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ABSTRACT
The lubrication flow of a Herschel-Bulkley fluid in a long asymmetric channel, the walls of which are described by two arbi-
trary functions h1(x) and h2(x) such that h1(x) < h2(x) and h1(x) + h2(x) are linear, is solved extending a recently proposed method,
which avoids the lubrication paradox approximating satisfactorily the correct shape of the yield surface at zero order [P. Panaseti
et al., “Pressure-driven flow of a Herschel-Bulkley fluid with pressure-dependent rheological parameters,” Phys. Fluids 30, 030701
(2018)]. Both the consistency index and the yield stress are assumed to be pressure-dependent. Under the lubrication approx-
imation, the pressure at zero order is a function of x only, is decoupled from the velocity components, and obeys a first-order
integro-differential equation. An interesting feature of the asymmetric flow is that the unyielded core moves not only in the
main flow direction but also in the transverse direction. Explicit expressions for the two yield surfaces defining the asymmetric
unyielded core are obtained, and the two velocity components in both the yielded and unyielded regions are calculated by means
of closed-form expressions in terms of the calculated pressure and the two yield surfaces. The method is applicable in a range of
Bingham numbers where the unyielded core extends from the inlet to the outlet plane of the channel. Semi-analytical solutions
are derived in the case of an asymmetric channel with h1 = 0 and linearly varying h2. Representative results demonstrating the
effects of the Bingham number and the consistency-index and yield-stress growth numbers are discussed.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5087654

I. INTRODUCTION
In a recent study,1 we have extended a lubrication

approximation method proposed by Fusi et al.2 for solving
pressure-driven flow of a Bingham-plastic in a symmetric
channel, in order to solve the flow of a Herschel-Bulkley
fluid with pressure-dependent consistency index k∗ and yield
stress τ∗y . Thus, we have employed the following constitutive
equation




D∗ = 0, τ∗ ≤ τ∗y

τ∗ = 2
(
τ∗y
γ̇∗ + k∗γ̇∗n−1

)
D∗, τ∗ > τ∗y

, (1)

where τ∗ is the viscous stress tensor,

D∗ ≡
1
2

[
∇∗v∗ + (∇∗v∗)T

]
(2)

is the rate of deformation tensor, v∗ is the velocity vector,
γ̇∗ ≡

√
2trD∗2 and τ∗ ≡

√
trτ∗2/2 are the magnitudes of 2D∗ and

τ∗, respectively, and n is the power-law exponent. It should be
noted that throughout this paper, symbols with stars denote
dimensional quantities. As mentioned above, the consistency
index and the yield stress are pressure dependent such that

k∗(p∗) = k∗0 f(α∗(p∗ − p∗0)) (3)
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and

τ∗y (p∗) = τ∗0 g( β∗(p∗ − p∗0)) , (4)

where k∗0 and τ∗0 are the consistency index and the yield stress
at a reference pressure p∗0 (assumed to be the same for both
material parameters) and f and g are appropriate functions
such that f(0) = g(0) = 1. For example, f(x) = ex and f(x) = 1 + x
describe, respectively, exponential and linear variations of
the consistency index with pressure, the latter case corre-
sponding to the Barus formula for the viscosity.3 Function f
is increasing, while g can be either decreasing or increasing.
The pressure dependence of the yield stress and the viscos-
ity is well established in the mechanics of granular mate-
rials4 and in oil-drilling fluids.5 The reader is referred to
Ref. 1 for a detailed literature review of experimental data on
yield-stress materials with pressure-dependent rheological
parameters.

Fusi et al. presented a novel technique for modeling the
lubrication flow of a Bingham plastic (with constant rheologi-
cal parameters) in a two-dimensional channel of non-uniform
thickness.2 This is based on the application of Reynolds trans-
port theorem over the unyielded core. The advantage of the
method is that it avoids the lubrication paradox and predicts
at zero order the correct shape of the yield surface, whose
behavior is opposite to that of the wall function, i.e., the width
of the unyielded core increases when the channel width is
reduced and vice versa. With other lubrication-approximation
methods, the correct shape of the yield surface is obtained
only at higher orders.6,7 A limitation of the method of Fusi
et al.,2 however, is that it applies only when the unyielded
region (plug) extends continuously from the inlet to the outlet
plane, i.e., it is not applicable when the plug is broken.

Panaseti et al.1 extended the method of Fusi et al.2 to
solve the lubrication flow of a Herschel-Bulkley fluid with
pressure-dependent consistency index and yield stress. For
the case of a channel of constant width, they demonstrated
that the width of the unyielded core is also constant, despite
the pressure dependence of the yield stress, and that the pres-
sure distribution is not affected by the yield-stress function.
They also derived analytical solutions for certain choices of
the functions f and g corresponding to linear or exponen-
tial pressure-dependence of the two rheological parameters.
Subsequently, Housiadas et al.8 considered the axisymmet-
ric flow following the approach proposed by Fusi and Farina9

and assuming that both the plastic viscosity and the yield
stress vary linearly with the total pressure. They calculated
the total pressure and the radius of the unyielded core solv-
ing numerically the resulting nonlinear system of an ordinary
differential equation (ODE) and an algebraic one. Their calcu-
lations revealed that the variation of the radius of the central
unyielded core depends on the relative values of a∗ and β∗.
The latter contracts when β∗ < α∗, expands when β∗ > α∗, and
remains cylindrical when β∗ = α∗. More recently, Fusi10 revis-
ited the symmetric planar flow problem assuming that the
flow is driven by a prescribed inlet flux and not by a given pres-
sure drop. In this case, the mathematical problem is much sim-
pler reducing to a full nonlinear algebraic equation for the plug
speed.

The objectives of the present work are: (a) to apply the
method of Fusi et al.2 in order to solve the lubrication flow
of a Herschel-Bulkley fluid with pressure-dependent consis-
tency index and yield stress in an asymmetric channel and
(b) to derive analytical solutions for certain limiting cases,
such as the flow in an asymmetric channel of linearly varying
width.

The governing equations and the lubrication method are
presented in Sec. II, where the zero-order solution is derived
semi-analytically, in the sense that closed-form expressions
are obtained for the positions of the upper and lower yield
surfaces and for the two velocity components in terms of
the pressure, which is found by solving a first-order integro-
differential equation numerically. In Sec. III, the equations for
a symmetric channel are outlined and the analytical solutions
for a flat channel are provided for different functions describ-
ing the pressure-dependence of the consistency index and the
yield stress. In Sec. IV, we derive analytical solutions for the
case of an asymmetric channel with linearly changing width
and for special forms of the functions describing the varia-
tion of the consistency index and the yield stress with pres-
sure. The symmetric channel constitutes a special case of the
derived solution. In Sec. V, representative results demonstrat-
ing the effects of the Bingham number and the consistency-
index and yield-stress growth parameters are presented
and discussed. Finally, in Sec. VI, concluding remarks are
provided and some possibilities for further research are
discussed.

II. ANALYSIS OF LUBRICATION FLOW
Consider the pressure-driven flow of an incompress-

ible Herschel-Bulkley fluid in an asymmetric long channel of
length L∗ and variable width h∗2(x∗)−h∗1 (x∗), where h∗1 (x) and h∗2(x)
are the lower and upper wall functions, respectively, as illus-
trated in Fig. 1. A pressure p∗in is applied at the inlet of the chan-
nel (x∗ = 0), while the pressure at the exit (x∗ = L∗) is p∗out < p∗in,

FIG. 1. Geometry and boundary conditions for the dimensional flow in an asym-
metric channel of length L∗ and variable width h∗2(x∗) − h∗1 (x∗). The unyielded
core extends from the inlet to the outlet plane and is bounded by the two yield
surfaces σ∗1 (x∗) and σ∗2(x∗).
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i.e., the imposed pressure difference is ∆p∗ = p∗in−p
∗
out > 0, and

thus the flow is from the left to the right. Without loss of gen-
erality, we assume here that p∗out is the reference pressure that
appears in Eqs. (3) and (4), i.e., p∗out = p∗0. The main flow is in the
x∗ direction, while the z∗−velocity component is zero. Hence,
the velocity vector is of the form v∗ = v∗x (x∗, y∗)i + v∗y (x∗, y∗)j. As
illustrated in Fig. 1, the flow domain is thus divided into a lower
and an upper yielded region and a central unyielded region
defined by two unknown yield surfaces: σ∗1 (x∗) and σ∗2(x∗),
where h∗1 (x∗) < σ∗1 (x∗) < σ∗2(x∗) < h∗2(x∗). The unyielded region
extends from the inlet to the outlet plane, i.e., the plug is not
broken. Let also σ∗1in ≡ σ

∗
1 (0), σ∗1out ≡ σ

∗
1 (L∗), σ∗2in ≡ σ

∗
2(0), and

σ∗2out ≡ σ
∗
2(L∗).

For convenience, we will work with the dimensionless
equations. We assume that the length L∗ of the channel is
much greater than say the channel width or half-width at the
inlet H∗ (L∗ � H∗) and use the aspect ratio

ε ≡
H∗

L∗
� 1 (5)

to apply the classical lubrication approximation or thin-film
approach.6 The flow problem is dedimensionalised by scal-
ing x∗ by L∗, y∗, h∗i , and σ∗i by H∗, (p∗ − p∗out) by ∆p∗, v∗x by
H∗(ε∆p∗/k∗0)1/n, v∗y by εH∗(ε∆p∗/k∗0)1/n, and the stress compo-
nents by ε∆p∗. The dimensionless forms of the continuity
equation and the two components of the momentum equation
are as follows:

∂vx
∂x

+
∂vy

∂y
= 0, (6)

ε2/n−1Re
(
vx
∂vx
∂x

+ vy
∂vx
∂y

)
= −

∂p
∂x

+ ε
∂τxx
∂x

+
∂τyx

∂y
, (7)

ε2/n+1Re
(
vx
∂vy

∂x
+ vy

∂vy

∂y

)
= −

∂p
∂y

+ ε2 ∂τyx

∂x
+ ε

∂τyy

∂y
, (8)

where all variables are dimensionless (notice that there are no
stars) and Re is the Reynolds number defined by

Re ≡
ρ∗H∗3∆p∗2/n−1

k∗2/n0 L∗
, (9)

with ρ∗ being the constant density of the material. The non-
zero components of the stress tensor in the yielded regime{
(x, y) : x ∈ [0, 1], y ∈ [h1,σ1] ∪ [σ2,h2]

}
read

τxx = 2ε
[
Bng(βp)

γ̇
+ f(αp)γ̇n−1

]
∂vx
∂x

τyx =

[
Bng(βp)

γ̇
+ f(αp)γ̇n−1

](
∂vx
∂y

+ ε2 ∂vy

∂x

)

τyy = 2ε
[
Bng(βp)

γ̇
+ f(αp)γ̇n−1

]
∂vy

∂y




, y ∈ [h1,σ1] ∪ [σ2,h2],

(10)

where

γ̇ =

√
4ε2

(
∂vx
∂x

)2

+
(
∂vx
∂y

+ ε2
∂vy

∂x

)2

. (11)

In Eq. (10), there appear three dimensionless numbers, the
Bingham number Bn and the consistency-index and yield-
stress growth numbers a and β, which are defined by

Bn ≡
τ∗0
ε∆p∗

, α ≡ a∗∆p∗, β ≡ β∗∆p∗. (12)

It is clear that when g is an increasing function, the dimension-
less yield stress is reduced from the inlet plane to the outlet
plane.

The unyielded core, defined by Ω = {(x, y) : x ∈ [0, 1],
y ∈ [σ1,σ2]}, moves as a solid, i.e., at a constant velocity
vc = vcx i + vcy j. Thus,

vx = v
c
x and vy = v

c
y for σ1(x) ≤ y ≤ σ2(x). (13)

Remark 1. The transverse velocity of the unyielded core
becomes zero only in the symmetric case.

For steady-state flow in the absence of body forces, the
integral balance of linear momentum of the whole plug core
yields the following equation:1,2

∫ 1

0

{ [
−σ2x(−p + ετxx) + τyx

]
y=σ2

−
[
−σ1x(−p + ετxx) + τyx

]
y=σ1

}
dx

+ (σ2in − σ1in)pin = 0, (14)

where σix ≡ dσi/dx, i = 1, 2. Finally, the dimensionless
pressure satisfies the following boundary conditions:

p(0,σ1in) = p(0,σ2in) = 1, p(1,σ1out) = p(1,σ2out) = 0. (15)

A. The zero-order problem
As in our previous studies,1,8 we solve the zero-order

problem. For the sake of simplicity, we will avoid introduc-
ing new symbols for the zero-order variables. At zero order,
the y-component of the momentum equation is simplified to
∂p/∂y = 0 and thus p = p(x). The continuity and x-momentum
equations at zero order then read as follows:

∂vx
∂x

+
∂vy

∂y
= 0, (16)

−
∂p
∂x

+
∂τyx

∂y
= 0. (17)

Moreover, τxx = τyy = 0, while the shear stress component is
given by

τyx =

[
Bng(βp)

γ̇
+ f(αp)γ̇n−1

]
∂vx
∂y

, y ∈ [h1,σ1] ∪ [σ2,h2]. (18)
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In the lower yielded region, γ̇ = ��∂vx/∂y�� = ∂vx/∂y and thus

τyx = Bng(βp) + f(αp)
(
∂vx
∂y

)n
, y ∈ [h1,σ1]. (19)

Substituting the above expression into the x-momentum
Eq. (17), integrating twice, and applying the boundary condi-
tions vx(x,h1) = ∂vx/∂y(x,σ1) = 0, the following expression is
obtained for vx:

vx(x, y) =

1 −

(σ1 − y)1+1/n

(σ1 − h1)
1+1/n


vcx , y ∈ [h1,σ1], (20)

where

vcx =
(−px)1/n(σ1 − h1)

1+1/n

(1 + 1/n) f1/n(αp)
(21)

and px ≡ dp/dx. Similarly, in the upper yielded region where
γ̇ = ��∂vx/∂y�� = −∂vx/∂y, the shear stress is given by

τyx = −Bng(βp) − f(αp)
(
−
∂vx
∂y

)n
, y ∈ [σ2,h2]. (22)

Substituting in the momentum equation, integrating twice,
and applying the boundary conditions ∂vx/∂y(x,σ2) = vx(x,h2)
= 0, one gets

vx(x, y) =

1 −

(y − σ2)1+1/n

(h2 − σ2)1+1/n


vcx , y ∈ [σ2,h2], (23)

where

vcx =
(−px)1/n(h2 − σ2)1+1/n

(1 + 1/n) f1/n(αp)
. (24)

Since the core velocity is constant, the pressure satisfies the
first-order ODEs defined by

px
f(αp)

(σ1 − h1)n+1 =
px

f(αp)
(h2 − σ2)n+1 = −(1 + 1/n)n(vcx )n. (25)

The pressure p and the core velocity vcx can be determined
upon integration and application of the two conditions for p,

p(0) = 1, p(1) = 0. (26)

The transverse velocity component in the lower and upper
yielded regions is found by integrating the continuity equa-
tion (16) and applying the no-penetration boundary condition
at the two walls, vy(x,h1) = vy(x,h2) = 0,

vy = −

∫ y

h1

∂vx
∂x

dy, y ∈ [h1,σ1]

vy =

∫ h2

y

∂vx
∂x

dy, y ∈ [σ2,h2]




. (27)

Substituting vx from Eq. (20) into Eq. (27) and carrying out the
required differentiation and integration, one gets for the lower
yielded region

vy =
vcx

2 + 1/n


σ1x + (1 + 1/n)h1x − (2 + 1/n)

(
σ1 − y
σ1 − h1

) 1+1/n

×σ1x + (1 + 1/n)(σ1x − h1x)
(
σ1 − y
σ1 − h1

)2+1/n
, y ∈ [h1,σ1], (28)

where h1x ≡ dh1/dx. The satisfaction of condition vy(x,σ1) = vcy
requires that

σ1x + (1 + 1/n)h1x = (2 + 1/n)
vcy

vcx
. (29)

Combining Eqs. (28) and (29) and simplifying lead to the follow-
ing expression for the transverse velocity in the lower yielded
region:

vy = v
c
y +

(σ1 − y)1+1/n

(σ1 − h1)
2+1/n

{
(1 + 1/n)(y − h1)h1xv

c
x

− [σ1 − h1 + (1 + 1/n)(y − h1)]vcy
}
, y ∈ [h1,σ1]. (30)

Working similarly in the upper yielded region, one finds that

σ2x + (1 + 1/n)h2x = (2 + 1/n)
vcy

vcx
(31)

and

vy = v
c
y +

(y − σ2)1+1/n

(h2 − σ2)2+1/n

{
(1 + 1/n)(h2 − y)h2xv

c
x

− [h2 − σ2 + (1 + 1/n)(h2 − y)]vcy
}
, y ∈ [σ2,h2], (32)

where h2x ≡ dh2/dx.
We still need to find the equations corresponding to

the unknown positions of the two yield surfaces. Since
the unyielded core moves at constant velocity, vx(y = σ1)
= vx(y = σ2) = vcx . Equating Eqs. (21) and (24) results in

σ1 + σ2 = h1 + h2. (33)

Remark 2. Since σ1 − h1 = h2 − σ2, the widths of the lower
and upper yielded regions are equal for any x.

Combining now Eqs. (29) and (31), we get

σ2x − σ1x = −

(
1 +

1
n

)
(h2x − h1x). (34)

Integrating the above equation with respect to x, we get the
following expression for the thickness of the unyielded core:

σ2(x) − σ1(x) = −
(
1 +

1
n

)
[h2(x) − h1(x)] + C, (35)

where C is an unknown constant to be determined. From the
system of Eqs. (33) and (35), we find that

σ1(x) = −
1

2n
h1(x) +

(
1 +

1
2n

)
h2(x) −

C
2

(36)

and

σ2(x) =
(
1 +

1
2n

)
h1(x) −

1
2n

h2(x) +
C
2

. (37)
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Remark 3. The above results generalize those of Panaseti
et al.1 for a symmetric channel, in which case vcy = 0. The
width of the unyielded core increases if the width of the chan-
nel decreases and vice versa. The variation of the width of the
unyielded core is enhanced by shear thinning and is indepen-
dent of the other material and flow parameters, which affect
only the constant C. As noted in Ref. 1, reducing the power-
law exponent n in a converging channel causes the plug
to expand faster, which is expected, given that the velocity
profile becomes flatter as shear thinning is enhanced.

Remark 4. From Eqs. (33) and (34), one observes that

σ1x =

(
1 +

1
2n

)
h2x −

1
2n

h1x, (38)

which upon substitution into Eq. (29) yields

vcy

vcx
=

h1x + h2x

2
. (39)

Given that the LHS is constant, the solution derived above is
valid, provided that h1x + h2x is constant, or equivalently when
the sum h1 + h2 is a linear function of x. This condition is sat-
isfied when the channel is symmetric as well as when both the
wall functions are linear. In the general case, for a given lower
wall function, the upper wall function must be of the form

h2(x) = −h1(x) + c1x + c2, (40)

where c1 and c2 are constants.

Remark 5. If the width of the channel, h2(x) − h1(x), is
constant, then the two walls are flat (and parallel) and the
width σ2(x) − σ1(x) of the unyielded core is also constant.

Remark 6. It is easily shown that the constant C is related
to the volumetric flow rate through the channel, for which we
have

Q =
∫ h2

h1

vx(x, y) dy =
∫ σ1

h1

vx(x, y) dy + (σ2 − σ1)vcx +
∫ h2

σ2

vx(x, y) dy,

(41)
where we took into account that the x-component of the
velocity in the unyielded region is vcx . Substituting the velocity
from Eqs. (20) and (23) for the lower and upper yielded regions
and integrating, we obtain

Q =
vcx

2 + 1/n
[σ2 − σ1 + (1 + 1/n)(h2 − h1)]. (42)

The expression within the brackets is the constant C of
Eq. (35). Thus,

C = (2 + 1/n)
Q
vcx

. (43)

Substituting into Eq. (37) and making use of Eq. (40), one finds

σ2(x) =
(
1 −

1
2n

)
c1x −

(
1 +

1
n

)
h2(x) +

(
1 +

1
2n

)
Q
vcx

. (44)

To determine the constant C, we return to the plug momen-
tum balance Eq. (14), which at zero order becomes

∫ 1

0

{ [
−σ2x(−p) + τyx

]
y=σ2

−
[
−σ1x(−p) + τyx

]
y=σ1

}
dx

+ (σ2in − σ1in)pin = 0. (45)

From Eqs. (19) and (22), we get

τyx
���y=σ1

= Bng(βp) and τyx
���y=σ2

= −Bng(βp). (46)

Substituting into Eq. (45), using integration by parts, and
applying the boundary conditions (26), we find that

1∫
0

(σ2 − σ1)pxdx + 2Bn

1∫
0

g(βp)dx = 0. (47)

Substituting Eq. (35) into Eq. (47) and integrating, one gets

C = 2Bn
∫ 1

0
g(βp) dx − (1 + 1/n)

∫ 1

0
px(h2 − h1) dx (48)

or

C = 2Bn
∫ 1

0
g(βp) dx + (1 + 1/n)


h2in − h1in +

∫ 1

0
p(h2x − h1x) dx


.

(49)

Substituting C from Eq. (49) into Eq. (36) yields

σ1 = −Bn
∫ 1

0
g(βp) dx −

1
2n

h1 +
(
1 +

1
2n

)
h2

−
1
2

(1 + 1/n)

h2in − h1in +

∫ 1

0
p(h2x − h1x) dx


. (50)

Finally, combining the above equation with Eq. (25), we get the
following integro-differential equation:

px


−Bn

∫ 1

0
g(βp) dx +

(
1 +

1
2n

)
(h2 − h1) −

1
2

(1 + 1/n)

×


h2in − h1in +

∫ 1

0
p(h2x − h1x) dx






n+1

= K f(αp), (51)

which is subject to conditions (26). Once the pressure is calcu-
lated, C, σ1(x), and σ2(x) are readily calculated from Eqs. (49),
(36), and (37), respectively. The two velocity components can
then be calculated by means of Eqs. (20) and (30) in the lower
yielded region and Eqs. (23) and (32) in the upper yielded
region. The two components of the velocity of the unyielded
core are calculated by means of Eqs. (21) and (29). For the latter
velocity component, we get

vcy =
σ1x + (1 + 1/n)h1x

(2 + 1/n)
vcx . (52)

The velocity distributions in the asymmetric channel are thus
given by

vx(x, y) = vcx




1 −
(
σ1−y
σ1−h1

) 1+1/n
, y ∈ [h1,σ1)

1, y ∈ [σ1,σ2]

1 −
( y−σ2
h2−σ2

) 1+1/n
, y ∈ (σ2,h2]

(53)

and
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vy(x, y) = vcy +




(σ1 − y)1+1/n

(σ1 − h1)
2+1/n

{
(1 + 1/n)(y − h1)h1xv

c
x − [σ1 − h1 + (1 + 1/n)(y − h1)]vcy

}
, y ∈ [h1,σ1]

0, y ∈ [σ1,σ2]

(y − σ2)1+1/n

(h2 − σ2)2+1/n

{
(1 + 1/n)(h2 − y)h2xv

c
x − [h2 − σ2 + (1 + 1/n)(h2 − y)]vcy

}
, y ∈ [σ2,h2]

. (54)

It should be pointed out that in order for the present model to
be applied, Bnc1 ≤ Bn ≤ Bnc2, where Bnc1 is the critical value
of the Bingham number at which the plug is broken (σ1 = σ2)
and Bnc2 is the critical Bingham below which flow occurs,
i.e., the Bingham number at which the core touches the walls
and the flow ceases. If the plug is broken, which implies that
σ1 = σ2 = σ at some point xc, then 2σ = h1 + h2 and there-
fore the plug breaks in the middle of the channel at x = xc.
Equation (35) then gives

Cc =

(
1 +

1
n

)
[h2(xc) − h1(xc)], (55)

Substituting the above equation into Eq. (49) yields the critical
Bingham number below which the plug is broken,

Bnc1 =

(
1 +

1
n

) 
h2(xc) − h1(xc) − h2in + h1in −

∫ 1

0
p(h2x − h1x) dx



2
∫ 1

0
g(βp)dx

.

(56)

Now, if σ1 = h1 at any point xw , then σ2(xw ) = h2(xw ), i.e., the
two unyielded surfaces touch the two walls at the same dis-
tance xw downstream. In this case, there is obviously no flow
and Eq. (35) gives

Cw =
(
2 +

1
n

)
[h2(xw ) − h1(xw )]. (57)

The second critical value Bnc2 above which there is no flow
coincides with the critical number at which there is no flow
in a flat channel of width equal to the minimum width of the
channel,

Bnc2 =
(h2 − h1)min

2
∫ 1

0
g(βpF)dx

, (58)

where pF is the pressure corresponding to flow in the afore-
mentioned flat channel.

III. FLOW IN A SYMMETRIC CHANNEL
The flow in a symmetric channel constitutes a special case

of the flow problem analyzed in Sec. II. Letting

h(x) = −h1(x) = h2(x), (59)

then Eqs. (36) and (37) yield

σ(x) = −σ1(x) = σ2(x). (60)

Hence, Eq. (35) is simplified as follows:

σ(x) = −
(
1 +

1
n

)
h(x) +

C
2

, (61)

which also implies that

σx + (1 + 1/n)hx = 0. (62)

Hence, from Eq. (29) it is deduced that vcy = 0, as expected by
symmetry. From Eq. (49), one finds that

C
2
= Bn

∫ 1

0
g(βp) dx + (1 + 1/n)


hin +

∫ 1

0
phx dx


. (63)

Finally, from Eq. (25), we observe that the pressure satisfies the
simplified equation

px
f(αp)

= −
(1 + 1/n)n(vcx )n

(h − σ)n+1
. (64)

After calculating the pressure, the constant C and the location
of the yield surface σ(x) are computed via Eqs. (63) and (61),
respectively. The velocity above the symmetry plane is then
given by

vx(x, y) = vcx




1, y ∈ [0,σ]

1 −
( y − σ
h − σ

) 1+1/n
, y ∈ (σ,h]

, (65)

where

vcx =
(−px)1/n(h − σ)1+1/n

(1 + 1/n) f1/n(αp)
. (66)

The expressions (56) and (58) for the two critical Bingham
numbers are simplified as follows:

Bnc1 =

(
1 +

1
n

) 
h(xc) − hin −

∫ 1

0
phx dx

∫ 1

0
g(βp)dx

(67)

and

Bnc2 =
hmin∫ 1

0
g(βpF)dx

. (68)

Below we focus on the case of a flat channel with h = 1 and
derive the complete analytical solutions for various combi-
nations of the functions f and g, which describe the depen-
dence of k and τ0 on pressure. As noted in Panaseti et al.,1 the
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yield surface is flat despite the pressure dependence of the
rheological parameters, given by

σ = Bn
∫ 1

0
g(βp) dx. (69)

The pressure satisfies the following first-order integro-
differential equation:

px
f(αp)

= −
(1 + 1/n)n(vcx )n

(h − σ)n+1
= −K′, (70)

where K′ is an unknown constant. Solving the above equation
and applying the boundary conditions (26) yield the pressure
p(x) and the constant K′. Then σ and the velocity vx(x,y) are
computed by means of Eqs. (69) and (65), respectively, where

vcx =
K′1/n(1 − σ)1+1/n

1 + 1/n
. (71)

The analytical solutions for a Bingham-plastic (n = 1) with f, g
∈ {1, 1 + x, ex} are tabulated in Table I. It is readily observed

TABLE I. Expressions for the pressure p(x), the constant K′, and the elevation of the
yield surface σ for a Bingham-plastic (n = 1) and different forms of the consistency-
index growth function f and the yield stress growth function g in the case of a
symmetric flat channel of unit width (h = 1). The velocity is calculated by means of
Eq. (65).

f(αp) = 1

p(x) = 1 − x, K′ = 1

g(βp) = 1 σ = Bn

g(βp) = 1 + βp σ =
(
1 +

β

2

)
Bn

g(βp) = eβp σ =
eβ − 1
β

Bn

f(αp) = 1 + αp

p(x) =
1
α

[
(1 + α)1−x − 1

]
, K′ =

ln(1 + α)
α

g(βp) = 1 σ = Bn

g(βp) = 1 + βp σ =

[
1 − β

{
1
α
−

1
ln(1 + α)

}]
Bn

g(βp) = eβp No analytical solution

f(αp) = eαp

p(x) =
1
α

ln
1

(1 − e−α )x + e−α
, K′ =

1 − e−α

α

g(βp) = 1 σ = Bn

g(βp) = 1 + βp σ =

[
1 −

β(1 + α + ea)
α(ea − 1)

]
Bn

g(βp) = eβp σ =




a
1 − e−a

Bn, β = α

1 − eβ−α

(1 − β/a)(1 − e−a)
Bn, β , α

that the pressure is independent of the yield-stress growth
function, which affects only the semi-width σ of the unyielded
core. It turns out that only in the particular case where f is
linear and g is exponential there is no analytical solution. From
Eq. (69), it is deduced that for flow to occur, it must be σ < 1,
and thus the critical number below which flow occurs is

Bnc2 =
1∫ 1

0
g(βp) dx

. (72)

It is also evident from Eq. (67) that in the case of a flat channel,
Bnc1 vanishes.

IV. FLOW IN A CHANNEL WITH LINEARLY VARYING
UPPER WALL

In this section, we consider the flow in a channel with
walls described by

h1 = 0, h2 = 1 + ∆hx, (73)

where ∆h is a constant; hence, the upper wall may be diverging
(∆h > 0), flat (∆h = 0), or converging (∆h < 0). The positions of
the two yield surfaces [Eqs. (36) and (37)] are then simplified
as follows:

σ1(x) =
(
1 +

1
2n

)
(1 + ∆hx) −

C
2

(74)

and

σ2(x) = −
1

2n
(1 + ∆hx) +

C
2

. (75)

Therefore, σ1(x) is increasing, while σ2(x) is decreasing down-
stream in a diverging channel and vice versa in a converging
channel. As shown in Sec. III and also in Ref. 1, in the symmet-
ric case of a horizontal channel with two parallel walls, the two
yield surfaces are also horizontal.

In order to simplify the resulting solution expressions for
this particular flow, we introduce a constant A, replacing the
constant C by means of

A ≡
1
∆h

(
1 −

C
2 + 1/n

)
⇔ C = (2 + 1/n)(1 − ∆hA). (76)

Equation (49) for this particular geometry gives

(2 + 1/n)(1 − ∆hA) = 2Bn
∫ 1

0
g(βp)dx + (1 + 1/n)*

,
1 + ∆h

∫ 1

0
pdx+

-
(77)

or
1 − [(2 + 1/n)A + (1 + 1/n)I(A)]∆h = 2Bn

∫ 1

0
g(βp)dx, (78)

where

I(A) ≡
∫ 1

0
pdx. (79)

Expressions (74) and (75) for the two yield surfaces now
become

σ1(x) =
(
1 +

1
2n

)
∆h(A + x) (80)
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and

σ2(x) = 1 − ∆hA −
1

2n
∆h(A + x). (81)

In this case, ODE (25) for the pressure can be written as

px
f(αp)

= −
K′

(A + x)n+1
, (82)

where

K′ =
(1 + 1/n)n(vcx )n

(1 + 1/2n)n+1(∆h)n+1
. (83)

It is easily seen that once K′ is calculated, the velocity of the
unyielded core in the x-direction can be found,

vcx =
[(1 + 1/2n)∆h]1+1/nK′1/n

1 + 1/n
. (84)

In the general case, for given functions f and g, the pressure
p(x) and the constant K′ can be found by integrating Eq. (82)
and applying the boundary conditions (26). The constant A is
computed numerically solving Eq. (78) where the integral of
the RHS as well as I(A) is also computed numerically. Then σ1
and σ2 are computed by means of Eqs. (80) and (81), respec-
tively. The component vcx is given by Eq. (84), whereas from
Eq. (29), we get

vcy =
σ1x + (1 + 1/n)h1x

2 + 1/n
vcx =

(1 + 1/2n)∆h
2 + 1/n

vcx ⇒ vcy =
∆h
2
vcx . (85)

We observe that the ratio vcy/v
c
x depends only on ∆h, i.e., it

is independent of the material parameters. Finally, the two
velocity components in the two yielded regimes are calculated
by means of Eqs. (53) and (54).

Explicit expressions for the pressure p(x) and the constant
K′ can be derived when the consistency-index growth func-
tion f is linear or exponential. These expressions are tabulated
in Table II. It should be noted that the effects of the yield-
stress growth parameter β and the Bingham number Bn are
incorporated in the value of the constant A. The integral I(A)
can be calculated analytically only in the case where f is unity
(constant consistency index),

I(A) =




A[(A + 1) ln(1 + 1/A) − 1],

(A + 1)(1 + 1/A)n−1
− A − n

(n − 1)
[
(1 + 1/A)n − 1

] ,
n = 1

n , 1
. (86)

An analytical expression for Eq. (78) can be derived only in the
case of linear g, i.e., g(βp) = 1 + βp,

1 − [(2 + 1/n)A + (1 + 1/n)I(A)]∆h = 2Bn[1 + βI(A)]. (87)

As noted above, the unyielded core expands downstream in
the case of a converging channel and contracts in the diverg-
ing channel. As a result, the present lubrication method is
applicable only in a range of ∆h values,

(∆h)min < ∆h < (∆h)max. (88)

TABLE II. Analytical solutions for the pressure p(x), the constant K′, and vcx for a
Herschel-Bulkley fluid and different forms of the consistency-index growth function f
in the case of a channel with linearly varying wall (h1 = 0, h2 = 1 + ∆hx). The constant
A is computed numerically solving Eq. (78).

K′ =
n

1/An − 1/(A + 1)n

f(αp) = 1 p(x) =

(
A + 1
A + x

)n
− 1

(1 + 1/A)n − 1

vcx =
n1/n[(1 + 1/2n)∆h]1+1/n

(1 + 1/n)
[
1/An − 1/(A + 1)n

] 1/n

K′ =
n ln(1 + α)/α

1/An − 1/(A + 1)n

f(αp) = 1 + αp p(x) =
1
α

{
(1 + α)[(A+1)n/(A+x)n−1]/[(1+1/A)n−1] − 1

}
vcx =

[(1 + 1/2n)∆h]1+1/n

1 + 1/n

[
n ln(1 + α)/α

1/An − 1/(A + 1)n

] 1/n

K′ =
n(1 − e−α )/α

1/An − 1/(A + 1)n

f(αp) = eαp p(x)= −
1
α

ln
{

1 − (1 − e−α )
[(
A + 1
A + x

)n
− 1

]
/

[
(1 + 1/A)n − 1

]}

vcx =
[(1 + 1/2n)∆h]1+1/n

1 + 1/n

[
n(1 − e−α )/α

1/An − 1/(A + 1)n

] 1/n

The lower bound is the critical value at which no flow can
occur in a converging channel: the expanding core touches
the wall at the outlet and breaks at the inlet plane, i.e.,
σ1(0) = 1/2 and σ1(1) = 0. From Eq. (80), we get A = −1 and

(∆h)min = −
1

1 +
1

2n

. (89)

The upper bound is the critical value at which the contracting
unyielded core in an expanding channel breaks at the outlet
plane, while it touches the wall at the inlet plane, i.e., σ1(0) = 0
and σ1(1) = (1 + ∆h)/2. In this case, Eq. (80) yields A = 0 and

(∆h)max =
1

1 + 1/n
. (90)

In Bingham-plastic flow (n = 1), −2/3 < ∆h < 1/2.

A. Critical Bingham numbers
In the case of a diverging channel (∆h > 0), σ1(x) is

increasing, while σ2(x) is decreasing downstream. Therefore,
the plug breaks at xc = 1 and Cc = (1 + 1/n)(1 + ∆h), which gives

Ac =
1 − (1 + 1/n)∆h

(2 + 1/n)∆h
. (91)

The first critical Bingham number is given by
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Bnc1 =
(1 + 1/n)∆h(1 − Ic)

2
∫ 1

0
g(βp)dx

, (92)

where

Ic ≡ I(Ac) =
∫ 1

0
pc(x) dx. (93)

The flow stops when the two yield surfaces touch the walls at
the inlet plane, xw = 0. In this case, Cw = 2 + 1/n, which gives
Aw = 0. For the second critical Bingham number, we get

Bnc2 =
1

2
∫ 1

0
g(βpF)dx

, (94)

where pF is the pressure corresponding to a flat channel (of
unit width). It should be noted that the integrals ∫ 1

0 g(βpF)dx
have been already calculated in Table I, in order to derive
the analytical expressions for the yield point σ. By means of
Eq. (69), these can simply be deduced from Table I as the ratios
σ/Bn. For example, when f = g = 1 + x,∫ 1

0
g(βpF)dx = 1 − β

[
1
α
−

1
ln(1 + α)

]
(95)

and therefore

Bnc2 =
1

2
{

1 − β
[

1
α
−

1
ln(1 + α)

]} . (96)

Similarly, for a converging channel (∆h < 0), σ1(x) is decreas-
ing, while σ2(x) is increasing and thus the plug breaks at
xc = 0, Cc = 1 + 1/n, and

Ac =
2

(2 + 1/n)∆h
. (97)

Hence

Bnc1 =
(1 + 1/n)(−∆h)Ic

2
∫ 1

0
g(βp)dx

. (98)

The flow stops when the two yield surfaces touch the wall at
the exit plane, xw = 1, which yields Cw = (2 + 1/n)(1 + ∆h) and
Aw = −1. Finally, the second critical Bingham number is given
by

Bnc2 =
1 + ∆h

2
∫ 1

0
g(βpF)dx

. (99)

V. NUMERICAL RESULTS
All the results of this section have been obtained solving

Eq. (51) numerically by means of central finite differences and
considering only the Bingham-plastic case (n = 1) allowing only
one of the two rheological parameters to vary linearly with
pressure. The interval [0,1] has been partitioned uniformly
using 1001 nodes. In the case of a linearly varying channel,
the numerical results were found to be in excellent agree-
ment with the semi-analytical solution derived in Sec. IV. It

FIG. 2. Critical Bingham numbers for Bingham flow (n = 1) in an asymmetric con-
verging channel (h1 = 0, h2 = 1 + ∆h, ∆h < 0) for α = 0 (pressure-independent
plastic viscosity).

should be noted that the latter solution requires the numerical
solution of Eq. (78) for the constant A, which is not a straight-
forward task. In the case of linear g, we experimented with an
iterative calculation of this constant by means of

A(m+1) =
1 + 2Bn

[
1 + βI(A(m))

]
− (1 + 1/n)I(A(m))∆h

2 + 1/n
, m = 0, 1, . . . ,

(100)

which is obtained by re-arranging Eq. (87). The numerical
experiments showed that the above iterative method works
very well except only when the Bingham number approaches
Bnc2. However, in these flows, the numerical method also

FIG. 3. Critical Bingham numbers for Bingham flow (n = 1) in an asymmetric diverg-
ing channel (h1 = 0, h2 = 1 + ∆h, ∆h > 0) for α = 0 (pressure-independent plastic
viscosity).
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FIG. 4. Pressure distributions in Bingham flow (n = 1) in an asymmetric linearly
varying channel with pressure-independent rheological parameters (α = β = 0)
and Bn = 0.2 for different values of ∆h.

FIG. 5. Effect of ∆h on the contours of the two velocity components (ux in
the left and uy in the right column) in a linearly varying channel for Bn = 0.2,
n = 1 (Bingham plastic), and α = β = 0 (constant plastic viscosity and yield stress):
(a) ∆h = 0.2 (diverging channel), (b) ∆h = 0 (flat channel), and (c) ∆h = −0.2
(converging channel). The unyielded region is shaded.

encounters difficulties due to the very high pressure gradi-
ents in the regions where the unyielded core approaches the
wall. These are resolved by means of finer partitions of the
flow domain and parameter continuation.

In Fig. 2, we plot the critical Bingham numbers versus
the yield-stress growth parameter β for different values of ∆h
in the case of flow of a Bingham fluid (n = 1) with pressure-
independent plastic viscosity (α = 0) in a linearly converging
channel (∆h < 0). It can be observed that the applicability win-
dow of the method becomes narrower as ∆h tends toward the
critical value of −2/3. In a diverging channel, Bnc2 is indepen-
dent of ∆h, as indicated also by Eq. (94). It is illustrated in Fig. 3
that as ∆h tends to (∆h)max = 1/2, Bnc1 increases approaching
Bnc2 and limiting the applicability of the method. We can also

FIG. 6. Inlet (solid) and outlet (dashed) velocity profiles in the case of flow of a
Bingham plastic (n = 1) in linearly diverging channel with ∆h = 0.2 when Bn = 0.2
and α = β = 0 (constant plastic viscosity and yield stress): (a) ux and (b) uy .
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see in Figs. 2 and 3 that as ∆h goes to zero (flat channel), Bnc1
tends to zero.

Figure 4 shows the pressure distributions for Bn = 0.2,
α = β = 0, and ∆h = −0.2, 0 and 0.2. The pressure is linear in
the case of a flat channel. In a converging channel, the pres-
sure distribution is concave and the pressure gradient tends to
zero at the inlet and to infinity at the outlet as ∆h approaches
the critical value of −2/3 at which the unyielded core touches
the wall at the outlet plane and the flow ceases. In a diverging
channel, the pressure distribution is convex and the pres-
sure gradient tends to zero at the outlet and to infinity at
the inlet as ∆h approaches the critical value of 1/2 at which
the unyielded core touches the wall at the inlet plane and the

FIG. 7. Inlet (solid) and outlet (dashed) velocity profiles in the case of flow of a
Bingham plastic (n = 1) in linearly converging channel with ∆h = −0.2 when Bn
= 0.2 and α = β = 0 (constant plastic viscosity and yield stress): (a) ux and (b) uy .

flow ceases. The velocity contours for the three geometries
considered in Fig. 4 are shown in Fig. 5, where the shaded
regions correspond to the unyielded core. The contours for 19
equidistant values in the range of the corresponding variable
are drawn in all cases. As dictated by the analysis of the pre-
vious sections, the unyielded core in a flat channel is flat and
converges in a diverging channel and vice versa. It should be
noted that the horizontal velocity of the core is 0.0600, 0.045,
and 0.030 for ∆h = 0.2, 0, and −0.2, respectively, whereas the
corresponding values of the transverse velocity are 0.0060, 0,
and −0.0030, as dictated by Eq. (85). The absence of trans-
verse velocity contour lines in the lower part of the upper
yielded region indicates that the variation of this component
is small there. Figures 6 and 7 show the profiles of the two
velocity components at the inlet and the outlet planes for a
Bingham plastic (n = 1) with constant rheological parameters
(α = β = 0) for ∆h = 0.2 and −0.2, respectively. We observe that
the distributions of uy are characterized by a global extremum
above the unyielded core, which is slightly higher than the
positive core velocity in the diverging channel (Fig. 6) and
slightly lower than the negative core velocity in the converging
channel (Fig. 7).

The effect of the Bingham number on the pressure dis-
tribution in the case of a converging channel with ∆h = −0.2
is illustrated in Fig. 8. Again, the rheological parameters are
assumed to be pressure independent (α = β = 0). As the
Bingham number increases from Bn = Bnc1 = 0.1118 toward
Bnc2 = 0.4, the pressure gradient tends to zero near the
inlet and to infinity near the exit. The velocity contours for
Bn = Bnc1, 0.25, and 0.35 are given in Fig. 9.

The effect of the plastic-viscosity growth number α for
Bn = 0.25 and β = 0 on the pressure distribution is illustrated
in Fig. 10. The values of α were taken to be rather high in
order to magnify the effect of the parameter. As α increases,
the pressure distribution tends to become linear, while the

FIG. 8. Pressure distribution in Bingham flow (n = 1) in an asymmetric converging
channel with ∆h = −0.2 for various Bingham numbers and α = β = 0 (pressure-
independent rheological parameters).
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FIG. 9. Effect of the Bingham number on the contours of the two velocity compo-
nents (ux in the left and uy in the right column) in a linear channel for ∆h = −0.2,
n = 1 (Bingham plastic), and α = β = 0 (constant plastic viscosity and yield stress):
(a) Bn = Bnc1 = 0.1118, (b) Bn = 0.25, and (c) Bn = 0.35. The unyielded region is
shaded.

FIG. 10. Pressure distribution in Bingham flow (n = 1) in an asymmetric converging
channel with ∆h = −0.2, for Bn = 0.25, constant yield stress ( β = 0) and different
values of α.

unyielded core expands slightly, as can be observed in Fig. 11,
where the velocity contours for the three cases of Fig. 10 are
shown.

The effect of the yield-stress growth number β for Bn
= 0.25 and α = 0 is illustrated in Fig. 12. Again, rather high val-
ues of β are used, in order to enhance the differences. The
effect of β is similar to that of the Bingham number, i.e., the
pressure gradient increases very rapidly near the exit plane,
and the unyielded core expands to eventually touch the walls
at the exit (Fig. 13).

Results have also been obtained for geometries with non-
linear wall functions. Figures 14 and 15 show results obtained
in a channel described by

h1(x) = 0.02 sin(2πx), h2(x) = 1 − 0.02 sin(2πx) − 0.2x, (101)

with Bn = 0.2, a = 0, and three values of the yield-stress growth
coefficient, i.e., β = 0, 0.5, and 1. The pressure distributions are
similar to those obtained for a linearly converging slide. How-
ever, the transverse velocity contours exhibit more interesting
features. This is also the case with similar geometries, such as

FIG. 11. Effect of α on the contours of the two velocity components (ux in the left
and uy in the right column) in a converging channel (∆h = −0.2) for Bn = 0.25,
n = 1 (Bingham plastic), β = 0 (constant yield stress): (a) α = 0 (constant
consistency index), (b) α = 1, and (c) α = 10. The unyielded region is shaded.
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FIG. 12. Pressure distribution in Bingham flow (n = 1) in an asymmetric converging
channel with ∆h = −0.2, for Bn = 0.25, constant plastic viscosity (α = 0) and
different values of β.

FIG. 13. Effect of β on the contours of the two velocity components (ux in the left
and uy in the right column) in a converging channel (∆h = −0.2) for Bn = 0.25, n
= 1 (Bingham plastic), α = 0 (constant plastic viscosity): (a) β = 0 (constant yield
stress), (b) β = 0.2, and (c) β = 0.5. The unyielded region is shaded.

FIG. 14. Pressure distribution in Bingham flow (n = 1) in an asymmetric converging
channel described by Eq. (101) for Bn = 0.2, constant plastic viscosity (α = 0), and
β = 0, 0.5, and 1.

FIG. 15. Effect of β on the contours of the two velocity components (ux in the left
and uy in the right columns) in an asymmetric channel described by Eq. (101) for
Bn = 0.2, n = 1 (Bingham plastic), and α = 0 (constant plastic viscosity): (a) β = 0
(constant yield stress), and (b) β = 0.5, and (c) β = 1. The unyielded region is
shaded.
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FIG. 16. Pressure distribution in Bingham flow (n = 1) in an asymmetric converging
channel described by Eq. (102) for Bn = 0.2, constant plastic viscosity (α = 0), and
β = 0, 0.2, and 0.4.

FIG. 17. Effect of β on the contours of the two velocity components (ux in the left
and uy in the right columns) in an asymmetric channel described by Eq. (102) for
Bn = 0.2, n = 1 (Bingham plastic), and α = 0 (constant plastic viscosity): (a) β
= 0 (constant yield stress), (b) β = 0.2, and (c) β = 0.4. The unyielded region is
shaded.

that with

h1(x) = 0.1 sin(2πx), h2(x) = 1 − 0.1 sin(2πx) − 0.2x. (102)

The results in Figs. 16 and 17 have been obtained for β = 0, 0.2,
and 0.4. It can be observed in Fig. 17, where the unyielded core
is shown together with the velocity contours, that the value of
the Bingham number (Bn = 0.2) is close to Bnc1 when β = 0 and
gets closer to Bnc2 when β = 0.4, which simply means that the
range of Bingham numbers in which the method is applica-
ble is reduced with the yield-stress growth parameter. Recall,
however, that the values of β have intentionally been chosen
to be high in order to enhance the effects of this parameter.

VI. CONCLUSIONS
We have extended the lubrication approximation method

of Fusi et al.2 to analyze the flow of a Herschel-Bulkley fluid
with pressure-dependent rheological parameters in a long,
asymmetric channel described by two wall functions h1(x) and
h2(x), under the assumption that the unyielded core extends
from the inlet to the outlet plane of the channel. At zero order,
the pressure obeys a first-order integrodifferential equation,
which is numerically solved in the general case. Then the posi-
tions of the lower and upper yield surfaces as well as the two
velocity components are calculated via closed-form analyti-
cal expressions. The applicability of the method is restricted
to channels where the sum h1(x) + h2(x) is a linear function of
x and for Bingham numbers between the two critical values
corresponding to the breaking of the plug region and to the
complete cessation of the flow.

Our analysis revealed that unlike the symmetric case, the
transverse velocity of the unyielded core is nonzero. More-
over, the widths of the lower and upper yielded regions are
equal for any x and increase with the width of the channel,
which implies that the width of the unyielded core increases
if the width of the channel decreases and vice versa. The vari-
ation of the width of the unyielded core is enhanced by shear
thinning and is independent of the other material and flow
parameters.

Currently, we are exploring the possibility of apply-
ing the present model to non-inertial flows of single-phase
yield-stress fluids along an asymmetric fracture11 and to the
upstream flow in sheet- or wire-coating.12

ACKNOWLEDGMENTS
Iasonas Ioannou gratefully acknowledges the support of

the Onassis Foundation.

REFERENCES
1P. Panaseti, Y. Damianou, G. C. Georgiou, and K. D. Housiadas, “Pressure-
driven flow of a Herschel-Bulkley fluid with pressure-dependent rheologi-
cal parameters,” Phys. Fluids 30, 030701 (2018).
2L. Fusi, A. Farina, F. Ross, and S. Roscani, “Pressure-driven lubrication flow
of a Bingham fluid in a channel: A novel approach,” J. Non-Newtonian Fluid
Mech. 221, 66–75 (2015).
3C. Barus, “Isothermals, isopiestics and isometrics relative to viscosity,” Am.
J. Sci. 45, 87–96 (1893).

Phys. Fluids 31, 023106 (2019); doi: 10.1063/1.5087654 31, 023106-14

Published under license by AIP Publishing

https://scitation.org/journal/phf
https://doi.org/10.1063/1.5002650
https://doi.org/10.1016/j.jnnfm.2015.04.005
https://doi.org/10.1016/j.jnnfm.2015.04.005
https://doi.org/10.2475/ajs.s3-45.266.87
https://doi.org/10.2475/ajs.s3-45.266.87


Physics of Fluids ARTICLE scitation.org/journal/phf

4I. R. Ionescu, A. Mangeney, F. Bouchut, and O. Roche, “Viscoplastic mod-
eling of granular column collapse with pressure-dependent rheology,”
J. Non-Newtonian Fluid Mech. 219, 1–18 (2015).
5J. Hermoso, F. Martinez-Boza, and C. Gallegos, “Combined effect of pres-
sure and temperature on the viscous behaviour of all-oil drilling fluids,”
Oil Gas Sci. Technol. - Rev. IFP Energies Nouv. 69, 1283–1296 (2014).
6I. A. Frigaard and D. P. Ryan, “Flow of a visco-plastic fluid in a channel of
slowly varying width,” J. Non-Newtonian Fluid Mech. 123, 67–83 (2004).
7A. Putz, I. A. Frigaard, and D. M. Martinez, “On the lubrication paradox and
the use of regularization methods for lubrication flows,” J. Non-Newtonian
Fluid Mech. 163, 62–77 (2009).

8K. D. Housiadas, I. Ioannou, and G. C. Georgiou, “Lubrication solution of the
axisymmetric Poiseuille flow of a Bingham fluid with pressure-dependent
rheological parameters,” J. Non-Newtonian Fluid Mech. 260, 76–86 (2018).
9L. Fusi and A. Farina, “Peristaltic axisymmetric flow of a Bingham plastic,”
Appl. Math. Comput. 320, 1–15 (2018).
10L. Fusi, “Channel flow of viscoplastic fluids with pressure-dependent
rheological parameters,” Phys. Fluids 30, 073102 (2018).
11A. Roustaei, T. Chevalier, L. Talon, and I. A. Frigaard, “Non-Darcy effects
in fracture flows of a yield stress fluid,” J. Fluid Mech. 805, 222–261 (2016).
12M. M. Denn, Polymer Melt Processing (Cambridge University Press,
Cambridge, 2008).

Phys. Fluids 31, 023106 (2019); doi: 10.1063/1.5087654 31, 023106-15

Published under license by AIP Publishing

https://scitation.org/journal/phf
https://doi.org/10.1016/j.jnnfm.2015.02.006
https://doi.org/10.2516/ogst/2014003
https://doi.org/10.1016/j.jnnfm.2004.06.011
https://doi.org/10.1016/j.jnnfm.2009.06.006
https://doi.org/10.1016/j.jnnfm.2009.06.006
https://doi.org/10.1016/j.jnnfm.2018.06.003
https://doi.org/10.1016/j.amc.2017.09.017
https://doi.org/10.1063/1.5042330
https://doi.org/10.1017/jfm.2016.491

