite drops and causes a delay of jet breakup, given a fixed 
disturbance wavelength. High yield stress however results in droplets of 
uniform size, without an$,satellite drops, which is of interest to ink-jet 
and paint atomization. ’ 

Calculations were also performed for fluids exhibiting shear thinning 
but no yield stress. Both the power-law and the Carreau model were 
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Breakup time = 37.0 pT/u 

Axial Distance z/k 

FIG. 14. The final jet flow domain is shown for various values of the Carreau shear- 
thinning parameter n with J = paR/$ = 5 and pm /&J = 0.1. 

examined. Figure 13 shows results for such fluids with negligible inertial 
terms. The power-law model predicts that increased shear thinning (de- 
creasing exponent n) will delay the breakup time while the Carreau 
model (for decreasing n) shows the opposite. This anomaly is due to the 
fact that the power-law model is singular as p-0, resulting in a huge 
viscosity for small 9. This artificially induced viscosity is initially large 
enough to predict a significant artificial delay of the breakup of the jet. 
The Carreau model, with a finite zero-shear viscosity, avoids this arti- 
ficiality. In fact, it is well known that viscosity dissipates energy and is 
therefore a stabilizing factor; thus, shear thinning, which reduces vis- 
cosity, is expected to destabilize the jet leading to shorter breakup times. 
Figure 14 illustrates the effect of shear thinning on satellite drop size. At 
the neck of the jet, the shear rates are relatively high, which reduces the 
viscosity, which in turn reduces resistance to collapse. Thus, once a neck 
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FIG. 15. The neck radius evolution near the jet break point is shown as a function of time 
for a Carreau fluid with various values of the relaxation constant /1 with J = pR/p* 
=0,n=0.7,and~L,/~o=0.1. 

is formed, the jet collapses very quickly trapping a larger volume of the 
fluid in the ligament, which results in larger satellite droplets. 

The Carreau model allows the onset of shear thinning to be delayed 
by decreasing its time constant ;1*. This effect is shown in Fig. 15 , in 
which increasing A* has a qualitatively similar effect as decreasing n; 
that is, it produces shorter breakup times. As explained above, quicker 
breakup times indicate that the ligament (or satellite) volume would 
increase. This fact is again shown in Fig. 16 where the final jet config- 
uration is plotted for various values of A*. 

As expected, the corresponding calculations for planar sheets showed 
that surface tension enhances stability. Yield stress did not produce 
unstable sheets; the only effect yield stress had was to delay the leveling 
of the initial sinusoidal disturbance. Shear-thinning sheets behaved 
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FIG, 16. The final jet flow domain is shown for various values of the Carreau time 
constant A with J=pcrR/p' = 5, n = 0.7, and p,/m = 0.1. 

much like stable Newtonian sheets since low shear rates resulted in 
nearly constant viscosity. 

V. CONCLUSIONS 

The combination of Galerkin finite element and a convenient 
Bingham-plastic model, which is valid uniformly in yielded and un- 
yielded regions, produced an efficient scheme for computation of flows 
of materials with yield. The efficiency and attractiveness of the scheme 
is due to the fact that it eliminates tracking the location of yield sur- 
faces, which makes possible the implementation of global Newton iter- 
ation to solve the resulting nonlinear equations. Thus, in this way, there 
is really little or no difference between algorithms for Newtonian and 
Bingham plastic liquids; the only difference being the stress law inserted 
in the momentum equation. 

For the steady jet calculations, the asymptotic behavior of this 
scheme was similar to that exhibited by the ideal Bingham model; the 
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predictions at Re = 2000 agreed with the asymptotic values of the swell- 
ing of the ideal Bingham-plastic liquid at infinite Re, for both circular 
and planar jets. Yield stress was found to suppress the swelling or the 
contraction of the jet and to induce necking at moderate Reynolds 
numbers. The effect of yield stress is similar to and often masked by 
high surface tension coexistence. 

Stability results have shown that increased surface tension will result 
in larger ligament volumes (ultimately leading to larger satellite drop- 
lets) due to the quick snapoff at the neck where curvature is high. Yield 
stress increases the breaking time of the jet and reduces the size of the 
resulting satellite. The latter is attributed to the delay in the breaking 
time which allows the fluid in the ligament longer time to overcome its 
own inertia and pass into the main droplet. The opposite effect was 
observed with increasing shear thinning, which resulted in larger satel- 
lite droplets. 
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NOTATION 
Ca 
D 
h 
hf 
2H 
J 
IJI 
J 
Lb L2 
M,N,S 

n 
n 
m 
P 
R 
R 

= Capillary number @U/(T) 
= rate of strain tensor 
= elevation of free surface 
= final jet dimension 
= mean curvature of free surface 
= redefined transient Reynolds number(paR/p2) 
= Jacobian of the isoparametric transformation 
= Jacobian of the residuals R with respect to unknowns x 
= distances of inlet and outlet from exit 
= numbers of pressure, velocity, and free-surface elevation 

unknowns 
= exponent in power-law model 
= unit normal vector 
= exponent in Bingham-plastic model 
= dimensionless pressure 
= radius 
= vector of residuals 
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Rb Rk, Vu = continuity, kinematic, and momentum residuals 

RI, R; = z- and r-momentum residuals 
Re = Reynolds number (pUR/p) 
t = unit tangent vector 
T = dimensionless stress tensor 
Trr-, Tm-, 
T”-, e’- = rr, n, zz, and 88 components of stress tensor 

TY = dimensionless yield stress (TR/~U) 
u = axial velocity component 
u = dimensionless velocity 
u = mean velocity 
u = radial velocity component 

: 
= vector of nodal unknowns 
= the Ohnesorge number 

Greek letters 
= parameter in Eqs. (12), (13), (14), and (15) 
= viscosity 
= zero-shear viscosity 
= infinite-shear viscosity 
= wavelength of disturbance 
= time constant in Carreau model 
= isoparametric coordinates 
= density 
= surface tension 
= yield stress 
= biquadratic and bilinear basis functions 
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