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ABSTRACT

The effect of wall slip on the apparent flow curves of viscoplastic materials obtained using torsional parallel plate rheometers is analyzed by
considering Herschel–Bulkley fluids and assuming that slip occurs above the slip yield stress sc, taken to be lower than the yield stress, s0.
When the rim shear stress sR is below sc, the exerted torque is not sufficient to rotate the disk. When sc < sR � s0 the material is still
unyielded but exhibits wall slip and rotates as a solid at half the angular velocity of the rotating disk. Finally, when sR > s0, the material
exhibits slip everywhere and yields only in the annulus r0 � r � R, where r0 is the critical radius at which the shear stress is equal to the yield
stress and R is the radius of the disks. In the general case, the slip velocity, which varies with the radial distance, can be calculated numerically
and then all quantities of interest, such as the true shear rate, and the two branches of the apparent flow curve can be computed by means of
closed form expressions. Analytical solutions have also been obtained for certain values of the power-law exponent. In order to illustrate the
effect of wall slip on the apparent flow curve and on the torque, results have been obtained for different gap sizes between the disks choosing
the values of the rheological and slip parameters to be similar to reported values for certain colloidal suspensions. The computed apparent
flow curves reproduce the patterns observed in the experiments.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0208697

I. INTRODUCTION

Wall slip has attracted considerable attention in the past few dec-
ades since it affects dramatically the stability of several flows of indus-
trial interest and the accuracy of rheological measurements. The reader
is referred to the recent reviews of Hatzikiriakos,1 Cloitre and
Bonnecaze,2 and Malkin and Patlazhan.3 Various slip laws have been
proposed in the literature, which replace the classical no-slip condition
that dictates that fluid particles stick at the wall, i.e., they move with
the same speed as the wall. These laws relate the slip velocity uw,
defined as the relative velocity of the fluid particles with respect to that
of the wall, to the wall shear stress, sw. The most common slip equa-
tion is that proposed by Navier,4

sw ¼ buw; (1)

where b is the slip coefficient. In general, b depends on the fluid and
wall properties, the temperature, the normal stress, and the pressure.1

Equation (1) tends asymptotically to the no-slip boundary condition
when b ! 1 (uw ¼ 0). Its power-law generalization,

sw ¼ bumw ; (2)

where m is the slip exponent, is also widely used,1 e.g., for highly con-
centrated suspensions5 and viscoplastic microgels.6

Most experimental studies have demonstrated that wall slip
occurs only above critical value of the wall shear stress, known as the
slip yield stress, sc

3 (for additional references see Ref. 7). It should be
noted that non-zero slip-yield-stress values have been reported not
only for complex but also for Newtonian fluids.8 The existence and the
physical origin of the slip yield stress have been investigated by several
research groups.9–12

The above slip equations have been extended to account for the
slip yield stress. For example, Eq. (2) is generalized as follows:

uw ¼ 0; sw � sc;

sw ¼ sc þ bumw ; sw > sc:

(
(3)

More complex slip equations involving finite slip yield stress have also
been proposed; see, for example, the non-monotonic slip equations
proposed by Piau and El Kissi13 for certain polymer melts and the
review in Damianou et al.14 It should be noted that for commonly
encountered pastes made of deformable particles (emulsions, micro-
gels, and vesicles),9,11 it has been shown that the material parameters
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m and sc are not independent and that there exist preferred values for
m. The value m ¼ 1 is very often associated with a negligible slip yield
stress, whereas a finite slip yield stress is associated withm ¼ 0:5.

The two-branch nature of slip laws with non-zero slip yield stress
results in different flow regimes in viscometric flows, as described and
rationalized in several early studies.15–17 For example, in simple shear
(plane Couette) flow there is critical speed of the moving plate separat-
ing the no-slip from the slip regime.18 This critical speed depends on
the solvent viscosity, suspension elasticity, and particle radius.16

Additional flow regimes arise in one-dimensional flows, characterized
by two characteristic wall shear rates, e.g., in circular7 and annular19

Couette flows, or in two-dimensional flows, e.g., in pressure-driven
flow in a rectangular duct.20

Of special interest are viscoplastic flows, i.e., flows of materials
with a finite yield stress, sy . These include many classes of materials of
industrial importance, such as pastes, cements, mortars, foams, muds,
food products, etc.21 Ideal yield-stress fluids behave as solids if the
stress is below the yield stress and as fluids otherwise.21 The constitu-
tive equation proposed by Bingham22 is widely used. The scalar form
of this equation is as follows:

_c ¼ 0; s � sy;
s ¼ sy þ l_c; s > sy;

�
(4)

where s is the shear stress, _c is the shear rate, sy is the yield stress, and
l is the plastic viscosity. Equation (4) reduces to the Newtonian consti-
tutive equation when sy ¼ 0. It has been extended by Herschel and
Bulkley23 to

_c ¼ 0; s � sy;
s ¼ sy þ k _cn; s > sy;

�
(5)

where k is the consistency index and n is the power-law exponent or
flow index. By setting sy ¼ 0, Eq. (5) reduces to the power-law model.

There is ample experimental evidence that viscoplastic materials
are prone to wall slip.2 In fact, wall slip may be exhibited below the
yield stress, which implies that the slip yield stress is lower than the yield
stress (sc < sy); see experimental data on hard-sphere colloidal suspen-
sions12 and Carbopol gels,24 as well the literature review provided in Ref.
7. In most cases, the slip yield stress is smaller than the yield stress, due
to the formation of a singular layer of fluid at the wall.9,16 However, slip
above the yield stress has also been observed.11,17 It is clear that different
regimes are encountered in viscoplastic flows with wall slip obeying a
slip law with non-zero slip yield stress. In previous works, a number of
basic viscoplastic flows with wall slip and non-zero slip yield stress have
been analyzed, such as Poiseuille flows in pipes,14 rectangular ducts20

and annuli,19 and the plane18,25 and circular Couette flows.7

The occurrence of wall slip greatly affects the apparent flow
curves in all rheometric flows. Thus, the apparent flow curves are
diameter-dependent in capillary rheometers and gap-dependent in cir-
cular Couette or parallel plate rheometers. Therefore, studying wall
slip is of utmost importance in correcting rheometric data obtained
using different rheometers and geometries in order to determine the
true rheology of materials. Mooney proposed a methodology to ana-
lyze rheological data from capillary and circular Couette rheometers
and derived convenient explicit formulas for the determination of the
slip velocity as a function of wall shear stress.26 Schofield and Scott
Blair derived explicit formulas to calculate the slip velocity from capil-
lary experimental data.27 Subsequently, Schofield derived simple

relations to address and explain discrepancies of flow curves due to
wall slip.28 Oldroyd also proposed a similar methodology for determin-
ing the slip velocity as a function of the wall shear stress and recovering
the true rheological parameters.29 Based on Oldroyd’s ideas,
Ghahramani et al. recently derived expressions for slip analysis of
capillary rheometer data on Herschel–Bulkley fluids.30 Yoshimura and
Prud’homme also analyzed wall slip in Couette and parallel disk visc-
ometers.31 As discussed in Sec. II, in their analysis the slip velocity is
assumed to vary with the wall shear stress and can be determined by
carrying out experiments with two different gap sizes. Kalyon and col-
laborators have also made important contributions regarding wall slip
and viscometric flows and reported flow solutions in various
configurations such as torsional geometries and pressure-driven chan-
nel flow.32–35

All the above analyses are general, i.e., they hold for any fluid,
and have been applied extensively in analyzing experimental data on
polymer melts and solutions as well as on many other complex fluids.1,36

With viscoplastic materials, the shape of the apparent flow curve may
suddenly change at the transitions from the no-yielding to the slip regime
and then to the yielding regime. The data at the transition points may
then be used for determining the slip yield stress and the yield stress.37

Moud et al. have carried out parallel-plate experiments with dif-
ferent gaps in order to characterize the wall slip of colloidal kaolinite
suspensions, using both smooth and rough plates, which correspond to
the no-slip and slip cases, respectively.37 They have identified two slip
regimes below and above the yield stress. In the first regime, the material
slips like an elastic solid and in the latter one the material yields and
flows following a different slip law. The two slip laws were coupled with
the Herschel–Bulkley constitutive equation, and the rheological and slip
parameters have been calculated by numerically fitting all data (corre-
sponding to different gap sizes). The numerical method allows the cor-
rect calculation of the yield stress value, confirmed with data obtained
from parallel-plate, cone-and-plate, and concentric cylinder rheometers.

The flow of a Herschel–Bulkley fluid in a parallel-plate rheometer
in the presence of wall slip with non-zero slip yield stress, which is
lower than the yield stress, has been considered in Ref. 25 under the
assumption that the same slip law applies independently of the yielding
status of the material. As mentioned above, Moud et al. employed dif-
ferent slip laws in yielded and unyielded regions demanding continuity

FIG. 1. Geometry of the torsional parallel plate flow.
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of the slip velocity, which leads to a constraint between the slip parameters
in the two regions, including the slip yield stress.37 Huilgol and Georgiou
formulated the general flow equations and provided analytical solutions
for the special case when n ¼ m ¼ 1 (Bingham plastic flow).25

Extending previous studies,32–35 Quan et al. also studied the tor-
sional flow of a viscoplastic hydrogel with wall slip with zero slip yield
stress and presented both experimental and computational results.38

They reported two flow regimes below and above the critical torque at
which the material yields and derived analytical expressions for the

torque when the material is still unyielded and when the apparent
shear rate is sufficiently large, so that wall slip is considered negligible.
They also discussed the dependence of the slope of the torque as a
function of the apparent rim shear rate on the rheological parameters
and the flow conditions.

The objective of the present work is to analyze the flow in the
general case of a Herschel–Bulkley fluid and to investigate the effects
of the gap size and wall slip on the apparent flow curve, which is more
relevant to experimental studies. An analogous study has been recently

TABLE I. Slip velocities for Newtonian n ¼ 1ð Þ and power-law n ¼ 1=2ð Þ fluids.

Newtonian fluid
s ¼ k _c
sy ¼ 0; n ¼ 1ð Þ

Slip only in rc ¼ Hsc
kX

� r � Rwhen X>Xc ¼ Hsc
kR

m1 ¼ m2 ¼ 1
uw1 ¼ Xr � XcR

1þ b1H=kþ b1=b2
; uw2 ¼ b1

b2
uw1

When b1 ¼ b2 ¼ b; uw ¼ Xr � XcR
2þ bH=k

m1 ¼ m2 ¼ 2

uw1 ¼ 2 Xr � XcRð Þ

1þ ffiffiffiffiffiffiffiffiffiffiffiffi
b1=b2

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ffiffiffiffiffiffiffiffiffiffiffiffi

b1=b2
p� �2

þ 4Hb1
k

Xr � XcRð Þ
r ; uw2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
b1=b2

p
uw1

When b1 ¼ b2 ¼ b; uw ¼ Xr � XcR

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Hb

k
Xr � XcRð Þ

r

m1 ¼ m2 ¼ 1=2

uw1 ¼
4

k
b1H

� �2

Xr � XcRð Þ2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4 1þ b1=b2ð Þ2

� 	 k
b1H

� �2

Xr � XcRð Þ
s2

4
3
5
2 ; uw2 ¼ b1

b2

� �2

uw1

When b1 ¼ b2 ¼ b; uw ¼
4

k
bH

� �2

Xr � XcRð Þ2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8

k
bH

� �2

Xr � XcRð Þ
s2

4
3
5
2

Power-law fluid
s ¼ k _c1=2

sy ¼ 0; n ¼ 1=2

 � Slip only in rc ¼ H

X
sc
k

� �2

� r � Rwhen X>Xc ¼ H
R

sc
k

� �2

m1 ¼ m2 ¼ 1

uw1 ¼ 2 Xr � XcRð Þ

2
ffiffiffiffiffiffiffiffiffiffiffiffi
XcRH

p
b1=kþ 1þ b1=b2


 �
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4b21H Xr � XcRð Þ

k2 2
ffiffiffiffiffiffiffiffiffiffiffiffi
XcRH

p
b1=kþ 1þ b1=b2


 �2
s2

4
3
5
;

uw2 ¼ b1
b2

� �
uw1

The solution for b1 ¼ b2 ¼ b is easily deduced.

m1 ¼ m2 ¼ 1=2 uw1 ¼

k2XcR

b21H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1þ k2

H
1

b21
þ 1

b22

� �" #
Xr
XcR

� 1

� �vuut � 1

2
64

3
75
2

1þ k2

H
1

b21
þ 1

b22

� �" #2 ; uw2 ¼ b1
b2

� �2

uw1

The solution for b1 ¼ b2 ¼ b is easily deduced.
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carried out for the simple shear (plane Couette) flow.18 However, the
basic results for the apparent flow curves, i.e., the plots of the rim shear
stress vs the apparent shear rate, are, of course, equivalent, the charac-
teristics of the two-dimensional flow field and the different flow
regimes that arise in torsional flow are worthy of investigation. The
present analysis differs from that of Moud et al.37 in that the same slip
law is assumed to hold uniformly below and above the yield stress.
Moreover, analytical expressions for the torque are obtained in terms
of the apparent rim shear rate and the determination of the rheological
and slip parameters are discussed.

The equations governing the general flow are presented in Sec. II.
The presence of two critical stress values, i.e., the yield stress and the
slip yield stress, results in the appearance of different flow regimes as
the angular velocity of the rotating disk is increased. In Sec. III, the
flow of a power-law fluid is considered first allowing different slip laws
but with the same slip yield stress along the two disks (thus only the
slip coefficients and the slip exponents may be different). When the
rim shear stress sR ¼ szhðRÞ is below the slip yield stress sc, there is no
wall slip and the standard textbook solution is obtained. Once sR
exceeds sc, wall slip does occur but only in the annulus rc � r � R,
where rc is the radius where szhðrcÞ ¼ sc; the no-slip solution still
holds for 0 � r � rc. In the general case, the slip velocities correspond-
ing to a given radial distance are different and need to be calculated
numerically solving a simple non-linear equation. Closed form expres-
sions in terms of one of the two slip velocities can be obtained for the
other slip velocity, the azimuthal velocity, the true shear rate, and the
shear stress. However, full analytical solutions are obtained for special
cases of the power-law and slip exponents, e.g., for Navier slip, or for
special combinations of the slip exponents. The flow of a Herschel–
Bulkley fluid is considered in Sec. IV. For the sake of simplicity, it is
assumed that the same slip law with non-zero slip yield stress
(sc � sy) applies at the two disks. It should be noted that the upper
disk starts rotating only when the rim shear stress exceeds the slip yield
stress. When sc < sR � sy the material remains unyielded, rotating at
half the angular velocity of the rotating disk, due to wall slip. Once sR
exceeds sy , the material continues to slip everywhere and yields only in
the annulus r0 � r � R, r0 being the yield radius [where
szhðr0Þ ¼ sy]. Again, the slip velocity which varies with the radial dis-
tance is calculated numerically, whereas the azimuthal velocity, the
true shear rate, the shear stress, and the torque can be computed by
means of closed form formulas. Analytical solutions can also be
obtained for special cases of the power-law and slip exponents, e.g., for
Bingham plastics and/or Navier slip. The effect of wall slip on the
apparent flow curve is illustrated by carrying out calculations for differ-
ent gap sizes between the disks and by comparing the computed
apparent flow curves with experimental observations on certain colloi-
dal suspensions. Finally, the conclusions of this work are summarized
in Sec. V.

II. ANALYSIS OF THE FLOW

We consider the steady-state torsional flow between parallel con-
centric disks employing cylindrical coordinates ðr; zÞ, with the origin set
at the center of the bottom disk, as shown in Fig. 1. It is assumed that
the lower disk is fixed and that the upper disk rotates at an angular speed
X around the common symmetry axis, and that the gap H between the
two disks is narrow so that the stress szh for a given radial distance r is
approximately constant,31 i.e., szh ¼ szhðrÞ. Hence, for a given value of
r, the angular velocity uh varies linearly with z. If different slip laws

apply at the two plates, the slip velocities at the two plates are different.
Hence, the boundary conditions at the two disks are

uhðr; 0Þ ¼ uw1ðrÞ and uhðr;HÞ ¼ Xr � uw2ðrÞ; (6)

where uw1ðrÞ and uw2ðrÞ are the slip-velocity functions along the lower
(i ¼ 1) and the upper (i ¼ 2) disk, respectively. It turns out that the
angular velocity uhðr; zÞ is given by

uhðr; zÞ ¼ Xr � uw1ðrÞ � uw2ðrÞ
H

z þ uw1ðrÞ; (7)

which can also be written as follows:

uhðr; zÞ ¼ _caðrÞ �
uw1ðrÞ þ uw2ðrÞ

H

� 

z þ uw1ðrÞ; (8)

where

_ca ¼
Xr
H

(9)

is the apparent shear rate.39 Thus, for the true shear rate one gets

_cðrÞ ¼ _caðrÞ �
uw1ðrÞ þ uw2ðrÞ

H
: (10)

Let us note that the apparent and the true shear rates at the rim
(r ¼ R) are given by

_caR ¼ _caðRÞ ¼
XR
H

; (11)

and

_cR ¼ _caR �
uw1R þ uw2R

H
; (12)

where the subscript R denotes quantities at r ¼ R. It is clear that in
the case of no slip, the apparent shear rate coincides with the true
one,

FIG. 2. Sketch of the gap-size effect (H2 > H1) on the apparent flow curve of a
non-viscoplastic (e.g., power-law) fluid in the presence of wall slip with non-zero slip
yield stress. The dashed lines show the apparent flow curves in the case of zero
slip yield stress.
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_cðrÞ ¼ _caðrÞ; (13)

and the azimuthal velocity is given by

uhðr; zÞ ¼ Xr z
H

¼ _caðrÞz (14)

(hence, _caR and _cR coincide only in the absence of wall slip).
If the same slip law applies at the two plates, Eqs. (8) and (10) are

simplified to31

uhðr; zÞ ¼ _caðrÞ �
2uwðrÞ
H

� 

z þ uwðrÞ; (15)

or

uhðr; zÞ ¼ _caðrÞz þ uwðrÞ 1� 2z
H

� �
; (16)

and

_cðrÞ ¼ _caðrÞ �
2uwðrÞ
H

; (17)

where uwðrÞ is the common slip velocity at the two disks.
The torque, M, required to observe torsional flow at a given

apparent rim shear rate, _caR, is given by

M ¼ 2p
ðR
0
szhðrÞr2dr; (18)

which by means of (9) gives

FIG. 3. Representative apparent flow curves of power-law fluids obtained with three gap heights, H ¼ 0:2mm (o), 0.5 mm (�), and 1mm (�), R ¼ 25mm, k ¼ 1 Pa sn, and
b¼ 1000 Pa sm=mm : (a) n ¼ 1; sc ¼ 0; m ¼ 1 (Newtonian fluid, zero slip yield stress); (b) n ¼ 1; sc ¼ 0:5 Pa; m ¼ 1 (Newtonian fluid, non-zero slip yield stress);
(c) n ¼ 0:5; sc ¼ 0:5 Pa; m ¼ 1 (power-law fluid, non-zero slip yield stress); and (d) n ¼ 1; sc ¼ 0:5 Pa; m ¼ 2 (Newtonian fluid, non-zero slip yield stress). The solid
line is the flow curve in the case of no-slip.
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M ¼ 2pR3

_c3aR

ð _caR
0

szhð _caÞ _c2ad _ca: (19)

Application of Leibniz’s rule leads to the well-known formula for the
rim shear stress sR,

39

sR ¼ M
2pR3

3þ d lnM
d ln _caR

� �
: (20)

Yoshimura and Prud’homme31 showed that in the presence of slip the
true shear rate and thus the viscosity can be determined using data
obtained for two gap heights H1 and H2. Setting r ¼ R in Eq. (17), one
gets

_cR ¼ _caRj �
2uwR

Hj
; j ¼ 1; 2; (21)

and, thus, the rim slip velocity for a given shear stress at the edge of the
upper disk, sR ¼ szhðRÞ, is given by

uwRðsRÞ ¼ _caR1ðsRÞ � _caR2ðsRÞ
2

1
H1

� 1
H2

� � : (22)

The corresponding true shear rate is31

_cRðsRÞ ¼
H1 _caR1ðsRÞ � H2 _caR2ðsRÞ

H1 � H2
: (23)

The above analysis is general, since it holds for any fluid and is inde-
pendent of the slip equations that apply at the two walls. In the next
two sections, we will first consider the flow of a power-law fluid with
different slip equations and then the flow of a Herschel–Bulkley fluid
with the same slip equation holding at the two disks.

III. TORSIONAL FLOWOF A POWER-LAW FLUID

Consider the steady-state torsional flow of a power-law fluid
assuming that different slip laws apply at the two disks:

FIG. 4. Dimensionless rim slip velocities of power-law fluids obtained with three gap heights ðH ¼ 0:2; 0:5; and 1 mmÞ, R ¼ 25mm, k ¼ 1 Pa sn, and b¼ 1000 Pa sm=mm:
(a) n ¼ 1; sc ¼ 0; m ¼ 1 (Newtonian fluid, zero slip yield stress); (b) n ¼ 1; sc ¼ 0:5 Pa; m ¼ 1 (Newtonian fluid, non-zero slip yield stress); (c) n ¼ 0:5; sc ¼ 0:5 Pa; m ¼ 1
(power-law fluid, non-zero slip yield stress); and (d) n ¼ 1; sc ¼ 0:5 Pa; m ¼ 2 (Newtonian fluid, non-zero slip yield stress).
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uwi ¼ 0; swi � sc;

swi ¼ sc þ biu
mi
wi ; swi > sc;

�
i ¼ 1; 2; (24)

where the subscripts 1 and 2 denote quantities corresponding to the
lower and upper disks, respectively. For the sake of simplicity, the value
of the slip yield stress (sc) has been taken to be the same at both disks.
Under these assumptions, two regimes are encountered as the angular
velocity of the rotating disk, or, equivalently, the rim shear stress
sR ¼ szhðRÞ is increased:
(i) When sR � sc, no wall slip is observed and hence one obtains

the standard no-slip solution, given by Eqs. (13) and (14). By
means of the power-law constitutive equation, the shear stress
and the rim shear stress are given by

szhðrÞ ¼ k _cnaðrÞ ¼ k
Xr
H

� �n

; (25)

and

sR ¼ k _cnaR ¼ k
XR
H

� �n

: (26)

The critical angular velocity Xc above which wall slip occurs corre-
sponds to sR ¼ sc, which gives

Xc ¼ H
R

sc
k

� �1=n

: (27)

The corresponding critical apparent shear rate at the rim is

_cac ¼
XcR
H

¼ sc
k

� �1=n

: (28)

By combining Eqs. (18) and (25), the torque in this regime is found to
be

FIG. 5. Contours of the dimensionless velocity uh=ðXRÞ for various angular velocities in the case of Newtonian flow with non-zero slip yield stress, i.e., R ¼ 25mm,
H ¼ 1mm, k ¼ 1 Pa s, sc ¼ 0:5 Pa, b ¼ 1000 Pa s=m, and m ¼ 1: (a) X ¼ Xc ; (b) X ¼ 2Xc ; (c) X ¼ 20Xc ; and (d) X ¼ 200Xc . The critical angular velocity and appar-
ent shear rate are Xc ¼ 0:02 s�1 and _caRc ¼ 0:5 s�1. The dashed line denotes the radius rc , below which no slip occurs.
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M ¼ 2pR3k _cnaR
nþ 3

; _caR � _cac: (29)

(ii) When sR > sc, (or X > Xc), slip does occur but only in the
annulus rc � r � R, where rc is the critical radius at which
szhðrcÞ ¼ sc; in the core cylinder 0 � r � rc, the no-slip solution
still applies, and therefore Eq. (25) yields

rc ¼ H
X

sc
k

� �1=n

: (30)

In summary, the azimuthal velocity and the shear stress are given in
terms of the two slip velocities by

uhðr; zÞ ¼
_caðrÞz; 0 � r � rc;

_caðrÞ �
uw1ðrÞ þ uw2ðrÞ

H

� 

z þ uw1ðrÞ; rc � r � R;

8><
>:

(31)

and

szhðrÞ ¼
k _cna ; 0 � r � rc;

k _caðrÞ �
uw1ðrÞ þ uw2ðrÞ

H

� 
n
; rc � r � R:

8><
>: (32)

Another quantity of interest is the rim shear stress for which we
get

FIG. 6. Contours of the dimensionless velocity uh=ðXRÞ for various angular velocities in the case of the flow of a power-law fluid with non-zero slip yield stress, i.e.,
R ¼ 25mm, H ¼ 1mm, k ¼ 1 Pa s, n ¼ 1, sc ¼ 0:5 Pa, b¼ 1000 Pa sm=mm , and m ¼ 2: (a) X ¼ Xc ; (b) X ¼ 2Xc ; (c) X ¼ 20Xc ; and (d) X ¼ 200Xc . The critical
angular velocity and apparent shear rate are Xc ¼ 0:01 s�1 and _caRc ¼ 0:25 s�1. The dashed line denotes the radius rc , below which no slip occurs.
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sR ¼ k _caR �
uw1R þ uw2R

H

� �n

: (33)

The unknown slip velocities in the annulus rc � r � R are calculated
by means of Eq. (32) and the slip equations (24),

sc þ biu
mi
wi ¼ k _caðrÞ �

uw1ðrÞ þ uw2ðrÞ
H

� 
n
; i ¼ 1; 2: (34)

In the general case when wall slip does occur along the bottom (fixed)
plate, the top slip velocity uw2 is given by

uw2ðrÞ ¼ b1=b2ð Þ1=m2um1=m2
w1 ðrÞ; (35)

and, therefore, the bottom slip velocity at any radial distance can be
found as the solution of

sc þ b1u
m1
w1 ¼ k _caðrÞ �

�
1þ b1=b2ð Þ1=m2um1=m2�1

w1 ðrÞ�uw1ðrÞ
H

" #n
:

(36)

By means of Eqs. (9) and (27), the above equation can also be written
as follows:

b1H
n

k
um1
w1 ¼ Xr � 1þ b1=b2ð Þ1=m2um1=m2�1

w1 ðrÞ
n o

uw1ðrÞ
h in
� Xn

c R
n: (37)

Equation (37) is easily solved using standard methods. Analytical
solutions for the slip velocities can be obtained in some special cases.
Table I shows such solutions for n ¼ 1 (Newtonian fluid) and
n ¼ 1=2. These can also be expressed in terms of the apparent shear
rate _ca by means of ðXr � XcRÞ ¼ Hð _ca � _cacÞ. Similarly, the rim
slip velocities are obtained using ðX� XcÞR ¼ Hð _caR � _cacÞ. When
sc ¼ 0, Xc vanishes and wall slip occurs for any finite angular velocity
and any radial distance [the first branches of Eqs. (31) and (32) are not
relevant].

When the same slip law applies at the two disks, Eq. (34)
becomes

sc þ bumw ¼ k _caðrÞ �
2uwðrÞ
H

� 
n
: (38)

The azimuthal velocity, the shear stress, and the apparent flow curve
when _caR > _cac are, respectively, given by

uhðr; zÞ ¼
_caðrÞz; 0 � r � rc;

_caðrÞ �
2uwðrÞ
H

� 

z þ uwðrÞ; rc � r � R;

8><
>: (39)

szhðrÞ ¼
k _cna ; 0 � r � rc;

k _caðrÞ �
2uwðrÞ
H

� 
n
; rc � r � R;

8><
>: (40)

and

sR ¼
k _cnaR; 0 � _ca � _cac;

k _caR �
2uwR
H

� �n

; _ca > _cac:

8><
>: (41)

Substituting Eq. (40) into Eq. (18) and integrating, one finds the sec-
ond branch of the torque in the case of a power-law fluid,

M¼2pR3

k _cnaR
nþ3

; _ca� _cac;

k
nþ3

_cnþ3
ac

_c3aR
þsc

3
1� _c3ac

_c3aR

 !
þb

1

_c3aR

ð _caR
_cac

umw _c
2
ad _ca; _ca> _cac:

8>>>><
>>>>:

(42)

For the derivative d lnM=d ln _caR one finds

FIG. 7. Velocity contours for (a) a Newtonian fluid and (b) a power-law fluid with
n ¼ 0:5 at different apparent shear rates when wall slip with non-zero slip yield
stress occurs. The material parameters and the contour plots are those provided in
Figs. 5 and 6, respectively.
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d lnM
d ln _caR

¼

n; _ca � _cac;

2pR3

M _c3aR

�3k
nþ 3

_cnþ3
ac þ _c3acsc

�

�3b
ð _caR
_cac

umw _c
2
ad _ca þ b _c3aRu

m
wR

)
; _ca > _cac:

8>>>>>>><
>>>>>>>:

(43)

It is straightforward to show that the torque is differentiable (smooth)
at _caR ¼ _cac.

Figure 2 illustrates the effect of the gap size H on the apparent
flow curve, i.e., the plot of the rim shear stress sR vs the apparent rim
shear rate. The initial branch corresponding to no-slip is the same for
all gap sizes. The slope of the apparent flow curve changes at _cac and is
more pronounced with the smaller gap size. In the special case when
n ¼ m ¼ 1, one finds from Eq. (38) that

uw ¼ k _ca � sc
bþ 2k=H

: (44)

(The above expression is equivalent to the alternative form tabulated
in Table I.) The apparent flow curve in this case is described by

sR ¼
k _caR; 0 � _ca � _cac;

k
_caR þ 2sc=ðbHÞ
1þ 2k=ðbHÞ ; _ca > _cac:

8><
>: (45)

It is clear that the two branches of the apparent flow curve collapse
when sc ¼ 0 and that the slope of the second branch is lower, as illus-
trated in Fig. 2.

To illustrate the gap height effect, we carried out numerical
experiments on hypothetical power-law fluids in a parallel plate rhe-
ometer of radius R ¼ 25mm using three gap heights, i.e., H ¼ 0:2,

FIG. 8. Torque vs the apparent rim shear rate in the case of power-law fluids obtained with three gap heights, H ¼ 0:2mm (o), 0.5 mm (�), and 1mm (�), R ¼ 25mm,
k ¼ 1 Pa sn, and b¼ 1000 Pa sm=mm: (a) n¼ 1, sc ¼ 0, m¼ 1 (Newtonian fluid, zero slip yield stress); (b) n¼ 1, sc ¼ 0.5 Pa, m¼ 1 (Newtonian fluid, non-zero slip yield
stress); (c) n¼ 0.5, sc ¼ 0.5 Pa, m¼ 1 (power-law fluid, non-zero slip yield stress); and (d) n¼ 1, sc ¼ 0.5 Pa, m¼ 2 (Newtonian fluid, non-zero slip yield stress).
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0.5, and 1mm and assuming that k ¼ 1 Pa sn and b¼ 1000 Pa sm=mm.
Figure 3 shows the apparent flow curves obtained in four representa-
tive cases. For a Newtonian fluid [Fig. 3(a)] exhibiting Navier slip,
i.e., zero slip yield stress with m ¼ 1, only one flow regime is
observed. The three apparent flow curves are parallel translations of
the no-slip flow curve. As expected, slip effects become more pro-
nounced as the gap height is reduced. When the slip yield stress is
nonzero, two flow regimes are observed, as in Figs. 3(b) and 3(c).
Below the critical apparent shear rate _cac, all flow curves coincide
with the no-slip flow curve and then exhibit a plateau which is more
visible and longer for smaller gap heights. At higher shear rates, the
flow curves approach asymptotically their counterparts for non-zero
slip yield stress. It should be noted that for a shear thinning fluid
[Fig. 3(c)], the flow curves are not parallel, but they approach asymp-
totically the no-slip flow curve. Finally, the plateau region after _cac is
enhanced when the slip exponentm is greater than unity [Fig. 3(d)].

To visualize the effect of the apparent shear rate (i.e., the angular
velocity X) on the velocity distribution, let us first consider the varia-
tion of the dimensionless rim slip velocity uwR=ðXRÞ for all the cases

TABLE II. Slip velocities and flow curves for Bingham ðn ¼ 1Þ and Herschel–Bulkley ðn ¼ 1=2Þ fluids.

n ¼ m ¼ 1; s ¼ sy þ k _c; sw ¼ sc þ buw

Xy ¼ 2
R

sy � sc
b

� �
; _caRy ¼

2
H

sy � sc
b

� �
; r0 ¼ 2

X

sy � sc
b

� �
; X > Xy

The slip velocity is given by uwðrÞ ¼
Xr
2
; 0 � r � r0;

kXr=H þ sy � sc
bþ 2k=H

; r0 � r � R;

8>><
>>:

uhðr; zÞ ¼
Xr
2
; 0 � r � r0;

kXr=H þ sy � sc
bþ 2k=H

1� 2z
H

� �
þ Xrz

H
; r0 < r � R;

X > Xy

8>><
>>:

sR ¼
sc þ b

H _caR
2

� �
; _caR � _caRy;

k _caR þ sy þ 2ksc=ðbHÞ
1þ 2k=ðbHÞ ; _caR > _caRy:

8>>><
>>>:

n ¼ 1; m ¼ 2; s ¼ sy þ k _c; sw ¼ sc þ bu2w

Xy ¼ 2
R

�sy� sc
b

�1=2
; _caRy ¼

2
H

�sy� sc
b

�1=2
; r0 ¼ 2

X

�sy� sc
b

�2
; X>Xy

sR ¼
sc þ b

�H _caR
2

�2
; _caR � _caRy;

sy þ k _caR �
2uwR
H

� �
; _caR > _caRy;

8>><
>>:

where uwR ¼ 1
bH

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ bH2ðsy � scÞ þ bH2k _caR

q
� k
i

n ¼ 1=2; m ¼ 1; s ¼ sy þ k _c1=2; sw ¼ sc þ buw

Xy ¼ 2
R

sy � sc
b

� �
; _caRy ¼

2
H

sy � sc
b

� �
; r0 ¼ 2

X

sy � sc
b

� �
; X > Xy

sR ¼
sc þ bH

2
_caR; _caR � _caRy;

sy þ k
�
_caR �

2uwR
H

�1=2
; _caR > _caRy;

8>><
>>:

where uwR ¼
�k2 þ bHðsy � scÞ þ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � 2bHðsy � scÞ þ b2H2 _caR

q
b2H

FIG. 9. Sketch of the gap-size effect (H2 > H1) on the apparent flow curve of a vis-
coplastic fluid in the presence of wall slip with non-zero slip yield stress. The dashed
lines show the apparent flow curves in the case of zero slip yield stress.
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of Fig. 3. In the case of a Newtonian fluid with zero slip yield stress,
uwR=ðXRÞ is constant and is reduced as the gap size is increased
[Fig. 4(a)]. With a finite slip yield stress, the relative slip velocity is zero
below the critical apparent shear rate _caRc and then increases rapidly to
converge asymptotically to its zero-slip-yield-stress counterparts
[Fig. 4(b)]. However, this final plateau is observed only with
Newtonian liquids when the slip exponentm is unity. For lower values
of n [Fig. 4(c)] or higher values ofm [Fig. 4(d)], the dimensionless rim
velocity reaches a maximum and then is reduced rapidly as the appar-
ent shear rate is increases. In all cases, the relative slip velocity is
reduced with the gap size.

The effect of the apparent shear rate on the contours of the
dimensionless velocity uh=ðXRÞ when the slip yield stress is non-zero
is illustrated in Figs. 5 and 6, for a Newtonian (n ¼ 1) and a power-
law fluid (n ¼ 0:5). The corresponding no-slip solutions hold up to

the critical angular velocity Xc, and as X is increased slip is observed
only for rc � r � R, where the radius rc vanishes asymptotically. It
can also be observed that, due to wall slip, the dimensionless velocity is
reduced on the upper disk and increases on the lower disk as the
apparent shear rate is increased approaching asymptotically the solid-
body motion. The apparent shear rates corresponding to the contour
plots of Figs. 5 and 6 are shown in Fig. 7 along with the corresponding
apparent flow curves.

The gap-size effects on the plots of the torque vs the apparent rim
shear rate are essentially the same as those on the flow curves. This is
easily deduced by comparing the torque plots in Fig. 8 with the corre-
sponding flow curves shown in Fig. 3. When sc is zero, only one flow
regime is observed [given by the second branch of Eq. (42)], and M is
everywhere gap dependent [Fig. 8(a)]. When sc is non-zero, two
regimes are observed (defined by _cac) and only the first branch of the

FIG. 10. Representative apparent flow curves of Bingham and Herschel–Bulkley fluids obtained with three gap heights, H¼ 0.2 mm (o), 0.5 mm (�), and 1mm (�),
R ¼ 25mm, sy ¼ 2 Pa, k ¼ 1 Pa sn, and b ¼ 10 000 Pa sm=mm: (a) n ¼ 1; sc ¼ 0; m ¼ 1 (Bingham fluid, zero slip yield stress); (b) n ¼ 1; sc ¼ 0:5 Pa; m ¼ 1
(Bingham fluid, non-zero slip yield stress); (c) n ¼ 0:5; sc ¼ 0:5 Pa; m ¼ 1 (Herschel–Bulkley fluid, non-zero slip yield stress); and (d) n ¼ 1; sc ¼ 0:5 Pa; m ¼ 1:2
(Bingham fluid, non-zero slip yield stress). The solid line is the flow curve in the case of no-slip.
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flow curve is gap-independent; see Figs. 8(b)–8(d). Interestingly, the
rheological parameters and the slip yield stress can be determined
from the first branch of the plot of lnM vs ln _caR: the power-law expo-
nent n is simply the slope of this branch and the consistency index k
can be determined fromMc ¼ Mð _cacÞ,

k ¼ ðnþ 3ÞMc

2pR3 _cnac
: (46)

Finally, the slip yield stress can be determined by means of sc ¼ k _cnac.
The other slip parameters, i.e., b and m can be determined from the
second branch, which is gap dependent. If the fluid is not shear-
thinning, M tends asymptotically to its Navier-slip counterpart
[Fig. 8(b)]. Otherwise, it approaches asymptotically the gap-size-inde-
pendent no-slip curve [Fig. 8(c)]. As illustrated in Fig. 8(d), when the
slip exponentm is increased above unity, the second branch of the tor-
que becomes flatter.

IV. TORSIONAL FLOWOF A HERSCHEL–BULKLEY FLUID

In this section, we consider the steady-state torsional flow of a
Herschel–Bulkley fluid, assuming that the same slip law with non-zero
slip yield stress applies along the two plates and that 0 < sc < sy . As
with certain experiments,37,38 three distinct regimes are encountered as
the rim shear stress sR is increased.

(i) If sR � sc the exerted torque is not sufficient to rotate the disk
and the material remains unyielded.

(ii) When sc < sR � sy , the material is still unyielded, but exhibits
slip. From Eq. (6), it is deduced that it rotates as a solid at half
the angular velocity of the disk,

uhðrÞ ¼ Xr
2
; (47)

and the shear stress is given by

FIG. 11. Dimensionless rim slip velocities of Bingham and Herschel–Bulkley fluids obtained with three gap heights ðH ¼ 0:2; 0:5; and 1mmÞ, R ¼ 25mm, sy ¼ 2 Pa,
k ¼ 1 Pa sn, and b¼ 10 000 Pa sm=mm: (a) n ¼ 1; sc ¼ 0; m ¼ 1 (Bingham fluid, zero slip yield stress); (b) n ¼ 1; sc ¼ 0:5 Pa; m ¼ 1 (Bingham fluid, non-zero slip
yield stress); (c) n ¼ 0:5; sc ¼ 0:5 Pa; m ¼ 1 (Herschel–Bulkley fluid, non-zero slip yield stress); and (d) n ¼ 1; sc ¼ 0:5 Pa; m ¼ 1:2 (Bingham fluid, non-zero slip yield
stress).
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szhðrÞ ¼ sc þ b
Xr
2

� �m

¼ sc þ b
H _ca
2

� �m

; 0 � r � R: (48)

Since uwðRÞ ¼ XR=2 ¼ ðH _caR=2Þ, the rim shear stress

sR ¼ sc þ b
H _caR
2

� �m

; (49)

is gap-size dependent. The critical angular speed Xy at which
the material starts yielding is obtained by demanding that
sR ¼ sy , which gives

Xy ¼ 2
R

sy � sc
b

� �1=m

: (50)

Hence, the critical shear rate at the rim is

_caRy ¼
2
H

sy � sc
b

� �1=m

; (51)

and the critical rim slip velocity is

uwRy ¼
sy � sc

b

� �1=m

: (52)

We observe that _caRy decreases with the gap size H in agree-
ment with experimental observations.37

(iii) When sR > sy , the material exhibits slip everywhere but yields
only in the annulus ry � r � R, where ry is the critical radius at
which szh ¼ sy . Hence, for 0 � r � ry the material rotates
unyielded following Eq. (47) and the shear stress is given by

szhðrÞ ¼ sc þ b
Xr
2

� �m

; 0 � r � ry: (53)

By demanding that szh ¼ sy , one finds that

ry ¼ 2
X

sy � sc
b

� �1=m

: (54)

The slip velocity for ry � r � R is found by solving

szh ¼ sc þ bumw ¼ sy þ k _caðrÞ �
2uwðrÞ
H

� 
n
; (55)

which generalizes Eq. (38). The azimuthal velocity is given by

uhðr; zÞ ¼
Xr
2

¼ H _caðrÞ
2

; 0 � r � ry;

_caðrÞ �
2uwðrÞ
H

� 

z þ uwðrÞ; ry � r � R:

8>>><
>>>:

(56)

Then, the apparent flow curve is described by

sR ¼
sc þ b

H _caR
2

� �m

; 0 � _ca � _caRy;

sy þ k _caR �
2uwR
H

� �n

; _ca > _caRy:

8>>>><
>>>>:

(57)

The effect of the gap size on the apparent flow curve is illustrated in
Fig. 9. As predicted by Eq. (51), the critical apparent shear rate _caRy is
also gap-dependent. This fact can be exploited in order to determine
the slip parameters b and m from experimental data obtained using
different gap sizes.

The torque in the two flow regimes is found to be

M ¼ 2pR3

sc
3
þ bHm

2mðmþ 3Þ _c
m
aR; _ca � _caRy;

sc
3

1� 3
mþ 3

_caRy
_caR

 !3
2
4

3
5þ sy

mþ 3

� _caRy
_caR

 !3

þ b

_c3aR

ð _caR
_caRy

umw _c
2
ad _ca; _ca > _caRy:

8>>>>>>>>>>><
>>>>>>>>>>>:

(58)

FIG. 12. (a) Gap size effect on the yield radius ry ; (b) Rim slip velocity as a function
of the yield radius ry for different gap sizes; R ¼ 25mm, sy ¼ 2 Pa, k ¼ 1 Pa sn,
n ¼ 1, sc ¼ 0:5 Pa, b ¼ 10 000 Pa sm=mm, and m ¼ 1. The flow curves and the
slip velocities for this case are those of Figs. 10(b) and 11(b), respectively.
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Quan et al.38 noted that an approximate analytical expression for the
integral term in the second branch of Eq. (58) can be obtained by
assuming that in the yield region ry � r � R the wall slip contribution
to shear stress is negligible, that is,

szh ¼ sc þ bumw ¼ sy þ k _caðrÞ �
2uwðrÞ
H

� 
n
’ sy þ k _cnaðrÞ;

ry � r � R: (59)

Under this assumption, one gets

M ¼ 2pR3 sc
3

_c3aRy
_c3aR

þ bHm

2mðmþ 3Þ
_cmþ3
aRy

_c3aR
þ sy

3
1�

_c3aRy
_c3aR

 !(

þ k
nþ 3

_cnaR 1�
_cnþ3
aRy

_cnþ3
aR

 !)
; _ca > _caRy: (60)

A limitation of the above approximation, however, is that the curve of
lnM vs ln _caR is not differentiable at _ca ¼ _caR.

Some special analytical solutions for the slip velocity and the rim
shear stress are tabulated in Table II. Equivalent expressions for the
flow curves have also been obtained for the case of simple shear flow.18

It is straightforward to express these results in terms of the apparent
shear rate, by means of ðXr � XyRÞ ¼ Hð _ca � _caRyÞ. For example,
when n ¼ m ¼ 1, the solution of Eq. (55) is

uw ¼ k _ca þ sy � sc
bþ 2k=H

; (61)

by means of which one gets the following expression for the apparent
flow curve:

sR ¼
sc þ b

H _caR
2

� �
; 0 � _ca � _caRc;

k _caR þ sy þ 2ksc=ðbHÞ
1þ 2k=ðbHÞ ; _ca > _caRc:

8>>><
>>>:

(62)

FIG. 13. Contours of the dimensionless velocity uh=ðXRÞ for various angular velocities in the case of Bingham flow with non-zero slip yield stress, i.e., R ¼ 25mm,
H ¼ 1mm, k ¼ 1 Pa s, sy ¼ 2 Pa, sc ¼ 0:5 Pa, b ¼ 10000 Pa s=m, and m ¼ 1: (a) X ¼ Xy ; (b) X ¼ 2Xy ; (c) X ¼ 20Xy ; and (d) X ¼ 200Xy . The critical angular veloc-
ity and apparent shear rate are Xy ¼ 0:012 s�1 and _caRy ¼ 0:3 s�1. The dashed line denotes the yield surface.
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Referring to Fig. 9, the slopes of the two branches are bH=2 and
1=½1=kþ 2=ðbHÞ�, respectively. Obviously, both slopes increase with
the gap size. Extrapolating the second branch to _caR ¼ 0 leads to an
expression relating the slip parameters with the rheological ones.
Setting sc ¼ 0 leads to the zero-slip-yield-stress dashed curves of
Fig. 9. In case sc ¼ sy , then _caRy ¼ 0 and the apparent flow curve con-
sists of a single branch the slope of which is lower than that corre-
sponding to the no-slip apparent flow curve.

Figure 9 shows representative apparent flow curves obtained
from numerical experiments on Herschel–Bulkley fluids exhibiting
wall slip. To illustrate the effect of the gap height we consider again a
real parallel plate rheometer with H ¼ 0:2, 0.5, and 1mm and assume
that sy ¼ 2 Pa and sc ¼ 0 or 0.5 Pa (the slip yield stress is lower than
the yield stress). Two flow regimes are observed. The first one corre-
sponds to solid-body rotation (the material is unyielded) and in the
second, the material is partially yielded far from the symmetry axis. If
the slip yield stress is zero [Fig. 10(a)], the shear stress increases rapidly

with the apparent shear rate and at the critical apparent shear rate
where the yield stress is reached the flow curve passes through a pla-
teau and eventually it increases again rapidly approaching asymptoti-
cally the no-slip flow curve. It is clear that the stress corresponding to
the plateau of the flow curve provides an estimate for the yield stress of
the material. Moreover, the values of the critical apparent shear rate
_caRy at which the plateau starts for the different gap heights can be
used to obtain initial estimates of the slip parameters b and m, by
means of Eq. (51). In the case of non-zero slip yield stress [Figs. 10(b)–
10(d)], the apparent flow curve is characterized by two plateaus, the
levels of which provide good estimates of sc and sy . The first plateau,
which is below the material yield stress, is referred to as “dynamic yield
stress.”40

When slip yield stress is nonzero, gap-size effects appear to be
important only in an intermediate range of apparent shear rates, which
includes the critical apparent shear rate _caRy ¼ 0. It can be observed in
Figs. 10(b)–10(d) that the apparent flow curves for different gap sizes

FIG. 14. Contours of the dimensionless velocity uh=ðXRÞ for various angular velocities in the case of Herschel–Bulkley flow with non-zero slip yield stress, i.e., R ¼ 25mm,
H ¼ 1mm, n ¼ 0:5, k ¼ 1 Pa s, sy ¼ 2 Pa, sc ¼ 0:5 Pa, b ¼ 10000 Pa s=m, and m ¼ 1: (a) X ¼ Xy ; (b) X ¼ 2Xy ; (c) X ¼ 20Xy ; and (d) X ¼ 200Xy . The critical
angular velocity and apparent shear rate are Xy ¼ 0:012 s�1 and _caRy ¼ 0:3 s�1. The dashed line denotes the yield surface.
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tend to merge at low and high apparent shear rates, in agreement with
experimental data on colloidal suspensions.40,41

The variation of the dimensionless rim slip velocity with the
apparent shear rate in the case of yield stress fluids is quite different
from that of the power-law fluids discussed in Fig. 4. This is due to the
presence of the solid-body rotation regime where the slip velocity is at
maximum, i.e., uwR=ðXRÞ ¼ 1=2. As illustrated in Fig. 11, where the
slip velocities for the cases considered in Fig. 10 are plotted, beyond
the critical shear rate _caRc, the slip velocity reduces rapidly and then
tends asymptotically to a constant value, which increases as the gap
size is reduced. The reduction of the dimensionless slip velocity is
much faster with shear thinning fluids [Fig. 11(c)] and no plateau is
reached when n < 1. This reduction is also slower when the slip expo-
nentm is greater than unity [Fig. 11(d)].

The yield radius ry in the yielding regime (_ca � _caRy) is inversely
proportional to the gap height, as dictated by Eq. (54), which can also
be written in the following form:

ry
R
¼ 2

_caRH

sy � sc
b

� �1=m

: (63)

A representative plot showing the effect of the gap height H on the
yield radius is provided in Fig. 12(a), where the parameter values are
those of the flow curves depicted in Fig. 10(b). It is clear that the rim
slip velocity is reduced as more material becomes yielded. The varia-
tion of the rim slip velocity with the yield radius is shown in Fig. 12(b).
The maximum of the rim slip velocity (1/2) obviously occurs when the
fluid is unyielded (ry=R is unity).

Figures 13 and 14 show the dimensionless velocity contours at
different apparent shear rates for a Bingham plastic and a Herschel–
Bulkley fluid with n ¼ 0:5, respectively, in the case of non-zero slip
yield stress. Below the critical apparent shear rate _caRy, the material
rotates as a solid. Above _caRy, the material yields only in the region
ry � r � R, which causes the relative velocity uh=ðXRÞ to increase at
the top plate and to reduce at the lower plate, since the relative slip
velocity is reduced. This effect is opposite to that observed with the
power-law fluids in Figs. 5 and 6. As a result, the velocity contours in
the yielded region are bended to the right and the relative velocity at
the rim increases. The values of the apparent shear rates used for the
contours plots of Figs. 13 and 14 are shown in Fig. 15 along with the
corresponding apparent flow curves.

Finally, Fig. 16 shows the calculated torques vs the apparent rim
shear rates obtained for the three gap sizes and the geometric and
material parameters used for the flow curves shown in Fig. 10. As
already noted both branches of the resulting curves are gap dependent
in contrast to the power-law fluids. When the slip yield stress is non–
zero, the curves for different gap sizes are flat initially and essentially
coincide. Another difference from the power-law-fluid case is that the
critical shear rate _caRy is gap dependent [as dictated by Eq. (51)]. In
fact, estimates of the yield stresses sc and sy as well as the slip coeffi-
cient b and the slip exponent m can be determined from torque data
obtained only in the first (unyielded) regime. More specifically, the slip
yield stress is directly calculated from the initial torque plateau corre-
sponding say, toM0, sc ¼ 3M0=ð2pR3Þ. Then, the yield stress and the
slip exponent can be found from the critical torque My ¼ Mð _caRyÞ
and the slope of the left branch of the lnM vs ln _caR curve at _caRy, i.e.,
by solving the system,

My ¼
2pR3ðmsc þ 3syÞ

3ðmþ 3Þ and
d lnM
d ln _caR

ð _c�aRyÞ ¼
3mðsy � scÞ
3sy þmsc

:

(64)

It should be pointed out that the slope of the torque curve at _caRy is
independent of the gap size. Finally, the slip coefficient can be deter-
mined by means of Eq. (51). Data in the yielding regime are required
in order to determine the other rheological parameters (k and n).

V. CONCLUSIONS

The steady-state torsional parallel plate flow of Herschel–Bulkley
fluids has been studied assuming that wall slip with nonzero slip yield
stress occurs at both plates. The slip yield stress was taken to be lower
than the yield stress and the resulting flow regimes have been identi-
fied. The velocity and stress fields are obtained by means of explicit
analytical expressions in terms of the slip velocity, which is calculated
numerically in the general case. The gap-size effects on the apparent

FIG. 15. Velocity contours for (a) a Bingham fluid and (b) a Herschel–Bulkley fluid
with n ¼ 0:5 at different apparent shear rates when wall slip with non-zero slip yield
stress occurs. Solid body rotation is observed in the first flow regime. The first pla-
teau corresponds to the slip yield stress and the second one to the yield stress.
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flow curve and the torque have been demonstrated for both power-
law and Herschel–Bulkley flows. Analytical solutions for certain
combinations of the power-law and slip exponents are provided,
and the effects of wall slip on the two-dimensional flow field have
been discussed.
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