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ABSTRACT
We consider various viscometric flows of a Newtonian fluid, i.e., plane, annular, and circular Couette flows and planar and axisymmetric
Poiseuille flows, in the presence of wall slip that follows a logarithmic slip law. We derive analytical solutions in terms of the Lambert W
function. The effects of logarithmic slip on these flows are discussed, and comparisons of the results with their Navier-slip counterparts are
made.
Published under license by AIP Publishing. https://doi.org/10.1063/5.0009968., s

I. INTRODUCTION
The no-slip condition in fluid mechanics requires that the fluid

particles adjacent to a wall acquire the velocity of the wall. Hence,
if the wall is fixed, the velocity of these particles is zero. The no-slip
boundary condition has been widely used in modeling and solving
fluid mechanics problems. However, the possibility of slip has also
been noted since the early stages of development of fluid mechan-
ics.1 In the past few decades, experimental as well theoretical studies
have demonstrated that this condition is violated in many important
industrial processes not only with complex non-Newtonian fluids1–4

but also with Newtonian liquids.5 In his review, Hatzikiriakos1 pro-
vides references of experimental observations of wall slip exhibited
by several classes of complex fluids, such as suspensions, dispersions,
gels, and foams, and discusses various mechanisms for slip. Wall slip
has also been recognized as a major factor affecting the stability of
certain polymer processes, such as extrusion1,2 as well as the accu-
racy of rheometric experiments, e.g., with rotational rheometers. Slip
is also of great importance in microfluidics and nanofluidics.6,7

In general, the relative velocity of the fluid with respect to that
of the adjacent wall, referred to as the slip velocity, u∗w, depends on

the shear and normal wall stresses, the pressure, the temperature, the
properties of the fluid, and the properties of the wall/fluid interface.8

Navier9 proposed the following slip law:

u∗w =
τ∗w
β∗

, (1)

where τ∗w is the wall shear stress and β∗ is the slip parameter,
which encompasses the effects of all the other aforementioned mate-
rial parameters. Note that throughout this paper, dimensional and
dimensionless quantities are denoted by starred and starless sym-
bols, respectively. Obviously, the no-slip boundary condition is a
limiting case of Eq. (1) when β∗ → ∞. The slip or extrapolation
length, l∗, defined as the distance from the wall at which a linear
velocity profile is extrapolated to zero, is related to the slip parame-
ter β∗ by means of l∗ ≡ η∗/β∗, where η∗ is the (local) viscosity of the
fluid. Obviously, the no-slip boundary condition corresponds to the
zero extrapolation length.

A number of other more involved slip equations have been pro-
posed in the literature. The immediate generalizations of Eq. (1) are
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the power-law or non-linear Navier slip law10

u∗w =
τ∗sw
β∗

, (2)

where s is the exponent (s = 1 in Navier slip), and the two-branch
slip equation

u∗w =
⎧⎪⎪⎨⎪⎪⎩

0 τ∗w ≤ τ∗c
(τ∗w−τ

∗

c )
s

β∗ τ∗w > τ∗c ,
(3)

where τ∗c is slip or sliding or threshold yield stress.11,12 The exponent
s depends on the properties of the lubricated films at the mate-
rial/wall interface. In the case of suspensions in solvents following
the power-law constitutive equation, s is equal to the correspond-
ing power-law exponent. Hence, with a Newtonian solvent, s = 1,
and Navier slip is recovered from Eq. (2) (see Ref. 12 and references
therein). The slip yield stress is the critical wall shear stress above
which slip is observed with certain complex and even Newtonian flu-
ids (Ref. 13 and references therein). The Navier slip law is recovered
by setting s = 1 and τ∗c = 0.

Hatzikiriakos14 proposed a slip equation with the slip yield
stress extending Eyring’s theory of liquid viscosity to polymer
molecules, which at constant temperature can be written as follows:

u∗w =
⎧⎪⎪⎨⎪⎪⎩

0 τ∗w ≤ τ∗c
k∗1 sinh[k∗2 (τ∗w − τ∗c )] τ∗w > τ∗c ,

(4)

where k∗1 and k∗2 are positive slip parameters.
The following logarithmic law has also been employed:15

u∗w = k∗1 ln(1 + k∗2 τ
∗

w). (5)

The latter slip law is referred to as the asymptotic slip law by Ferrás
et al.16 who indicated that the slip parameters k∗1 and k∗2 allow the
adjustment of the amount of slip and of the shape of the curve
τ∗w − u∗w to experimental data. It should be noted that when k∗2 τ

∗

w
≪ 1, Eq. (5) is simplified to

u∗w ≃ k∗1 k∗2 τ∗w , (6)

which is equivalent to the Navier slip law (1) with β∗ = 1/(k∗1 k∗2 ).
This is also illustrated in Fig. 1, where the slip velocity is scaled by k∗1
and the wall shear stress is scaled by k∗−1

2 .
The analysis of rheological data is not straightforward in the

presence of wall slip, since the latter should be corrected for slip
effects.1,3 As pointed out by Hatzikiriakos,1 wall slip is necessary in
explaining the mismatch of rheological data obtained using different
rheometers. Therefore, investigating the effects of slip is important,
even in simple rheometric flows, such as the simple shear and cir-
cular Couette flows. Analytical solutions of rheometric flows in the
presence of wall slip obeying the Navier slip law in Eq. (1) or its
power-law and slip-yield-stress generalizations in Eqs. (2) and (3),
respectively, have been reported by various researchers.

Ferrás et al.16 derived analytical solutions for Newtonian and
inelastic non-Newtonian flows with wall slip using the Navier slip,
the power-law, and Hatzikiriakos’s slip laws, i.e., Eqs. (1), (2),
and (4). More specifically, they solved the plane Couette (or plane
shear), the plane Poiseuille, and the plane Couette–Poiseuille flows
of Newtonian, power-law, Bingham, Herschel–Bulkley, Sisko, and

FIG. 1. Comparison of the logarithmic and Navier slip laws when β∗ = 1/(k∗1 k∗2 ).
The slip velocity is scaled by k∗1 , and the wall shear stress is scaled by k∗−1

2 .

Robertson–Stiff constitutive models. The flows considered are basic
rheometric flows. In the case of the plane Couette flow, Ferrás
et al.16 considered the possibility of having different slip laws at the
two walls or slip only along the fixed plate.

Analytical solutions with non-zero slip yield stress [i.e., using
Eq. (3)] have been reported by Kaoullas and Georgiou17 for Newto-
nian Poiseuille flows in planar, cylindrical, annular, and rectangular
tubes. The different flow regimes defined by the critical pressure
gradients required for slip to occur at a wall have also been dis-
cussed.17 Philippou et al.18 solved both the plane and circular Cou-
ette flows of a Newtonian fluid using the linear version of Eq. (3)
(s = 1) and reported both the steady-state and the cessation solu-
tions. Damianou et al.13 employed the same slip equation to obtain
solutions of the circular Couette flow of Bingham-plastic materials
and determine the critical angular velocities defining the different
flow regimes that arise depending on the relative values of the yield
stress and the slip yield stress.

The objective of the present work is to derive analytical solu-
tions of Newtonian rheometric flows in the presence of slip obeying
the logarithmic slip Eq. (5). To our knowledge, such solutions have
not been reported in spite of the plethora of solutions in the liter-
ature. As discussed below, the derivation of analytical solutions in
the presence of logarithmic slip can be achieved by means of the
Lambert W function.19

The rest of this paper is organized as follows: The definition and
the basic properties of the W function are briefly presented in Sec. II,
and then, the solutions of certain algebraic equations relevant to this
work are derived. The literature of applications of the W function in
fluid mechanics is also reviewed. In Sec. III, the plane Couette flow of
a Newtonian fluid is solved employing different slip equations at the
two walls or allowing the possibility of logarithmic slip only along
one of the plates. The latter scenario is relevant in experiments where
slip at one wall may be suppressed by using different wall materi-
als and roughening the wall20 or when slip is enhanced by means
of wax coatings.21 It has also been used in analytical and numeri-
cal studies.16,22,23 In Sec. IV, the results for plane and axisymmetric
Poiseuille flows are briefly summarized. The Lambert W function is
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not encountered when solving for the velocity and the volumetric
flow rate. However, it appears if one solves for the pressure gradient
in terms of the volumetric flow rate. In Sec. V, we solve the annu-
lar Couette flow, i.e., the flow in an infinitely long annulus driven
by the steady axial motion of the inner cylinder. The general case
of logarithmic slip along both the cylinders is not amenable to an
analytical solution. Thus, we considered the cases where logarith-
mic slip occurs along one of the cylinders and Navier slip occurs
along the other. In Sec. VI, the circular Couette flow is investigated
assuming again that logarithmic slip occurs along only one of the
two cylinders. Finally, some concluding remarks are provided in
Sec. VII.

II. LAMBERT W FUNCTION
The Lambert function, denoted by W(x), is defined as the

multivalued inverse of

y = xex⇔ x =W(x)eW(x). (7)

It turns out that W(x) has two branches in the real plane with a
branching point at (−1/e, −1). The principal branch, denoted by
W0(x), is the upper branch in the interval [−1/e, ∞), and the sec-
ondary branch, denoted by W−1(x), is the lower branch in the inter-
val [−1/e, 0). The principal branch maps the positive real axis onto
itself, and W0 is commonly abbreviated by W. The Lambert function
has been discussed in detail by Corless et al.19 who also provided
application examples in various fields in applied sciences and in
engineering.

The Lambert W function has been employed by different
researchers in deriving analytical solutions in both Newtonian and
non-Newtonian fluid mechanics. Keady24 and later More25 derived
an analytical solution of the Colebrook and White equation for
the Fanning friction factor in the turbulent flow regime. The lat-
ter author also presented a solution in terms of W for the pres-
sure drop in the case of the steady, unidirectional ideal gas flow in
a straight pipe. Jaishankar and McKinley26 employed W to derive
analytical solutions to the extended Navier–Stokes equations for
the pressure and velocity profiles in gas flow through a rectan-
gular micro-channel. Massalha and Digilov27 described a simple,
educational capillary viscometer for Newtonian fluids without the
known density based on the variation of air pressure and analyt-
ically derived the time-dependent pressure in terms of the Lam-
bert function. Pudasaini28 reported an analytical solution for steady
state debris flow fronts, where the force balance is maintained
between macroviscous forces, gravity, and the hydraulic pressure
gradient.

You et al.29 reported approximate analytical solutions of the
planar and axisymmetric Poiseuille flows of a Bingham plastic
obtained using the Papanastasiou regularization model, which is
inverted using the Lambert W function. They also noted that the
circular Couette flow of the regularized Bingham model requires
a numerical solution, in general. However, the Lambert function
can still be applied to get analytical expressions for the radius of
the yielded region in annular and circular Couette flows of ideal
Bingham plastics.30,31

Below, we derive the solutions of two algebraic equations,
which will be utilized to obtain analytical solutions in subsequent

Secs. III–VI. First, we consider the equation

ln y + Ay = B, A ≠ 0, (8)

where A and B are constants, from which we get

eln y+Ay = eB ⇒ AyeAy = AeB ⇒ Ay =W(AeB) ⇒ y = 1
A
W(AeB).

(9)

Consider now the four-parameter equation

Ay + B = ln(Cy + D), A,C ≠ 0. (10)

This can be rearranged in the form of Eq. (8),

A(Cy + D)
C

− AD
C

+ B = ln(Cy + D) ⇒ ln(Cy + D) − A
C
(Cy + D)

= B − AD
C

.

Using Eq. (9) and solving for y one gets

y = − 1
A
W(−A

C
eB−

AD
C ) − D

C
. (11)

III. PLANE COUETTE FLOW
We consider the steady flow of a Newtonian fluid contained

between infinite, horizontal parallel plates, assuming that the upper
plate moves horizontally at a speed V∗ and the lower one is fixed,
as illustrated in Fig. 2. Working in Cartesian coordinates (see Fig. 2)
and integrating the x-momentum equation for this unidirectional
flow, one finds that the velocity and the shear stress are given by
Papanastasiou et al.,32

u∗x (y∗) = c∗1 y∗ + c∗2 and τ∗yx = η∗c∗1 , (12)

where c∗1 and c∗2 are integration constants determined from the
boundary conditions. In the general case where slip occurs at both
plates, the boundary conditions read

u∗x (0) = u∗w1 and u∗x (H∗) = V∗ − u∗w2 , (13)

FIG. 2. Geometry and boundary conditions of the plane Couette flow with slip along
both walls.
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where u∗w1 and u∗w2 are the slip velocities at the lower and upper
plate, respectively, and H∗ is the gap width. Calculating the integra-
tion constants, one finds that

u∗x (y∗) = (V∗ − u∗w1 − u∗w2)
y∗

H∗
+ u∗w1 (14)

and

τ∗w1 = τ∗w2 = ∣τ∗yx∣ = (V∗ − u∗w1 − u∗w2)
η∗

H∗
. (15)

Equations (14) and (15) are general in the sense that the slip equa-
tions at the two walls have not been specified yet. The special cases
for no-slip at either wall are recovered by simply zeroing the cor-
responding slip velocity. We now allow the possibility of different
logarithmic slip equations at the two walls so that

u∗w1 = k∗1 ln(1 + k∗2 τ
∗

w1) (16)

and

u∗w2 = k′∗1 ln(1 + k∗2 τ
∗

w2), (17)

where k∗1 and k′∗1 are the first slip coefficients at the lower and upper
walls, respectively. Note that we have chosen the second slip coef-
ficient k∗2 to be the same at both walls for otherwise the flow prob-
lem is not amenable to the analytical solution. Given that the shear
stress is constant and thus τ∗w1 = τ∗w2, combining Eqs. (15)–(17)
gives

ln(1 + k∗2 τ
∗

w1) = −
H∗

η∗(k∗1 + k′∗1 )
τ∗w1 +

V∗

k∗1 + k′∗1
. (18)

Equation (18) is of the same form as Eq. (10), and by means of the
solution (11), we get

τ∗w1 =
1
k∗2
[ 1
B
W(BeV+B) − 1], (19)

where

B ≡ H∗

η∗(k∗1 + k′∗1 )k∗2
(20)

is the “logarithmic” slip number and

V ≡ V∗

k∗1 + k′∗1
. (21)

It should be noted that in the case of no slip, the logarithmic slip
number tends to infinity. In the following, we scale velocities by k∗1
and y∗ by H∗. Taking into account Eq. (18), the dimensionless slip
velocities are given by

uw1 = V + B −W(BeV+B), uw2 = γuw1, (22)

where

γ ≡ k′∗1
k∗1

. (23)

[Since uw1 < V, it is deduced that W(BeV+B) > B.] Substituting into
Eq. (14) and rearranging, we get the dimensionless velocity profile,

ux(y) = (1 + γ)[W(BeV+B) − B]y + V + B −W(BeV+B). (24)

In order to investigate the effect of logarithmic slip on the flow,
we consider the case where the same slip law applies to both walls,
k′∗1 = k∗1 and thus γ = 1. The dimensionless slip velocities in Eq. (22)
are then equal, and the dimensionless velocity profile is given by

ux(y) = 2[W(BeV+B) − B]y + V + B −W(BeV+B). (25)

The dimensionless slip velocity, uw, is plotted vs the dimensionless
plate velocity, V = V∗/(2k∗1 ), in Fig. 3(a) for various values of the
slip number B. As expected, slip is enhanced as the latter number is
reduced (when V is fixed, reducing B is equivalent to increasing k∗2 ).
Scaling the slip velocity byV∗ (instead of k∗1 ) leads to Fig. 3(b), where
it can be observed that the effect of slip becomes less important as
the plate speed is increased. Note that as B → 0, the velocity profile
tends to become uniform and u∗x /V∗ → 1/2. This is also illustrated
in Fig. 4, where dimensionless velocity profiles (u∗x scaled by V∗) are
plotted for B = 10 (weak slip), B = 1 (moderate slip), and B = 0.1
(strong slip) and various values of V.

FIG. 3. (a) Dimensionless slip velocity as a function of the dimensionless speed of
the moving plate (both scaled by k∗1 ) in the simple shear flow for various values of
the slip number B. (b) Same plot but now the slip velocity is scaled by the velocity
V∗ of the upper plate. The same logarithmic law is applied along the two walls.
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FIG. 4. Dimensionless velocity profiles for various values of the dimensionless
speed of the upper plate in the simple shear flow: (a) B = 10, (b) B = 1, and (c)
B = 0.1. The same logarithmic law is applied along the two walls.

IV. POISEUILLE FLOWS
A. Plane Poiseuille flow

Consider the plane Poiseuille flow in the presence of wall slip
under the assumption that the same slip law applies at both walls so
that the flow remains symmetric. It is easily shown that the velocity
and the shear stress are given by32

u∗x = u∗w +
G∗

2η∗
(H∗2 − y∗2), τ∗yx = −G∗y∗, (26)

where G∗ = (−dp∗/dx∗) is the pressure gradient and H∗ is the chan-
nel half-width. The wall shear stress is τ∗w = ∣τ∗yx∣y∗=H∗ = G

∗H∗, and

the volumetric flow rate Q∗ ≡ 2w∗ ∫ H∗

0 u∗x dy∗, where w∗ is the width
of the channel in the transverse direction, is

Q∗ = 2w∗H∗(u∗w +
H∗2G∗

3η∗
). (27)

The above expressions hold for any slip equation and for the no-slip
case, where u∗w = 0. In the case of logarithmic slip,

u∗w = k∗1 ln(1 + k∗2 H
∗G∗). (28)

Substituting Eq. (28) into Eq. (27) gives

Q∗

2w∗H∗
= k∗1 ln(1 + k∗2 H

∗G∗) +
H∗2G∗

3η∗
. (29)

This equation is of the form (10), and therefore, one can solve for the
pressure gradient in terms of the desired volumetric flow rate,

G∗ = 3η∗k∗1
H∗2 W( H∗

3η∗k∗1 k
∗

2
e

Q∗

2w∗k∗1 H∗
+ H∗

3η∗k∗1 k∗2 ) − 1
k∗2 H∗

. (30)

The dimensionless form of the above equation when the pressure
gradient is scaled by 3η∗k∗1 /H∗2 is

G =W(BeV+B) − B, (31)

where V ≡ Q∗/(2w∗k∗1 H∗) is the dimensionless mean velocity in
the channel and B ≡ H∗/(3η∗k∗1 k∗2 ) is the slip number.

B. Axisymmetric Poiseuille flow
Similarly, in axisymmetric Poiseuille flow with wall slip, the

velocity and the shear stress are given by

u∗z = u∗w +
G∗

4η∗
(R∗2 − r∗2), τ∗zr = −

1
2
G∗r∗, (32)

where G∗ = (−dp∗/dz∗) is the pressure gradient and R∗ is the
radius of the tube. The wall shear stress is τ∗w = G∗R∗/2, while the
volumetric flow rate is given by

Q∗ = πR∗2(u∗w +
R∗2G∗

8η∗
), (33)

and thus, under the assumption of logarithmic slip,

Q∗

πR∗2 = k
∗

1 ln(1 + k∗2 H
∗G∗/2) +

R∗2G∗

8η∗
. (34)
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Solving for G∗ gives

G∗ = 8η∗k∗1
R∗2 W( R∗

4η∗k∗1 k
∗

2
e

Q∗

πR∗2k∗1
+ R∗

4η∗k∗1 k∗2 ) − 2
k∗2 R∗

. (35)

When scaling the pressure gradient by 8η∗k∗1 /R∗2, we find that the
dimensionless pressure gradient is given by Eq. (31), where now
V ≡ Q∗/(πR∗2k∗1 ) and B ≡ R∗/(4η∗k∗1 k∗2 ).

V. ANNULAR COUETTE FLOW
In this section, we consider the annular Couette flow, i.e., the

flow between two infinitely long coaxial cylinders of radii R∗ and
κR∗, where 0 < κ < 1, which is driven by the axial motion of the
inner cylinder, as illustrated in Fig. 5. It is easily shown that for a
Newtonian fluid, the velocity and the shear stress are given by32

u∗z = c∗1 ln r∗ + c∗2 , τ∗zr = −
ηc∗1
r∗

, (36)

where c∗1 and c∗2 are integration constants to be determined by apply-
ing the boundary conditions. It is easily deduced that τ∗w2 = κτ∗w1,
i.e., τ∗w2 < τ∗w1. Hence, when the same slip law applies at both cylin-
ders, the material is expected to slip more at the inner than the outer
cylinder.

In the general case of wall slip along both cylinders, the bound-
ary conditions read:

u∗z (κR∗) = V∗ − u∗w1 and u∗z (R∗) = u∗w2, (37)

where u∗w1 and u∗w2 are the slip velocities at the inner and outer
cylinders, respectively. Applying the boundary conditions and elim-
inating the integration constants yield

u∗z =
V∗ − u∗w1 − u∗w2

ln(1/κ) ln
R∗

r∗
+ u∗w2 (38)

and

τ∗zr = η∗
du∗z
dr∗
= −

η∗(V∗ − u∗w1 − u∗w2)
ln(1/κ)r∗ . (39)

Therefore, for the shear stresses at the inner and outer cylinders, we
get

τ∗w1 =
η∗(V∗ − u∗w1 − u∗w2)

ln(1/κ)κR∗ , τ∗w2 = κτ∗w1. (40)

FIG. 5. Geometry and boundary conditions of the annular Couette flow with slip
along both walls.

In general, applying the slip equations governing slip at the two
cylinders and making use of Eq. (40) lead to an algebraic system for
the two slip velocities u∗w1 and u∗w2, which can be solved using stan-
dard numerical methods. In the case of logarithmic laws holding at
the two walls, i.e., when

u∗w1 = k∗1 ln(1 + k∗2 τ
∗

w1), u∗w2 = k′∗1 ln(1 + k′∗2 τ∗w2), (41)

where k′∗1 and k′∗2 are the slip coefficients at the outer cylinder,
substituting from Eq. (40) yields the following nonlinear system:

u∗w1 = k∗1 ln
⎡⎢⎢⎢⎣

1 +
k∗2 η

∗(V∗ − u∗w1 − u∗w2)
ln(1/κ)κR∗

⎤⎥⎥⎥⎦
(42)

and

u∗w2 = k′∗1 ln
⎡⎢⎢⎢⎣

1 +
k′∗2 η∗(V∗ − u∗w1 − u∗w2)

ln(1/κ)R∗
⎤⎥⎥⎥⎦

. (43)

With the exception of the very special case where k∗2 = κk′∗2 , the
above system can only be solved numerically.

Nevertheless, analytical solutions can be obtained assuming
that logarithmic slip occurs along one cylinder and no- or even
Navier slip occurs along the other. In what follows, we assume that
Navier slip takes along the outer wall such that

u∗w2 =
τ∗w2

β∗2
. (44)

Combining Eqs. (40) and (44), we find that

u∗w2 =
B2(V∗ − u∗w1)

1 + B2
, (45)

where B2 is the “outer” Navier slip number defined by

B2 ≡
η∗

ln(1/κ)β∗2 R∗
. (46)

It should be pointed out that B2 vanishes in the case of no-slip, unlike
the logarithmic-slip number in Eq. (20), which goes to infinity.
Noting that

V∗ − u∗w1 − u∗w2 =
V∗ − u∗w1

1 + B2
, (47)

expressions (38)–(40) for the velocity and the stresses become

u∗z =
V∗ − u∗w1

1 + B2
[ ln(R∗/r∗)

ln(1/κ) + B2], (48)

τ∗zr =
η∗(V∗ − u∗w1)

ln(1/κ)(1 + B2)r∗
, (49)

and

τ∗w1 =
η∗(V∗ − u∗w1)

ln(1/κ)(1 + B2)κR∗
. (50)

Before deriving the solution when logarithmic slip occurs along the
inner cylinder, it is instructive to solve the problem with Navier slip.
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A. Navier slip along the inner cylinder
In this case, the inner slip velocity is given by

u∗w1 =
τ∗w1

β∗1
. (51)

Substituting into Eq. (50), one can first solve for u∗w1 and then find
the following solution:

u∗z =
V∗

1 + B1 + B2
[ ln(R∗/r∗)

ln(1/κ) + B2],

τ∗zr = −
η∗V∗

ln(1/κ)(1 + B1 + B2)r∗
,

(52)

where

B1 ≡
η∗

ln(1/κ)β∗1 κR∗
(53)

is the “inner” Navier slip number. The two slip velocities are as
follows:

u∗w1 =
B1V∗

1 + B1 + B2
, u∗w2 =

B2V∗

1 + B1 + B2
. (54)

If the two slip coefficients are equal, i.e., if β∗1 = β∗2 , then B2 = κB1,
and the solution is simplified as follows:

u∗z =
V∗

1 + (1 + κ)B1
[ ln(R∗/r∗)

ln(1/κ) + κB1]. (55)

In addition, if there is no slip (β∗1 = β∗2 → ∞ and thus B1 = B2 = 0),
one gets the no-slip solution.

B. Logarithmic slip along the inner cylinder
In the case of logarithmic slip along the inner cylinder, the inner

slip velocity is given by

u∗w1 = k∗1 ln(1 + k∗2 τ
∗

w1). (56)

Substituting τ∗w1 from Eq. (50), we get

u∗w1 = k∗1 ln[1 +
η∗k∗2 V

∗

ln(1/κ)(1 + B2)κR∗
− η∗k∗2

ln(1/κ)(1 + B2)κR∗
u∗w1].

(57)

Solving for u∗w1 gives

u∗w1 = V∗ + k∗1 B1(1 + B2) − k∗1 W[B1(1 + B2)eV+B1(1+B2)], (58)

where

B1 ≡
ln(1/κ)κR∗
η∗k∗1 k

∗

2
(59)

is the inner logarithmic slip number and

V ≡ V∗

k∗1
(60)

is the dimensionless velocity of the inner cylinder. Scaling the
velocities with k∗1 leads to the dimensionless form of Eq. (58),

uw1 = V + B1(1 + B2) −W[B1(1 + B2)eV+B1(1+B2)]. (61)

From Eqs. (45) and (61), one finds that the outer slip velocity is given
by

uw2 = B2{
1

1 + B2
W[B1(1 + B2)eV+B1(1+B2)] − B1}. (62)

Substituting uw1 into Eq. (48), we get

uz = {
1

1 + B2
W[B1(1 + B2)eV+B1(1+B2)] − B1}[

ln(1/r)
ln(1/κ) + B2],

(63)

where we scaled the velocity by k∗1 and r∗ by R∗.
If there is no slip along the outer wall (i.e., B2 = 0), the solution

is simplified to

uz = [W(B1eV+B1) − B1]
ln(1/r)
ln(1/κ) . (64)

FIG. 6. Annular Couette flow (κ = 0.8) with logarithmic slip only along the inner
cylinder (moving) and no-slip at the outer cylinder: (a) dimensionless slip velocity
for various values of the dimensionless velocity V (both scaled by k∗1 ) as a function
of the slip number B1 and (b) same plot but now the slip velocity is scaled by the
velocity V∗ of the inner cylinder.
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FIG. 7. Velocity profiles in the annular Couette flow with logarithmic slip only along
the inner (moving) cylinder for V = 10 and various values of the slip number B1:
(a) κ = 0.95, (b) κ = 0.8, and (c) κ = 0.5.

By making use of the identity,

W(x) = ln
x

W(x) , x > 0, (65)

(which is valid for the positive part of the principal branch of the
Lambert function), Eq. (64) may be written as follows:

uz = [V + ln
B1

W(B1eV+B1)]
ln(1/r)
ln(1/κ) . (66)

The no-slip solution may be obtained taking the limit as B1 →∞,

uz =
V ln(1/r)
ln(1/κ) . (67)

Some results obtained assuming that there is no slip at the outer wall,
i.e., using Eq. (64), are illustrated in Figs. 6 and 7. It should be noted
that in this case, the slip velocity is given by Eq. (22), i.e.,

uw = V + B1 −W(B1eV+B1). (68)

Therefore, Fig. 3(a) also applies for this flow. In Fig. 3(b), however,
u∗x /V∗ should be multiplied by a factor of 2 due to the different scal-
ings used [compare Eqs. (21) and (60)]. It should be pointed out that
the effect of the radius ratio, κ, on the slip velocity is hidden in the
slip number B1, which is defined in Eq. (59). In Fig. 6(a), the dimen-
sionless slip velocity uw is plotted vs the slip number for V = 0.1,
1, and 10. When plotting u∗x /V∗ vs B1 [Fig. 6(b)], we observe that
the three curves coincide for high values of B1 (weak to no slip), and
they all tend to 1 as B1 → 0 (full slip limit). In Fig. 7, representative
profiles are given for three radii ratios, κ = 0.95, 0.8 and 0.5, V = 10
and three values of the slip number, i.e., B1 = 100, 1, and 0.01, corre-
sponding to very weak, moderate, and strong slip, respectively, along
the moving inner cylinder.

The solution for the annular Couette flow when logarithmic
and Navier slip laws are applied along the outer and the cylinder,
respectively, is presented in Appendix A.

VI. CIRCULAR COUETTE FLOW
Let us now consider the circular Couette flow with slip along the

two coaxial, infinitely long cylinders containing a Newtonian fluid.
It is assumed that the inner cylinder of radius κR∗ rotates steadily
at an angular velocity Ω∗, while the outer cylinder of radius R∗ is
fixed. The geometry of the flow is illustrated in Fig. 8. The azimuthal
velocity and the shear stress are of the following general forms:32

u∗θ = c∗1 r∗ +
c∗2
r∗

, τ∗rθ = −
2η∗c∗2
r∗2 , (69)

where c∗1 and c∗2 are integration constants. It can be observed that
τ∗w2 = κ2τ∗w1.

In the presence of wall slip, the boundary conditions are

u∗θ (κR∗) = Ω∗κR∗ − u∗w1 and u∗θ (R∗) = u∗w2 (70)

where u∗w1 and u∗w2 are the slip velocities at the inner and outer cylin-
ders, respectively. Applying the two boundary conditions leads to a
system for c∗1 and c∗2 , the solution of which is

c∗1 =
κu∗w1 + u∗w2 −Ω∗κ2R∗

(1 − κ2)R∗ , c∗2 =
κR∗(Ω∗κR∗ − u∗w1 − κu∗w2)

1 − κ2 .

(71)
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FIG. 8. Geometry and boundary conditions of the circular Couette flow with slip
along both walls.

Substituting Eq. (71) into Eq. (69) gives

u∗θ =
r∗

(1 − κ2)R∗ [κu
∗

w1 + u∗w2 −Ω∗κ2R∗

+κ(Ω∗κR∗ − u∗w1 − κu∗w2)
R∗2

r∗2 ] (72)

and

τ∗rθ = −
2η∗κR∗(Ω∗κR∗ − u∗w1 − κu∗w2)

(1 − κ2)r∗2 . (73)

Hence, for the two wall shear stresses, we get

τ∗w1 =
2η∗(Ω∗κR∗ − u∗w1 − κu∗w2)

(1 − κ2)κR∗ , τ∗w2 = κ2τ∗w1. (74)

As with the annular Couette flow, there is no analytical solution
when logarithmic slip applies at the two cylinders. Below, we con-
sider the case where Navier slip occurs along the outer cylinder, i.e.,
Eq. (44) applies. Substituting τ∗w2 from Eq. (74) and solving for u∗w2
give

u∗w2 =
B2(Ω∗κR∗ − u∗w1)

1 + κB2
, (75)

where

B2 ≡
2η∗κ

(1 − κ2)R∗β∗2
. (76)

Substituting u∗w2 into Eqs. (72)–(74), we have

u∗θ =
(Ω∗κR∗ − u∗w1)r∗

(1 − κ2)(1 + κB2)R∗
[B2(1 − κ2) + κ(R

∗2

r∗2 − 1)], (77)

τ∗rθ = −
2η∗κR∗(Ω∗κR∗ − u∗w1)
(1 − κ2)(1 + κB2)r∗2 . (78)

Hence, for the wall shear stresses, we get

τ∗w1 =
2η∗(Ω∗κR∗ − u∗w1)
(1 − κ2)(1 + κB2)κR∗

, τ∗w2 = κ2τ∗w1. (79)

Below, we derive the solutions corresponding to the Navier and
logarithmic slip law along the inner cylinder.

A. Navier slip along the inner cylinder
Applying Navier slip at the inner cylinder (51), we find the

following expression for the inner slip velocity:

u∗w1 =
B1Ω∗κR∗

1 + B1 + κB2
, (80)

where

B1 ≡
2η∗

(1 − κ2)β∗1 κR∗
. (81)

Substituting Eq. (80) into Eq. (77) gives

u∗θ =
Ω∗κr∗

(1 − κ2)(1 + B1 + κB2)
[B2(1 − κ2) + κ(R

∗2

r∗2 − 1)], (82)

while the shear stress is given by

τ∗rθ = −
2η∗Ω∗κ2R∗2

(1 − κ2)(1 + B1 + κB2)r∗2 . (83)

In the case of no slip, B1 = B2 = 0, Eq. (82) is simplified as follows:

u∗θ =
Ω∗κ2r∗

1 − κ2 (
R∗2

r∗2 − 1). (84)

B. Logarithmic slip along the inner cylinder
Combining the logarithmic slip law (56) and Eq. (79), we get

u∗w1 = k∗1 ln[1 +
2η∗k∗2 Ω∗

(1 − κ2)(1 + κB2)
− 2η∗k∗2
(1 − κ2)(1 + κB2)κR∗

u∗w1],

(85)

the solution of which is

u∗w1 = Ω∗κR∗ + k∗1 B1(1 + κB2)

− k∗1 W[B1(1 + κB2)eΩ∗κR∗/k∗1 +B1(1+κB2)], (86)

where now

B1 ≡
(1 − κ2)κR∗

2η∗k∗1 k
∗

2
. (87)

Scaling the velocities by k∗1 , the dimensionless form of Eq. (86) is

uw1 = V + B1(1 + κB2) −W[B1(1 + κB2)eV+B1(1+κB2)], (88)

where

V ≡ Ω∗κR∗

k∗1
. (89)

It is easily deduced from Eqs. (75) and (88) that Eq. (62) for the
outer slip velocity uw2 in the annular Couette flow also holds for
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FIG. 9. Velocity profiles in the circular Couette flow with logarithmic slip only along
the inner (rotating) cylinder for V = 10 and various values of the slip number B1:
(a) κ = 0.95, (b) κ = 0.8, and (c) κ = 0.5.

this flow problem. However, the definitions of the slip numbers are
different.

Substituting into Eq. (77) and scaling r∗ by R∗, we get

uθ =
r

1 − κ2 {
1

1 + κB2
W[B1(1 + κB2)eV+B1(1+κB2)] − B1}

×[B2(1 − κ2) + κ( 1
r2 − 1)]. (90)

The dimensionless shear stress (scaled by k∗−1
2 ) is given by

τrθ = −
1
B1
{ 1

1 + κB2
W[B1(1 + κB2)eV+B1(1+κB2)] − B1}

κ2

r2 . (91)

In the case of no slip along the outer cylinder (B2 = 0), Eq. (90)
becomes

uθ =
κr

1 − κ2 [W(B1eV+B1) − B1](
1
r2 − 1). (92)

It is interesting to note that the effect of slip is actually the same as
in the case of the annular Couette flow. Indeed, in both Eqs. (64)
and (92), the no-slip solution is simply multiplied by the same factor
[W(B1eV+B1 ) − B1]. Moreover, the slip velocity in both cases is given
by Eq. (68), where V = V∗/k∗1 in annular flow and V = Ω∗κR∗/k∗1 in
circular Couette flow, respectively. Note, however, the slightly dif-
ferent definitions of B1. Therefore, Figs. 3(a) and 6 also hold for
the circular Couette flow. In Fig. 9, velocity profiles for V = 10 and
κ = 0.95, 0.8, and 0.5 are provided for various slip numbers.

The solution for the circular Couette flow when logarithmic
and Navier slip laws are applied along the outer and the cylinder,
respectively, is presented in Appendix B.

VII. CONCLUSIONS
We have employed the Lambert W function to derive analytical

solutions of the plane, annular, and circular Couette and plane and
axisymmetric Poiseuille flows of a Newtonian fluid in the presence
of wall slip described by a logarithmic slip law. In Poiseuille flows,
analytical expressions of the pressure drop in terms of the volumet-
ric flow rate have been provided. In annular and circular Couette
flows, solutions are derived only for the case where logarithmic slip
occurs along one cylinder, while Navier or no slip applies along the
other one. Solutions corresponding to Navier slip have also been
derived for comparison purposes. These solutions may be useful in
rheometry, that is, for the rheological characterization of materials
exhibiting logarithmic wall slip. The effects of the dimensionless slip
numbers on the velocity distributions have been investigated and
discussed.

APPENDIX A: ANNULAR COUETTE FLOW WITH
LOGARITHMIC SLIP ALONG THE OUTER CYLINDER

Consider the annular Couette flow of Sec. V with the Navier
and logarithmic slip along the inner and outer cylinders, respec-
tively,

u∗w1 =
τ∗w1

β∗1
, u∗w2 = k∗1 ln(1 + k∗2 τ

∗

w2). (A1)
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Working as in Sec. V, we obtain the following solution for the
dimensionless velocity (scaled by k∗1 ):

uz = V − {
1

1 + B1
W[B2(1 + B1)eV+B2(1+B1)] − B2}

×[1 + B1 −
ln(1/r)
ln(1/κ)], (A2)

where the inner (Navier) and outer (logarithmic) slip numbers are
defined by

B1 ≡
η∗

κ ln(1/κ)β∗1 R∗
, B2 ≡

ln(1/κ)R∗
η∗k∗1 k

∗

2
. (A3)

The two slip velocities are given by

uw1 = B1{W[B2(1 + B1)eV+B2(1+B1)] − B2} (A4)

and

uw2 = V + B2(1 + B1) −W[B2(1 + B1)eV+B2(1+B1)]. (A5)

Finally, the dimensionless shear stress (scaled by k∗−1
2 ) is

τzr = {1 − 1
B2(1 + B1)

W[B2(1 + B1)eV+B2(1+B1)]}1
r

. (A6)

Setting B1 = 0 yields the solution when no slip occurs at the moving
inner cylinder.

APPENDIX B: CIRCULAR COUETTE FLOW WITH
LOGARITHMIC SLIP ALONG THE OUTER CYLINDER

Let us consider the circular Couette flow of Sec. VI when Navier
slip occurs along the inner rotating cylinder and logarithmic slip
along the outer fixed cylinder, following Eq. (A1). The dimensionless
azimuthal velocity is found to be

uθ = r
⎧⎪⎪⎪⎨⎪⎪⎪⎩
V −

W[B2(1 + B1)eV+B2(1+B1)] − B2

1 − κ2 [1 + (1 − κ2)B1 −
κ2

r2 ]
⎫⎪⎪⎪⎬⎪⎪⎪⎭

,

(B1)

where the slip numbers are defined by

B1 ≡
2η∗

κ(1 − κ2)β∗1 R∗
, B2 ≡

(1 − κ2)R∗
2κ2η∗k∗1 k

∗

2
(B2)

and

V ≡ Ω∗R∗

k∗1
. (B3)

The inner slip velocity is

uw1 = κB1{
1

1 + B1
W[B2(1 + B1)eV+B2(1+B1)] − B2}, (B4)

while the outer slip velocity is given by Eq. (A5) for the annular Cou-
ette flow keeping in mind the different definitions of B1, B2, and V.
Finally, the dimensionless shear stress (scaled by k∗−1

2 ) is

τrθ = {1 − 1
B2(1 + B1)

W[B2(1 + B1)eV+B2(1+B1)] − 1} 1
r2 . (B5)

The similarity of Eqs. (A6) and (B1) should be noted. Setting
B1 = 0 yields the solution when no slip occurs at the moving inner
cylinder.
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