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Abstract We solve analytically the cessation flows

of a Newtonian fluid in circular and plane Couette

geometries assuming that wall slip occurs provided

that the wall shear stress exceeds a critical threshold,

the slip yield stress. In steady-state, slip occurs only

beyond a critical value of the angular velocity of the

rotating inner cylinder in circular Couette flow or of

the speed of the moving upper plate in plane Couette

flow. Hence, in cessation, the classical no-slip solution

holds if the corresponding wall speed is below the

critical value. Otherwise, slip occurs only initially

along both walls. Beyond a first critical time, slip

along the fixed wall ceases, and beyond a second

critical time slip ceases also along the initially moving

wall. Beyond this second critical time no slip is

observed and the decay of the velocity is faster. The

velocity decays exponentially in all regimes and the

decay is reduced with slip. The effects of slip and the

slip yield stress are discussed.

Keywords Circular Couette flow � Plane Couette
flow � Newtonian Fluid � Slip � Slip yield stress �
Cessation flow

1 Introduction

The role of wall slip is important in many applications,

such as the extrusion of complex fluids, ink jet

processes, oil migration in porous media, and in

microfluidics. The occurrence of slip has been docu-

mented for many fluids both experimentally and

theoretically [1, 2]. Experimental studies of wall slip

with Newtonian liquids have been reviewed by Neto

et al. [3] and Lauga et al. [4]. The occurrence of slip

has also been observed in nanoscale experiments [5]

and in molecular dynamic simulations [6].

The most common slip equation is Navier’s slip law

[7] which relates the wall shear stress, sw, to the slip

velocity, uw, defined as the velocity of the fluid relative

to that of the wall:

sw ¼ buw; ð1Þ

where b is the slip coefficient, which is in general a

function of temperature, normal stress and pressure,

and the characteristics of the fluid/wall interface [8].

The no-slip boundary condition is recovered when

b ? ?. The slip coefficient is related to the so-called

slip length b, i.e. b : g/b, where g denotes the

viscosity [9]. Different methods have been proposed in

order to account for wall slip and improve the

rheological characterization of materials for correct-

ing the rheological parameters from Couette rheome-

ters (see [10] and references therein). Works

concerned with analytical solutions of Newtonian

flows with Navier slip have been reviewed by
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Kaoullas and Georgiou [11, 12]. Ferrás et al. [13]

presented analytical solutions of various Newtonian

and inelastic non-Newtonian Couette and Poiseuille

flows using a non-linear (power-law) slip equation in

addition to Navier slip. Recently, Ng [14] also

reported a collection of analytical solutions for starting

Newtonian Couette and Poiseuille flows with Navier

slip in many different geometries of interest (e.g. in

plane, round, annular and rectangular tubes for the

latter flow).

In many experimental studies on various fluid

systems, it has been observed that wall slip occurs only

above a certain critical value of the wall shear stress,

known as the slip yield stress, sc [15–17]. Spikes and
Granick [18] proposed the following two-branch

extension of Navier’s slip equation for Newtonian

fluid flow:

uw ¼ 0; sw � sc
sw ¼ sc þ buw; sw [ sc

:

�
ð2Þ

A number of other slip equations involving slip yield

stress (also referred to as threshold slip equations)

have been proposed based on experiments with

different materials (see [16] and references therein).

The two-branch form of Eq. (2) leads to some

interesting theoretical as well as numerical difficulties,

analogous to those encountered with the discontinuous

Bingham-plastic constitutive model [16, 19]. Different

flow regimes are defined by critical values for the

occurrence of slip along a wall. For example, in

Poiseuille and in simple shear flows, slip occurs only

above a critical value of the imposed pressure gradient

[11]. Moreover, in 2D and 3D, slip may occur only

along unknown parts of the wall which is of interest

both physically and numerically [20]. Recently, ana-

lytical solutions of steady-state and transient pressure-

driven Newtonian flows in various geometries with

wall slip governed by Eq. (2) have been derived

[11, 12, 17, 21].

A recent work involving a slip equation with non-

zero slip yield stress is that of Tauviqirrahman et al.

[22] who analyzed the effects of surface texturing and

wall slip on the load-carrying capacity of parallel

sliding systems. Bryan et al. [23] studied both

experimentally and numerically the extrusion flow of

a viscoplastic material through axisymmetric square

entry dies. They concluded that the linear Navier-slip

model (1) is not adequate to describe the experimental

flows and that further numerical simulations with slip

Eq. (2) are necessary.

The objective of the present work is to derive

analytical solutions for the cessation of Newtonian

circular and plane Couette flows with wall slip and

non-zero slip yield stress. Both flows are standard

viscometric flows and their analytical solutions are

missing from the recent compilations of Ng [14] and

Kaoullas and Georgiou [11, 12]. The circular Couette

flow, i.e. the flow between coaxial cylinders one of

which is rotating while the other is kept fixed, is

widely used for the rheological characterization of

complex fluids [24]. Possible sources of error in

determining the rheological parameters include end

effects, eccentricities, viscous heating, and wall slip

[24]. The analytical solutions derived below may be

useful in studies involving start up and cessation of

steady shear in rheometric and microfluidic devices, in

tribology, and in testing numerical codes implement-

ing slip Eq. (2). The steady-state circular and plane

Couette flows are analyzed in Sects. 2 and 3, respec-

tively, where the general cases of walls of different

properties are also considered and different flow

regimes depending on the speed of the moving

boundary are identified. In Sect. 4, the solution of

the cessation of circular Couette flow is derived and

discussed. The cessation of plane Couette flow is

investigated in Sect. 5. Finally, the conclusions of this

work are provided in Sect. 6.

2 Steady circular Couette flow

We consider the steady circular Couette flow of a

Newtonian fluid. The radii of the inner and outer

cylinders are jR and R, respectively, where 0\ j\1,

as illustrated in Fig. 1. The inner cylinder is rotating at

an angular velocity X and the gravitational accelera-

tion is zero. The two cylinders are assumed to be

infinitely long and the flow is axisymmetric.

2.1 Navier slip

We first consider the general case in which Navier slip

occurs along both the inner and outer cylinders and

denote the two slip velocities by uw1 and uw2,

respectively. We also allow the possibility of different

slip coefficients along the two walls so that
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swi ¼ biuwi; i ¼ 1; 2; ð3Þ

where sw1 and sw2 are the wall shear stresses along the
two walls. The general form of the steady-state

azimuthal velocity is [25]:

uhðrÞ ¼ c1r þ
c2

r
: ð4Þ

The constants c1 and c2 are determined by applying the

boundary conditions

uhðjRÞ ¼ jXR� uw1 ð5Þ

and

uhðRÞ ¼ uw2; ð6Þ

which gives

uhðrÞ ¼
j2XR

1� j2 þ 2B1 þ 2j3B2

R

r
� ð1� 2jB2Þ

r

R

� �
;

ð7Þ

where B1 and B2 are the dimensionless slip numbers

defined by

Bi �
g

bijR
; i ¼ 1; 2: ð8Þ

It should be noted that the slip coefficient appears in

the denominator of the slip number. Hence, the no-slip

boundary conditions is recovered by setting Bi = 0.

For the shear stress srh = grd(uh/r)/dr one finds that

srh ¼ � 2gj2XR2

1� j2 þ 2B1 þ 2j3B2

1

r2
: ð9Þ

Therefore, the two wall shear stresses are

sw1 ¼
2gX

1� j2 þ 2B1 þ 2j3B2

ð10Þ

and

sw2 ¼ j2sw1: ð11Þ

It should be noted that Eq. (11) holds irrespective of

the wall boundary conditions. Finally, for the two slip

velocities we find

uw1 ¼
2jB1XR

1� j2 þ 2B1 þ 2j3B2

and uw2 ¼
B2

B1

j2uw1:

ð12Þ

If the same slip law applies to both cylinders

(b1 = b2 = b), then the velocity is given by

uhðrÞ ¼
j2XR

1� j2 þ 2ð1þ j3ÞB
R

r
� ð1� 2jBÞ r

R

� �
;

ð13Þ

where B : g/(bjR). In this case, we have for the two
slip velocities

uw1 ¼
2jBXR

1� j2 þ 2ð1þ j3ÞB ¼ uw2

j2
; ð14Þ

while

sw1 ¼
2gX

1� j2 þ 2ð1þ j3ÞB : ð15Þ

It is clear that setting B1 = 0 (and/or B2 = 0) the

special solution when we have no slip along the inner

(and/or the outer) wall is obtained. The various special

cases of interest are illustrated in Fig. 2 along with the

corresponding expressions of the velocity and the slip

velocities.

Scaling the azimuthal velocity by jXR and r by R

and denoting dedimensionalized quantities by stars,

we can write

u�hðr�Þ ¼
j

1� j2 þ 2ð1þ j3ÞB
1

r�
� ð1� 2jBÞr�

� �
:

ð16Þ

In Fig. 3a, we plotted u�h for j = 0.5 and various

values of the slip number B. We observe that the

velocity at the outer cylinder u�hð1Þ ¼ u�w2 increases

while u�hðjÞ ¼ 1� u�w1 decreases with B. Eventually,

Ω

κR

R

Fig. 1 Geometry of circular Couette flow
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(a)  Slip along both cylinders 
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(b)  Slip only along the inner cylinder 
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(c)  Slip only along the outer cylinder 
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(d)  No-slip along both cylinders 
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Fig. 2 Different cases of Navier slip in circular Couette flow with the corresponding solutions
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u�h becomes an increasing function of r� and in the

limit of infinite B (full slip) u�h becomes linear:

u�hðr�Þ !
j2

1þ j3
r�: ð17Þ

Moreover, all velocity profiles have a common point at

r� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� jþ j2

p
. The corresponding plot of the

angular velocity u�h=r
� is shown in Fig. 3b. As

expected, the angular velocity is always a decreasing

function of r� and becomes flat (solid body rotation) in

the limit of full slip. The asymptotic value of the

angular velocity is j2/(1 ? j3).

2.2 Slip with non-zero slip yield stress

For simplicity, we consider the case in which the same

slip law with a slip coefficient b and a slip yield stress

sc applies along both cylinders. It is clear that below a

critical angular velocity X1 no slip occurs and the

expressions of case D in Fig. 2 apply. From Eq. (11) it

is deduced that sw1[ sw2, which implies that if the

angular velocity is increased just above X1 slip occurs

only along the inner cylinder. The angular velocity X1

corresponds to sw1 = sc, which gives

X1 ¼
1� j2ð Þsc

2g
: ð18Þ

If X2 is the critical angular velocity for the occurrence

of slip along the outer cylinder, then when

X1\X B X2 slip occurs only along the inner cylinder

and the azimuthal velocity is given by

uh ¼
scRj2 gX=sc þ Bð Þ
g 1� j2 þ 2Bð Þ

R

r
� r

R

� �
: ð19Þ

The shear stress and the slip velocity at the inner wall

are given by

sw1 ¼
2sc gX=sc þ Bð Þ
1� j2 þ 2B

ð20Þ

and

uw1 ¼
scRjB 2gX=sc � 1þ j2ð Þ

g 1� j2 þ 2Bð Þ : ð21Þ

The critical angular velocity X2 corresponds to

sw2 = sc, from which one gets

X2 ¼
1� j2ð Þ 1þ 2Bð Þsc

2j2g
: ð22Þ

In the last regime, X[X2, slip occurs along both

cylinders and the azimuthal velocity is given by

uh ¼
scR
g

j2 gX=sc þ 1þ jð ÞB½ �
1� j2 þ 2ð1þ j3ÞB

R

r
� 1� 2jBð Þ r

R

� ��

�jB
r

R

�
:

ð23Þ

For the wall shear stress along the inner cylinder we

get

sw1 ¼
2 gX=sc þ 1þ jð ÞB½ �sc
1� j2 þ 2ð1þ j3ÞB ; ð24Þ

while the two slip velocities are given by

uw1 ¼
scRjB 2gX=sc � 1� j2ð Þ 1� 2jBð Þ½ �

g 1� j2 þ 2ð1þ j3ÞB½ � ð25Þ

and

Fig. 3 Velocity profiles in circular Couette flow with Navier

slip for j = 0.5 and various slip numbers: (a) azimuthal

velocity; (b) angular velocity
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uw2 ¼
scRjB 2gj2X=sc � 1� j2ð Þ 1� 2jBð Þ½ �

g 1� j2 þ 2ð1þ j3ÞB½ � :

ð26Þ

In this case, it is more convenient to dedimensionalize

the solution by scaling the azimuthal velocity uh by

scR/g, the angular velocity by sc/g, and the shear stress
by sc. Thus, the two dimensionless critical angular

velocities are

X�
1 ¼

1� j2

2
ð27Þ

and

X�
2 ¼

1� j2ð Þ 1þ 2Bð Þ
2j2

: ð28Þ

The azimuthal velocity and the inner-cylinder shear

stress are given by

and

s�w1 ¼

2X�

1� j2
; X� �X�

1

2 X� þ Bð Þ
1� j2 þ 2B

; X�
1\X� �X�

2

2 X� þ 1þ jð ÞB½ �
1� j2 þ 2ð1þ j3ÞB ; X� [X�

2

:

8>>>>><
>>>>>:

ð30Þ

Finally, for the two slip velocities we get:

uw1 ¼ jB

0; X� �X�
1

2X� � 1� j2ð Þ
1� j2 þ 2B

; X�
1\X� �X�

2

2X� � 1� j2ð Þ 1� 2jBð Þ
1� j2 þ 2ð1þ j3ÞB ; X� [X�

2

8>>>><
>>>>:

ð31Þ

and

u�w2 ¼ jB
0; X� �X�

2

2j2X� � 1� j2ð Þ 1þ 2Bð Þ
1� j2 þ 2ð1þ j3ÞB ; X� [X�

2

8<
: :

ð32Þ

It is easily verified that the azimuthal velocity profiles

when X� ¼ X�
1 and X�

2 are respectively

u�h ¼
j2

2

1

r�
� r�

� �
and u�h ¼

1

2

1

r�
� r�

� �
: ð33Þ

These profiles are independent of the slip number B

but it should be noted that X�
2 varies linearly with it. In

Fig. 4, the angular velocities u�h=r
� for j = 0.5

corresponding to X�
1;X

�
2, and to 2X�

2 with various slip

numbers are plotted. For small values of B (weak slip),

the effect of B is more pronounced near the outer wall

(where the shear stress is lower).

u�h ¼

j2X�

1� j2
1

r�
� r�

� �
; X� �X�

1

j2 X� þ Bð Þ
1� j2 þ 2B

1

r�
� r�

� �
; X�

1\X� �X�
2

j2 X� þ 1þ jð ÞB½ �
1� j2 þ 2ð1þ j3ÞB

1

r�
� 1� 2jBð Þr�

� �
� jBr�; X� [X�

2

8>>>>>>><
>>>>>>>:

ð29Þ

Fig. 4 Azimuthal velocity profiles in circular Couette flowwith

j = 0.5 in the case of non-zero slip yield stress. The profiles for

X� ¼ X�
1 and X�

2 are independent of the slip number B

2086 Meccanica (2017) 52:2081–2099

123



3 Steady plane Couette flow

\We consider the steady flow of a Newtonian fluid

between two infinite parallel plates, placed at a distance

H apart, assuming that the upper plate is moving with a

speedVwhile the lower one is fixed, as shown in Fig. 5.

3.1 Navier slip

In the general case Navier slip occurs along both walls

but with different slip coefficients so that swi = biuwi,
i = 1, 2, where sw1 and sw2 are the wall shear stresses

along the lower and upper walls, respectively. The

general form of the steady-state velocity is simply

ux(y) = c1y ? c2. The constants c1 and c2 are determined

by applying the boundary conditions ux(0) = uw1 and

ux(H) = V - uw2. Thus, the fluid velocity is given by

uxðyÞ ¼
V

1þ B1 þ B2

y

H
þ B1

	 

; ð34Þ

where Bi : g/biH, i = 1, 2. The shear stress sxy =
gdux/dy is constant and therefore:

sw1 ¼ sw2 ¼
g

1þ B1 þ B2

V

H
: ð35Þ

For the two slip velocities one finds

uw1 ¼
B1

1þ B1 þ B2

V

and uw2 ¼
B2

1þ B1 þ B2

V ¼ B2

B1

uw1:
ð36Þ

The various special cases of interest are illustrated in

Fig. 6 along with the corresponding expressions of the

velocity and the slip velocities.

3.2 Slip with non-zero slip yield stress

As in Sect. 2, we consider only the case in which the

same slip law with non-zero slip yield stress applies

along both walls. Below a critical velocity Vc of the

upper plate no slip occurs (case D in Fig. 6). Setting

sw = sc we get from Eq. (35)

Vc ¼
Hsc
g

: ð37Þ

The velocity is given by

ux ¼

y

H
V ; V�Vc

Vc

1þ 2B
V=Vcþ 2Bð Þ y

H
þBðV=Vc� 1Þ

h i
; V[Vc

:

8><
>:

ð38Þ

The shear stress is constant, and thus the wall shear

stress along both plates is

sw ¼

gV
H

; V �Vc

sc þ

sc
Vc

V � Vcð Þ

1þ 2B
; V [Vc

:

8>>><
>>>:

ð39Þ

Obviously, the slip velocities along the two plates are

the same:

uw ¼
0; V �Vc

B V � Vcð Þ
1þ 2B

; V [Vc
:

(
ð40Þ

4 Cessation of circular Couette flow

We consider the cessation of the circular Couette flow

of a Newtonian fluid. The steady-state solution serves

as the initial condition and at t = 0 the inner cylinder

stops rotating. The equation governing the azimuthal

velocity uh(r, t) is

ouh

ot
¼ m

o2uh

or2
þ 1

r

ouh

or
� 1

r2
uh

� �
; ð41Þ

where m : g/q is the kinematic viscosity.

4.1 Navier slip

In the general case in which Navier slip occurs along

both cylinders with different slip coefficients, the

boundary and initial conditions read:

Fig. 5 Geometry of plane Couette flow
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(a)  Slip along both walls 

( )
1 2x
V yu y B
B H

⎛ ⎞= +⎜ ⎟+ ⎝ ⎠

1 2w
V

B H
ητ =

+

1 2 1 2w w
Bu u V
B

= =
+

(b)  Slip only along the lower wall 

1

( )
1x
V yu y B
B H

⎛ ⎞= +⎜ ⎟+ ⎝ ⎠

1w
V

B H
ητ =
+

1 1w
Bu V
B

=
+

2 0wu =

(c)  Slip only along the upper wall 

( )
1x
V yu y
B H

=
+

1w
V

B H
ητ =
+

1 0wu =

2 1w
Bu V
B

=
+

(d)  No-slip along both walls 

( )x
yu y V
H

=

w
V
H

τ η=

1 2 0w wu u= =

Fig. 6 Different cases of Navier slip in steady plane Couette flow
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The solution of the problem (41) and (42) is

uhðr; tÞ ¼
X1
k¼1

CkZ1k
kkr
R

� �
e
�k2

k
v

R2
t; ð43Þ

where (kk, ck), k = 1, 2, … are the solutions of the

system

jB1kkZ0kðjkkÞ � ð1þ 2B1ÞZ1kðjkkÞ ¼ 0

jB2kkZ0kðkkÞ þ ð1� 2jB2ÞZ1kðkkÞ ¼ 0

�
: ð44Þ

The functions Z0k and Z1k are defined by

Z0kðrÞ � J0 rð Þ þ ckY0 rð Þ;
Z1kðrÞ � J1 rð Þ þ ckY1 rð Þ;

ð45Þ

where J1, J2 and Y0, Y1 are Bessel functions of the first

and second kind, respectively. The constant Ck is

generally given by

In the special case that 1 - 2jB2 = 0, Ck is simplified

as follows:

Ck ¼
2j2ð1þ2B1ÞZ0k jkkð ÞXR

kk ð1þ2B1Þ2Z2
1k kkð Þ�j2ð1þ2B1þj2B2

1k
2
kÞZ2

0k jkkð Þ
h i :

ð47Þ

Various special cases can easily be obtained. Figure 7

illustrates three possibilities for the evolution of the

dimensionless velocity (scaled by jXR) where time is

scaled by R2/m: (a) the classical no-slip solution

obtained by setting B1 = B2 = 0; (b) the solution

when slip occurs only along the inner wall (B2 = 0)

with B1 = 0.5; and (c) the solution when

B1 = B2 = 0.5 (same slip coefficient along the two

cylinders). One may observe that cessation becomes

slower (the eigenvalues kk become smaller) in the

presence of slip.

4.2 Slip with non-zero slip yield stress

As in Sect. 2.2, we consider the case in which the same

slip law applies along both cylinders (B1 = B2 = B).

We have seen that there are three flow regimes defined

by the critical angular velocities X1 and X2. We will

work with the dimensionless equations hereafter,

obtained with the scales used in Sect. 2.2. In addition,

time is now scaled by g/sc.

4.2.1 No slip (X� �X�
1)

The no-slip solution can be found in many textbooks

[25]:

u�hðr�; t�Þ ¼
X1
k¼1

CkZ1k kkr
�ð Þe�k2k t

�
; ð48Þ

where (kk, ck), k = 1, 2, … are the solutions of the

system

Z1kðjkkÞ ¼ Z1kðkkÞ ¼ 0 ð49Þ

and Ck is given by

Ck ¼
2j2X�Z0k jkkð Þ

kk Z2
0k kkð Þ � j2Z2

0k jkkð Þ
� � : ð50Þ

uhðjR; tÞ ¼ jB1Rr
o

or

uh

r

	 





r¼jR

; t[ 0

uhðR; tÞ ¼ �jB2Rr
o

or

uh

r

	 





r¼R

; t� 0

uh r; 0ð Þ ¼ j2XR
1� j2 þ 2B1 þ 2j3B2

R

r
� ð1� 2jB2Þ

r

R

� �
; jR� r�R

9>>>>>>>=
>>>>>>>;
: ð42Þ

Ck ¼
2j2ð1þ 2B1Þð1� 2jB2Þ2Z0k jkkð ÞXR

kk ð1þ 2B1Þ2ð1� 2jB2 þ j2B2
2k

2
kÞZ2

0k kkð Þ � j2ð1� 2jB2Þ2ð1þ 2B1 þ j2B2
1k

2
kÞZ2

0k jkkð Þ
h i : ð46Þ
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4.2.2 Slip only along the inner cylinder

(X�
1\X� �X�

2)

In this case the boundary and initial conditions read

u�hðj; t�Þ ¼ jB r�
o

or�
u�h
r�

� �




r�¼j

�1

� �
; t� [ 0

u�hð1; t�Þ ¼ 0; t� � 0

u�h r�; 0ð Þ ¼ j2 X� þ Bð Þ
1� j2 þ 2B

1

r�
� r�

� �
; j� r� � 1

9>>>>=
>>>>;
:

ð51Þ

The solution is then given by

u�hðr�; t�Þ

¼

P1
n¼1

AnZ1n anr�ð Þe�a2nt
� � j2B

1� j2 þ 2B

1

r�
� r�

� �
; t� � t�c1

P1
k¼1

CkZ1k kkr�ð Þe�k2k t��t�
c1ð Þ; t�[ t�c1

;

8>>><
>>>:

ð52Þ

where (an, dn), n = 1, 2, … are the solutions of the

system

jBanZ0nðjanÞ � ð1þ 2BÞZ1nðjanÞ ¼ 0

Z1nðanÞ ¼ 0

�
ð53Þ

with

Z0nðrÞ � J0 rð Þ þ dnY0 rð Þ;
Z1nðrÞ � J1 rð Þ þ dnY1 rð Þ

ð54Þ

and An and Ck are respectively given by

An ¼
2j2 1þ 2Bð Þ X� þ 2Bð ÞZ0n janð Þ

an Z2
0n anð Þ 1þ 2Bð Þ2�j2Z2

0n janð Þ 1þ 2Bþ a2nj
2B2

� �h i

ð55Þ

and

Ck ¼
2Z0k jkkð Þ

kk Z2
0k kkð Þ � j2Z2

0k jkkð Þ
� �

	
X1
n¼1

An

jk2k
k2k � a2n

Z1n janð Þe�a2nt
�
c1 � j2B 1� j2ð Þ

1� j2 þ 2B

" #
:

ð56Þ

The critical time t�c1, at which slip ceases along the

inner wall is the root of the following equation:

X1
n¼1

A�
nZ1n anjð Þe�a2nt

� ¼ jB 1� j2ð Þ
1� j2 þ 2B

: ð57Þ

Fig. 7 Cessation of circular Couette flow with j = 0.5: (a) No-

slip along both cylinders (B1 = B2 = 0); (b) Navier slip only

along the inner cylinder (B1 = 0.5, B2 = 0); (c) Navier slip

along both cylinders (B1 = B2 = 0.5)
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The slip velocity at the inner cylinder is

u�w1ðt�Þ

¼
P1
n¼1

AnZ1n anjð Þe�a2nt
� � j 1� j2ð ÞB

1� j2 þ 2B
; t� � t�c1

0; t�[ t�c1

8<
: :

ð58Þ

4.2.3 Slip along both cylinders (X� [X�
2)

In this case the boundary and initial conditions read

and the solution is

Here (lm, em), k = 1, 2, … are the solutions of the

system

jBlmZ0mðjlmÞ � ð1þ 2BÞZ1mðjlmÞ ¼ 0

jBlmZ0mðlmÞ þ ð1� 2jBÞZ1mðlmÞ ¼ 0

�
; ð61Þ

where

Z0mðrÞ � J0 rð Þ þ emY0 rð Þ;
Z1mðrÞ � J1 rð Þ þ emY1 rð Þ

ð62Þ

and Am, Cn and Dk are given by

and

Am ¼ 2j2 X� þ 2Bð ÞZ0m jlmð Þ

lm 1þ 2Bð Þ Z2
0m lmð Þ 1�2jBþj2l2mB

2ð Þ
1�2jBð Þ2 � j2Z2

0m jlmð Þ 1þ2Bþj2l2mB
2ð Þ

1þ2Bð Þ2

� � ; ð63Þ

u�hðj; t�Þ ¼ jB r�
o

or�
u�h
r�

� �




r�¼j

�1

� �
; t� [ 0

u�hð1; t�Þ ¼ �jB r�
o

or�
u�h
r�

� �




r�¼1

þ1

� �
; t� � 0

u�h r�; 0ð Þ ¼ j2 X� þ ð1þ jÞB½ �
1� j2 þ 2ð1þ j3ÞB

1

r�
� 1� 2jBð Þr�

� �
� jBr�; j� r� � 1

9>>>>>>>=
>>>>>>>;

ð59Þ

u�hðr�; t�Þ ¼

P1
m¼1

AmZ1m lmr
�ð Þe�l2mt

� � 1� jð Þj2B
1� j2 þ 2ð1þ j3ÞB

1

r�
� 1� 2jBð Þr�

� �
� jBr�; t� � t�c1

P1
n¼1

CnZ1n anr�ð Þe�a2n t��t�
c1ð Þ � j2B

1� j2 þ 2B

1

r�
� r�

� �
; t�c1\t� � t�c2

P1
k¼1

DkZ1k kkr�ð Þe�k2k t��t�
c2ð Þ; t� [ t�c2

8>>>>>>><
>>>>>>>:

:

ð60Þ
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Fig. 8 Cessation of circular Couette flow with j = 0.5 and

B = 0.5 and different initial conditions: (a) X� ¼ X�
1 ¼ 0:375

(no slip initially); (b) X� ¼ X�
2 ¼ 3 (slip only at the inner

cylinder); and (c) X� ¼ 6[X�
2 (slip at both cylinders)

Fig. 9 Evolution of the slip velocities in cessation of circular

Couette flow for j = 0.5, B = 0.5, and X� ¼ 6[X�
2

Fig. 10 Evolution of the slip velocities in cessation of circular

Couette flow for j = 0.5, B = 0.5, and X� ¼ 20[X�
2
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Dk ¼
2Z0k jkkð Þ

kk Z2
0k kkð Þ � j2Z2

0k jkkð Þ
� �

	
X1
n¼1

Cne
�a2

k
t�
c2
�t�

c1ð Þ jk2k
k2k � a2n

Z1n janð Þ � j2 1� j2ð ÞB
1� j2 þ 2B

" #
:

ð65Þ

The critical time t�c1, at which slip no longer occurs

along the outer cylinder, and the critical time t�c2, at

which slip ceases along the inner cylinder are respec-

tively the roots of

X1
m¼1

AmZ1m lmð Þe�l2mt
� ¼ jB2 1� j2 þ 2 1þ j2ð ÞB½ �

1� j2 þ 2ð1þ j3ÞB
ð66Þ

andX1
n¼1

CnZ1n janð Þe�a2n t��t�
c1ð Þ ¼ j 1� j2ð ÞB

1� j2 þ 2B
: ð67Þ

Finally, the two slip velocities are given by

u�w1ðt�Þ

¼
P1
m¼1

AmZ1m lmð Þe�l2mt
� �jB 1�j2þ2 1þj2ð ÞB½ �

1�j2þ2ð1þj3ÞB ; t�� t�c1

0; t�[ t�c1

8<
:

ð68Þ

and

The evolution of the velocity for j = 0.5 and B = 0.5

is illustrated in Fig. 8 for three representative values of

the angular velocity: (a) X� ¼ X�
1 ¼ 0:375 such that

no slip occurs from t� ¼ 0 and the classical cessation

solution holds; (b) X� ¼ X�
2 ¼ 3 such that slip occurs

only at the inner cylinder and ceases at t�c1 ¼ 0:0426;

and (c) X� ¼ 6[X�
2 such that initially slip occurs

everywhere and ceases along the outer cylinder at

t�c1 ¼ 0:0721 and along the inner cylinder at

t�c2 ¼ 0:08. The evolution of the two slip velocities in

the latter case is shown in Fig. 9. Initially the slip

velocity u�w2 along the outer cylinder appears to be

rather constant but later it decays fast and vanishes

earlier than u�w1. Our calculations showed that u�w2 is

not necessarily lower than u�w1 at all times. One such

example is the flow for j = 0.5 and X� ¼ 20. As

shown in Fig. 10, the slip velocity u�w1 at the inner

cylinder initially decreases faster and becomes lower

than u�w2 for a while, but then u�w2 starts decreasing

rapidly and vanishes earlier than u�w1.

5 Cessation of plane Couette flow

In cessation of plane Couette flow, the upper plate

stops moving at t = 0 and the steady-state solution

serves as the initial condition. The governing equation

is

oux

ot
¼ m

o2ux

oy2
: ð70Þ

Cn ¼
2 1þ 2Bð Þ2Z0n anð Þ

an Z2
0n anð Þ 1þ 2Bð Þ2�j2Z2

0n janð Þ 1þ 2Bþ a2nj
2B2

� �h i

	
X1
m¼1

Ame
�l�2m tc1

(
�a2nZ1m lmð Þ
a2n � l2m

� �
þ jB 1� j2 þ 2 1þ j2ð ÞB½ �

1� j2 þ 2 1þ j3ð ÞB

� ð64Þ

u�w2ðt�Þ ¼

P1
m¼1

AmZ1m jlmð Þe�l2mt
� � jð1� jÞB

1� j2 þ 2ð1þ j3ÞB 1� 1� 2jBð Þj2
� �

� j2B; t� � t�c1

P1
n¼1

CnZ1n janð Þe�a2n t��t�
c1ð Þ � j 1� j2ð ÞB

1� j2 þ 2B
; t�c1\t� � t�c2

0; t� [ t�c2

:

8>>>><
>>>>:

ð69Þ
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5.1 Navier slip

In the general case in which Navier slip occurs along

both walls with different slip coefficients, the bound-

ary and initial conditions read:

uxð0; tÞ ¼ B1H
oux

oy






y¼0

; t[ 0

uxðH; tÞ ¼ �B2H
oux

oy






y¼H

; t� 0

uxðy; 0Þ ¼
V

1þ B1 þ B2

y

H
þ B1

	 

; 0� y�H

9>>>>>>=
>>>>>>;
ð71Þ

The velocity is given by

ux y; tð Þ ¼
X1
k¼1

Ck sin
kky
H

� �
þ B1kk cos

kky
H

� �� �
e
�m

k2
k

H2t;

ð72Þ

where kk are the roots of

tanðkkÞ ¼
B1 þ B2ð Þkk
B1B2k

2
k � 1

ð73Þ

and the constants Ck are given by

The evolution of the velocity in various representative

cases is illustrated in Fig. 11, where the velocity is

scaled by V, lengths by H, and time by H2/m, and non-

dimensionalized variables are denoted by stars: (a) The

classical no-slip solution obtained by setting

B1 = B2 = 0; (b) the solution when slip occurs only

along lower wall with B1 = 0.5 and B2 = 0; (c) the

solution when slip occurs only along upper wall with

B1 = 0and B2 = 0.5; (d) the solution when

B1 = B2 = 0.5 (same slip coefficient along the two

plates). Since the leading eigenvalue decreases cessa-

tion becomes slower as slip is enhanced.

5.2 Slip with non-zero slip yield stress

When V B Vc, the standard no-slip solution applies.

When V[Vc, the fluid initially slips along both walls.

As the velocity is reduced, slip ceases first along the

lower plate and then along the upper one. Hence, there

is no slip in the final stage of the cessation. The critical

times for the cessation of slip along the lower and the

upper walls are denoted by tc1 and tc2, respectively.

For the rest of this section it is more convenient to

scale the velocity by Vc, lengths by H, the stress by sc,
and time by g/sc. Again, non-dimensionalized quan-

tities are denoted by stars. Hence, the no-slip case

corresponds to V� � 1.

5.2.1 No-slip regime

The boundary and initial conditions read

u�xð0; t�Þ ¼ u�xð1; t�Þ ¼ 0; t� [ 0

u�xðy�; 0Þ ¼ y�; 0� y� � 1

�
ð75Þ

and the solution is given by

u�xðy�; t�Þ ¼
X1
k¼1

C�
k sin kky

�ð Þe�k2k t
�
; ð76Þ

where kk = kp, k = 1, 2, … and

C�
k ¼ � 2V� cos kk

kk
: ð77Þ

5.2.2 Slip along both walls (V� [ 1)

In this case the boundary and initial conditions read

u�xð0; t�Þ ¼ B
ou�x
oy�

� 1

� �
; t�[0

u�xð1; t�Þ ¼ �B
ou�x
oy�

þ 1

� �
; t�[0

u�xðy�;0Þ ¼
1

1þ 2B
V� þ 2Bð Þy� þBðV� � 1Þ½ �; 0� y� �1

9>>>>>>>=
>>>>>>>;
:

ð78Þ

The solution is given by

Ck ¼
2V B2

1k
2
k þ 1

� �
B2
2k

2
k þ 1

� �
cos kk

kk B1B2k
2
k � 1

� �
B2
1k

2
k þ B1 þ 1

� �
B2
2k

2
k þ 1

� �
þ B2 B2

1k
2
k þ 1

� �� � : ð74Þ
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u�xðy�;t�Þ

¼

P1
m¼1

A�
m sinðlmy�ÞþBlmcosðlmy�Þ½ �e�l2mt

� �B; t��t�c1

P1
n¼1

C�
n sinðany�Þe�a2nðt��t�c1Þ � By�

Bþ1
;t�c1\t��t�c2

P1
k¼1

D�
k sinðkky�Þe�k2kðt��t�

c2
Þ; t�[t�c2

8>>>>>>><
>>>>>>>:

;

ð79Þ

where lm and an are the roots of

tan lm ¼ �2Blm
1� B2l2m

ð80Þ

and

tan an ¼ �Ban; ð81Þ

respectively. The constants A�
m;C

�
nandD

�
k are given by

A�
m ¼ 2 cos lmð1þ l2mB

2ÞðV� þ 2BÞ
lmðl2mB2 � 1Þðl2mB2 þ 2Bþ 1Þ ; ð82Þ

C�
n ¼

�2B

anð1þ B cos2 anÞ

� 2anB

ð1þ B cos2 anÞ
X1
m¼1

lmA
�
me

�l2mt
�
c1

l2m � a2n

ð83Þ

and

Fig. 11 Cessation of simple shear flow: (a) No-slip along the walls (B1 = B2 = 0); (b) Navier slip only along the lower wall (B1 = 0.5,

B2 = 0); (c) Navier slip only along the upper wall (B1 = 0, B2 = 0.5); (d) Navier slip along both walls (B1 = B2 = 0.5)
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Fig. 12 Evolution of the velocity in cessation of simple shear

flow with non-zero slip yield stress with B = 0.1: (a) V� ¼ 1:1;
(b) V� ¼ 1:5; (c) V� ¼ 2

Fig. 13 Evolution of the slip velocities in cessation of simple

shear flow with non-zero slip yield stress with B = 0.1: (a)

V� ¼ 1:1; (b) V� ¼ 1:5
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The two slip velocities are given by

u�w1ðt�Þ ¼
P1
m¼1

A�
mBlme

�l2mt
� � B; t� � t�c1

0 t� [ t�c1

8<
: ð85Þ

and

u�w2ðt�Þ

¼

P1
m¼1

A�
m sinlmþBlm coslmð Þe�l2mt

� �B; t� � t�c1

P1
n¼1

C�
n sinane

�a2nðt��t�
c1
Þ � B

Bþ 1
; t�c1\t� � t�c2

0; t�[ t�c2

:

8>>>>><
>>>>>:

ð86Þ

The critical times t�c1 and t�c2 are the roots of

X1
m¼1

A�
mBlme

�l2mt
�
c1 � B ¼ 0 ð87Þ

and

X1
n¼1

C�
n sin ane

�a2nðt�c2�t�
c1
Þ � B

Bþ 1
¼ 0; ð88Þ

respectively. Keeping only the first terms of the above

summations leads to the following estimates of the

critical times:

�t�c1 ¼
1

l21
ln A�

1l1
� �

ð89Þ

and

�t�c2 ¼ �t�c1 þ
1

a21
ln
ðBþ 1ÞC�

1 sin a1

B
: ð90Þ

The evolution of the velocity for B = 0.1 and V� ¼
1:1; 1:5 and 2 is illustrated in Fig. 12. The velocity

profiles at t�c1 and t�c2 are provided in all cases.

Figure 13 shows the evolution of the two slip veloc-

ities for V� ¼ 1:1 and 1:5. The lower-plate slip

velocity initially appears to be rather constant but

eventually it decreases rapidly vanishing at t�c1. The

upper-plate slip velocity, which is at least one order of

magnitude greater, decays very fast initially and then

fast to vanish at t�c2 [ t�c1. The effect of V
� on the two

slip velocities is also illustrated in Fig. 14. In general,

D�
k ¼

2B cos kk
ðBþ 1Þkk

þ 2kk cos kk

	
X1
n¼1

sin ane
�a2n tc2�tc1ð Þ

a2n � k2k

�2B

anð1þ B cos2 anÞ
� 2anB

ð1þ B cos2 anÞ
X1
m¼1

2 cos lm 1þ l2mB
2

� �
ðV� þ 2BÞe�l2mtc1

l2m � a2n
� �

l2mB
2�1

� �
l2mB

2 þ 2Bþ 1
� �

" #( )
:

ð84Þ

Fig. 14 Evolution of the slip velocities in cessation of simple

shear flow with non-zero slip yield stress, for B = 0.1 and

various values of V�: (a) along the lower plate; (b) along the

upper plate
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slip becomes stronger and cessation becomes slower

and therefore the critical times t�c1 and t�c2 increase as

V� is increased. Finally the effect of the slip number B

on the two slip velocities is illustrated in Figs. 15 and

16. In Fig. 15, one observes the evolution of the two

slip velocities for V� ¼ 1:5 and different values of B.

The decay of the slip velocities is slower as the slip

number B is increased, i.e. when slip is stronger.

Figure 16 shows plots of the critical times t�c1 and t�c2
for the cessation of slip along the lower and upper

plates, respectively, versus the slip number B for

various values of V�. As already discussed the values

of the two critical times increase with B. In Fig. 8, the

estimates of the stopping times given by Eqs. (89) and

(90) are also compared with the exact values. It is

shown that the value of t�c1 is overestimated while that

of t�c2 is underestimated. The estimates are improved as

the values of B and V� are increased.

6 Conclusions

We have solved both the steady-state and time-

dependent circular and plane Couette flows of a

Newtonian fluid with wall slip following the two-

branch slip equation proposed by Spikes and Granick

[18]. The latter involves a non-zero slip yield stress

above which the variation of the wall shear stress with

the slip velocity is linear. The solutions presented here

supplement the analytical solutions reported by Ng

[14] and Kaoullas and Georgiou [11, 12] and may be

Fig. 15 Evolution of the slip velocity in cessation of plane

Couette flow with non-zero slip yield stress for V� ¼ 1:5 and

various values of B: (a) lower plate; (b) upper plate

Fig. 16 The critical times t�c1 and t�c2 for the cessation of plane

Couette flow with non-zero slip yield stress for various values of

V�. The dashed lines are the estimates obtained using only the

leading term of the corresponding series expansion, i.e. using

Eqs. (89) and (90)
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useful in correcting slip effects in Couette rheometry,

in checking numerical non-Newtonian simulation

codes, and in start up and cessation of steady shear

in MEMS devices.

The existence of non-zero slip yield stress results in

three steady-state regimes for the circular Couette

flow. These are defined by the two critical values of the

angular velocity at which slip is triggered along the

rotating inner cylinder and the fixed outer one. In

cessation of the flow in the last regime where slip is

present along both cylinders, it has been shown that

slip ceases first finite along the outer cylinder and then

along the inner one.

In the case of steady plane Couette flow, there are

two flow regimes, since slip occurs only above a

critical value of the velocity of the moving upper plate,

Vc. Given that the shear stress in the flow domain is

constant, the slip velocities uw1 and uw2 along the

lower and upper plates are equal. In time-dependent

flow slip may occur only along one of the two plates.

In the case of flow cessation above Vc, there are three

flow regimes defined by two critical times tc1 and tc2,

respectively defined as the times at which slip ceases

along the lower and the upper plates. For times after

tc2, the flow decays exponentially with no slip.
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