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Synopsis

We demonstrate that viscoelasticity combined with nonlinear slip acts as a storage of elastic energy
generating oscillations of the pressure drop similar to those observed experimentally in extrusion
instabilities. We consider the time-dependent axisymmetric incompressible Poiseuille and
extrudate-swell flows of an Oldroyd-B fluid. We assume that slip occurs along the wall of the die
following a slip equation which relates the shear stress to the velocity at the wall and exhibits a
maximum and a minimum. We first study the stability of the one-dimensional axisymmetric
Poiseuille flow by means of a one-dimensional linear stability analysis and time-dependent
calculations. The numerically predicted instability regimes agree well with the linear stability ones.
The calculations reveal that periodic solutions are obtained when an unstable steady-state is
perturbed and that the amplitude and the period of the oscillations are increasing functions of the
Weissenberg number. We then continue to humerically solve the time-dependent two-dimensional
axisymmetric Poiseuille and extrudate-swell flows using the elastic-viscous split stress method for
the integration of the constitutive equation. Again, oscillations are observed in the unstable regime;
consequently, the surface of the extrudate is wavy. However, the amplitude and the period of the
pressure drop oscillations are considerably smaller than in the one-dimensional flow. The most
important phenomenon revealed by our two-dimensional calculations is that the flow in the die is
periodic in the axial direction. €1998 The Society of Rheolod$0148-60588)00103-3

[. INTRODUCTION

Two basic explanations for the stick-slip and the gross fracture instabilities, observed
during the extrusion of polymeric fluids from a capillary or a slit, are the loss of adhesion
at the polymer-wall interface and the constitutive instabilities. Most slip equations pro-
posed in the literature predict a power-law relation between the shear stress at the wall
and the slip velocityat constant temperatyrfDenn(1992]. Of particular interest to this
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work, however, are equations which exhibit maxima and minima. If such a slip equation
holds, the corresponding flow curve for Poiseuille flow, i.e., the log—log plot of the
pressure drop versus the flow rdtw, equivalently, the log—log plot of the wall shear
stress versus the apparent shear)raehibits maxima and minima too. Non-monotone

slip equations based on molecular parameters have been proposed by El Kissi and Piau
(1989, by Leonov(1990 and by Adewale and Leono\1997).

Pearson and Petr{@965 carried out the linear stability analysis of the incompressible
Newtonian Poiseuille flow with slip at the wall for two-dimensional disturbances show-
ing that the flow is linearly unstable when the slope of the slip function is negative.
Georgiou and Crochet1994a numerically solved the time-dependent compressible
Newtonian Poiseuille flow with nonlinear slip at the wall, showing that, indeed, steady-
state solutions in the negative-slope regime of the flow curve are unstable. If such a
solution is perturbed, self-sustained oscillations of the pressure drop and of the mass flow
rate at the exit are obtained, while the volumetric flow rate at the inlet is kept constant.
These oscillations are similar to those observed with the stick-slip instability. The calcu-
lations have been extended to the extrudate-swell prodi€eorgiou and Crochet
(1994h], and, as expected, the surface of the extrudate is oscillatory in the unstable
regime. The amplitude and the wavelength of the free-surface waves increase with com-
pressibility.

While the above mechanism of slip-induced instability is based on the multi-
valuedness of the slip equation, most of the proposed studies of constitutive instability are
caused by the multi-valuedness of the constitutive equation, i.e., at a given shear stress
there are three different shear rates that correspond. Linear stability and/or time-
dependent numerical analyses of the shear and Poiseuille flows of fluids obeying non-
monotone constitutive equations show that steady-state solutions in the negative-slope
regime of the constitutive equation may be unstable and that a flow curve hysteresis is
obtained between the two stable brancheésrushalmi(1970; Kolkka et al. (1988].
Interesting discussions and comparisons between the wall slip and the constitutive insta-
bilities mechanisms can be found in Chetral. (1994 and Adewale and Leonoi1997).

In our previous worl{ Georgiou and Crochdt1994a,b], we have shown that com-
pressibility in combination with nonlinear slip at the wall acts as a storage of elastic
energy generating oscillations of the pressure drop and of the mass flow rate in Poiseuille
flow. The objective of the present work is to demonstrate that viscoelasticity combined
with nonlinear slip plays a similar role in incompressible viscoelastic flow. For this
purpose, we use the Oldroyd-B model which exhibits a monotonic steady-shear response.
The proposed mechanism of instability does not require any multi-valuedness of the
constitutive equation; the multi-valuedness of the flow curve is solely due to the slip
equation.

We solve the time-dependent axisymmetric extrudate-swell problem of an Oldroyd-B
fluid; we also present results for the one- and two-dimensional axisymmetric Poiseuille
and the stick-slip problems. The governing equations and the boundary conditions are
presented in Section Il. For the integration of the constitutive equation we use the elastic-
viscous split stres¢EVSS method of Rajagopalaet al. (1990 which has shown con-
vergence at high values of elasticity at relatively low computational cost. For solving this
time-dependent free-surface viscoelastic flow problem, we use the finite element method
with a second-order predictor—corrector scheme for integration in time. The numerical
method is described briefly in Section Ill. Before proceeding to the solution of the
two-dimensional problems, we study the stability of the one-dimensional axisymmetric
Poiseuille flow. In Section IV, we present the linear stability diagrams for one-
dimensional infinitesimal disturbances showing that a steady-state solution in the
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negative-slope regime of the flow curve might be unstable. Steady-state solutions in the
negative-slope regime destabilize as we move from the Newtonian to the upper-
convected Maxwell model or as elasticity increases. In Section V, we numerically solve
the one-dimensional Poiseuille flow. The predicted instability regimes agree well with
those of the linear stability analysis. If the imposed volumetric flow rate falls into the
unstable regime, then the flow becomes periodic. The amplitude and the period of the
pressure-drop oscillations increase with elasticity. Similar results have been obtained for
the shear flow with slip along the fixed wall and are presented elsevjfBrergiou
(1996; Fyrillas and Georgiou1997]. Finally, in Section VI, we present numerical
results for the two-dimensional axisymmetric Poiseuille, stick-slip, and extrudate-swell
flows obtained with the EVSS method. Again, periodic solutions are generated when the
imposed volumetric flow rate is in the unstable regime. However, the oscillations are of
smaller amplitude and period than in the one-dimensional flow. Our calculations reveal
that the flow in the die is space periodic and the surface of the extrudate exhibits small-
amplitude waves.

IIl. GOVERNING EQUATIONS

Since the instabilities of interest originate in the die, we will first study the time-
dependent Poiseuille flow before proceeding to the extrudate-swell problem. Further-
more, because the outflow conditions in time-dependent viscoelastic simulations may
have a dramatic effect on the numerical solutj@wodart and Crochet1993], we will
also consider the stick-slip flow problem.Mfando are the velocity vector and the stress
tensor, respectively, the continuity and the momentum equations for time-dependent in-
compressible flow may be written as follows:

Vv =0, 1

N
po TPV IV=V o—f =0, 2

wherep is the density and is the body force. The stress tensercan be written as
o= —pl+T, (3

wherep denotes the pressurkejs the unit tensor and is the extra-stress tensor.

We consider the Oldroyd-B constitutive model. The extra-stress tehssrdecom-
posed into a purely viscoelastic paFy and a purely viscous paif, [Crochetet al.
(1984)1:

T=T1+Ty (4)

%
T1+)\ Tl = 2771d, (5)
T2 = 2772d, (6)

where 71, 7, and\ are material parameters. The Newtonian and the upper-convected
Maxwell models are recovered by setting = 0 andz, = 0, respectively. Moreoved
is the rate-of-strain tensor defined by:

d=3[(VV)+(VV)T], @)
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v
where the superscript denotes the transpose. Finall¥,; is the upper-convected de-

rivative of Tq:

v DTl T
Tl = __(VV) 'Tl_Tl'VV. (8)
Dt
We nondimensionalize the governing equations by scaling the lengths by the lRadius
the die, the velocity by a characteristic velocity; the stress components byy{
+ 72) VIR, and the time byR/V. We thus obtain two dimensionless numbers, the Rey-
nolds number Re and the Weissenberg number We, defined as follows:

pVR AV
Re= . We= —, (9
71t 72 R
Equations(2) and(5) become:
ov
ReE+Re\/'Vv+Vp—V-(T1+TZ) =0, (10
%
T1+WeTl = 27]1d (11)

Note that all the variables in the above two equations are dimensionjgsand », are
scaled by the shear viscosity + 72) and that the body force in the momentum equation
has been neglected.

A. The elastic-viscous split stress formulation

We use the elastic-viscous split strég3/SS formulation for the integration of the
constitutive equatiofiRajagopalaret al. (1990]. This method was especially developed
for fluids with a Newtonian viscosity like the Oldroyd-B model but it also applies for
fluids with an instantaneous elastic response like the UCM model. It is characterized by
a bigger domain of convergence in We than other previous methods of comparable
computational cosfBrown et al. (1993]. The rate of deformation tensat, given by
Equation (7), is introduced as an additional unknown along with the modified stress
tensorS defined as follows:

S= Tl_27]1d. (12)
Substituting into Equation&l0) and (11) gives:
ov

ReE+Ra/-Vv+Vp—V-S—2V2v =0, (13

v Y,

= 0. (14)

With the EVSS formulation the momentum/continuity equation set forms an elliptic
saddle-point problem for the velocity and the pressure fieldB; ifs viewed as data for
the equation sdtBrown et al. (1993].
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B. Boundary and initial conditions

The geometry and the boundary conditions for the three time-dependent flows studied
in this work are shown in Figure 1. We assume that slip occurs along the wall of the die
following the slip equation used by Georgiou and Crodi®94a. This equation relates
the shear stress on the wal), to the relative velocity of the fluid with respect to the wall
vy and involves three material parametess ao and az. Its nondimensionalized form
is:

Ay
ow = —F(vy) = —Aq| 1+ 5 [ow: (15
1+A3UW
where
a’lR 2
Al = ) A2 = 0[2; A3 = 0[3V . (16)
mtn

Equation(15) exhibits a maximum and a minimum of,, provided thatA, > 8; other-
wise, the slip equation is monotonic. Another constraint arises if we demand that the
volumetric flow rateQ for fully developed Poiseuille flow is a monotonic function of
vy - This requirement is met when
4+A
Fllog) > -4 Ay<8 . 17
Ay
In Figure 2, we show the shear stress at the wglland the volumetric flow rat&® for
fully developed Poiseuille flow as functions @f,, for A; = 1, A, = 20 andA3 = 100.
Along the axis of symmetry we have the usual symmetry conditions. Along the wall,
the radial velocity vanishes whereas the axial velocity satisfies Equat®nOn the free
surface we neglect surface tension and thus the normal and tangential stress components
vanish. Another condition at the free surface is the kinematic one,

oh dh 0 g

—+v,——v, = 0, 1

X UZ&Z Ur (18
which provides the additional equation required for the calculation of the unknown po-
sition of the free surfacé(z,t).

At the inlet plane, we impose the velocity components and all the components of the
modified stress tens@. In order to study the effect of the inlet boundary condition on
the numerical solutions, we consider two possibilities. In the first aasis assumed to
be parabolic corresponding to the fully developed Poiseuille flow with slip along the
wall:

vy = vroh,,Q) = (221wl +21-139Q;, v, =S, =S, = Sy = O;
S,, = 329, We r?(v) —Q)2.

Here v\lN is the velocity at the wall calculated by demanding thatsatisfies the slip
Equation(15):

19

A
1+Aq(0},)?
In the second case,; is assumed to be uniform corresponding to plug flow:

V;,=Q, VI =5,=5,=5 =S=0. (2D

Moy —Q) = —Ay| 1+ Dyy - (20)
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Ow = Oy(Vy), v, =0

poR iz
vy = UZ(T,U{U,Q) 0., =0
vV = 0 Vp = 0
T4
r=0 e

o, =0, v =0

(a) Poiseuille flow

Oy = Oo(Vuy), v, =0 ~ ~
v =% =0
v, = v(7, vy, Q) =0
=0 v, =0
'}
z
orz =0, v, =0

(b) Stick-slip flow

%—’t‘+v2%—m:0
n-oc=20

Ow = 0y(Vy), V=0 ~ 3

0., =0

v, = (7, v{,,Q)
v, =0

v, =0

i

gy, =0, v, =0

(¢) Extrudate-swell flow
FIG. 1. Geometry and boundary conditions for the three time-dependent problems studied in this work; slip
occurs along the wall.

(Note thatQ is the dimensionless volumetric flow rate divided fy Finally, at the exit

we assume that the radial velocity and the normal stress,, vanish. Note thatr,, is
not zero in the fully developed Poiseuille flow and hence our assumption makes the

problem two dimensional.
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Vw

Vw

FIG. 2. Slip function and volumetric flow rate as functions of the slip velooify; fully developed Poiseuille
flow, A; = 1, A, = 20 andA3 = 100.

As for the initial conditions, we start from the steady-state solution at a given volumetric
flow rate Qg and we seQ = Qg+AQ att = At. The values ob, andS,, at the inlet
are then calculated using Equatiail®) or (21).

[ll. FINITE ELEMENT FORMULATION

The full Newton iteration method is employed for solving the extrudate-swell prob-
lem. In other words, the unknown position of the free surface calculated simulta-
neously with the other fields. The two-dimensional spine remeshing technique is used at
every Newton iteration step. An important issue in mixed finite element methods is the
compatibility of the approximations used for the different unknown fi¢kie, for ex-
ample, Brownet al. (1993]. In the present work, we employ B2—C° (biquadrati¢
interpolation for the velocity vector and Rl —CP (bilinearn interpolation for the pres-
sure, the rate of deformation tensor and the modified stress tensor. For the position of the
free surface we use @2—C° (quadrati¢ interpolation. Debaet al. (1994 have tested
the EVSS method with the above set of approximations on different benchmark problems
and found that it is remarkably stable and accurate despite its low cost. If the mesh,
however, is of moderate refinement the method gives a slightly lower swelling than other
more accurate methods.
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The spatial discretization of the governing equations is performed via the Galerkin
method. The resulting nonlinear system of equations is solved using the Newton method
and a frontal solver. For time-dependent flow, we use a second-order predictor—corrector
scheme. For the predictor we employ the explicit two-step Adams—Bashforth method
while for the corrector we use the implicit Crank—Nicolson scheme. One iteration is
allowed per time step. In the simple cases of Poiseuille flow, however, we also use the
standard fully implicit(Euler backward-differengescheme.

IV. THE ONE-DIMENSIONAL FLOW IN A TUBE

In the case of steady one-dimensional Poiseuille flow, it is easily shown that

v, = vy— §VP(1-r?), 22)
r
TZ =TTy = VP>, (23

where the slip velocity,, satisfies the condition
oW = VP = —F(vy), (24

andVP is the pressure gradient. @ is the volumetric flow rate divided by,

Q= 2J1vzrdr, (25)

0

then
Q=vy— %VP = vyt %F(UW). (26)

As already mentioned, the Oldroyd-B model is a monotonic constitutive equation. It is
easily deduced from Equatioit®4) and(26) that the shape of the flow curve is dictated
by the slip equatioriit exhibits a maximum and a minimum if the slip equation does

A very useful result for the pressure gradient in time-dependent flow is obtained by
integrating thez-momentum equation over the cross section of the die. If the volumetric
flow rate is fixed, the left-hand side of the integrated equation is zero and we thus obtain:

—VP = —2(T7+TH)| = 1 = 2F(vy). (27)

The dependence of the pressure gradeRt on the slip velocityv,, is the same as in
steady-state flow.

The stability of the steady-state solutions to one-dimensional infinitesimal distur-
bances can be studied by means of a linear stability analysis similar to that carried out by
Fyrillas and Georgio1997 for the case of simple shear flow. In Poiseuille flow, either
the volumetric flow rate or the pressure gradient can be fixed in time-dependent calcula-
tions. The neutral stability curves calculated with fixed volumetric flow rate are plotted in
Figure 3 for various values of,. It can be shown that the stability curves of Figure 3
approach asymptotically the valuey4.

As illustrated in Figure 3, for a given,, the stability of a basic solution is determined
from the values of the derivativié’ (v,,) and the elasticity numbey, defined as follows:

We
Re’

(28)

&
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FIG. 3. Neutral stability curves for the round Poisedille flow of an Oldroyd-B fluid with slip at the wall and
constant volumetric flow rate; solutions above the corresponding curve are unstable.

If F'(vy) > 0, the solution is stable, independent of the value of the elasticity number
e. If F'(vy) < 0, the solution is unstable for values Bf (v,,) above the marginal
stability curve. Note thafE’ (v,,) cannot be less than4 due to our assumption thé is

a monotonic function ob, in steady stat¢Equation(17)]. Increasing the value of»
reduces the size of the instability regime. Moreover, the Newtonian tow O or

72 = 1) is always stable.

If, instead of the volumetric flow rate, the pressure gradient is fixed, a basic solution
corresponding to negativié’ (v,) is unstable, regardless of the value of elasticity num-
bere. In such a case, one of the other two stable solutions that correspond to the same
pressure gradient is attained, depending on the initial condition.

V. NUMERICAL RESULTS FOR THE ONE-DIMENSIONAL FLOW IN A TUBE

We use standard finite elements in space and a fully imghkaiter backward differ-
ence scheme in time for the numerical solution of the time-dependent one-dimensional
equations. Both, andTrlZ are approximated with quadrati@%—co) basis functions. In
all results of this section, we take Re 1, A; = 1, A, = 20 andA3 = 100; the value of
77 is 0.1, unless otherwise stated.

The numerical results are found to agree well with the predictions of the linear sta-
bility analysis. If a steady-state solution in the negative-slope regime of the slip equation
is perturbed, while the pressure gradient is kept constant, the solution evolves to a steady
state on one of the two stable branches. On the other hand, if the volumetric flow rate is
fixed in the unstable regime, then self-sustained oscillations of the pressure gradient are
observed above a critical value of the elasticity numbeiThe calculated instability
regimes agree well with those predicted by the linear stability analysis. Let us elaborate
on the basic solution for Re 1 andQ = 0.45[F'(v,,) = —1.4]. The linear stability
analysis predicts that the flow is unstable for We larger thariFigure 3; our numerical
results show that the critical value of We at which instability appears might be a little
smaller (~ 0.38 if the magnitude of the initial disturbance is large. In Figure 4, we
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Vw

FIG. 4. Evolution of the solution when the unstable steady-state solutioQfpre= 0.449 is perturbed by
settingQ = 0.45 att = 0; one-dimensional Poiseuille flow, Re 1, We= 1, and», = 0.1.

show the evolution of the slip velocity and the pressure gradient when we start from the
steady-state solution for We 1 and Qg = 0.449 and sefQ = 0.45 att = At. The
solution becomes periodic after a few oscillations. Note that, in general, the same peri-
odic solution is obtained wheQ is much farther fromQ, on any of the two positive-
slope branches of the slip equation; some exceptions will be discussed toward the end of
this section. Indeed, in the sequel, we will preferably show results obtained starting away
from the new value o), since the periodic solution is more quickly established that way,
especially when the Weissenberg number is close to the critical value. In Figrevé
plot the pressure gradient versus the slip velocity as a test for the numerical solution. The
plotted quantities move along the steady-state curve as required by Eq(@fjoThe
oscillations extend to a small part of the left positive-slope branch of the curve; this
results in the appearance of the local minima of the pressure gradient in Figyre 4
Similarly, local maxima are observed whenever the oscillations extend to the right posi-
tive slope branch of the curve.

The effect of We on both the amplitude and the period of the oscillations is illustrated
in Figure 5, where we plot the evolution of the slip velocity for various values offéfe
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t
FIG. 5. Time-dependent solutions for different values of We with= 0.45; one-dimensional Poiseuille flow,
Re=1andz, = 0.1.

Q = 0.45. Both the amplitude and the period of the oscillations decrease as We de-
creases, and the solution becomes stable below a critical value, in agreement with the
linear stability analysis.

The effect ofy, has also been studied. The steady-state solutions are unstable below
a critical value of#,, in agreement with the linear stability analysis. As the valueygf
decreases, that is, as we move from the Newtonian to the upper-convected Maxwell
model, the flow destabilizes and both the amplitude and the frequency of the oscillations
become larger. Finally, the stability of the solutions whed»n, < F'(vy,) < 0, i.e.,
for values of—F’ (vy,) below the asymptotic limits found at Re 0 has been examined.
The calculated responses depend not only on the size of the perturbation, but also on the
initial conditions. For small perturbations, the steady-state solution is reached, whereas
for relatively larger perturbations, periodic solutions might be obtained.

VI. NUMERICAL RESULTS FOR THE TWO-DIMENSIONAL PROBLEMS

For all results of this section, we take Rel andz, = 0.1, unless otherwise stated.
The maximum time stept, a4 Was taken equal to 0.01. The results obtained by taking
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FIG. 6. Evolution of the pressure drop for the two-dimensional circular Poiseuille flow compared to the
one-dimensional solutiofdashed ling Q = 0.45, Re= 1, We= 1 andL; = 10.

Atmnax = 0.001 were practically the same. Before presenting results for the stick-slip and
the extrudate-swell problems, we show results for the two-dimensional Poiseuille flow
and compare them to their one-dimensional counterparts.

A. Poiseuille flow

We have first tested our two-dimensional codes by using as inlet boundary conditions
the one-dimensional time-dependent solutions calculated in Section V; the other bound-
ary conditions are those given in Section Il B. It has been found that, in this case, the
one-dimensional solution is convected downstream and, thus, the flow remains one-
dimensional at all times, except near the exit. We then obtained results with the velocity
at the inlet kept constant. As in Section V, steady-state solutions were perturbed by
changing the value of the volumetric flow rate by a small am@Qrit%9 att = At. In all
two-dimensional Poiseuille flow calculations, the velocity at the inlet was assumed to be
parabolic, following Equatiori19). It was found that perturbing an unstable steady state
leads again to oscillatory and eventually periodic flow.

In Figure 6, we compare the evolution of the pressure dropQfor 0.45 with its
one-dimensional counterpart. The pressure dképis calculated along the wall and the
length of the tubd_, is taken equal to 10. We observe that the amplitude of the oscilla-
tions is much smaller in the two-dimensional case. At early times, the periods of the
oscillations are approximately the same. In the two-dimensional flow, however, the pe-
riod is reduced by almost a half just before periodicity is established. This pattern has
been observed in all calculations in which a periodic solution is reached. Note that the
initial pressure drops in the one- and the two-dimensional calculations differ, since the
disturbed steady-state solution in the two-dimensional case does not correspond to fully
developed Poiseuille flow; this is due to the zero normal stress condition used at the exit
plane. In fact, due to the rearrangement of the flow at the exit region, the calculated
pressure drop along the axis of symmetry is larger than its counterpart along the wall and
oscillates with a smaller amplitude.

The most important finding of our two-dimensional calculations is that, Wpes in
the unstable regime, the flow is space periodic too. This is clearly seen when plotting the
contours of the radial velocity during one cycle. The contour cells of the radial velocity
component in Figure 7 are of alternating signs; this implies that the fluid moves periodi-
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FIG. 7. Contours of the radial velocity in two-dimensional Poiseuille flow during one cycle after periodicity is
establishedQ = 0.45, Re= 1, We= 1 andL; = 10.

cally from the core towards the wall and vice versa. The fluid accelerates and decelerates
periodically in the axial direction. The periodicity in space has been verified by repeating
the calculations with a longer mesh. The period of the oscillations and the size wf the
cells remained the same when we increasedrom 10 to 16.

As with the one-dimensional results, the amplitude and the period of the pressure drop
oscillations are reduced as the Weissenberg number is decreased, and the flow is stable
below a critical value of We. This critical value is higher than the linear stability analysis
prediction.

B. Stick-slip and extrudate-swell problems

In this section, we study the effect of the pressure-drop and mass-flow-rate oscillations
encountered in Poiseuille flow on the free surface of the extrudate. We also show that the
period of the pressure-drop oscillations depends on the boundary conditions at the inlet.
We still takeQ = 0.45, Re= 1, We= 1, and#n, = 0.1. The length_, of the extrudate
is taken equal to 5; in most runs, the lengith of the die was taken to be 10. In order to
avoid errors caused by the singularity at the exit of the die, we take the pressure drop
along the die equal to the value of at the inlet node of the wall. The calculations
confirm the result of Section VI A: whe® is in the unstable regime, the flow in the die
is periodic in the axial direction.

The periodic flow in the die generates small-amplitude free surface waves. As with the
pressure-drop oscillations, the wavelength of the free surface waves is initially large,
while it is considerably reduced once periodicity in time is establistiédgure §. It
takes, however, a longer time to reach periodicity with the extrudate-swell and stick-slip
flows, since the flow domain is longer. The convergence of the results with mesh refine-
ment has been studied by employing three meshes, the characteristics of which are given
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FIG. 8. Detail of the extrudate surface at different timés:t = 6;(b)t = 14;(c)t = 18;(d) t = 25.86. The
last time corresponds to a pressure drop maximum after periodicity is established. The dashed lines show the

steady-state solution; the velocity at the inlet is parab@lic: 0.45, Re= 1, We= 1 and», = 0.1.

in Table I. In Table I, we also depict the corresponding wavelengths of the free surface
and the periods of the pressure drop. The mean wavelengths are calculatedzin the
interval (12,14 and at a pressure drop maximum. The convergence of the free surface
with mesh refinement has not been pursued any further due to the excessive requirements
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TABLE I. Mean wavelength of the free surface and pefigaf the pressure drop obtained with three meshes.
The mean wavelengths are calculated inzheterval (12,14 and at a pressure drop maximum. The velocity at
the inlet is parabolicQ = 0.45, Re= 1, We= 1 and», = 0.1.

Elements in Elements in
Mesh the die the extrudate Wavelength Tp
1 54X 6 65X 6 0.281 0.76
2 54X 6 120x 6 0.277 0.76
3 120X 8 240x 8 0.274 0.77

in computational time. In Figure(8), we plot a detail of the oscillating free surface at a
pressure drop maximum, after periodic flow is established. Since the free-surface waves
appear together with pressure-drop oscillations, the proposed mechanism of instability
may be related only to the stick-slip extrusion instability and not to sharkskin. In Figure
9, we show the contours of the radial velocity component during one cycle. These results
have been obtained by imposing a parabolic velocity profile at the inlet, as given by
Equation(19). The frequency of the free surface waves is the same as that of the pressure
drop. Indeed, if one multiplies the average velocity of the extrud@a®56 by the period

Tp = 0.77 of the pressure drop, one gets the value 0.274 for the wavelength, which
coincides with the calculated value in Table I. The velocity cells of Figure 9 are gener-
ated at the same frequency as the pressure-drop oscillations; their speed of propagation is
more than seven times faster than the average velocity of the fluid in the die.

Finally, in order to investigate the effect of the boundary condition at the inlet on the
period of the pressure-drop oscillations, we solved the time-dependent stick-slip problem
by imposing parabolic and uniform axial velocity profiles, according to Equaiib8s
and (21), respectively. Calculated values for the period are tabulated in Table II, along
with values obtained for the Poiseuille and extrudate-swell flows under the same flow
conditions. We remark that the period of the pressure-drop oscillations is larger when the

t=25.08

t=25.28

t=25.48
(APmin)

t—=25.68

t=25.84
(APmax)

FIG. 9. Contours of the radial velocity in extrudate swell flow during a cycle after periodicity is established; the
velocity at the inlet is paraboli® = 0.45, Re= 1, We= 1 andz, = 0.1.
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TABLE Il Effect of the inlet boundary condition on the peridg of the pressure-drop oscillationg; = 0.45,
Re= 1, We= 1 andzn, = 0.1.

Flow v, at the inlet L1 Tp
Poiseuille parabolic 10 0.78
extrudate-swell parabolic 10 0.77
stick-slip parabolic 10 0.78
stick-slip plug 10 0.90
stick-slip plug 15 0.91

velocity at the inlet is uniform. The contours of the radial velocity component during one
cycle are shown in Figure 10. Since the period is larger, the contour cells are larger than
those in Figure 9. Runs with longer meshes revealed that the period of the oscillations
does not depend on the length of the (Bee Table ).

VIlI. CONCLUSIONS

A mechanism for extrusion instability that does not require any multiplicities of the
stress constitutive equation has been proposed. We have shown that, under certain con-
ditions, the combination of viscoelasticity and nonlinear slip at the wall of the die leads
to self-sustained oscillations of the pressure drop similar to those observed experimen-
tally in the stick-slip instability regime.

We first studied the one-dimensional axisymmetric Poiseuille flow of an Oldroyd-B
fluid by means of a one-dimensional linear stability analysis and time-dependent finite
element calculations. We demonstrated the existence of unstable solutions in the negative
slope regime of the flow curve. The instability regimes grow in size as the Weissenberg
number is increased. The incompressible Newtonian flow is always stable; flow destabi-
lizes as one moves towards the upper-convected Maxwell model. If a steady-state solu-
tion in the negative-slope regime is perturbed at constant pressure gradient, a stable

t=21.20
(APmax)

t=21.44

t=21.66
(APmin)

t=21.88

t=22.10
(APmax)

FIG. 10. Contours of the radial velocity in stick-slip flow during a cycle after periodicity is established; the
velocity at the inlet is uniformQ = 0.45, Re= 1, We= 1, 5, = 0.1,L; = 10 andL, = 5.
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steady-state solution on one of the two positive-slope branches of the flow curve is
eventually reached. If, however, the unstable steady-state solution is perturbed at constant
volumetric flow rate, the response is initially oscillatory, while it eventually becomes
periodic. The amplitude and the period of the oscillations are increasing functions of the
Weissenberg number.

The two-dimensional axisymmetric Poiseuille, stick-slip and extrudate-swell flows of
an Oldroyd-B fluid have also been solved using the EVSS method. Periodic solutions are
again found to exist in the unstable regime. Nevertheless, the amplitude and the period of
the oscillations are smaller than in the one-dimensional flow. A consequence of the
deviations from the one-dimensional time-dependent Poiseuille solution is that the flow
in the die becomes periodic in the axial direction. Our calculations demonstrate that the
period of the pressure-drop oscillations depends on the inlet boundary conditions and that
the periodic flow in the die generates small-amplitude waves on the surface of the
extrudate.

It should be emphasized that making comparisons with experiments is out of the scope
of the present work. Our objective is simply to demonstrate that viscoelasticity combined
with nonlinear slip can generate oscillations of the pressure drop in Poiseuille flow,
similar to those observed experimentally with the stick-slip extrusion instability, and to
show the notable differences between the one- and the two-dimensional calculations.
There are many important issues that should be addressed in order to proceed to realistic
extrusion instability simulations. A truly representative constitutive equation for polymer
fluids under the critical conditions and an accurate slip equation based on polymer/wall
adhesion physics should be used. Moreover, a real simulation should take into account
the bulk polymer compressibility and the inherent polymer chain flexibi{ifherefore, it
is important to include the reservoir regibRnly after considering all the above factors,
one can proceed to predictions of the critical conditions for onset of slip and/or unstable
flow and study the features of extrudate distortions such as periods, wavelengths, ampli-
tudes and wave patterns.
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