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Abstract We solve analytically the cessation flows
of a Newtonian fluid in circular and plane Couette
geometries assuming that wall slip occurs provided
that the wall shear stress exceeds a critical threshold,
the slip yield stress. In steady-state, slip occurs only
beyond a critical value of the angular velocity of the
rotating inner cylinder in circular Couette flow or of
the speed of the moving upper plate in plane Couette
flow. Hence, in cessation, the classical no-slip solution
holds if the corresponding wall speed is below the
critical value. Otherwise, slip occurs only initially
along both walls. Beyond a first critical time, slip
along the fixed wall ceases, and beyond a second
critical time slip ceases also along the initially moving
wall. Beyond this second critical time no slip is
observed and the decay of the velocity is faster. The
velocity decays exponentially in all regimes and the
decay is reduced with slip. The effects of slip and the
slip yield stress are discussed.
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1 Introduction

The role of wall slip is important in many applications,
such as the extrusion of complex fluids, ink jet
processes, oil migration in porous media, and in
microfluidics. The occurrence of slip has been docu-
mented for many fluids both experimentally and
theoretically [1, 2]. Experimental studies of wall slip
with Newtonian liquids have been reviewed by Neto
et al. [3] and Lauga et al. [4]. The occurrence of slip
has also been observed in nanoscale experiments [5]
and in molecular dynamic simulations [6].

The most common slip equation is Navier’s slip law
[7] which relates the wall shear stress, T, to the slip
velocity, u, defined as the velocity of the fluid relative
to that of the wall:

Ty = Py, (1)

where f is the slip coefficient, which is in general a
function of temperature, normal stress and pressure,
and the characteristics of the fluid/wall interface [8].
The no-slip boundary condition is recovered when
f — o0. The slip coefficient is related to the so-called
slip length b, i.e. § = n/b, where 1 denotes the
viscosity [9]. Different methods have been proposed in
order to account for wall slip and improve the
rheological characterization of materials for correct-
ing the rheological parameters from Couette rheome-
ters (see [10] and references therein). Works
concerned with analytical solutions of Newtonian
flows with Navier slip have been reviewed by
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Kaoullas and Georgiou [11, 12]. Ferras et al. [13]
presented analytical solutions of various Newtonian
and inelastic non-Newtonian Couette and Poiseuille
flows using a non-linear (power-law) slip equation in
addition to Navier slip. Recently, Ng [14] also
reported a collection of analytical solutions for starting
Newtonian Couette and Poiseuille flows with Navier
slip in many different geometries of interest (e.g. in
plane, round, annular and rectangular tubes for the
latter flow).

In many experimental studies on various fluid
systems, it has been observed that wall slip occurs only
above a certain critical value of the wall shear stress,
known as the slip yield stress, 7. [15-17]. Spikes and
Granick [18] proposed the following two-branch
extension of Navier’s slip equation for Newtonian
fluid flow:

u, =0, Ty < Te¢ (2)
Ty = Tc + ,Buw; Tw > T¢ '

A number of other slip equations involving slip yield
stress (also referred to as threshold slip equations)
have been proposed based on experiments with
different materials (see [16] and references therein).
The two-branch form of Eq. (2) leads to some
interesting theoretical as well as numerical difficulties,
analogous to those encountered with the discontinuous
Bingham-plastic constitutive model [16, 19]. Different
flow regimes are defined by critical values for the
occurrence of slip along a wall. For example, in
Poiseuille and in simple shear flows, slip occurs only
above a critical value of the imposed pressure gradient
[11]. Moreover, in 2D and 3D, slip may occur only
along unknown parts of the wall which is of interest
both physically and numerically [20]. Recently, ana-
Iytical solutions of steady-state and transient pressure-
driven Newtonian flows in various geometries with
wall slip governed by Eq. (2) have been derived
[11,12, 17, 21].

A recent work involving a slip equation with non-
zero slip yield stress is that of Tauvigirrahman et al.
[22] who analyzed the effects of surface texturing and
wall slip on the load-carrying capacity of parallel
sliding systems. Bryan et al. [23] studied both
experimentally and numerically the extrusion flow of
a viscoplastic material through axisymmetric square
entry dies. They concluded that the linear Navier-slip
model (1) is not adequate to describe the experimental
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flows and that further numerical simulations with slip
Eq. (2) are necessary.

The objective of the present work is to derive
analytical solutions for the cessation of Newtonian
circular and plane Couette flows with wall slip and
non-zero slip yield stress. Both flows are standard
viscometric flows and their analytical solutions are
missing from the recent compilations of Ng [14] and
Kaoullas and Georgiou [11, 12]. The circular Couette
flow, i.e. the flow between coaxial cylinders one of
which is rotating while the other is kept fixed, is
widely used for the rheological characterization of
complex fluids [24]. Possible sources of error in
determining the rheological parameters include end
effects, eccentricities, viscous heating, and wall slip
[24]. The analytical solutions derived below may be
useful in studies involving start up and cessation of
steady shear in rheometric and microfluidic devices, in
tribology, and in testing numerical codes implement-
ing slip Eq. (2). The steady-state circular and plane
Couette flows are analyzed in Sects. 2 and 3, respec-
tively, where the general cases of walls of different
properties are also considered and different flow
regimes depending on the speed of the moving
boundary are identified. In Sect. 4, the solution of
the cessation of circular Couette flow is derived and
discussed. The cessation of plane Couette flow is
investigated in Sect. 5. Finally, the conclusions of this
work are provided in Sect. 6.

2 Steady circular Couette flow

We consider the steady circular Couette flow of a
Newtonian fluid. The radii of the inner and outer
cylinders are kR and R, respectively, where 0 < k <1,
as illustrated in Fig. 1. The inner cylinder is rotating at
an angular velocity Q and the gravitational accelera-
tion is zero. The two cylinders are assumed to be
infinitely long and the flow is axisymmetric.

2.1 Navier slip

We first consider the general case in which Navier slip
occurs along both the inner and outer cylinders and
denote the two slip velocities by u,; and uy,
respectively. We also allow the possibility of different
slip coefficients along the two walls so that
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Therefore, the two wall shear stresses are
2nQ

= 10
YT T K 1 2B, 1 2698, (10)
and

_ .2
T2 = K Tyl (11)

Fig. 1 Geometry of circular Couette flow

i:1523 (3)

Twi = ﬁiuwia

where 7,,; and 1, are the wall shear stresses along the
two walls. The general form of the steady-state
azimuthal velocity is [25]:

up(r) = clr—l—CTZ. (4)

The constants ¢; and ¢, are determined by applying the
boundary conditions

u()(KR) = KQR — uy (5)
and
ug(R) = uyn, (6)

which gives

K2QR R
- S (1-2xB
to(r) 1—K2+231+2K3Bz{r (1 =26B2) 2

|~

(7)

where B; and B, are the dimensionless slip numbers
defined by

n

Bi )
BikR

i=1,2. (8)

It should be noted that the slip coefficient appears in
the denominator of the slip number. Hence, the no-slip
boundary conditions is recovered by setting B; = 0.
For the shear stress t,9 = nrd(ug/r)/dr one finds that

20> QR? 1
1 —x2+2By +2K3Byr?’

©)

Tr0 =

It should be noted that Eq. (11) holds irrespective of
the wall boundary conditions. Finally, for the two slip
velocities we find

ZKBlgR d Bz >
= and u,p = — KU,
1 — 12 + 2B, + 2B, 2 =g 1t
(12)

If the same slip law applies to both cylinders
(B1 = P2 = p), then the velocity is given by

Uy

uo(r) K*QR [R 1} 7

- S (1-2xB
a0 s 2B

(13)

where B = 5/(ikR). In this case, we have for the two
slip velocities

2kBQR Uy
wl = =, 14
thwt 1-x2+2(1+ 3B &2 (14)
while
2nQ
1 (15)

T 1k +2(1+ 6B

It is clear that setting By = 0 (and/or B, = 0) the
special solution when we have no slip along the inner
(and/or the outer) wall is obtained. The various special
cases of interest are illustrated in Fig. 2 along with the
corresponding expressions of the velocity and the slip
velocities.

Scaling the azimuthal velocity by xQR and r by R
and denoting dedimensionalized quantities by stars,
we can write

uy(r") - [l - 2KB)r*:| .

TI1-K 2 +2(1+ B |
(16)

In Fig. 3a, we plotted uj for x = 0.5 and various
values of the slip number B. We observe that the
velocity at the outer cylinder uj(1) = uj, increases
while uj(k) = 1 — u},, decreases with B. Eventually,
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(a) Slip along both cylinders

R r
-1 +2(1+x°)B [7_(1_2’(3)5}

K*QR
ue(r) =
o= 21 €
" l—k+2(1+5°)B
2xB QR

14, =
" l—? +2(1+K°)B

uwZ = Kluwl

0 () = QR R r
¢ 1-x*+2B\ r R
- 2nQ
" 1-k*+2B
"y = 2xBQR
Y 1—k*+2B
uwzzo
(c) Slip only along the outer cylinder
QR r
u,(r) = S —(1-2xB)—
(1) 1—;8+2K33[r ( )R}
_ 218
"1k +2K°B
Z'{Wl:O
_ 2K’BQR
"1k +2K°B
() KQR(R r
¢ -\ r R
Twl_zj7£2
1_
u.=u,=0

Fig. 2 Different cases of Navier slip in circular Couette flow with the corresponding solutions
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Fig. 3 Velocity profiles in circular Couette flow with Navier
slip for k = 0.5 and various slip numbers: (a) azimuthal
velocity; (b) angular velocity

uj becomes an increasing function of * and in the
limit of infinite B (full slip) u; becomes linear:

K2

M;(V*)—)mr*. (17)

Moreover, all velocity profiles have a common point at
r* =1 — k + k2. The corresponding plot of the
angular velocity uj/r* is shown in Fig. 3b. As
expected, the angular velocity is always a decreasing
function of r* and becomes flat (solid body rotation) in
the limit of full slip. The asymptotic value of the
angular velocity is x*/(1 + ).

2.2 Slip with non-zero slip yield stress

For simplicity, we consider the case in which the same
slip law with a slip coefficient ff and a slip yield stress
7. applies along both cylinders. It is clear that below a
critical angular velocity Q; no slip occurs and the

expressions of case D in Fig. 2 apply. From Eq. (11) it
is deduced that t,,; > t1,,,, which implies that if the
angular velocity is increased just above Q; slip occurs
only along the inner cylinder. The angular velocity Q,
corresponds to t,,; = T, which gives

(1= Kz)‘lfc.

Q = o (18)

If Q, is the critical angular velocity for the occurrence
of slip along the outer cylinder, then when
Q; < Q < Q,slip occurs only along the inner cylinder
and the azimuthal velocity is given by

TRK*(nQ/t. +B) (R r
ug = ——=
n(l — k% +2B)

. 19
r R (19)
The shear stress and the slip velocity at the inner wall
are given by

_ 27.(nQ/t. + B)

2
1 —-x2+2B (20)

Twl

and

T.RkB(2nQ/t. — 1 + K?)
n(1 — x2 + 2B)

Uyl = (21)
The critical angular velocity €, corresponds to
T,0 = T., from which one gets

(1 —x?)(1+2B),

Q, = . 22
2 2K2n (22)

In the last regime, Q > Q,, slip occurs along both
cylinders and the azimuthal velocity is given by

TR [K2[nQ/7. + (1 + k)B] [R r
”"_7{1K2+2(1+x3)3 {7_(1_2@)%

B’
—KD— .
R

For the wall shear stress along the inner cylinder we
get

_ 2[nQ/t. + (1 + x)B]t,

(23)

wl = ; 24
T+ 2(1+)B 24
while the two slip velocities are given by
RxB2yQ /7. — (1 — x?)(1 — 2B
Mwl:T K[n /'C ( K)( K)] (25)
n[l —x?+2(1+«3)B]
and
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_ TRkB2nk*Q/t. — (1 — x*)(1 — 2KB))

e n[l — k% +2(1 + x3)B]

(26)

In this case, it is more convenient to dedimensionalize
the solution by scaling the azimuthal velocity ug by
t.R/n, the angular velocity by 7./, and the shear stress
by t.. Thus, the two dimensionless critical angular
velocities are

., 1—#?
Q= (27)
and
_ 2
Q= M (28)

22

The azimuthal velocity and the inner-cylinder shear
stress are given by

0, Q' <
* 20*% _ _ 2
w, = KkBq 2k7Q" — (1 ;c)(l—l—ZB), Q>0
1 —x?2+2(1+x%)B
(32)

It is easily verified that the azimuthal velocity profiles
when Q = Q} and Q] are respectively

I/l():? ;7}" andu()zi ;fr .

These profiles are independent of the slip number B
but it should be noted that Q varies linearly with it. In
Fig. 4, the angular velocities uj/r* for x = 0.5
corresponding to QF, €, and to 2Q; with various slip
numbers are plotted. For small values of B (weak slip),
the effect of B is more pronounced near the outer wall
(where the shear stress is lower).

(33)

- SR
0] o

and
= @ <o 4

P= %, QI <Q" <Q7.

200 + (1 + x)B]

Q' >Q
1 —x2+2(1+ 3B’ 2
(30)
Finally, for the two slip velocities we get:
0, Q" <Qf
20" — (1 —«?) v v
= kB 1-1 2528 Q<" <5
20" — (1 —x?)(1 — 2xB
()0 -28) o
1 -x2+2(1+x%)B
(31)
and
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Fig. 4 Azimuthal velocity profiles in circular Couette flow with
x = 0.5 in the case of non-zero slip yield stress. The profiles for
Q" = Q] and € are independent of the slip number B
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Fig. 5 Geometry of plane Couette flow
3 Steady plane Couette flow

\We consider the steady flow of a Newtonian fluid
between two infinite parallel plates, placed at a distance
H apart, assuming that the upper plate is moving with a
speed V while the lower one is fixed, as shown in Fig. 5.

3.1 Navier slip

In the general case Navier slip occurs along both walls
but with different slip coefficients so that t,,; = S,
i =1, 2, where 7,,; and t,,, are the wall shear stresses
along the lower and upper walls, respectively. The
general form of the steady-state velocity is simply
u(y) = c1y + c5. The constants ¢; and ¢, are determined
by applying the boundary conditions u,(0) = u,,; and
u(H) =V — u,,. Thus, the fluid velocity is given by
v y
71—|—B1+Bz<_+31)’ (34)

ux(y) H

where B; = n/f;H, i = 1, 2. The shear stress t,, =
ndu,/dy is constant and therefore:

n |4

ol =Typ = —————. 35
W= =TT TR A (35)
For the two slip velocities one finds
B

Uy =————V

1+ B+ B, (36)

B B,
and u,, =

2y 2
1+ B+ B B1Lth

The various special cases of interest are illustrated in
Fig. 6 along with the corresponding expressions of the
velocity and the slip velocities.

3.2 Slip with non-zero slip yield stress

As in Sect. 2, we consider only the case in which the
same slip law with non-zero slip yield stress applies

along both walls. Below a critical velocity V.. of the
upper plate no slip occurs (case D in Fig. 6). Setting
7,, = 1. we get from Eq. (35)

Hr,
v, =t (37)
The velocity is given by

Ly, V<V,

H

Uy =

1 XLﬁB vV +2B) 2+ B(V/V. - ], v v,
(38)

The shear stress is constant, and thus the wall shear
stress along both plates is

%» V<V,
T, = T . (39)
w V(V — VC)

c Ci; V> Vc

T 0B

Obviously, the slip velocities along the two plates are
the same:

0,
Uy, = {B(V -Ve) (40)

1+2B

4 Cessation of circular Couette flow

We consider the cessation of the circular Couette flow
of a Newtonian fluid. The steady-state solution serves
as the initial condition and at t = 0 the inner cylinder
stops rotating. The equation governing the azimuthal
velocity ug(r, t) is

Ouy Qup 10uy 1
— =y — = 41
ot v( or? + ror 20 (41)

where v = #/p is the kinematic viscosity.
4.1 Navier slip
In the general case in which Navier slip occurs along

both cylinders with different slip coefficients, the
boundary and initial conditions read:
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(a) Slip along both walls

V(>
o=t 2+s)
- 124 1428 H
i
A 7 _n Vv
5/, = -
I /i 1+2B H
wl w2
yT 1+2B
u, X

(b) Slip only along the lower wall

| 4 1+B | H
' n v
H 1+BH
B
uwl =T
: y1 1+B
Uy .i uw2 = 0
(¢) Slip only along the upper wall
Vv
U, (y) =
P — it 74 1+B H
—a n_v
f " 1+BH
4
/
H 7// Z'{wl = 0
4
1% B
'L, " 4B
X
(d) No-slip along both walls
Y
u, (y) =V-=
H
P V
7 14
7= T
H 7 uwl = uwZ = 0
7." y T

Fig. 6 Different cases of Navier slip in steady plane Couette flow
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0 Uup
R, 1) = BR—(—) , t>0
ug(kR,t) = kB r@r Al
0 /uy
R :fBR—(—) , >0 4
up(R, ) KByRro (= . (42)
K?QR R r
0 1 —2kB,)— R<r<R
up(r,0) = 1—K2+281+2K3Bz[r ( Kz)R} KR<r

The solution of the problem (41) and (42) is

00 1 2
=Y GZu (ﬂ> ol (43)
k=1 R

where (A4, y1), k = 1, 2, ... are the solutions of the

system

K?Bl/lkZOk(K)vk) - (1 + ZBl)Zlk(K;Lk) =0 } (44)
kB2 AuZo(Ze) + (1 — 2kB2)Zik(4) =0 |

The functions Zy, and Z;y are defined by

Zoi(r) = Jo(r) + 1Yo(r), (45)

Zi(r) = Ji(r) + pa(r),

where Jy, J> and Yy, Y are Bessel functions of the first
and second kind, respectively. The constant Cy is
generally given by

2K ( + 231) 1-— ZKBz)ZZ()k(Kik)QR

By = B, = 0.5 (same slip coefficient along the two
cylinders). One may observe that cessation becomes
slower (the eigenvalues 4; become smaller) in the
presence of slip.

4.2 Slip with non-zero slip yield stress

Asin Sect. 2.2, we consider the case in which the same
slip law applies along both cylinders (B; = B, = B).
We have seen that there are three flow regimes defined
by the critical angular velocities Q; and Q,. We will
work with the dimensionless equations hereafter,
obtained with the scales used in Sect. 2.2. In addition,
time is now scaled by n/t...

4.2.1 No slip (Q* < Q)

Cr =

(
y [(1 +2B1)2(1 — 2kBy + K2B2I2)Z2, () — k2(1 — 2kB,) (1 + 2By + k2B212)Z2, ()]

In the special case that 1 — 2xB, = 0, C; is simplified
as follows:

22 (1+2B)) Zok (K7 ) QR
e [(1+2B,) 22, () — k2(1 4+ 2B, + K2B2J2)Z2 (1 )}

(47)

Cr=

Various special cases can easily be obtained. Figure 7
illustrates three possibilities for the evolution of the
dimensionless velocity (scaled by kQR) where time is
scaled by R*/v: (a) the classical no-slip solution
obtained by setting B; = B, = 0; (b) the solution
when slip occurs only along the inner wall (B, = 0)
with By =0.5; and (c) the solution when

The no-slip solution can be found in many textbooks
[25]:

chzlk (ar)e (48)

uert

where (A, Y1), k = 1, 2, ... are the solutions of the

system
Zi(kix) = Zu(dx) =0 (49)
and Cy is given by

212 QY Zow (1)

C, = - .
CT (2 n) — 223 (k)]

(50)
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Fig. 7 Cessation of circular Couette flow with x = 0.5: (a) No-
slip along both cylinders (B; = B, = 0); (b) Navier slip only
along the inner cylinder (B; = 0.5, B, = 0); (c) Navier slip
along both cylinders (B; = B, = 0.5)
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4.2.2 Slip only along the inner cylinder
(Q)<Q" <Q))

In this case the boundary and initial conditions read

a *

up(x,t*) = kB {r*a . <u—f> —1], *>0
A\ ) |,

up(l,1) = >0

(Q*+B) 1 .
] ot
“1-«2+2B ’

The solution is then given by

I/\
I/\

up(r, 1)

& o k’B 1, .
S o () s

)

S G r)e 000), r>1
=1
(52)

where (a,, 0,), n = 1, 2, ... are the solutions of the
system
kBo, Zon (k0t,) — (1 4+ 2B)Zy, (ko) = 0 (53)
Zln(an) =0
with
Z()n(r) = J()(I‘) + 5nY0(r), (54)
Zl,,(r) = Jl(r) + 5nY1(I")

and A, and C; are respectively given by

2K2(1 + 2B) (Q* + 2B)Zo, (k01

A= o [Zgn(oc,l)( 1 4 2B)* =222, (1c0,) (1 + 2B + agszZ)]
(55)
and
- 2Z0 (15 k)
i [ng(ﬂk) - K2Z§k(;c2k)]
ZA Zln(mc,,) % —% .
(56)

The critical time £}, at which slip ceases along the

inner wall is the root of the following equation:

B(1 — %)

= 2 K
A Zy(ayi)e™ 5t = ———~. 57
; n“1 (Of K)e 1 _ KZ _|_ ZB ( )
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The slip velocity at the inner cylinder is

Here (t,, &), k = 1, 2, ... are the solutions of the

i (1) system
wl
Bt Zom (Kit,,) — (1 + 2B)Zy, (k) =0
> i K(l 7K2)B KD [y, Lom m m m (61)
AnZyy (o it -, "<t m —_ m — ’
0, A where
(58) Zom(r) = Jo(r) + em¥o(r), (62)
Zim(r) = 41 (r) + e Y1 (7)
4.2.3 Slip along both cylinders (Q* > Q) and A,,, C,, and Dy are given by
A 212 (Q" + 2B) Zom (rc14,,) (63)
" 1—-2KB+K?12,B? 14+2B+K2 12 B? ’
.um(l + ZB) Z(%m(:um) W - Kzzgm(K:um) %
In this case the boundary and initial conditions read
up(x,1*) = kB {r o <r_’(‘)> ,*_K1]7 >0
a *
up(l,1*) = —kB [r*ér* (%) +1], >0 (39)
r=1
- ?[Q + (1+)B] [1 . . .
uy(rt,0) = =215 KB [r*_ (1 —2KB)V:| —kBr*, k<r*<l
and the solution is and
e ] 1 — x)x’B 1
AmZ * 7'1&’[ - ( — — (1 = 2xB)r*| — kBr* <t
mgl it e 1 —x2+2(1+x*B [r* ( KB)r } KBr, 1=l
S 2 K2B 1
l/l* r*7t* = CnZn n * 7“71(1‘ 7tt‘l) _—_— -_— * t* <t*<t* N
ol ) P> 1n(0r™)e =128\ r, o <1,
kZ:lDkzlk()vkr*)eii‘z‘(t*it:z), > l‘:z
(60)
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Fig. 8 Cessation of circular Couette flow with x = 0.5 and
B = 0.5 and different initial conditions: (a) Q" = Q] = 0.375
(no slip initially); (b) Q" = Q5 =3 (slip only at the inner
cylinder); and (c) Q" = 6 > € (slip at both cylinders)
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Fig. 9 Evolution of the slip velocities in cessation of circular
Couette flow for k = 0.5, B = 0.5, and Q" =6 >

0.2

*

t

Fig. 10 Evolution of the slip velocities in cessation of circular
Couette flow for k = 0.5, B = 0.5, and Q" =20 > Q}
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c 2(1 + 2B)*Zon (1)
Oty [Zgn(otn)(l +2B) k222 (k) (1 + 2B + ot,%rcsz)] (6
X iA e*ll:nzfrl _azzlm(:um) + KB[I — Kk + 2(1 + KZ)B]
L o2 — pi2, 1 —x?2+2(1+x%B
Dy = 270k (1K) no slip occurs from #* = 0 and the classical cessation

W[ 28 () — K225 ()]

o0 72 2 2
() KA k*(1 — k*)B
X C, "A(’(z trl) k Zin(x0y,) — —————
{Z ¢ o ) ~ T g

n=1

(65)

The critical time ¢7;, at which slip no longer occurs
along the outer cylinder, and the critical time ¢,, at
which slip ceases along the inner cylinder are respec-

tively the roots of

kB>[1 — 1> + 2(1 + «?)B]
1 —x24+2(1+x%B

> 2
> AuZin(p)e " =

m=1
(66)
and
o0 2( 5 g% 1—K2)B
C.Zn n _“n(l _tcl) :K(i_ 67
>~ Gutmluae ) - MEZOE (e

Finally, the two slip velocities are given by
) ()

kB[1—k*+2(1+x%)B] ,

solution holds; (b) Q" = Q) = 3 such that slip occurs
only at the inner cylinder and ceases at ¢, = 0.0426;
and (c) Q" =6 > Q] such that initially slip occurs
everywhere and ceases along the outer cylinder at
£, =0.0721 and along the inner cylinder at
t, = 0.08. The evolution of the two slip velocities in
the latter case is shown in Fig. 9. Initially the slip
velocity u;, along the outer cylinder appears to be
rather constant but later it decays fast and vanishes
earlier than u; ;. Our calculations showed that u,, is
not necessarily lower than u;,, at all times. One such
example is the flow for k = 0.5 and Q" = 20. As
shown in Fig. 10, the slip velocity u],, at the inner
cylinder initially decreases faster and becomes lower
than u}, for a while, but then u], starts decreasing
rapidly and vanishes earlier than u;,.

5 Cessation of plane Couette flow

In cessation of plane Couette flow, the upper plate

00 7‘412”[« _ <
= {leA’"Zl'"(ﬂm)e 1-k2+2(1+x3)B rla stops moving at ¢ = 0 and the steady-state solution
0, > serves as the initial condition. The governing equation
(68) is
and
e . k(l —x)B
AnZim " 1 —(1-2xB)K*] — ¥*B, 1<t
mX::l im(p,,)e 1—K2+2(1+K3)B[ ( kB)K’| — k’B, " <1
() =9 _2(r k(1 —«*)B R (69)
n; CoZin(Kary)e (1) et <t <r
0, >t
The evolution of the velocity for k = 0.5 and B = 0.5 s
isillustrated in Fig. 8 for three representative values of % . 07Uy (70)
the angular velocity: (a) Q" = Q] = 0.375 such that ot 0y?
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5.1 Navier slip

In the general case in which Navier slip occurs along
both walls with different slip coefficients, the bound-
ary and initial conditions read:

Ouy
u,(0,1) = B1H “ t>0
Y ly—o
Ouy
u,(H,t) = —BH t>0
Oy |y—p
v y
00 = (S B), 0<v<n
u(y,0) 1+B,+B, H+1 Sy<

The velocity is given by

ZC" {sm< )—|—Bl/1kcos(;_}y>} ﬂﬁﬂ

As the velocity is reduced, slip ceases first along the
lower plate and then along the upper one. Hence, there
is no slip in the final stage of the cessation. The critical
times for the cessation of slip along the lower and the
upper walls are denoted by 7., and t.,, respectively.
For the rest of this section it is more convenient to
scale the velocity by V,, lengths by H, the stress by 1.,
and time by 5/t.. Again, non-dimensionalized quan-
tities are denoted by stars. Hence, the no-slip case
corresponds to V* < 1.

5.2.1 No-slip regime

The boundary and initial conditions read

W 0,1) =u(1,1) =0, >0
u;(y*,0) = y*, 0<y" <1 (75)

and the solution is given by

(72)
2 *
where 4, are the roots of Z Cy sin(Zgy")e (76)
k=1
Bi + By)/
tan(Ay) = % (73) where /; = kn, k =1, 2, ... and
B]Bz/uk —1
and the constants Cy are given by
2V (B3 + 1) (B3 + 1) cos i
Cy = 3 53 53 53 . (74)
Jx(B1Boiy — 1) [(B3A; + B1 + 1) (B3; + 1) + By (B34 + 1)]
The evolution of the velocity in various representative .
cases is illustrated in Fig. 11, where the velocity is C=— 2V cos A (77)
scaled by V, lengths by H, and time by H*/v, and non- z

dimensionalized variables are denoted by stars: (a) The
classical no-slip solution obtained by setting
B, = B, = 0; (b) the solution when slip occurs only
along lower wall with B; = 0.5 and B, = 0; (c) the
solution when slip occurs only along upper wall with
By =0and B, =0J5; (d) the solution when
By = B, = 0.5 (same slip coefficient along the two
plates). Since the leading eigenvalue decreases cessa-
tion becomes slower as slip is enhanced.

5.2 Slip with non-zero slip yield stress

When V < V,, the standard no-slip solution applies.
When V > V,, the fluid initially slips along both walls.

@ Springer

5.2.2 Slip along both walls (V* > 1)

In this case the boundary and initial conditions read

a *
u;(o,z*)zB(a”:q), >0
ou*
ui(l,r)=—-B > 41, >0
|
0,0) = o[V 2B BV - 1), 05y <1

The solution is given by
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Fig. 11 Cessation of simple shear flow: (a) No-slip along the walls (B; = B, = 0); (b) Navier slip only along the lower wall (B; = 0.5,
B, = 0); (c) Navier slip only along the upper wall (B; = 0, B, = 0.5); (d) Navier slip along both walls (B; = B, = 0.5)

w(y*,r%)

0

* [q1 * * — 2t * *
ZlAm[Sln(lumy )+B‘U.mCOS([1my )]6 Hinf 7B7 t Stcl
m=

o *

_ ‘C*sin W —a(r—t) _ ,
52 Csin(any)e o

By

x . 2w
S Disin( Ay e ARt > r
k=1

where u,, and a,, are the roots of

_ZB:um

Wt =g

and

* * *
ol <t Sth

tana, = —Bay,,

(81)

respectively. The constants A); , Crand Dj are given by

. 2cos (1 + 2B (V" + 2B)
" (2,87 = 1) (1B + 2B + 1)

o —2B
" ay(1 + Bcos?a,) i
2a,B 00 'umA;e*/lmff-l
(1 +Bcos?a,) == w2 — az
and

(82)

(83)
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() = T T T T - Fig. 13 Evolution of the slip velocities in cessation of simple
shear flow with non-zero slip yield stress with B = 0.1: (a)
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Fig. 12 Evolution of the velocity in cessation of simple shear
flow with non-zero slip yield stress with B = 0.1: (a) V* = 1.1;
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2B cos A
Dy = ———+24 )
k (B+1))vk+ k COS Ag
y i sin ay e~ (ta=t) —2B 2a,B i 2c0s 1, (1 + 12, B?) (V* + 2B)e Hinte
= a2 a,(1+Bcos?a,) (1 +Bcos?a,) e~ (u2, — a2) (u2B>~") (128> + 2B + 1)

}

(84)

The two slip velocities are given by

& * 2 g *
— *
> ABu,e 't — B, <t

U (1) = § =i (85)
0 >t

and

Uy (1°)

3> Ay (sin i, + By, cos ,)e " — B, 1 <17,

00
=1

m

=0 . Rt B e -
nz::lCnsmane a(t r"1>—B—_H, tcl<t Sch
0, >t
(86)
The critical times ¢}, and ¢}, are the roots of
- 2
A? Bp, e tn't — B =0 (87)
m=1
and
o0
- B
* o —a(,-r) _ 2
; C, sing,e” “\a""a Brl 0, (88)

respectively. Keeping only the first terms of the above
summations leads to the following estimates of the
critical times:

-k 1 *
£ =L in(Aim) (59)
H
and
1 B+ 1)C5 si
r, =7, + L BX VCsina (90)

4=
g B

The evolution of the velocity for B = 0.1 and V* =
1.1,1.5 and 2 is illustrated in Fig. 12. The velocity
profiles at £, and f), are provided in all cases.
Figure 13 shows the evolution of the two slip veloc-
ities for V* =1.1and 1.5. The lower-plate slip

velocity initially appears to be rather constant but
eventually it decreases rapidly vanishing at #7,. The
upper-plate slip velocity, which is at least one order of
magnitude greater, decays very fast initially and then
fast to vanish at £, > ¢7,. The effect of V* on the two
slip velocities is also illustrated in Fig. 14. In general,

(a*) 10°

uw1

0.2

(b) 1o

0.2

*

t

Fig. 14 Evolution of the slip velocities in cessation of simple
shear flow with non-zero slip yield stress, for B = 0.1 and
various values of V*: (a) along the lower plate; (b) along the
upper plate
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(a) 1°

w1

(b) 10

Fig. 15 Evolution of the slip velocity in cessation of plane
Couette flow with non-zero slip yield stress for V* = 1.5 and
various values of B: (a) lower plate; (b) upper plate

slip becomes stronger and cessation becomes slower
and therefore the critical times ¢}, and ¢, increase as
V* is increased. Finally the effect of the slip number B
on the two slip velocities is illustrated in Figs. 15 and
16. In Fig. 15, one observes the evolution of the two
slip velocities for V* = 1.5 and different values of B.
The decay of the slip velocities is slower as the slip
number B is increased, i.e. when slip is stronger.
Figure 16 shows plots of the critical times ¢}, and ¢},
for the cessation of slip along the lower and upper
plates, respectively, versus the slip number B for
various values of V*. As already discussed the values
of the two critical times increase with B. In Fig. 8, the
estimates of the stopping times given by Egs. (89) and
(90) are also compared with the exact values. It is
shown that the value of ¢}, is overestimated while that

@ Springer

c1

Fig. 16 The critical times ¢, and ¢, for the cessation of plane
Couette flow with non-zero slip yield stress for various values of
V*. The dashed lines are the estimates obtained using only the
leading term of the corresponding series expansion, i.e. using
Egs. (89) and (90)

of t, is underestimated. The estimates are improved as
the values of B and V* are increased.

6 Conclusions

We have solved both the steady-state and time-
dependent circular and plane Couette flows of a
Newtonian fluid with wall slip following the two-
branch slip equation proposed by Spikes and Granick
[18]. The latter involves a non-zero slip yield stress
above which the variation of the wall shear stress with
the slip velocity is linear. The solutions presented here
supplement the analytical solutions reported by Ng
[14] and Kaoullas and Georgiou [11, 12] and may be
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useful in correcting slip effects in Couette rheometry,
in checking numerical non-Newtonian simulation
codes, and in start up and cessation of steady shear
in MEMS devices.

The existence of non-zero slip yield stress results in
three steady-state regimes for the circular Couette
flow. These are defined by the two critical values of the
angular velocity at which slip is triggered along the
rotating inner cylinder and the fixed outer one. In
cessation of the flow in the last regime where slip is
present along both cylinders, it has been shown that
slip ceases first finite along the outer cylinder and then
along the inner one.

In the case of steady plane Couette flow, there are
two flow regimes, since slip occurs only above a
critical value of the velocity of the moving upper plate,
V.. Given that the shear stress in the flow domain is
constant, the slip velocities uy,; and uy, along the
lower and upper plates are equal. In time-dependent
flow slip may occur only along one of the two plates.
In the case of flow cessation above V,, there are three
flow regimes defined by two critical times 7., and 7.5,
respectively defined as the times at which slip ceases
along the lower and the upper plates. For times after
t.», the flow decays exponentially with no slip.
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