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In this article, we analyze the singular function boundary integral method (SFBIM) for a two-dimensional
biharmonic problem with one boundary singularity, as a model for the Newtonian stick-slip flow problem. In
the SFBIM, the leading terms of the local asymptotic solution expansion near the singular point are used to
approximate the solution, and the Dirichlet boundary conditions are weakly enforced by means of Lagrange
multiplier functions. By means of Green’s theorem, the resulting discretized equations are posed and solved
on the boundary of the domain, away from the point where the singularity arises. We analyze the convergence
of the method and prove that the coefficients in the local asymptotic expansion, also referred to as stress
intensity factors, are approximated at an exponential rate as the number of the employed expansion terms is
increased. Our theoretical results are illustrated through a numerical experiment. © 2011 Wiley Periodicals,
Inc. Numer Methods Partial Differential Eq 28: 749-767, 2012
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. INTRODUCTION

Boundary singularities appear in many problems governed by elliptic partial differential equa-
tions. These arise when there is a suddden change in the boundary conditions (e.g., domains with
cracks) and/or on the boundary itself (e.g., re-entrant corners). It is well known that ignoring their
presence can adversely affect the accuracy and the convergence of standard numerical methods,
such as finite element, boundary element, finite difference, and spectral methods. One way to
deal with singularities is to incorporate their local form into the numerical scheme, something
that has been successfully done for two-dimensional Laplacian problems (see, e.g., [1,2] and the
references therein).

In the case of two-dimensional Laplacian problems with one boundary singularity, the local
solution expansion is given by

u= Z(xjrﬁfqu(e), (D
j=1
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where (r,0) are polar coordinates centered at the singular point, o; € R and B;, ¢; are, respec-
tively, the eigenvalues and eigenfunctions of the problem, which are uniquely determined by
the geometry and the boundary conditions along the boundaries sharing the singular point. The
a;s, called singular coefficients (or stress intensity factors if the boundary value problem arises
from structural mechanics), are primary unknowns in many applications. With standard numerical
schemes, such as the finite element method (FEM), the singular coefficients are calculated via
a postprocessing procedure (see, €.g., [3,4]). The singular function boundary integral method
(SFBIM), belongs to the class of Trefftz methods in which the singular coefficients are calcu-
lated directly. It was originaly developed for two-dimensional Laplacian problems with boundary
singularities, by Georgiou and coworkers [1,5], and was recently extended to biharmonic prob-
lems [6-8]. See also [9—11] for reviews of Trefftz methods and recent works with applications to
biharmonic problems.

The SFBIM uses the leading terms of the local asymptotic expansion to approximate the solu-
tion. The associated functions ¢, (9) are used to weight the governing biharmonic equation in
the Galerkin sence. This allows for the reduction of the discretized equations to boundary inte-
grals by means of Green’s theorem. Any Dirichlet boundary conditions are weakly enforced by
means of Lagrange multipliers, which are calculated directly together with the unknown singular
coefficients; hence, no postprocessing of the numerical solution is performed.

The implementation of the method for the solution of Laplacian and biharmonic problems
with boundary singularities has given highly accurate numerical results [6-8, 12, 13]. The conver-
gence of the SFBIM, for Laplacian problems, has been investigated theoretically in [14], where
it was shown that the absolute difference between the true and approximate singular coefficients
decreases at an exponential rate as the number N of the terms in the numerical approximation
is increased. The main goal of this article, is to extend the analysis to the case of biharmonic
problems and establish the (exponential) convergence rates observed in numerical simulations
[6-8]. It should be noted that the Collocation Trefftz method also yields exponential convergence
rates, when applied to biharmonic problems, as was shown in [10, 15].

The rest of this article is organized as follows: In Section II the formulation of the method
for a model two-dimensional biharmonic problem with a boundary singularity is presented. In
Section III the convergence analysis is carried out. Finally, in Section IV, we discuss the efficient
implementation of the method and in Section V, we illustrate it through a numerical experiment.
Throughout this article the usual notation H*(2) will be used for spaces containing functions
defined on the domain  C R? with boundary 92, having k generalized derivatives in L%(R).
The norm and seminorm on H*(£2), will be denoted by || - |lx.q and | - |, respectively. For the
case when k is noninteger and/or negative, we utilize the definitions and concepts given in [16].
The letters C, ¢, with or without subscripts, will be used to denote generic positive contants, with
possible different values in each occurence.

Il. THE MODEL PROBLEM AND ITS FORMULATION

We consider the following model two-dimensional biharmonic problem (depicted graphically in
Fig. 1): Find u such that

Viu=0in Q, )
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FIG. 1. The model biharmonic problem with one singular point.

with
ou
u=>0, — =0 on S
on
u=0, Viu=0 on S, )
(V? ’
Viu =0, (V7w =0 onS;
on
u=gr90), Vu=0 on S,

where 32 = U?_, S;. A boundary singularity arises at the intersection of S, and S, (point O) due
to the sudden changes in the boundary conditions. The function g is assumed to be smooth enough
and such that no other boundary singularities arise (at the endpoints of S;). We also assume that
the only singularity present is the one at the point O. The above boundary value problem models
the so-called Newtonian stick-slip flow problem [6].

For two-dimensional biharmonic problems, the solution in the neighbourhood of the boundary
singularity is given by an asymptotic expansion of the form [6]:

u(r.8) = a;r it @) + Byt 6. 0)). @)

j=1 j=1

where «; and B, are the unknown singular coefficients, 1t; and p; are the two sets of sin-
gularity powers (i.e., the eigenvalues of the problem) arranged in ascending order, and the
functions f1(0, ;) and f>(0, p;) represent the #-dependence of the eigensolution. The func-
tions r*i*! f1(6, ;) and rPit £, p ;) are called singular functions. As we are considering a
model for the stick-slip problem where S, and S, meet at an angle 7, the eigenvalues u;, p; are
real and the functions f,(0, i;), f>(0, p;) are even and odd, respectively [17,18]. In fact, in this
setting, one finds that
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f10,u;) =cos(u; + 1)0 —cos(u; — 1)0, p; = j — %, j=12,... (®)]
£0.0,) = (p; — D sin(o; + 16 — (o; + Dsino; = D, p; = j+1, j=12... (6
Now, suppose v is a function which satisfies
Vi =0inQ
v=0,2"=0ons, {. )
v=0,V2v=0o0nS,
One choice for v is
v =y it 16, wp) + 807 f(6, ),

for some constants y; and §;. Multiplying the governing biharmonic equation by v, integrating
over 2 and using Green’s formula, we obtain

// ) /‘ 3(V2u)
— Vv -V(Vu) + v =0.
Q Q on

Using Green’s formula once again, the above expression becomes:

0 (V2
// Vaviu —/ Vzu—v —i—/ v (Vo) =0.
Q 90 an I an

Considering the boundary conditions in (3) and (7), we find that

2
/f Vv +/ L2V ®)
Q Sy an

Now, on S; we have u = g and thus

2
/w—@mvwza
Sq

on
which added to (8) gives
(V2 (V? (V2
f/VzvV2u+/v( ”)+/u( U)zfg( v)-
Q Sy on Sy an Sy on
Letting
A(V2u) (V?v)
A= M= — s, 9
on |S4 M an |S4 ( )
we get

// VzvV2u+f v)»—i—/ uu:/ gu, (10)
Q Sy Sy 54
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which leads to the following variational formulation: Find (u, 1) € V| x V, such that V (v, u) €
V] X V2

B(u,v) +b(u,v; A, 1) = F(v, u), (11)
where
B(u,v) =// ViuViu
Q
b(u,v;k,u):/ uu+/ vA Y. (12)
Sa Sy
F(v,u)zf 42
Sa4

The spaces V| and V, are defined as

ov

V= H*Z(Q) = {U S HZ(Q) : U|S1US2 =0, 3
n

— o} Vo= H3(S)). (13)
S

Remark 1.  The above formulation will be used in the analysis of the method. As described in
Section IV, an equivalent formulation will be used for the implementation, which will involve only
one-dimensional integrations along the parts of the boundary that are away from the singular
point.

lll. DISCRETIZATION AND ERROR ANALYSIS

To describe the discrete analog of (11), boundary part S, is divided into sections I';, with
i =1,...,nsuchthat S, = U!_,T';. Let h; = |I';| and set & = max,<;<, h;. Now, let

v;.” =t f1(0, 1)) and v}z) =rfit' 20, p;)
denote the singular functions, and define the following finite dimensional space:
N _ 1) @1 - _
Vi —span{vj }Uspan{vj },] =1,2,...,N. (14)

We assume that for each segment I';, there exists an invertible mapping F; : [ = [—1,1] — T}
and define the space

V) =& dlr, o F e P(D),i=1,...,n}, (15)

where P, (1) denotes the set of polynomials of degree < k on I. Then the discrete version of (11)
reads: Find (uy, A1) € [ViY x V5"] € [V, x V5] such that

B(uy,vy) + by, vy Ay itn) = F Uy, i)V (s i) € V¥ x VY, (16)
with B(u, v), b(u,v; A, ) and F (v, ) given by (12).
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We have the following result, which is a generalization of Theorem 4.5 from [19].

Theorem 1. Let (u,)) and (uy,Ay,) be the solutions to (11) and (16), respectively. Suppose
there exist positive constants cy, ¢, B* and y, independent of N and h such that the following
three conditions hold:

B(vy,vy) > C0||UN||22,Q and |B(u, vy)| < cllullrellvnllze YV ox € V1N, )
30 #£wy € V¥ st / HaWyN | > ﬂ*lluhll,g,s4llwzvllz,sz Yo € Vo, (18)
S4
f M| < YAy 5, Ion e ¥ oy € V1. (19)
Sa
Then,
lu —unloe + 1A =Anll_3 5, < C{ inf |lu—vyloe+ inf [A—n4l_s 54}, (20)
z vy ev] nmeVal 2

with C € RY independent of N and h.

Proof. Obviously, V (v, u) € Vi x V, we have
B(u —uy,v) = =b(u —uy,v; 2 — Ay, ) = —/ (U —uy)p — / (A = Ap)v.
Sa Sa

Since u = g on S; and fs4 wn(uy —g) =0V w, € Vy, we have

f pr(uy —u) =0V w, € Vo, 2D
Sa
and
B(u—uy,vy) = —/ A —=A)vy Yoy € VIN. (22)
S4

Letting wy = uy — vy € V}" we obtain
B(vy —uy,wy) = B(u —uy,wy) + B(uy —u, wy)

= B(vy —u,wy) — / A= Awy
S4

=By —u,wy) — [ A —nDwy — [ (0 — An)wy,
54 S4

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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with n;, € V} arbitrary. Using the definition of wy and (21) with w, = A, — w;, € VJ, we further
have

B(uw — tnswy) = Bluy — it wy) — / (h— ) — / (= o) — )
Sa Sa
=Bvy —u,wy) — [ (A—n)wy — / un My — Ap) +/ vy My — Ap)
Sy Sy Sy

=B<vN—u,wN>—/ (A—nh)wN—/ u(nh—xh>+/ o (0 — )
Sa Sa

Sa4

=B(vy —u,wy) — [ (A —nwy — f (w —vn)(n — Ap).
M Sy

This along with Egs. (17) and (19) give

2
collwyllzg = 1B(wy, wy)| < |Buy — vy, wy)|

/ (A — nm)wy
S4

= cllow —ullellwnllae + v A = mll_3 g lwnllze + v = Al 3 g llu —vnllg

< |B(vy —u,wy)| + +

/ Mn — An)(u — vy)
Sa4

= Cl{(”UN — e+ 12— 77/1”,%54)”wN”2,Q + Nl — )~h||,%,s4||u - UN||2,Q}s
with C; € R satsifying C; > max{c, y}. This is an inequality of order 2: cox* < bx + d, where
x = |wyllaa, b= C1{||UN — e + 1A — 77h||7%’g4}: d=Clln, — )\h||,%,s4||u — uylhe-

For any € > 0, we have

dfc

1 2
1
5 {E”M —unllae +€llm _)\h”%,&t} .

Therefore, we have the bound

b+ /b +4cyd

‘x S - ~
2C0

or, equivalently,
1
lwyllae < Coylloy — ullae + 1A — 77h||_%,54 + ZHUN —ullaqt + CaellAy — 77h||_%,54, (23)

with C, > % max{Cy, \/coC,/2}. Next, using Eq. (18) with u, = A, — n, we have that there
exists a nonzero vy € VIN such that

1S5, Gon — flh)vzv‘
1 = mll_g 5, < 5 =

B lvxllze

(24)
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Also, it follows from (22) that

A — Moy + [ (A =)oy
Sy Sy

/ (A =)oy
S4

= cllu —uylzelivwlze +vId —mll_3 g, loxll2e.

(Ap — np) oy
Sy

<|B(u —uy,vy)| +

Hence, (24) becomes
1An = mall 3 5, = Callle —unllag + 12 —mill 3 ,}
< GCifllu — vylloe + lloy —unlloe + A — ’7h||_%,54},
with C3 > maX{c y}. Since ||[vy — uy|l2.o = [lwy 2.0, using (23) leads to
12n = mall 3 5, = G+ C/O)u —vylae + C(Co+ DIA —mall 3 5, + CCaellh —mall_3 -
Choosing € = 1/(2C;5C,) we get, for some constant C4 > max{C,, C5},
An — Tlh||,%,s4 < Ca{llu — vyl + I — 77h||,%,g4}:
and using the triangle inequality we have
12n =2l 3 5, = 120 = mall 3 5, + e = A3 5, < Clllu—vlag+ 11 — nhll_%,s4}.
Similarly, using the above inequality and (23), we finally get

lu —uyll < llu —vnlloe + lvy — unlle
< lu —vyllae + llwnll2e

< C{lu—vylla+ I = mll_3 5}
which gives the desired result. ]

Before verifying that (17)—(19) hold for our problem, consider the following: For any

Z (1) + ZIB/ @

we can always write
W= wy +7ry, (25)

where

wN_Zaj (l)+2ﬂv VN, ry = i ov (l)+ Z Bjv (2), (26)

Jj=N+1 j=N+1

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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with o; and B; the real singular coefficients. We will assume that there exists a constant o € (0, 1)
such that for £ =0,1,2

a“(ry)
art

< CN'%". Q7

Note that when r < 1, assumption (27) can be replaced by the assumption that the singular
coefficients are bounded, since then, due to the fact that f1(9, ;) and f,(0, p;) are biharmonic,
we have

i | o | RN+ FPN+1F1 N
lryl < Z log |t + Z 1B;Ireith < C + G < Ca”,

) ) 1—r 1—r
j=N+1 j=N+1

withr < @ < 1 and C € R* independent of & and N. Similarly,

ar ind _ ad .
TS Y el + D Y 1B+ D
d Jj=N+1 j=N+1
= 3 leglus+ ifrs“-fds £ B+ D i/ré”fdé
) J J d}" 0 . Jj j dr A
Jj=N+1 j=N+1
d = o ad ro
= ( Z Iajl(uﬂrl){/ gu.,dg} + Z |ﬁ_,-|(pj+1){/ gmds})
r Jj=N+1 0 j=N+1 0
d N j+1 S i+1
= - 3 dalrtt 4 Y 1Byl
g j=N+1 Jj=N+1
c d (rtN+tl c d [ ren+il
<C,— “
- Idr(l—r>+ 2dr<l—r)
< CNa".

(The case £ = 2 follows in a similar fashion.)

In the case r > 1 one may partition the domain €2 into subdomains in which separate approxi-
mations may be used, including one (near the singular point O) that is valid for » < 1. The solution
over the entire domain can then be composed by combining solutions from each subdomain and
properly dealing with their interactions across the interfaces separating them (see, e.g., [20] where
this idea was applied to a Laplacian problem).

We are now ready to verify that (17)—(19) hold for the problem (16). We have (see, e.g. [21]),

B(v,v) = // Vv = // V2] > C0||v||;Q YveV
Q Q

and 3 ¢ € R" such that
|B(u,v)| < cllullzellviee Yu,v eV,
therefore (17) is verified.

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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To verify (18) we consider the following auxiliary problem:

Viw =0, in Q, (28)
with the boundary conditions
ow
w =0, — =0 on S
on
w =0, Viw =0 on S,
3(V?w) . , (29)
=0, V'w=0 on S3
on
(V2
Vzw = 0, ( w) = Un on S4
on

where p;, € V3" in (29). By using Green’s formula we obtain

ol = |, w252 = | [Lwtos [[ 7o)
wy,| = w = wViw + Vw - V(V-w)
Sy Sy on Q Q
= —/f Vsz2w+/ Vzwa—w
Q Q on
= // Vzwvzw‘ =f/ (Vzw)2
Q Q

Collwll3q- (30)

v

Note that (see, e.g., [22])

2

(Vw)
lenll? s o = H < Clwl3g. C € R, (31)
254 on 3
7294
so, by (30),
/ mnw| = Bllwllzellmall 3 s, (32)
S4

with B € R" independent of w and /. Now, let wy € V" be such that w = wy + ry, as given by

(25)—-(26). We have
/MhW—f MntNn /th‘— / KN
Sy Sy Sy Sy

/ HpWN

Sa

/ Knt'N
S4

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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Now, combining (31)—-(33) we obtain

/ MpWN
Sq

Also, from the reverse triangle inequality,

2 Blwlzallwall 3 s, = Cilltall 3 5, I ll2.0- (35)

lwlloe = lwy +rallag = lwyllze — lIryll2e.

and by (34), we get

/ HrWy

Sa

/ MpWy
S4

Since by assumption (27), ry converges to zero exponentially (or, equivalently wy converges to
w exponentially), we have

> B(lwnlloe — ||rN||2,Q)||,uh||_%,s4 - C1||/«Lh||_%,s4||”1v||2,9- (36)

Therefore,

z Blwwnllzellimall 3 5, = (Co+ B)llall 3 5, Irnll2o- (37

. rnll2.Q
o Irllea o

N=oo lwy 2.0 B

llrnll2,Q
lwyliz,

which means that for any ¢ > 0 there exists N* such that < & whenever N > N*. Hence,

for N sufficiently large we may write

lrxllze - B
lwyllae = 2(Ci+ B)’

Combining (36) with (37) yields

/ HrWN
S4

By replacing g by g%, inequality (18) is obtained. Finally, condition (19) follows from (see, e.g.,
[22])

B
>
= Sl _g s, v s

/ Mo = ¥R g, lowllaa ¥ oy € VY. with y € R,
S4

The above analysis leads to the following theorem.

Theorem 2. Let (u,)) and (uy,Ay) be the solutions to (11) and (16), respectively. If . € H*(S,),
for some k > 1, then there exists a positive constant C, independent of N and h, such that as
N — oo

lu —unllze+ 112 — )\h”_%’& < C{N’a™ + n**"},
with a € (0, 1).

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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Proof. From Theorem 1 we have

lu —unlze + 1A =2l 55, = C{ inf [lu—ovylae+ inf A — nhll,%,54}, (38)

vy eV] nhEVa

with C € R* independent of N and 4. Note that by (25) and (26)

inf |lu —vyllae < llu —wylae = lIryl2e.
vy EV]

Using assumption (27) we get

inf lu — vyl < CN?a", (39)

vy eV

where the constant C > 0 is independent of N and «. Next let A; be the k™-order interpolant of
A. Then, since A € H*(S,) and A, is the best approximation, we have

1A = 2l 35, = 12 = Aallos, < 1A = Arllos, < A A Ns, < CRE,
which, along with (38)—(39) gives the desired result. [

The approximation of the singular coefficients is given by the following.

Corollary 1.  Let

w="y a0, 1)+ Y Bt 6, p)) (40)
j=1 j=1
and
N N
uy =Yl r T 10,0 + Y B (6, p)) (41)
j=1 j=1

satisfy (11) and (16), respectively, with «;, B; and ozj.\' , ﬁj’.\' denoting the true and approximate
singular coefficients. Then, there exists a positive constant C € R*, independent of N and o, but
depending on j, such that as N — oo

(e — )|+ (B — BY)| < CN%™M. (42)

Proof. We begin by noting the following (which can be obtained by elementary calculations):
2
| 50 6. = 25, 43)
0

2
/ [1O, 1)) (0, p)d0 =0Vj,k=1,2,... (44)
0

4k — 4k +5

2
0,pi 0, pp)d0 =21 ———«—§;
/0 f2(0, 0)) f2(0, o) n4k2+4k+1 ik

(45)

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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where f1, f, are given by (5)-(6) and §,, is the Kronecker delta. Now, in (40) take a fixed
r =ro < 1, multiply by f;(0, ;) and integrate from 6 = 0 to & = 2m. Using (43) and (44) we
find that

2
/ u(ro,0) f1(0, uy)do = 27rr8”‘+105k. (46)
0

Next, multiply (40) by f>(6, px) and integrate from 8 = 0 to 6 = 2x, to get with the aid of (44)
and (45),

st 42 — 4k 45

2
,0 0, pp)d0 =2 — 6. 47
/0 W(0,0) 6. p0d0 = 2 L 7)

Similarly, one obtains expressions like (46), (47) corresponding to the approximate coefficients
al, B, i.e. Eqs. (46), (47) with u replaced by uy and oy, B replaced by af, B, respectively.
Therefore, we have

1 m A
N
o — o | < T /0 lu —un|lf11d0 < Cillu — uyllo.qs
0

4k + 4k + 1

Bi— B8] =
i 2 rf (42 — 4k +5)

2
f = un]| fo1d8 < Cllu — unllos
0

where the Cauchy-Schwartz inequality and the smoothness of fi, f, were used. The positive
constants Cy, C; depend only on k (and ry).
The result then follows from (39) and the fact that |4 — uylloe < |4 — uy|20- ]

Note that the above corollary establishes the exponential convergence of the SFBIM, in the
case of the biharmonic problem shown in Fig. 1; the term N? in (42) can be absorbed in the expo-
nentially decaying term "V, This result is analogous to the one obtained in [14] for 2D Laplacian
problems.

IV. IMPLEMENTATION

We now give a description of the implementation of the method, as mentioned in Remark 1.
Recall the discrete problem given by (16), which may be rewritten in mixed form as follows: Find
(un,Ap) € [V x VI C [V x V4] such that

// ViuyVuy +/ oA, =0V oy e VY, (48)
Q Sa
/ Hply =/ g vy € Vy'. (49)
54 S4
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We may reduce the double integral in (48) using Green’s second identity and the boundary
conditions in (3) and (7), as follows:

d (V2
/[ VZUNVZMN = [ VzvNﬂ - MN—( UN)
Q Fle) on on

0 (V2
:/ (wwlﬂ—wl—ﬂﬁ. (50)

S3USy 31’1 an

Hence, the problem (48)—(49) becomes: Find (uy, 1) € [V]Y x V] C [V, x V,] such that
0 (V2
/ Cﬂwiﬂ~mN1—ﬂQ>+/vmﬁ=ovWeVM 51)
S3USy 8n al’l Sy
/ Hnly =/ g vy € Vy' (52)
Sq Sq

Obviously, if (uy, 1) € [V]¥ x VJ'] C [Vi x V] solves (48)—(49) (or (16)), then it also solves
(51)—(52). Now suppose that (uy,A,) € [VIN X Vzh] C [Vi x V;] solves (51)—(52). We have from

(50) that
d A(V?
/ <V2‘UN% — Uy ( UN)) // VZuyVuy,
53US4

hence, adding Eqs. (51)—(52) and using the above fact, we find that

// VZUNVZMN""/ kath/ ity =/ g
Q Sy Sy Sy

which shows that (uy, A;,) solves (16). Equations (51)—(52) are used in the implementation, since
they are posed only on the boundary of the domain away from the singular point. This reduces
the dimension of the problem by one and leads to significant computational savings.

Now, to obtain a linear system of equations corresponding to (51)—(52), we approximate u and
A by means of

ZaN ) + ZIBN (2) (53)

and

M
=) v € V3'(Sa), (54)

k=1

with ¥, BV and y; the unknowns in the system, and V¥ = span{v"}¥, U span{v®}¥,,
Vh = spczn{wk}k:1 Upon inserting (53) and (54) into (51)—(52),a 2N + M) x (2N + M) linear

system of the following composite form is obtained:

—
Ki Ko A[E] |0
Ky Ky A Bl=10/], (55)
Al A 0V G
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y=1 wuw=0,0u/on=0 0 u=0Vu=10
5 / S
u=gly) r % =10
oy — | > il %) g
Q
Si
r=—3 u=—1,Vu=0 T =3

FIG. 2. Stick-slip problem; g(y) = %y(3 -y —1.

%
where @ = [o),...,aN1", B =[BY,....801". 7 =Ir1,....yul", and
(1 ‘(1) (08}
Kl = vahlh = (v Y i i=1,...,N,
[ 11],_7 /s3us4 I Ton i an( ,) J

20 o o an |
[Kilij = » VA —— — v —(V?") . i j=1,...,N,
304

on on
v 9
[Kali; :/ Vi — — P — (vt i, i =1,...,N,
S3USy 811 31’1
v

d
[Knli,; = f Vi v — (V) i j=1,...,N,
S3USy on on ’

[Allk,,zf Yo k=1,....M, j=1,....N,
S4

(Aodij= [ viv? k=1,...,M, j=1,....N,
S4

—
[G]g=f c v b=1... .M.
S4

It is easily shown that the coefficient matrix in (55) is nonsingular provided 2N > M. Hence,
N should be chosen larger than M /2, but not too large since for excessively large values of N
the linear system (55) becomes ill-conditioned and the results obtained are unreliable. As a final
remark, we should point out that all integrals involved in the determination of the coefficient
matrix (and right hand side) in (55) are along the parts of the domain boundaries that do not con-
tain the singularity. These are one dimensional and can be approximated by standard techniques,
such as Gaussian quadrature.

V. NUMERICAL RESULTS

In this section, we illustrate the main theoretical findings through one numerical experiment,
as described below. As the method is proposed for the efficient approximation of the singular
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1 T T T T T

—8—M=38 N=45
—— =43 N=45

FIG. 3. Approximation of Lagrange multipler function along S4. [Color figure can be viewed in the online
issue, which is available at wileyonlinelibrary.com.]

Errar in coefficient o
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—|1||.'|u_|
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100 x | o

107"° 1 L L 1 1L 1 I

28 30 32 34 36 38 40 42 44

FIG. 4. Error in coefficient otj.v . [Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]
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Error in coefficient [

10‘ T T T T T T T T

Sy

!'N
I

100 x| |

FIG. 5. Error in coefficient ,BIN . [Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]

cofficients, the numerical results shown below correspond to how fast (and accurately) these
coefficients are approximated. The interested reader is referred to [6—8] for additional numerical
results obtained with the SFBIM for biharmonic problems arising in Stokes flow and in fracture
mechanics.

We are considering the boundary value problem depicted graphically in Fig. 2, which is the
classical stick-slip flow problem from fluid mechanics [6]. We note that the boundary of the
domain consists of five parts, with S, and S5 being the portions of €2 where Lagrange multipliers
will be applied, since Dirichlet boundary conditions are prescribed there.

We implemented our method, as explained in Section IV, using piecewise quadratic polyno-
mials for the approximation of the Lagrange multiplier functions, on a subdivision of S, and S;
characterized by a meshwidth % — for simplicity a uniform subdivision of the same meshwidth i
was used for both portions of the boundary. All integrals involved were approximated by a 15-
point Gaussian quadrature on each element. Systematic runs were performed to find the “optimal”
combination of N and & (or M), which ultimately was chosen as the one that gave the “smoothest”
approximation to

_ aV2u
T on

)\.4 . .
S4

This is shown in Fig. 3 which shows that for M = 39 and N = 45 the approximation to the
Lagrange multipler function on S, is free of oscillations. Using this pair of values, the constant o
in (42) is calculated by “balancing” the error estimate of Theorem 2, i.e.,

N2 ~ pF,
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We find that « =~ 0.87, from which subsequent “optimal” pairs of N and M may be found.

Figures 4 and 5 show the (percentage relative) error in the approximation of the first five
coefficients o, 8;, j = 1,...,5, in a semilogarithmic scale, as N is increased. The exponential
convergence is clearly visible, as the curves are (essentially) straight lines, even for small values
of N. We should mention that for «; there is an exact answer [23], while for the rest we used a
reference value for the computations.

The authors thank the anonymous referee whose comments helped improve the article in its
present form.
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