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Synopsis

We demonstrate that viscoelasticity combined with nonlinear slip acts as a storage of elastic energy
generating oscillations of the pressure drop similar to those observed experimentally in extrusion
instabilities. We consider the time-dependent axisymmetric incompressible Poiseuille and
extrudate-swell flows of an Oldroyd-B fluid. We assume that slip occurs along the wall of the die
following a slip equation which relates the shear stress to the velocity at the wall and exhibits a
maximum and a minimum. We first study the stability of the one-dimensional axisymmetric
Poiseuille flow by means of a one-dimensional linear stability analysis and time-dependent
calculations. The numerically predicted instability regimes agree well with the linear stability ones.
The calculations reveal that periodic solutions are obtained when an unstable steady-state is
perturbed and that the amplitude and the period of the oscillations are increasing functions of the
Weissenberg number. We then continue to numerically solve the time-dependent two-dimensional
axisymmetric Poiseuille and extrudate-swell flows using the elastic-viscous split stress method for
the integration of the constitutive equation. Again, oscillations are observed in the unstable regime;
consequently, the surface of the extrudate is wavy. However, the amplitude and the period of the
pressure drop oscillations are considerably smaller than in the one-dimensional flow. The most
important phenomenon revealed by our two-dimensional calculations is that the flow in the die is
periodic in the axial direction. ©1998 The Society of Rheology.@S0148-6055~98!00103-5#

I. INTRODUCTION

Two basic explanations for the stick-slip and the gross fracture instabilities, observed
during the extrusion of polymeric fluids from a capillary or a slit, are the loss of adhesion
at the polymer-wall interface and the constitutive instabilities. Most slip equations pro-
posed in the literature predict a power-law relation between the shear stress at the wall
and the slip velocity~at constant temperature! @Denn~1992!#. Of particular interest to this
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work, however, are equations which exhibit maxima and minima. If such a slip equation
holds, the corresponding flow curve for Poiseuille flow, i.e., the log–log plot of the
pressure drop versus the flow rate~or, equivalently, the log–log plot of the wall shear
stress versus the apparent shear rate!, exhibits maxima and minima too. Non-monotone
slip equations based on molecular parameters have been proposed by El Kissi and Piau
~1989!, by Leonov~1990! and by Adewale and Leonov~1997!.

Pearson and Petrie~1965! carried out the linear stability analysis of the incompressible
Newtonian Poiseuille flow with slip at the wall for two-dimensional disturbances show-
ing that the flow is linearly unstable when the slope of the slip function is negative.
Georgiou and Crochet~1994a! numerically solved the time-dependent compressible
Newtonian Poiseuille flow with nonlinear slip at the wall, showing that, indeed, steady-
state solutions in the negative-slope regime of the flow curve are unstable. If such a
solution is perturbed, self-sustained oscillations of the pressure drop and of the mass flow
rate at the exit are obtained, while the volumetric flow rate at the inlet is kept constant.
These oscillations are similar to those observed with the stick-slip instability. The calcu-
lations have been extended to the extrudate-swell problem@Georgiou and Crochet
~1994b!#, and, as expected, the surface of the extrudate is oscillatory in the unstable
regime. The amplitude and the wavelength of the free-surface waves increase with com-
pressibility.

While the above mechanism of slip-induced instability is based on the multi-
valuedness of the slip equation, most of the proposed studies of constitutive instability are
caused by the multi-valuedness of the constitutive equation, i.e., at a given shear stress
there are three different shear rates that correspond. Linear stability and/or time-
dependent numerical analyses of the shear and Poiseuille flows of fluids obeying non-
monotone constitutive equations show that steady-state solutions in the negative-slope
regime of the constitutive equation may be unstable and that a flow curve hysteresis is
obtained between the two stable branches@Yerushalmi ~1970!; Kolkka et al. ~1988!#.
Interesting discussions and comparisons between the wall slip and the constitutive insta-
bilities mechanisms can be found in Chenet al. ~1994! and Adewale and Leonov~1997!.

In our previous work@Georgiou and Crochet~1994a,b!#, we have shown that com-
pressibility in combination with nonlinear slip at the wall acts as a storage of elastic
energy generating oscillations of the pressure drop and of the mass flow rate in Poiseuille
flow. The objective of the present work is to demonstrate that viscoelasticity combined
with nonlinear slip plays a similar role in incompressible viscoelastic flow. For this
purpose, we use the Oldroyd-B model which exhibits a monotonic steady-shear response.
The proposed mechanism of instability does not require any multi-valuedness of the
constitutive equation; the multi-valuedness of the flow curve is solely due to the slip
equation.

We solve the time-dependent axisymmetric extrudate-swell problem of an Oldroyd-B
fluid; we also present results for the one- and two-dimensional axisymmetric Poiseuille
and the stick-slip problems. The governing equations and the boundary conditions are
presented in Section II. For the integration of the constitutive equation we use the elastic-
viscous split stress~EVSS! method of Rajagopalanet al. ~1990! which has shown con-
vergence at high values of elasticity at relatively low computational cost. For solving this
time-dependent free-surface viscoelastic flow problem, we use the finite element method
with a second-order predictor–corrector scheme for integration in time. The numerical
method is described briefly in Section III. Before proceeding to the solution of the
two-dimensional problems, we study the stability of the one-dimensional axisymmetric
Poiseuille flow. In Section IV, we present the linear stability diagrams for one-
dimensional infinitesimal disturbances showing that a steady-state solution in the
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negative-slope regime of the flow curve might be unstable. Steady-state solutions in the
negative-slope regime destabilize as we move from the Newtonian to the upper-
convected Maxwell model or as elasticity increases. In Section V, we numerically solve
the one-dimensional Poiseuille flow. The predicted instability regimes agree well with
those of the linear stability analysis. If the imposed volumetric flow rate falls into the
unstable regime, then the flow becomes periodic. The amplitude and the period of the
pressure-drop oscillations increase with elasticity. Similar results have been obtained for
the shear flow with slip along the fixed wall and are presented elsewhere@Georgiou
~1996!; Fyrillas and Georgiou~1997!#. Finally, in Section VI, we present numerical
results for the two-dimensional axisymmetric Poiseuille, stick-slip, and extrudate-swell
flows obtained with the EVSS method. Again, periodic solutions are generated when the
imposed volumetric flow rate is in the unstable regime. However, the oscillations are of
smaller amplitude and period than in the one-dimensional flow. Our calculations reveal
that the flow in the die is space periodic and the surface of the extrudate exhibits small-
amplitude waves.

II. GOVERNING EQUATIONS

Since the instabilities of interest originate in the die, we will first study the time-
dependent Poiseuille flow before proceeding to the extrudate-swell problem. Further-
more, because the outflow conditions in time-dependent viscoelastic simulations may
have a dramatic effect on the numerical solution@Bodart and Crochet~1993!#, we will
also consider the stick-slip flow problem. Ifv ands are the velocity vector and the stress
tensor, respectively, the continuity and the momentum equations for time-dependent in-
compressible flow may be written as follows:

¹•v 5 0, ~1!

r
]v

]t
1rv•¹v2¹•s2f 5 0, ~2!

wherer is the density andf is the body force. The stress tensors can be written as

s 5 2pI1T, ~3!

wherep denotes the pressure,I is the unit tensor andT is the extra-stress tensor.
We consider the Oldroyd-B constitutive model. The extra-stress tensorT is decom-

posed into a purely viscoelastic partT1 and a purely viscous partT2 @Crochetet al.
~1984!#:

T 5 T11T2, ~4!

T11l
,

T1 5 2h1d, ~5!

T2 5 2h2d, ~6!

whereh1, h2 and l are material parameters. The Newtonian and the upper-convected
Maxwell models are recovered by settingh1 5 0 andh2 5 0, respectively. Moreover,d
is the rate-of-strain tensor defined by:

d 5 1
2 @~¹v!1~¹v!T#, ~7!
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where the superscriptT denotes the transpose. Finally,
,

T1 is the upper-convected de-

rivative of T1:

,

T1 5
DT1

Dt
2~¹v!T

•T12T1•¹v. ~8!

We nondimensionalize the governing equations by scaling the lengths by the radiusR of
the die, the velocity by a characteristic velocityV, the stress components by (h1
1h2)V/R, and the time byR/V. We thus obtain two dimensionless numbers, the Rey-
nolds number Re and the Weissenberg number We, defined as follows:

Re[
rVR

h11h2
; We [

lV

R
. ~9!

Equations~2! and ~5! become:

Re
]v

]t
1Rev•¹v1¹p2¹•~T11T2! 5 0, ~10!

T11We
,

T1 5 2h1d. ~11!

Note that all the variables in the above two equations are dimensionless (h1 andh2 are
scaled by the shear viscosityh11h2) and that the body force in the momentum equation
has been neglected.

A. The elastic-viscous split stress formulation

We use the elastic-viscous split stress~EVSS! formulation for the integration of the
constitutive equation@Rajagopalanet al. ~1990!#. This method was especially developed
for fluids with a Newtonian viscosity like the Oldroyd-B model but it also applies for
fluids with an instantaneous elastic response like the UCM model. It is characterized by
a bigger domain of convergence in We than other previous methods of comparable
computational cost@Brown et al. ~1993!#. The rate of deformation tensord, given by
Equation ~7!, is introduced as an additional unknown along with the modified stress
tensorS defined as follows:

S 5 T122h1d. ~12!

Substituting into Equations~10! and ~11! gives:

Re
]v

]t
1Rev•¹v1¹p2¹•S22¹2v 5 0, ~13!

S1WeF ,

S12h1
,

dG 5 0. ~14!

With the EVSS formulation the momentum/continuity equation set forms an elliptic
saddle-point problem for the velocity and the pressure fields, ifT1 is viewed as data for
the equation set@Brown et al. ~1993!#.
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B. Boundary and initial conditions

The geometry and the boundary conditions for the three time-dependent flows studied
in this work are shown in Figure 1. We assume that slip occurs along the wall of the die
following the slip equation used by Georgiou and Crochet~1994a!. This equation relates
the shear stress on the wallsw to the relative velocity of the fluid with respect to the wall
vw and involves three material parametersa1, a2 anda3. Its nondimensionalized form
is:

sw 5 2F~vw! 5 2A1S11
A2

11A3vw
2 Dvw , ~15!

where

A1 [
a1R

h11h2
; A2 [ a2; A3 [ a3V

2. ~16!

Equation~15! exhibits a maximum and a minimum ofsw provided thatA2 . 8; other-
wise, the slip equation is monotonic. Another constraint arises if we demand that the
volumetric flow rateQ for fully developed Poiseuille flow is a monotonic function of
vw . This requirement is met when

F8~vw! . 24 ⇔ A2 , 8
41A1

A1
. ~17!

In Figure 2, we show the shear stress at the wallsw and the volumetric flow rateQ for
fully developed Poiseuille flow as functions ofvw , for A1 5 1, A2 5 20 andA3 5 100.

Along the axis of symmetry we have the usual symmetry conditions. Along the wall,
the radial velocity vanishes whereas the axial velocity satisfies Equation~15!. On the free
surface we neglect surface tension and thus the normal and tangential stress components
vanish. Another condition at the free surface is the kinematic one,

]h

]t
1vz

]h

]z
2vr 5 0, ~18!

which provides the additional equation required for the calculation of the unknown po-
sition of the free surfaceh(z,t).

At the inlet plane, we impose the velocity components and all the components of the
modified stress tensorS. In order to study the effect of the inlet boundary condition on
the numerical solutions, we consider two possibilities. In the first case,vz is assumed to
be parabolic corresponding to the fully developed Poiseuille flow with slip along the
wall:

vz 5 vz~r,vw
I ,Q! 5 ~2r221!vw

I
12~12r2!Q; vr 5 Srz 5 Srr 5 Suu 5 0;

~19!
Szz 5 32h1We r 2~vw

I 2Q!2.

Here vw
I is the velocity at the wall calculated by demanding thatvz satisfies the slip

Equation~15!:

4~vw
I 2Q! 5 2A1S11

A2

11A3~vw
I !2

Dvw
I . ~20!

In the second case,vz is assumed to be uniform corresponding to plug flow:

vz 5 Q; vr 5 Szz 5 Srz 5 Srr 5 Suu 5 0. ~21!
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~Note thatQ is the dimensionless volumetric flow rate divided byp.! Finally, at the exit
we assume that the radial velocityv r and the normal stressszz vanish. Note thatszz is
not zero in the fully developed Poiseuille flow and hence our assumption makes the
problem two dimensional.

FIG. 1. Geometry and boundary conditions for the three time-dependent problems studied in this work; slip
occurs along the wall.
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As for the initial conditions, we start from the steady-state solution at a given volumetric
flow rateQ0 and we setQ 5 Q01DQ at t 5 Dt. The values ofvz andSzz at the inlet
are then calculated using Equations~19! or ~21!.

III. FINITE ELEMENT FORMULATION

The full Newton iteration method is employed for solving the extrudate-swell prob-
lem. In other words, the unknown position of the free surfaceh is calculated simulta-
neously with the other fields. The two-dimensional spine remeshing technique is used at
every Newton iteration step. An important issue in mixed finite element methods is the
compatibility of the approximations used for the different unknown fields@see, for ex-
ample, Brownet al. ~1993!#. In the present work, we employ aP22C0 ~biquadratic!
interpolation for the velocity vector and aP12C0 ~bilinear! interpolation for the pres-
sure, the rate of deformation tensor and the modified stress tensor. For the position of the
free surface we use aP22C0 ~quadratic! interpolation. Debaeet al. ~1994! have tested
the EVSS method with the above set of approximations on different benchmark problems
and found that it is remarkably stable and accurate despite its low cost. If the mesh,
however, is of moderate refinement the method gives a slightly lower swelling than other
more accurate methods.

FIG. 2. Slip function and volumetric flow rate as functions of the slip velocityvw ; fully developed Poiseuille
flow, A1 5 1, A2 5 20 andA3 5 100.
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The spatial discretization of the governing equations is performed via the Galerkin
method. The resulting nonlinear system of equations is solved using the Newton method
and a frontal solver. For time-dependent flow, we use a second-order predictor–corrector
scheme. For the predictor we employ the explicit two-step Adams–Bashforth method
while for the corrector we use the implicit Crank–Nicolson scheme. One iteration is
allowed per time step. In the simple cases of Poiseuille flow, however, we also use the
standard fully implicit~Euler backward-difference! scheme.

IV. THE ONE-DIMENSIONAL FLOW IN A TUBE

In the case of steady one-dimensional Poiseuille flow, it is easily shown that

vz 5 vw2 1
4 ¹P~12r2!, ~22!

Trz 5 T1
rz

1T2
rz

5 ¹P
r

2
, ~23!

where the slip velocityvw satisfies the condition

sw 5 1
2 ¹P 5 2F~vw!, ~24!

and¹P is the pressure gradient. IfQ is the volumetric flow rate divided byp,

Q 5 2E
0

1
vz r dr, ~25!

then

Q 5 vw2 1
8 ¹P 5 vw1 1

4 F~vw!. ~26!

As already mentioned, the Oldroyd-B model is a monotonic constitutive equation. It is
easily deduced from Equations~24! and~26! that the shape of the flow curve is dictated
by the slip equation~it exhibits a maximum and a minimum if the slip equation does!.

A very useful result for the pressure gradient in time-dependent flow is obtained by
integrating thez-momentum equation over the cross section of the die. If the volumetric
flow rate is fixed, the left-hand side of the integrated equation is zero and we thus obtain:

2¹P 5 22~T1
rz

1T2
rz!ur 5 1 5 2F~vw!. ~27!

The dependence of the pressure gradient¹P on the slip velocityvw is the same as in
steady-state flow.

The stability of the steady-state solutions to one-dimensional infinitesimal distur-
bances can be studied by means of a linear stability analysis similar to that carried out by
Fyrillas and Georgiou~1997! for the case of simple shear flow. In Poiseuille flow, either
the volumetric flow rate or the pressure gradient can be fixed in time-dependent calcula-
tions. The neutral stability curves calculated with fixed volumetric flow rate are plotted in
Figure 3 for various values ofh2. It can be shown that the stability curves of Figure 3
approach asymptotically the value 4h2.

As illustrated in Figure 3, for a givenh2, the stability of a basic solution is determined
from the values of the derivativeF8(vw) and the elasticity number«, defined as follows:

« [
We

Re
. ~28!
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If F8(vw) . 0, the solution is stable, independent of the value of the elasticity number
«. If F8(vw) , 0, the solution is unstable for values ofF8(vw) above the marginal
stability curve. Note thatF8(vw) cannot be less than24 due to our assumption thatQ is
a monotonic function ofvw in steady state@Equation~17!#. Increasing the value ofh2
reduces the size of the instability regime. Moreover, the Newtonian flow~« 5 0 or
h2 5 1! is always stable.

If, instead of the volumetric flow rate, the pressure gradient is fixed, a basic solution
corresponding to negativeF8(vw) is unstable, regardless of the value of elasticity num-
ber «. In such a case, one of the other two stable solutions that correspond to the same
pressure gradient is attained, depending on the initial condition.

V. NUMERICAL RESULTS FOR THE ONE-DIMENSIONAL FLOW IN A TUBE

We use standard finite elements in space and a fully implicit~Euler backward differ-
ence! scheme in time for the numerical solution of the time-dependent one-dimensional
equations. Bothvz andT1

rz are approximated with quadratic (P2–C0) basis functions. In
all results of this section, we take Re5 1, A1 5 1, A2 5 20 andA3 5 100; the value of
h2 is 0.1, unless otherwise stated.

The numerical results are found to agree well with the predictions of the linear sta-
bility analysis. If a steady-state solution in the negative-slope regime of the slip equation
is perturbed, while the pressure gradient is kept constant, the solution evolves to a steady
state on one of the two stable branches. On the other hand, if the volumetric flow rate is
fixed in the unstable regime, then self-sustained oscillations of the pressure gradient are
observed above a critical value of the elasticity number«. The calculated instability
regimes agree well with those predicted by the linear stability analysis. Let us elaborate
on the basic solution for Re5 1 andQ 5 0.45 @F8(vw) 5 21.4#. The linear stability
analysis predicts that the flow is unstable for We larger than 0.4~Figure 3!; our numerical
results show that the critical value of We at which instability appears might be a little
smaller (; 0.38! if the magnitude of the initial disturbance is large. In Figure 4, we

FIG. 3. Neutral stability curves for the round Poiseuille flow of an Oldroyd-B fluid with slip at the wall and
constant volumetric flow rate; solutions above the corresponding curve are unstable.
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show the evolution of the slip velocity and the pressure gradient when we start from the
steady-state solution for We5 1 and Q0 5 0.449 and setQ 5 0.45 at t 5 Dt. The
solution becomes periodic after a few oscillations. Note that, in general, the same peri-
odic solution is obtained whenQ0 is much farther fromQ, on any of the two positive-
slope branches of the slip equation; some exceptions will be discussed toward the end of
this section. Indeed, in the sequel, we will preferably show results obtained starting away
from the new value ofQ, since the periodic solution is more quickly established that way,
especially when the Weissenberg number is close to the critical value. In Figure 4~c!, we
plot the pressure gradient versus the slip velocity as a test for the numerical solution. The
plotted quantities move along the steady-state curve as required by Equation~27!. The
oscillations extend to a small part of the left positive-slope branch of the curve; this
results in the appearance of the local minima of the pressure gradient in Figure 4~b!.
Similarly, local maxima are observed whenever the oscillations extend to the right posi-
tive slope branch of the curve.

The effect of We on both the amplitude and the period of the oscillations is illustrated
in Figure 5, where we plot the evolution of the slip velocity for various values of We~for

FIG. 4. Evolution of the solution when the unstable steady-state solution forQ0 5 0.449 is perturbed by
settingQ 5 0.45 att 5 0; one-dimensional Poiseuille flow, Re5 1, We5 1, andh2 5 0.1.
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Q 5 0.45!. Both the amplitude and the period of the oscillations decrease as We de-
creases, and the solution becomes stable below a critical value, in agreement with the
linear stability analysis.

The effect ofh2 has also been studied. The steady-state solutions are unstable below
a critical value ofh2, in agreement with the linear stability analysis. As the value ofh2
decreases, that is, as we move from the Newtonian to the upper-convected Maxwell
model, the flow destabilizes and both the amplitude and the frequency of the oscillations
become larger. Finally, the stability of the solutions when24h2 , F8(vw) , 0, i.e.,
for values of2F8(vw) below the asymptotic limits found at Re5 0 has been examined.
The calculated responses depend not only on the size of the perturbation, but also on the
initial conditions. For small perturbations, the steady-state solution is reached, whereas
for relatively larger perturbations, periodic solutions might be obtained.

VI. NUMERICAL RESULTS FOR THE TWO-DIMENSIONAL PROBLEMS

For all results of this section, we take Re5 1 andh2 5 0.1, unless otherwise stated.
The maximum time stepDtmax was taken equal to 0.01. The results obtained by taking

FIG. 5. Time-dependent solutions for different values of We withQ 5 0.45; one-dimensional Poiseuille flow,
Re 5 1 andh2 5 0.1.
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Dtmax 5 0.001 were practically the same. Before presenting results for the stick-slip and
the extrudate-swell problems, we show results for the two-dimensional Poiseuille flow
and compare them to their one-dimensional counterparts.

A. Poiseuille flow

We have first tested our two-dimensional codes by using as inlet boundary conditions
the one-dimensional time-dependent solutions calculated in Section V; the other bound-
ary conditions are those given in Section II B. It has been found that, in this case, the
one-dimensional solution is convected downstream and, thus, the flow remains one-
dimensional at all times, except near the exit. We then obtained results with the velocity
at the inlet kept constant. As in Section V, steady-state solutions were perturbed by
changing the value of the volumetric flow rate by a small amount~0.1%! at t 5 Dt. In all
two-dimensional Poiseuille flow calculations, the velocity at the inlet was assumed to be
parabolic, following Equation~19!. It was found that perturbing an unstable steady state
leads again to oscillatory and eventually periodic flow.

In Figure 6, we compare the evolution of the pressure drop forQ 5 0.45 with its
one-dimensional counterpart. The pressure dropDP is calculated along the wall and the
length of the tubeL1 is taken equal to 10. We observe that the amplitude of the oscilla-
tions is much smaller in the two-dimensional case. At early times, the periods of the
oscillations are approximately the same. In the two-dimensional flow, however, the pe-
riod is reduced by almost a half just before periodicity is established. This pattern has
been observed in all calculations in which a periodic solution is reached. Note that the
initial pressure drops in the one- and the two-dimensional calculations differ, since the
disturbed steady-state solution in the two-dimensional case does not correspond to fully
developed Poiseuille flow; this is due to the zero normal stress condition used at the exit
plane. In fact, due to the rearrangement of the flow at the exit region, the calculated
pressure drop along the axis of symmetry is larger than its counterpart along the wall and
oscillates with a smaller amplitude.

The most important finding of our two-dimensional calculations is that, whenQ is in
the unstable regime, the flow is space periodic too. This is clearly seen when plotting the
contours of the radial velocity during one cycle. The contour cells of the radial velocity
component in Figure 7 are of alternating signs; this implies that the fluid moves periodi-

FIG. 6. Evolution of the pressure drop for the two-dimensional circular Poiseuille flow compared to the
one-dimensional solution~dashed line!; Q 5 0.45, Re5 1, We5 1 andL1 5 10.
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cally from the core towards the wall and vice versa. The fluid accelerates and decelerates
periodically in the axial direction. The periodicity in space has been verified by repeating
the calculations with a longer mesh. The period of the oscillations and the size of thev r
cells remained the same when we increasedL1 from 10 to 16.

As with the one-dimensional results, the amplitude and the period of the pressure drop
oscillations are reduced as the Weissenberg number is decreased, and the flow is stable
below a critical value of We. This critical value is higher than the linear stability analysis
prediction.

B. Stick-slip and extrudate-swell problems

In this section, we study the effect of the pressure-drop and mass-flow-rate oscillations
encountered in Poiseuille flow on the free surface of the extrudate. We also show that the
period of the pressure-drop oscillations depends on the boundary conditions at the inlet.
We still takeQ 5 0.45, Re5 1, We5 1, andh2 5 0.1. The lengthL2 of the extrudate
is taken equal to 5; in most runs, the lengthL1 of the die was taken to be 10. In order to
avoid errors caused by the singularity at the exit of the die, we take the pressure drop
along the die equal to the value ofp at the inlet node of the wall. The calculations
confirm the result of Section VI A: whenQ is in the unstable regime, the flow in the die
is periodic in the axial direction.

The periodic flow in the die generates small-amplitude free surface waves. As with the
pressure-drop oscillations, the wavelength of the free surface waves is initially large,
while it is considerably reduced once periodicity in time is established~Figure 8!. It
takes, however, a longer time to reach periodicity with the extrudate-swell and stick-slip
flows, since the flow domain is longer. The convergence of the results with mesh refine-
ment has been studied by employing three meshes, the characteristics of which are given

FIG. 7. Contours of the radial velocity in two-dimensional Poiseuille flow during one cycle after periodicity is
established;Q 5 0.45, Re5 1, We5 1 andL1 5 10.
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in Table I. In Table I, we also depict the corresponding wavelengths of the free surface
and the periods of the pressure drop. The mean wavelengths are calculated in thez
interval ~12,14! and at a pressure drop maximum. The convergence of the free surface
with mesh refinement has not been pursued any further due to the excessive requirements

FIG. 8. Detail of the extrudate surface at different times:~a! t 5 6; ~b! t 5 14; ~c! t 5 18; ~d! t 5 25.86. The
last time corresponds to a pressure drop maximum after periodicity is established. The dashed lines show the
steady-state solution; the velocity at the inlet is parabolic,Q 5 0.45, Re5 1, We5 1 andh2 5 0.1.
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in computational time. In Figure 8~d!, we plot a detail of the oscillating free surface at a
pressure drop maximum, after periodic flow is established. Since the free-surface waves
appear together with pressure-drop oscillations, the proposed mechanism of instability
may be related only to the stick-slip extrusion instability and not to sharkskin. In Figure
9, we show the contours of the radial velocity component during one cycle. These results
have been obtained by imposing a parabolic velocity profile at the inlet, as given by
Equation~19!. The frequency of the free surface waves is the same as that of the pressure
drop. Indeed, if one multiplies the average velocity of the extrudate~0.356! by the period
Tp 5 0.77 of the pressure drop, one gets the value 0.274 for the wavelength, which
coincides with the calculated value in Table I. The velocity cells of Figure 9 are gener-
ated at the same frequency as the pressure-drop oscillations; their speed of propagation is
more than seven times faster than the average velocity of the fluid in the die.

Finally, in order to investigate the effect of the boundary condition at the inlet on the
period of the pressure-drop oscillations, we solved the time-dependent stick-slip problem
by imposing parabolic and uniform axial velocity profiles, according to Equations~19!
and ~21!, respectively. Calculated values for the period are tabulated in Table II, along
with values obtained for the Poiseuille and extrudate-swell flows under the same flow
conditions. We remark that the period of the pressure-drop oscillations is larger when the

TABLE I. Mean wavelength of the free surface and periodTp of the pressure drop obtained with three meshes.
The mean wavelengths are calculated in thez interval ~12,14! and at a pressure drop maximum. The velocity at
the inlet is parabolic,Q 5 0.45, Re5 1, We5 1 andh2 5 0.1.

Mesh
Elements in

the die
Elements in
the extrudate Wavelength Tp

1 5436 6536 0.281 0.76
2 5436 12036 0.277 0.76
3 12038 24038 0.274 0.77

FIG. 9. Contours of the radial velocity in extrudate swell flow during a cycle after periodicity is established; the
velocity at the inlet is parabolic,Q 5 0.45, Re5 1, We5 1 andh2 5 0.1.
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velocity at the inlet is uniform. The contours of the radial velocity component during one
cycle are shown in Figure 10. Since the period is larger, the contour cells are larger than
those in Figure 9. Runs with longer meshes revealed that the period of the oscillations
does not depend on the length of the die~see Table II!.

VII. CONCLUSIONS

A mechanism for extrusion instability that does not require any multiplicities of the
stress constitutive equation has been proposed. We have shown that, under certain con-
ditions, the combination of viscoelasticity and nonlinear slip at the wall of the die leads
to self-sustained oscillations of the pressure drop similar to those observed experimen-
tally in the stick-slip instability regime.

We first studied the one-dimensional axisymmetric Poiseuille flow of an Oldroyd-B
fluid by means of a one-dimensional linear stability analysis and time-dependent finite
element calculations. We demonstrated the existence of unstable solutions in the negative
slope regime of the flow curve. The instability regimes grow in size as the Weissenberg
number is increased. The incompressible Newtonian flow is always stable; flow destabi-
lizes as one moves towards the upper-convected Maxwell model. If a steady-state solu-
tion in the negative-slope regime is perturbed at constant pressure gradient, a stable

TABLE II. Effect of the inlet boundary condition on the periodTp of the pressure-drop oscillations;Q 5 0.45,
Re 5 1, We5 1 andh2 5 0.1.

Flow vz at the inlet L1 Tp

Poiseuille parabolic 10 0.78
extrudate-swell parabolic 10 0.77
stick-slip parabolic 10 0.78
stick-slip plug 10 0.90
stick-slip plug 15 0.91

FIG. 10. Contours of the radial velocity in stick-slip flow during a cycle after periodicity is established; the
velocity at the inlet is uniform,Q 5 0.45, Re5 1, We5 1, h2 5 0.1, L1 5 10 andL2 5 5.
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steady-state solution on one of the two positive-slope branches of the flow curve is
eventually reached. If, however, the unstable steady-state solution is perturbed at constant
volumetric flow rate, the response is initially oscillatory, while it eventually becomes
periodic. The amplitude and the period of the oscillations are increasing functions of the
Weissenberg number.

The two-dimensional axisymmetric Poiseuille, stick-slip and extrudate-swell flows of
an Oldroyd-B fluid have also been solved using the EVSS method. Periodic solutions are
again found to exist in the unstable regime. Nevertheless, the amplitude and the period of
the oscillations are smaller than in the one-dimensional flow. A consequence of the
deviations from the one-dimensional time-dependent Poiseuille solution is that the flow
in the die becomes periodic in the axial direction. Our calculations demonstrate that the
period of the pressure-drop oscillations depends on the inlet boundary conditions and that
the periodic flow in the die generates small-amplitude waves on the surface of the
extrudate.

It should be emphasized that making comparisons with experiments is out of the scope
of the present work. Our objective is simply to demonstrate that viscoelasticity combined
with nonlinear slip can generate oscillations of the pressure drop in Poiseuille flow,
similar to those observed experimentally with the stick-slip extrusion instability, and to
show the notable differences between the one- and the two-dimensional calculations.
There are many important issues that should be addressed in order to proceed to realistic
extrusion instability simulations. A truly representative constitutive equation for polymer
fluids under the critical conditions and an accurate slip equation based on polymer/wall
adhesion physics should be used. Moreover, a real simulation should take into account
the bulk polymer compressibility and the inherent polymer chain flexibility.~Therefore, it
is important to include the reservoir region.! Only after considering all the above factors,
one can proceed to predictions of the critical conditions for onset of slip and/or unstable
flow and study the features of extrudate distortions such as periods, wavelengths, ampli-
tudes and wave patterns.
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