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Abstract: The steady-state Couette flow of a yield-stress material obeying the Bingham-plastic
constitutive equation is analyzed assuming that slip occurs when the wall shear stress exceeds a
threshold value, the slip (or sliding) yield stress. The case of Navier slip (zero slip yield stress) is
studied first in order to facilitate the analysis and the discussion of the results. The different flow
regimes that arise depending on the relative values of the yield stress and the slip yield stress are
identified and the various critical angular velocities defining those regimes are determined. Analytical
solutions for all the regimes are presented and the implications for this important rheometric flow
are discussed.
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1. Introduction

Yield-stress, or viscoplastic, materials constitute a very important class, which includes foams,
emulsions, colloids, gels, pastes, and suspensions that are of great interest in pharmaceutics, cosmetics,
food, oil, and construction industries [1]. These materials behave like fluids when the stress exceeds a
certain critical stress, the yield stress, τ∗0; otherwise, they behave like solids [2]. It should be noted that
throughout the paper symbols with stars denote dimensional variables.

The Bingham-plastic model is the simplest constitutive equation describing viscoplastic behavior.
If τ∗ is the viscous stress tensor,

.
γ
∗
≡ ∇u∗ + (∇u∗)T is the rate-of-strain tensor, where u∗ is the velocity

vector and the superscript T denotes the transpose, and τ∗ ≡
√
τ∗ : τ∗/2 and

.
γ
∗
≡

√
.
γ
∗ :

.
γ
∗/2 are the

magnitudes of τ∗ and
.
γ
∗, respectively, then the Bingham-plastic model can be written as follows:

.
γ
∗
= 0, τ∗ ≤ τ∗0

τ∗ =
(
τ∗0
.
γ
∗ + µ∗

)
.
γ
∗, τ∗ > τ∗0

, (1)

where µ∗ is the plastic viscosity. Other popular viscoplastic constitutive equations are the Casson and
Herschel-Bulkley models, which are able to describe post-yield shear thinning or shear thickening [3].
It is clear that the flow domain in a viscoplastic flow consists of yielded (τ∗ > τ∗0) and unyielded
(τ∗ < τ∗0) regions, separated by the yield surfaces where τ∗ = τ∗0. The determination of these regions is
not a trivial task, especially in two- and three-dimensional flows [4].

Yield-stress materials are also known to exhibit wall slip [5,6]. As pointed out by Hatzikiriakos [7],
it appears that slip is the rule and not the exception in several classes of complex fluids,
especially viscoplastic ones, such as microgels, glasses, suspensions and pastes. The role of wall
slip in various processes of industrial importance has been emphasized in many review papers and
experimental studies ([6–11]; and references therein). In general, slip may be due to loss of adhesion
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of the fluid to the wall (true slip) or to the formation of a thin layer adjacent to the wall, where the
viscosity is much smaller than in the bulk. The causes and mechanisms of slip in complex fluid flows
and the various factors affecting slip have been reviewed in [7,11].

Experimental data on different fluid systems, including Newtonian liquids, polymer melts, gels,
and suspensions have shown that wall slip occurs only above a certain critical value of the wall shear
stress, known as the slip or sliding or threshold yield stress, τ∗c [11–16]. The following two-branch
equation was proposed for hard-sphere colloidal suspensions [17–20] and carbopol gels [21]:

u∗w =

 0, τ∗w ≤ τ
∗
c

(τ∗w−τ
∗
c)

s

β∗ , τ∗w > τ
∗
c

, (2)

where τ∗w is the wall shear stress, u∗w is the slip velocity, defined as the relative velocity of the fluid
respect to that of the wall, β∗ is the slip coefficient, and s is the exponent. Sochi [14] pointed out
that τ∗c characterizes the fluid-solid system and the existing physical conditions. For a fluid with
given molecular parameters, the slip coefficient β∗ depends on the temperature, the normal stress and
pressure, and on the properties of the fluid/wall interface. In the absence of slip, β∗ is infinite.

In the case of concentrated suspensions, it was found that s = 1 for hydrophilic (repulsive)
surfaces when τ∗ < τ∗0 and s = 2 for hydrophobic (attractive) surfaces for a wider range of applied
shear stress [11]. Equation (2) has also been used to describe strong slip of polymer melts, in which
case s is in the range 2.5–3.3 [11]. In the case of Carbopol gels, various values for the exponent have
been reported at different concentrations, in the range 0.87 ≤ s ≤ 2 (see [22] and references therein).
Setting s = 1 in Equation (2) yields

u∗w =

 0, τ∗w ≤ τ
∗
c

τ∗w−τ
∗
c

β∗ , τ∗w > τ
∗
c

, (3)

which has been proposed for Newtonian fluids by Spikes and Granick [12], who tested the applicability
of the above equation on experimental data and discussed possible physical mechanisms. When s = 1
and τ∗c = 0 the classical Navier slip [23] condition is recovered:

u∗w =
τ∗w
β∗

. (4)

In this case, the slip coefficient is related to the slip or extrapolation length, b∗, defined as the
characteristic length equal to the distance that the velocity profile at the wall must be extrapolated to
reach zero, i.e., b∗ ≡ η∗/β∗, and η∗ being the viscosity [11].

The two-branch form of the slip Equation (2) leads to some interesting theoretical as well as
numerical difficulties, similar to those encountered with the discontinuous Bingham model. Different
flow regimes are defined by critical values for the occurrence of slip along a wall. Moreover, in 2D
and 3D problems, slip may occur only along unknown parts of the wall which is of interest from
both the physics and the numerical points of view. Recently, analytical solutions of pressure-driven
Newtonian flows in various geometries with wall slip governed by Equation (3) have been derived
both for steady-state [24,25] and time-dependent [26] flows. Damianou et al. [16] solved the cessation
of axisymmetric Newtonian Poiseuille flow and showed that if the initial pressure gradient is greater
than the critical value for the occurrence of slip, then slip occurs only initially till a finite critical time
at which slip ceases and cessation continues without slip. They also employed a regularized version
of Equation (2) in order to numerically solve steady-state and time-dependent Poiseuille flows of a
Herschel-Bulkley fluid [16].

Returning to viscoplastic materials exhibiting slip with non-zero slip yield stress, the relative
value of τ∗c with respect to the yield stress τ∗0 is of interest, since different flow situations may arise.
In most experimental studies on various materials τ∗c appears to be much lower than τ∗0 [20,21,27,28].
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For example, for microgel pastes Seth et al. [29] reported values of τ∗c and τ∗0 in the ranges 3.2–6 Pa and
53–117 Pa, respectively. Similarly, Piau [21] reported values in the ranges 0.23–23 Pa and 22–94 Pa.
Daneshi et al. [22] reported that for water-based Carbopol gels with a concentration greater than
0.075%, the slip yield stress increases linearly with the yield stress, τ∗c = (0.18± 0.02) τ∗0, and roughly
linearly with the solvent viscosity.

Kalyon [13] states that wall slip is inevitable during the flow of viscoplastic fluids under stress
magnitudes smaller than their yield stress values. Malkin and Patlazhan [11] note that wall slip with
viscoplastic media takes place at low stresses and can exist in two different physical states below
(solid-like) and above (liquid-like) the yield stress. In certain systems, such as microgels [18,29] and
foams [30], slip appears to be significant for stresses below τ∗0 and to decrease and even disappear at
high enough shear stresses. Hence, three slip regimes are identified with these systems: an initial
sliding regime (no deformation) for τ∗ < τ∗0, an intermediate regime above τ∗0 where deformation
is observed along with slip, and a regime where slip is suppressed and/or becomes negligible [7].
Similarly, Poumaere et al. [31] reported that wall slip effects in Carbopol gel flows are more pronounced
in a range of low shear rates where the solid-fluid transition takes place and less important far above
the yield point.

Experimental methods for the measurement of the rheological properties of viscoplastic fluids
have been recently reviewed by Ovarlez [32]. Circular Couette rheometers are very often employed
for the rheological characterisation of yield-stress materials, in particular of drilling fluids and well
cements [33–35]. The fluid sample is put in the gap between two coaxial cylinders one of which is
rotating at constant angular velocity. The analysis of rheometric data becomes more complicated when
slip occurs [7]. The presence of wall slip in rotational rheometers, evidenced by a reduction of the
measured torque (shear stress) at a given shear rate, complicates the determination of the yield stress
of viscoplastic materials [13] and prevents the accurate assessment of the solid-fluid transition [31].
For this reason, slip is often suppressed by adding roughness to the cylinder walls, mostly by means of
sandpaper or ribs [36].

The effects of slip in circular Couette flow have been investigated by various groups. Yoshimura and
Prud’homme [37] extended Mooney’s method to both Couette and parallel disk viscometers and
presented an analysis of the Couette geometry that requires only two measurements rather than the
three used by Mooney in order to assess wall slip of general materials. Yilmazer and Kalyon [17]
generalized the above method. Their approach was later used by Bertola et al. [30] to measure the
wall slip exhibited by pasty materials. Yeow et al. [38] proposed a procedure based on Tikhonov
regularization to analyze Couette viscometry data in the presence of slip and extract the rheological
property functions. They indicated that their method can be used to obtain estimates for the yield
stress and the wall shear stress at the onset of slip.

Hron et al. [39] derived analytical solutions of the Couette flow of Newtonian, power-law and
second-grade fluids in the case of Navier slip on the boundaries. Ren and Zhu [40] derived solutions
for an electrorheological fluid with Navier slip assuming that the yield stress is a function of the
radial distance (i.e., τ∗0 = a∗/r∗b). Philippou et al. [41] solved analytically both the steady-state
and time-dependent Couette flows of a Newtonian fluid with wall slip following Equation (3),
i.e., with non-zero slip yield stress, showing the existence of three steady-state regimes, defined by the
critical values of the angular velocity at which slip starts at the two cylinders. It has been shown that
during cessation, slip ceases first at the outer and then at the inner cylinder.

The objective of the present work is to investigate the effect of wall slip with nonzero slip
yield stress on the circular Couette flow of an ideal Bingham plastic and to identify the various
flow regimes that arise depending on the relative values τ∗0 and τ∗c. Besides rheometry, this flow is
encountered in industrial applications, such as electrorheological clutches [42], catalytic chemical
reactors, filtration devices, liquid-liquid extractors, journal bearings, and oil and gas drilling [43].

In Section 2, the Couette flow with the inner cylinder rotating is solved in the presence of Navier
slip (zero slip yield stress and s = 1), in order to derive the basic solutions for comparison purposes.
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The case where the slip yield stress is non-zero and s = 1 is studied in Section 3. The solutions when
τ∗c = τ∗0 and τ∗c < τ∗0 are derived and the different flow regimes are discussed.

2. Navier Slip

We consider the steady-state flow of a Bingham plastic between two infinitely long co-axial
cylinders of radii κR∗ and R∗, where 0 < κ < 1. Since this is more common in rheometry [32],
we examine here the case where the inner cylinder is rotating at a constant angular velocity Ω∗ while
the outer cylinder is fixed, as illustrated in Figure 1. Due to axisymmetry, the flow is one-dimensional
with u∗θ = u∗θ(r

∗) and the θ-momentum equation yields

τ∗rθ = −
c∗

r∗2
, (5)

where c∗ is a positive constant to be determined from the boundary conditions. It is clear that the
shear stress attains its maximum at the inner cylinder and decreases monotonically towards the outer
cylinder.
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Figure 1. Geometry of circular Couette flow with the inner cylinder rotating.

Let τ∗w1 and τ∗w2 denote the wall shear stresses along the inner and the outer cylinder,
respectively. Hence,

τ∗w1 =
∣∣∣τ∗rθ∣∣∣r∗=κR∗ =

c∗

κ2R∗2
, τ∗w2 =

∣∣∣τ∗rθ∣∣∣r∗=R∗ =
c∗

R∗2
(6)

and thus
τ∗w2 = κ2τ∗w1. (7)

We consider the general case where Navier slip occurs along both the inner and outer cylinders
and denote the two slip velocities by u∗w1 and u∗w2, respectively. We allow the possibility of different
slip coefficients along the two walls so that

u∗wi =
τ∗wi
β∗i

, i = 1, 2. (8)

The conditions for the velocity at the two cylinders are as follows:

u∗θ(κR∗) = Ω∗κR∗ − u∗w1 (9)

and
u∗θ(R

∗) = u∗w2. (10)

As illustrated in Figure 2a, three flow regimes are encountered as the wall shear stress increases:
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(a) Regime I. When τ∗w1 ≤ τ
∗

0 all the material is unyielded rotating as a solid body with an angular
velocity Ω′∗, which is smaller than the angular velocity of the inner cylinder (Ω′∗ < Ω∗). In the
case of no-slip along the outer cylinder, the material is stationary (Figure 2b), while in the case
of no slip along both walls this regime is not observed (Figure 2c). It should be noted that the
velocities sketched in Figure 2 are indicative sketches (i.e., not accurate); for example, in the
regions of solid-body rotation the velocity is actually increasing with r.

(b) Regime II. When τ∗w1 > τ
∗

0 and τ∗w2 ≤ τ
∗

0 the material in the gap is partially yielded, i.e., it yields
only for kR∗ ≤ r∗ ≤ r∗0, where r∗0 is the outer radius of the yielded core, i.e., the radius at which
τ∗ =

∣∣∣τ∗rθ∣∣∣ = τ∗0. The material in the unyielded annulus r∗0 ≤ r∗ ≤ R∗ rotates as a solid body when
slip is imposed on the outer cylinder. Otherwise, the unyielded material is stationary (Figure 2b).
As the inner wall shear stress is increased in this regime the radius r∗0 increases from κR∗ to R∗.

(c) Regime III. When τ∗w2 ≥ τ
∗

0 the material in the gap is fully yielded.

As depicted in Figure 2, the three regimes are defined by the two critical values of the angular
velocity, Ω∗c1 and Ω∗c2, which correspond to τ∗w1 = τ∗0 and τ∗w2 = τ∗0, respectively (the latter condition is
equivalent to τ∗w1 = τ∗0/κ2).

In Regime I, the material rotates as solid body so that

u∗θ(r
∗) = Ω′∗r∗. (11)

Applying Conditions (9) and (10), one gets

Ω′∗κR∗ = Ω∗κR∗ − u∗w1 (12)

and
Ω′∗R∗ = u∗w2. (13)

It is clear that if there is no slip along the outer cylinder (β∗2 →∞ ) the angular velocity Ω′∗ vanishes
and the material is stationary, despite the fact that the inner cylinder is rotating. Since Ω′∗ = 0,
Equation (12) gives

u∗w1 =
τ∗w1

β∗1
= Ω∗κR∗, (14)

which simply says that the fluid slips fully to remain stagnant despite the rotation of the inner cylinder
(Figure 2b). For the first critical angular velocity (which corresponds to τ∗w1 = τ∗0) one finds

Ω∗c1 =
τ∗0

β∗1κR∗
. (15)

If, however, slip is allowed at the outer cylinder, Equation (13) gives

Ω′∗R∗ = u∗w2 =
τ∗w2

β∗2
=
κ2τ∗w1

β∗2
=
κ2β∗1u∗w1

β∗2
⇒u∗w1 =

β∗2Ω′∗R∗

κ2β∗1
. (16)

Substituting into Equation (12) one finds

Ω′∗ =
Ω∗

1 +
β∗2
κ3β∗1

. (17)

Therefore, in Regime I, the velocity is given by:

u∗θ(r
∗) =

Ω∗r∗

1 +
β∗2
κ3β∗1

. (18)
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In the case of no slip along the inner cylinder (β∗1 →∞ ), Ω′∗ = Ω∗ and u∗θ(r
∗) = Ω∗r∗ (solid-body

rotation). For the slip velocities one gets:

u∗w1 =
Ω∗κR∗

1 +
κ3β∗1
β∗2

, u∗w2 =
Ω∗R∗

1 +
β∗2
κ3β∗1

. (19)

Setting τ∗w1 = τ∗0 = β∗1u∗w1 gives the first critical angular velocity

Ω∗c1 =
τ∗0

β∗1κR∗

1 +
κ3β∗1
β∗2

. (20)

Let us now examine what happens in Regime II where Ω∗ ≥ Ω∗c1. In the yielded region
(κR∗ ≤ r∗ ≤ r∗0), the shear stress component of the stress tensor in Equation (1) becomes

τ∗rθ =

(
τ∗0
.
γ
∗
+ µ∗

)
r∗

d
dr

(u∗θ
r∗

)
. (21)

Given that the inner cylinder is rotating and the outer one is fixed, the angular velocity u∗θ/r∗ is a
decreasing function of r∗ and thus

.
γ
∗
= r∗

∣∣∣∣∣∣ d
dr∗

(u∗θ
r∗

)∣∣∣∣∣∣ = −r∗
d

dr∗

(u∗θ
r∗

)
(22)

and

τ∗rθ = −τ∗0 + µ∗r∗
d

dr∗

(u∗θ
r∗

)
. (23)

From Equations (5) and (23) we have

d
dr∗

(u∗θ
r∗

)
=

1
µ∗

(
τ∗0
r∗
−

c∗

r∗3

)
, (24)

which upon integration yields

u∗θ(r
∗) =

1
µ∗

(
τ∗0r∗ ln r∗ +

c∗

2r∗

)
+ c∗1r∗, (25)

where c∗1 is the integration constant.
Applying the boundary Condition (12) at the inner cylinder (r∗ = κR∗) and using

u∗w1 =
τ∗w1

β∗1
=

c∗

β∗1κ
2R∗2

(26)

we get from Equation (25):

c∗1 = Ω −
1
µ∗
τ∗0 ln(κR∗) −

c∗(1 + 2B1)

2µ∗κ2R∗2
, (27)

where B1 is the dimensionless inner slip number defined by

B1 ≡
µ∗

β∗1κR∗
. (28)
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Figure 2. Flow regimes in the presence of Navier slip when the inner cylinder is rotating: (a) slip along
both cylinders; the material rotates as a solid in Regime I and in the unyielded region of Regime II;
(b) slip only along the inner cylinder; the material is stationary in Regime I and in the unyielded region
of Regime II; (c) slip only along the outer cylinder; Ω∗c1 = 0 and Regime I is not observed. It should be
noted that τ∗w2 = τ∗0 is equivalent to τ∗w1 = τ∗0/κ2.
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Substituting Equation (27) into Equation (25) results in the following expression for the velocity in
the yielded region (κR∗ ≤ r∗ ≤ r∗0):

u∗θ(r
∗) = r∗

[
Ω∗ +

τ∗0
µ∗

ln
( r∗

κR∗

)
−

c∗

2µ∗κ2R∗2

(
1 + 2B1 −

κ2R∗2

r∗2

)]
. (29)

From Equation (5) it is deduced that
c∗ = τ∗0r∗20 (30)

and Equation (29) thus becomes

u∗θ(r
∗) =

τ∗0
µ∗

r∗
Ω∗µ∗

τ∗0
+ ln

( r∗

κR∗

)
−

r∗20

2κ2R∗2

(
1 + 2B1 −

κ2R∗2

r∗2

). (31)

In the unyielded region (r∗0 ≤ r∗ ≤ R∗), the material rotates as a solid with angular velocity Ω′∗.
The continuity of the velocity requires that u∗θ(r

∗

0) = Ω′∗r∗0 and therefore

Ω′∗ = Ω∗ +
τ∗0
µ∗

ln( r∗0
κR∗

)
− (1 + 2B1)

r∗20

2κ2R∗2
+

1
2

. (32)

Applying the boundary Condition (13) at the outer cylinder along with the Navier slip condition
we get

Ω′∗ =
τ∗0r∗20

β∗2R∗3
. (33)

Combining Equations (32) and (33) leads to the following nonlinear equation

Ω∗µ∗

τ∗0
+ ln

( r∗0
κR∗

)
− (1 + 2B1 + 2κ3B2)

r∗20

2κ2R∗2
+

1
2
= 0 (34)

for the yield radius r∗0, where B2 is the dimensionless outer slip number

B2 ≡
µ∗

β∗2κR∗
. (35)

Hence, the velocity in Regime II is:

u∗θ(r
∗) =

τ∗0
µ∗

r∗


Ω∗µ∗

τ∗0
+ ln

(
r∗
κR∗

)
−

r∗20
2κ2R∗2

(
1 + 2B1 −

κ2R∗2
r∗2

)
, κR∗ ≤ r∗ ≤ r∗0

κB2
r∗20
R∗2 , r∗0 < r∗ ≤ R∗

. (36)

The slip velocities in this regime are given by

u∗w1 =
τ∗0r∗20

β∗1κ
2R∗2

, u∗w2 =
τ∗0r∗20

β∗2R∗2
. (37)

The second critical angular velocity Ω∗c2 can be obtained by setting r∗0 = R∗ in Equation (34) (which is
equivalent to τ∗w2 = τ∗0):

Ω∗c2 =
τ∗0
µ∗

[
1
2

(
1 + 2B1 + 2κ3B2

κ2 − 1
)
− ln

( 1
κ

)]
. (38)

In Regime III (Ω∗ > Ω∗c2), the boundary condition at the fixed outer cylinder is

u∗θ(R
∗) = u∗w2, (39)
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where

u∗w2 =
τ∗w2

β∗2
=

c∗

β∗2R∗2
. (40)

Substituting into Equation (29) gives

c∗ =
2µ∗κ2R∗2

1− κ2 + 2B1 + 2B2κ3

(
Ω∗ +

τ∗0
µ∗

ln
1
κ

)
(41)

Inserting Equation (41) into Equation (29) we get the velocity distribution in the
fully-yielded regime:

u∗θ(r
∗) =

τ∗0
µ∗

r∗

Ω∗µ∗

τ∗0
+ ln

r∗

κR∗
−

Ω∗µ∗

τ∗0
+ ln 1

κ

1− κ2 + 2B1 + 2B2κ3

(
1 + 2B1 −

κ2R∗2

r∗2

). (42)

For the two slip velocities we now have:

u∗w1 =
2R∗τ∗0κB1

µ∗(1− κ2 + 2B1 + 2κ3B2)

(
Ω∗µ∗

τ∗0
+ ln

1
κ

)
, u∗w2 =

2R∗τ∗0κ
3B2

µ∗(1− κ2 + 2B1 + 2κ3B2)

(
Ω∗µ∗

τ∗0
+ ln

1
κ

)
(43)

Let us summarize the solution in its dimensionless form by scaling r∗ by R∗, u∗θ by τ∗0R∗/µ∗, Ω∗ by
τ∗0/µ∗ and τ∗rθ by τ∗0. The dimensionless critical angular velocities are then given by:

Ωc1 = B1 + κ3B2 (44)

and
Ωc2 =

1
2κ2 (1 + 2B1 + 2κ3B2) − ln

1
κ
−

1
2

. (45)

In Regime I (Ω ≤ Ωc1),

uθ(r) =
Ω r

1 + B1
κ3B2

(46)

and
uw1 =

Ωκ

1 + κ3B2
B1

, uw2 =
Ω

1 + B1
κ3B2

. (47)

In Regime II (Ωc1 < Ω ≤ Ωc2),

uθ(r) = r

 Ω + ln r
κ −

r2
0

2κ2

(
1 + 2B1 −

κ2

r2

)
, κ ≤ r ≤ r0

κB2r2
0, r0 < r ≤ 1

, (48)

where r0 is the root of

Ω + ln
r0

κ
− (1 + 2B1 + 2κ3B2)

r2
0

2κ2 +
1
2
= 0 (49)

and the two slip velocities are given by:

uw1 =
1
κ

B1r2
0, uw2 = κB2r2

0. (50)

Finally, in Regime III (Ω > Ωc2)

uθ(r) = r

Ω + ln
r
κ
−

Ω + ln 1
κ

1− κ2 + 2B1 + 2B2κ3

(
1 + 2B1 −

κ2

r2

) (51)
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and

uw1 =
2κB1

1− κ2 + 2B1 + 2κ3B2

(
Ω + ln

1
κ

)
, uw2 =

2κ3B2

1− κ2 + 2B1 + 2κ3B2

(
Ω + ln

1
κ

)
. (52)

It is easily verified that when Ω = Ωc1 the inner slip velocity is uw1 = κB1; when Ω = Ωc2, uw1 = B1/κ.
In all cases, uw2 = κ2B2uw1/B1. By setting B1 = B2 = 0, one obtains the classical no-slip solutions in
Regimes II and III.

Figures 3–5 show the effect of the dimensionless angular velocity Ω in a rheometer with κ = 0.5.
Three special cases are considered, i.e., no slip along the rotating cylinder (B1 = 0) in Figure 3, no slip
along the fixed cylinder (B2 = 0) in Figure 4, and slip along both cylinders with equal slip coefficients
(B1 = B2) in Figure 5. One can observe that the (non-zero) slip velocity increases rapidly and eventually
(in Regime III) varies linearly with Ω. When B1 = 0 (Figure 3), Regime I is not observed (Ωc1 = 0).
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Figure 3. Outer wall slip velocity for 0.5κ = , 1 0B =  (no slip along the rotating inner cylinder) 
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Figure 3. Outer wall slip velocity for κ = 0.5,B1 = 0 (no slip along the rotating inner cylinder) and
Navier slip along the fixed outer cylinder: (a) B2 = 0.01 (weak slip); (b) B2 = 0.1 (moderate slip);
(c) B2 = 0.5 (strong slip).
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Figure 4. Inner wall slip velocity for 0.5κ = , 2 0B =  (no slip along the fixed outer cylinder), 
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Figure 4. Inner wall slip velocity for κ = 0.5, B2 = 0 (no slip along the fixed outer cylinder), and
Navier slip along the rotating inner cylinder: (a) B1 = 0.01 (weak slip); (b) B1 = 0.1 (moderate slip);
(c) B1 = 0.5 (strong slip).
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Figure 5. Slip velocities for 0.5κ =  and Navier slip along both cylinders: (a) 1 2 0.01B B= =  

(weak slip); (b) 1 2 0.1B B= =  (moderate slip); (c) 1 2 1B B= =  (strong slip). 

Figure 5. Slip velocities for κ = 0.5 and Navier slip along both cylinders: (a) B1 = B2 = 0.01 (weak slip);
(b) B1 = B2 = 0.1 (moderate slip); (c) B1 = B2 = 1 (strong slip).
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Figures 6–8 illustrate the effect of Ω on the azimuthal (uθ) and angular (uθ/r) velocity profiles.
Figure 6 shows results with B1 = 0 (no-slip along the rotating cylinder) and B2 = 0.1 for three values
of Ω, including Ωc2. Note, in particular, that the velocity for Ω = 0.4 (Regime II) increases with r in the
unyielded region (solid-body rotation). Figure 7 shows results with B2 = 0 (no-slip along the outer
cylinder) and B1 = 0.1 while Figure 8 shows results with B1 = B2 = 0.1. In the latter figure, the profiles
for Ω = Ωc1 are shown; uθ/r is finite and flat in this case, since the material is unyielded.
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Figure 6. Velocity profiles in circular Couette flow of a Bingham plastic with Navier slip along the 
fixed outer cylinder with 0.5κ = , 1 0B =  and 2 0.1B = : (a) azimuthal velocity; (b) angular 

velocity; 1 0cΩ =  and 2 0.8569cΩ = . The red circle indicates the yield point for the velocity 

profile corresponding to Regime II (Regime I is not observed). 

Figure 6. Velocity profiles in circular Couette flow of a Bingham plastic with Navier slip along the fixed
outer cylinder with κ = 0.5, B1 = 0 and B2 = 0.1 : (a) azimuthal velocity; (b) angular velocity; Ωc1 = 0
and Ωc2 = 0.8569. The red circle indicates the yield point for the velocity profile corresponding to
Regime II (Regime I is not observed).
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Figure 7. Velocity profiles in circular Couette flow of a Bingham plastic with Navier slip along the 
rotating inner cylinder with 0.5κ = , 1 0.1B =  and 2 0B = : (a) azimuthal velocity; (b) angular 

velocity; 1 0.1cΩ =  and 2 1.20685cΩ = . The red circle indicates the yield point for the velocity 

profile corresponding to Regime II (In Regime I the velocity of the fluid is zero). 

Figure 7. Velocity profiles in circular Couette flow of a Bingham plastic with Navier slip along the
rotating inner cylinder with κ = 0.5, B1 = 0.1 and B2 = 0 : (a) azimuthal velocity; (b) angular
velocity; Ωc1 = 0.1 and Ωc2 = 1.20685. The red circle indicates the yield point for the velocity profile
corresponding to Regime II (In Regime I the velocity of the fluid is zero).
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Figure 8. Velocity profiles in circular Couette flow of a Bingham plastic with Navier slip along both 
cylinders with 0.5κ =  and 1 2 0.1B B= = : (a) azimuthal velocity; (b) angular velocity; 

1 0.1125cΩ =  and 2 1.25685cΩ = . The red circle indicates the yield point for the velocity 

profile corresponding to Regime II; in Regime I, the fluid rotates as a solid body. 

Figure 8. Velocity profiles in circular Couette flow of a Bingham plastic with Navier slip along both
cylinders with κ = 0.5 and B1 = B2 = 0.1 : (a) azimuthal velocity; (b) angular velocity; Ωc1 = 0.1125
and Ωc2 = 1.25685. The red circle indicates the yield point for the velocity profile corresponding to
Regime II; in Regime I, the fluid rotates as a solid body.

3. Solution with Non-Zero Slip Yield Stress

The Navier-slip case analyzed in Section 2 is the special case of slip Equation (3) when the slip yield
stress vanishes, τ∗c = 0. Introducing a non-zero slip yield stress allows various possibilities depending
on the relative values of τ∗0 and τ∗c. The case τ∗c = τ∗0, which is the simplest of all, since material yielding
and wall slip occur simultaneously, is examined first. Then, the case τ∗c < τ∗0, which is more relevant to
experimental observations [20,22], is analyzed.
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3.1. The Case τ∗c = τ∗0

We consider the general case where slip with non-zero slip yield stress occurs along both the inner
and outer cylinders and allow the possibility of different slip coefficients along the two walls so that

u∗wi =

 0, τ∗wi ≤ τ
∗

0
τ∗wi−τ

∗

0
β∗i

, τ∗wi > τ
∗

0
, i = 1, 2. (53)

Two flow regimes are encountered in this case, which are illustrated in Figure 9. In Regime I,
the material is partially yielded and slip is observed only at the inner wall. Hence, in the unyielded
region r∗0 ≤ r∗ ≤ R∗ the material is stagnant. In Regime II, the material is fully-yielded and slip occurs
along both walls. The critical angular velocity Ω∗c defining the two regimes is the angular velocity at
which τ∗w2 = τ∗0 = τ∗c.
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Figure 9. Flow regimes in circular Couette flow of a Bingham plastic in the presence of wall slip with
non-zero slip yield stress, when τ∗c = τ∗0. The inner cylinder is rotating and the outer one is at rest.

Since the derivation of the solution follows the same steps as in Section 2, it is omitted here and
only the final dimensionless equations, with the same scales, are provided. It should be noted that in
this general case B1 > 0 and B2 > 0. The critical angular velocity is given by

Ωc =
1

2κ2
(1 + 2B1)(1− κ2) − ln

1
κ

. (54)

In the partially yielded Regime I, the velocity is given by

uθ(r) = r

 Ω + ln r
κ + B1 −

r2
0

2κ2

(
1 + 2B1 −

κ2

r2

)
, κ ≤ r ≤ r0

0, r0 < r ≤ 1
, (55)

where r0 is the root of

Ω + ln
r0

κ
−

1
2κ2

(1 + 2B1)(r2
0 − κ

2) = 0. (56)

Moreover,

τw1 =
r2

0

κ2 (57)
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and

uw1 =
B1(r2

0 − κ
2)

κ
. (58)

In the fully-yielded Regime II, the velocity is given by

uθ(r) = r

Ω + ln
r
κ
+ B1 −

Ω + ln 1
κ + B1 + B2κ

1− κ2 + 2B1 + 2B2κ3

(
1 + 2B1 −

κ2

r2

), (59)

τw1 =
2
(
Ω + ln 1

κ + B1 + B2κ
)

1− κ2 + 2B1 + 2B2κ3 , τw2 = κ2τw1, (60)

uw1 =
κB1

[
2
(
Ω + ln 1

κ

)
− (1− κ2)(1− 2B2κ)

]
1− κ2 + 2B1 + 2B2κ3 (61)

and

uw2 =
κB2

[
2κ2

(
Ω + ln 1

κ

)
− (1− κ2)(1 + 2B1)

]
1− κ2 + 2B1 + 2B2κ3 . (62)

The two slip velocities are now related as follows:

uw2 = κB2

(
κuw1

B1
− 1 + κ2

)
. (63)

The expressions corresponding to various special cases, such as slip along the inner cylinder only
(B2 = 0), slip along the outer cylinder only (B1 = 0), equal slip coefficients along the two cylinders
(B1 = B2 = B), are easily deduced.

Figure 10 illustrates the variation of the slip velocities with Ω for κ = 0.5 and three values of the
slip numbers which are taken to be equal, i.e., B1 = B2 = 0.01 (weak slip), B1 = B2 = 0.1 (moderate
slip) and B1 = B2 = 0.5 (strong slip). The effect of B2 on the two slip velocities is demonstrated in
Figure 11 where κ = 0.5 and B1 = 0.1. As dictated by Equations (61) and (62), both slip velocities
vary linearly with Ω. As B2 is increased the rate of change of uw2 increases unlike that of uw1 and
for certain choices of Ω and B2, uw2 may be greater than uw1. In Figure 12, we plotted the velocity
profiles for κ = 0.5, B1 = B2 = 0.1 and Ω = 0.5 (Regime I), Ω = Ωc = 1.10685, and Ω = 2 (Regime II).
Similar results are presented in Figure 13 for much stronger slip with B1 = B2 = 0.5.
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Figure 10. Slip velocities for 0.5κ =  and different slip numbers with non-zero slip yield stress 
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Figure 10. Slip velocities for κ = 0.5 and different slip numbers with non-zero slip yield stress τ∗c = τ∗0 :
(a) B1 = B2 = 0.01 with Ωc = 0.083685 (weak slip); (b) B1 = B2 = 0.1 with Ωc = 1.10685 (moderate
slip); (c) B1 = B2 = 0.5 with Ωc = 2.30685 (strong slip).
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Figure 11. Slip velocities for κ = 0.5, B1 = 0.1 and B2 = 0.1 (moderate slip along both cylinders, solid)
and B2 = 1 (strong slip along the outer cylinder, dashed) in the case of non-zero slip yield stress τ∗c = τ∗0.
The critical angular velocity is Ωc = 1.10685.
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Figure 12. Velocity profiles in circular Couette flow of a Bingham plastic with non-zero slip yield
stress τ∗c = τ∗0, κ = 0.5 and B1 = B2 = 0.1 (moderate slip); (a) azimuthal velocity; (b) angular velocity;
Ωc = 1.10685. The red circles indicate the yield points for the velocity profiles corresponding to
Regime I.
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Figure 13. Velocity profiles in circular Couette flow of a Bingham plastic with non-zero slip yield
stress τ∗c = τ∗0, κ = 0.5 and B1 = B2 = 0.5 (strong slip); (a) azimuthal velocity; (b) angular velocity;
Ωc = 1.10685. The red circles indicate the yield points for the velocity profiles corresponding to
Regime I.

3.2. The Case τ∗c < τ∗0

For the sake of simplicity, it is assumed here that the slip yield stress and the slip coefficient are
the same at both walls:

u∗wi =

 0, τ∗wi ≤ τ
∗
c

τ∗wi−τ
∗
c

β∗ , τ∗wi > τ
∗
c

, i = 1, 2. (64)

Since τ∗c < τ∗0, it is possible to rotate the inner cylinder when τ∗w1 > τ
∗
c while the material remains

stationary, which simply implies that the material slips along the rotating cylinder. As illustrated in
Figure 14, three different scenarios are possible, which correspond to the cases τ∗c < κ2τ∗0, τ∗c > κ2τ∗0,
and τ∗c = κ2τ∗0 discussed below.

When τ∗c < κ2τ∗0, four flow regimes are observed, defined by three critical angular velocities Ω∗c1,
Ω∗c2 and Ω∗c3 corresponding to τ∗w2 = τ∗c, τ∗w1 = τ∗0, and τ∗w2 = τ∗0, respectively. The derivation of the
solution is along the same lines as in Section 2. As above, the dimensionless form of the solution is
provided. The three critical angular velocities are given by

Ωc1 =
( 1
κ2 − 1

)
Bτc, (65)
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Ωc2 = (1 + κ)B
(
1− κ+ κ2

− τc
)

(66)

and

Ωc3 =
1 + 2(1 + κ3)B

2κ2 − (1 + κ)Bτc − ln
1
κ
−

1
2

, (67)

where B ≡ µ∗/(β∗κR∗) and τc ≡ τ∗c/τ∗0. It should be noted that in the limit of τc → 0 , Ωc1 also
vanishes while Ωc2 and Ωc3 are reduced to the two critical angular velocities for the Navier-slip case,
i.e., Equations (44) and (45) (with B1 = B2 = B).
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Figure 14. Flow regimes in circular Couette flow of a Bingham plastic when the inner cylinder is 

rotating with non-zero slip yield stress such that * *
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Figure 14. Flow regimes in circular Couette flow of a Bingham plastic when the inner cylinder is
rotating with non-zero slip yield stress such that τ∗c < τ∗0: (a) τ∗c < κ2τ∗0; (b) τ∗c > κ2τ∗0; (c) τ∗c = κ2τ∗0
(the second regime is not observed). It should be noted that τ∗w2 = τ∗0 is equivalent to τ∗w1 = τ∗0/κ2.
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In Regime I (0 < Ω ≤ Ωc1), the material slips along the rotating cylinder remaining thus stationary
(uθ = 0). The wall shear stress and the inner slip velocity are given by:

τw1 = τc +
Ω
B

(68)

and
uw1 = κΩ (69)

In Regime II (Ωc1 < Ω ≤ Ωc2), the material slips along both walls and rotates as a solid body at an
angular velocity smaller than Ω:

uθ(r) =
κ3

1 + κ3

[
Ω −

( 1
κ2 − 1

)
Bτc

]
r. (70)

The wall shear stresses and the two slip velocities are given by

τw1 =
1

1 + κ3

[Ω
B

+ (1 + κ)τc

]
, τw2 = κ2τw1 (71)

and
uw1 =

κ

1 + κ3

[
Ω + κ(1− κ2)Bτc

]
, uw2 =

1
1 + κ3

[
κ3Ω − κ(1− κ2)Bτc

]
. (72)

In Regime III (Ωc2 < Ω ≤ Ωc3), the material is partially yielded, rotating as a solid body in the
unyielded region and exhibiting slip along both walls. Hence, the velocity has two branches as follows:

uθ(r) = r

 Ω + ln r
κ + Bτc −

r2
0

2κ2

(
1 + 2B− κ2

r2

)
, κ ≤ r ≤ r0

κB(r2
0 − τc), r0 < r ≤ 1

, (73)

where the yield point is the root of

Ω + ln
r0

κ
−

[
1 + 2(1 + κ3)B

] r2
0

2κ2 + (1 + κ)Bτc +
1
2
= 0. (74)

The wall shear stresses and the two slip velocities are given by

τw1 =
r2

0

κ2 , τw2 = r2
0 (75)

and

uw1 = κB

 r2
0

κ2 − τc

, uw2 = κB
(
r2

0 − τc
)
. (76)

Finally, in Regime IV (Ω > Ωc3), the material is fully yielded exhibiting slip along both walls:

uθ(r) = r

Ω + ln
r
κ
+ Bτc −

Ω + ln 1
κ + (1 + κ)Bτc

1− κ2 + 2(1 + κ3)B

(
1 + 2B−

κ2

r2

), (77)

τw1 =
2
[
Ω + ln 1

κ + (1 + κ)Bτc
]

1− κ2 + 2(1 + κ3)B
, τw2 = κ2τw1, (78)

uw1 =
κB

[
2
(
Ω + ln 1

κ

)
− (1− κ2)(1− 2κB)τc

]
1− κ2 + 2(1 + κ3)B

(79)
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and

uw2 =
κB

[
2κ2

(
Ω + ln 1

κ

)
− (1− κ2)(1 + 2B)τc

]
1− κ2 + 2(1 + κ3)B

. (80)

Four regimes are also encountered when τ∗c > κ2τ∗0 (Figure 14b); the three critical values of the
angular velocity defining these regimes now correspond to τ∗w1 = τ∗0, τ∗w2 = τ∗c, and τ∗w2 = τ∗0. Hence,
Ωc3 remains the same as above. In fact, the solution remains the same as that for τ∗c < κ2τ∗0 in Regimes
I, III, and IV; only the critical angular velocities Ωc1 and Ωc2 and the solution in Regime II are different.
The first two critical angular velocities now read:

Ωc1 = (1− τc)B (81)

and

Ωc2 =
[1 + 2(1− κ2)B]τc

2κ2 − ln
√
τc

κ
−

1
2

. (82)

In Regime II, the material is partially yielded and remains stationary in the unyielded region. Thus,
the velocity is given by

uθ(r) = r

 Ω + ln r
κ + Bτc −

r2
0

2κ2

(
1 + 2B− κ2

r2

)
, κ ≤ r ≤ r0

0, r0 < r ≤ 1
, (83)

where the yield radius r0 is now the solution of

Ω + ln
r0

κ
− (1 + 2B)

r2
0

2κ2 + Bτc +
1
2
= 0. (84)

The inner wall shear stress and the corresponding slip velocity are:

τw1 =
r2

0

κ2 (85)

and

uw1 = κB

 r2
0

κ2 − τc

. (86)

Note that the flow is still partially yielded in Regime III, but the unyielded material now rotates as a
solid body. It turns out that the critical yield radius corresponding to Ωc2 is r0c =

√
τc.

In the special case where τ∗c = κ2τ∗0, the two critical angular velocities Ωc1 and Ωc2 coincide.
Indeed, substituting τc = κ2 to Equations (65), (66), (81) and (82) yields

Ωc1 = Ωc2 = (1− κ2)B. (87)

in all cases. Hence, only Regimes I, III, and IV are observed, and the expressions presented above
apply.

As dictated by the above solutions, the slip velocities vary linearly with the angular velocity Ω in
all regimes but Regime III, i.e., when the material is partially yielded. This is illustrated in Figure 15
where results are shown for κ = 0.5, τc = 0.2 (i.e., τc < κ2) and different slip numbers corresponding to
weak, moderate, and strong slip. Note that all the critical angular velocities and the two slip velocities
increase with B. The effect of the dimensionless slip yield stress τc is shown in Figure 16, where the
slip number is now fixed (B = 0.1) and results for τc = 0.05, 0.1 and 0.2 are shown. As expected,
slip velocities are reduced with τc. It can also be observed that Ωc2 and Ωc3 decrease with τc, which
is also obvious from Equations (66) and (67). As τc tends to κ2 both Ωc1 and Ωc2 tend to (1 − κ2)B,
as predicted by Equation (87). Finally, in Figure 17 we show the profiles of the angular and azimuthal
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velocities for κ = 0.5, τc = 0.2, B = 0.1 and various values of the angular velocity Ω. Note that the
profiles for Ω = Ωc2 essentially coincide with the x-axis.
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Figure 17. Velocity profiles in circular Couette flow of a Bingham plastic with non-zero slip yield
stress τc = 0.2, κ = 0.5 and B = 0.1 (moderate slip); (a) azimuthal velocity; (b) angular velocity;
Ωc1 = 0.06, Ωc2 = 0.0825, Ωc3 = 1.22685. The red circles indicate the yield points for the velocity
profiles corresponding to Regime III. The profiles for Ω = Ωc2 essentially coincide with the x-axis.

4. Conclusions

We have systematically studied the Couette flow of a Bingham plastic in the presence of Navier
slip and in the case where slip occurs only above a non-zero slip yield stress. All flow regimes have
been identified and the corresponding critical angular velocities have been determined.

The solutions presented here may be useful in assessing slip effects in Couette experiments on
viscoplastic materials and the implications of calibrating a Couette rheometer with “standard fluids”
under the assumption of no slip. Our current research plans include the numerical solution of the flow
of a Herschel-Bulkley fluid in a Couette rheometer in both steady-state and time-dependent settings.
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