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Abstract The combined effects of weak compressibility
and viscoelasticity in steady, isothermal, laminar ax-
isymmetric Poiseuille flow are investigated. Viscoelas-
ticity is taken into account by employing the Oldroyd-B
constitutive model. The fluid is assumed to be weakly
compressible with a density that varies linearly with
pressure. The flow problem is solved using a regu-
lar perturbation scheme in terms of the dimensionless
isothermal compressibility parameter. The sequence of
partial differential equations resulting from the pertur-
bation procedure is solved analytically up to second
order. The two-dimensional solution reveals the effects
of compressibility and the other dimensionless numbers
and parameters in the flow. Expressions for the average
pressure drop, the volumetric flow rate, the total axial
stress, as well as for the skin friction factor are also
derived and discussed. The validity of other techniques
used to obtain approximate solutions of weakly com-
pressible flows is also discussed in conjunction with the
present results.
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Introduction

The importance of compressibility in non-Newtonian
viscous flows has been underlined in many studies
during the last decades. A measure of the fluid com-
pressibility is the Mach number, Ma, which is defined
as the ratio of the characteristic speed of the fluid to
the speed of sound in that fluid. A zero Mach number
corresponds to incompressible flow, whereas for low
Mach numbers (Ma << 1), the flow is considered as
a weakly compressible one. Compressibility becomes
significant in flows where the fluid is exposed to very
high pressure differences, such as the extrusion process
(Hatzikiriakos and Dealy 1992), injection blow mold-
ing, jet cutting, and liquid impact (Keshtiban et al.
2005), or in flows involving relatively long tubes (Vinay
et al. 2006) or locally near sharp corners (Guillopé et al.
2005). Hatzikiriakos and Dealy (1992) demonstrated
experimentally that the stick–slip polymer extrusion
instability is caused by the combined effects of com-
pressibility and non-linear slip. The same authors also
noted that, although the isothermal compressibility of
molten polymers is very small, it can have a very strong
effect on the time required for the pressure to level
off in a capillary flow experiment (Hatzikiriakos and
Dealy 1994). Ranganathan et al. (1999) presented time-
dependent experimental flow data in a capillary for a
high-density polyethylene using the multipass rheome-
ter and showed that the observed pressure relaxation
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on cessation of the piston movement can be almost
entirely attributed to the compressibility of the melt.

Numerical simulations of viscous compressible flows
have been reported by various researchers in the past
two decades. Georgiou and Crochet (1994a, b) per-
formed numerical simulations of the time-dependent
Newtonian extrudate-swell problem with slip at the
wall in order to verify the compressibility/slip mech-
anism for the stick–slip instability, i.e., that the com-
bination of compressibility and nonlinear slip leads to
self-sustained oscillations of the pressure drop and of
the mass flow rate in the unstable regime. They also
pointed out that a very low fluid compressibility may
not have an effect on steady-state solutions but can
change dramatically flow dynamics. Taliadorou et al.
(2007) presented similar simulations for a Carreau fluid
and included the barrel region where the polymer melt
is compressed and decompressed periodically. Guo and
Wu (1997, 1998) presented certain numerical results
for the non-isothermal flow of a compressible gas in
a microtube by utilizing a simplified form of the gov-
erning equations. They used a finite difference forward
marching procedure and found that fluid compressibil-
ity increases the skin friction coefficient. Valette et al.
(2006) simulated time-dependent pressure driven flows
for a polymer melt flowing within an entry and exit slit
geometry using the Rolie-Poly constitutive model and
reported that their simulation gave an accurate descrip-
tion of the experimental data. Moreover, the simula-
tion predicted an initially unexpected time-dependent
variation of the absolute pressure. Taliadorou et al.
(2008) simulated the extrusion of strongly compress-
ible Newtonian liquids and found that compressibil-
ity can lead to oscillatory steady-state free surfaces.
Webster et al. (2004) introduced numerical algorithms
for solving weakly compressible, highly viscous laminar
Newtonian flows at low Mach numbers. They applied
their methods to the driven cavity and the contraction
flow problems. Subsequently, Keshtiban et al. (2004,
2005) and Belblidia et al. (2006) simulated the flow
of weakly compressible Oldroyd-B fluids in entry–exit
flows in high-pressure-drop cases.

Only a few approximate analytical solutions for com-
pressible viscous flows in capillaries/tubes and channels
have been reported in the literature. These have been
obtained following three basic techniques. The first ap-
proach is the one-dimensional approximation in which
cross-sectional averaged quantities and equations are
considered (Shapiro 1953). Since non-linear terms are
averaged, a closure of the resulting equations is nec-
essary, which, however, introduces errors leading to
erroneous predictions even at the leading order of the
compressibility (Schwartz 1987).

The second technique is the lubrication approxima-
tion (Prud’homme et al. 1986; van den Berg et al. 1993;
Harley et al. 1995; Zohar et al. 2002), valid for slow
flows or flows in very long tubes and channels, so that
both the velocity component and the pressure gradient
in the transverse direction can be assumed to be zero.
As will be demonstrated in the present work, these
assumptions introduce errors similar to those of the
one-dimensional technique.

The third technique is a regular perturbation pro-
cedure according to which the dependent flow vari-
ables are expanded as series solutions in terms of a
small parameter related to the fluid compressibility
(Schwartz 1987; Venerus 2006; Taliadorou et al. 2009a;
Venerus and Bugajsky 2010; Housiadas and Georgiou
2011). The perturbation technique involves fewer as-
sumptions than the other techniques and leads to two-
dimensional expressions for the axial velocity and pres-
sure in Poiseuille flow and to non-zero radial velocity.

The limitations of the one-dimensional and lubrica-
tion approximations for studying compressible New-
tonian Poiseuille flows were pointed out by Schwartz
(1987), who solved the weakly compressible Newtonian
flow in a channel by using a fourth-order perturbation
scheme based on the principle of slow variation. He
also assumed a zero bulk viscosity and that the mass
density of the fluid was proportional to the pressure
(thermally perfect gas). The first two-dimensional as-
ymptotic solution for weakly compressible Newtonian
flow in a capillary was presented by Venerus (2006),
who used a streamfunction/vorticity formulation and a
regular perturbation scheme with the small parameter
being the dimensionless isothermal compressibility pa-
rameter to obtain a solution up to second order. More
recently, Taliadorou et al. (2009a) proposed an anal-
ogous perturbation scheme, but in a velocity/pressure
formulation, and obtained up to second order the solu-
tions for the compressible Poiseuille flow in both tubes
and channels. The solution of the latter problem was
also derived by Venerus and Bugajsky (2010) using the
stream function/vorticity formulation.

All the above studies concerned only Newtonian
flows. Viscoelasticity was taken into account only very
recently by Housiadas and Georgiou (2011) who con-
sidered the plane Poiseuille flow of an Oldroyd-B
fluid and extended the primary-variable perturbation
scheme of Taliadorou et al. (2009a). The viscoelastic
extra-stress tensor was an extra-field that was per-
turbed. In the present work, we derive the second-
order regular perturbation solution of the axisymmetric
Poiseuille flow of a liquid following the Oldroyd-B
model. The limitations of this model are well known;
however, we need to stress here that it is not possible
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to obtain analytical solutions with other, more realistic,
constitutive equations, like the Phan-Thien and Tanner
and Giesekus models.

Along with the analytical solution, we also offer
the resulting expressions for the average viscometric
properties of the fluid, the pressure drop, the volu-
metric flow rate, and the difference of the total stress
in the main flow direction between the exit and the
entrance of the tube. Most importantly, the skin friction
factor is also derived and discussed, extending thus the
Newtonian results of Venerus (2006).

The rest of the paper is organized as follows. In
“Governing equations”, the conservation equations,
the constitutive model, and the equation of state
are presented in both dimensional and dimension-
less forms. The perturbation procedure is described in
“Perturbation solution” and the analytical solution up
to second order in terms of the compressibility parame-
ter presented. In “Results and discussion”, criteria for
the validity of the perturbation solution are provided
and important features of the solution are underlined.
The main conclusions of this work are summarized in
the last section.

Governing equations

We consider the isothermal, steady, pressure-driven
flow of a weakly compressible viscoelastic fluid in a cir-
cular tube with constant radius R∗ and length L∗; note
that throughout the extra-star denotes a dimensional
quantity. Cylindrical coordinates is the natural choice
for describing the flow. For isothermal, steady flow,
and neglecting gravity, the continuity and momentum
equations are:

∇∗ · (ρ∗u∗) = 0 (1)

ρ∗u∗ · ∇∗u∗ = ∇∗ · T∗ (2)

where ρ∗ is the mass density of the fluid, u∗ is the
velocity vector, and T∗ is the total stress tensor:

T∗ = −p∗ I + η∗
s γ̇

∗ + τ ∗ (3)

In Eq. 3, p∗ is the total pressure, η∗
s is the constant zero

shear-rate (Newtonian) viscosity of the pure solvent, γ̇ ∗

is the augmented shear-rate tensor, τ ∗ is the additional
extra-stress tensor introduced due to the presence of
the polymer, and I is the unit tensor. For a compressible
fluid with zero bulk viscosity, the augmented rate-of-
strain tensor, γ̇ ∗, is defined as:

γ̇ ∗ = ∇∗u∗ + (∇∗u∗)T − 2

3

(∇∗ · u∗) I (4)

where the superscript T denotes the transpose of a
tensor. A constitutive equation relating the extra-stress
tensor to the shear-rate tensor is required for the clo-
sure of the system (1–4). In this study, we employ the
Oldroyd-B constitutive model, given by the following
equation:

τ ∗+λ∗
[
∂τ ∗

∂t∗
+u∗ · ∇∗τ ∗−τ ∗ · ∇∗u∗−(∇∗u∗)T ·τ ∗

]
=η∗

pγ̇
∗

(5)

where η∗
p and λ∗ are, respectively, the zero shear-rate

viscosity and the single relaxation time of the polymer.
The mass density of the fluid is assumed to follow a
linear equation of state:

ρ∗ = ρ∗
0

[
1 + ε∗ (p∗ − p∗

0

)]
(6)

where ρ∗
0 is the mass density at a reference pressure p∗

0,
ε∗ = − (∂V/∂ P∗)P∗

0,T
∗
0
/V∗

0 is the isothermal compress-
ibility coefficient, which is a assumed to be constant,
V∗ is the specific volume, and V∗

0 is the specific volume
at the reference pressure, p∗

0, and temperature, T∗
0 . The

value of ε∗ is of the order of 0.001 MPa−1 for molten
polymers (Hatzikiriakos and Dealy 1994) and increases
by an order of magnitude (0.0178–0.0247 MPa−1) in
the case of PTFE pastes (Mitsoulis and Hatzikiriakos
2009). The latter authors suggest that for weakly com-
pressible flows, ε∗ ranges between 0 and 0.02 MPa−1

(for slightly to moderately compressible materials).
The boundary conditions for this Poiseuille flow

are the usual ones. Along the wall no-slip and no-
penetration are assumed and along the axis symme-
try conditions are imposed. Moreover, the pressure is
taken as zero at a point of the exit plane (r∗ = R∗, z∗ =
L∗), and the mass flow-rate is specified at the exit of the
tube (z∗ = L∗):

u∗
z(R∗, z∗) = u∗

r (R∗, z∗) = 0, 0 ≤ z∗ ≤ L∗ (7)

∂u∗
z

∂r∗ (0, z∗) = u∗
r (0, z∗) = 0, 0 ≤ z∗ ≤ L∗ (8)

p∗(R∗, L∗) = 0 (9)

2π

∫ R∗

0
ρ∗u∗

zr∗ dr∗ = Ṁ∗ at z∗ = L∗ (10)

where Ṁ∗ is the constant mass flow-rate. No boundary
conditions are specified at the inlet plane (z∗ = 0), as
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discussed by Poinsot and Lele (1992), Venerus (2006),
and Housiadas and Georgiou (2011).

Dimensionless governing equations and auxiliary
conditions

Equations 1–6 and the auxiliary conditions (7–10) are
made dimensionless by using the characteristic scales
reported in Table 1, where the characteristic velocity
U∗ is defined as the mean velocity at the exit of the
tube:

U∗ ≡ Ṁ∗/
(
πρ∗

0 R∗2
)

(11)

The pressure scale is such that the dimensionless pres-
sure gradient in incompressible flow is equal to unity.

The dimensionless forms of the continuity equation,
the components of the momentum equation, the non-
trivial components of the constitutive model, and the
equation of state, respectively, are:

∂(ρrur)

∂r
+ ∂(ρruz)

∂z
= 0 (12)

R̂eρ
(

ur
∂uz

∂r
+ uz

∂uz

∂z

)

= −8
∂p
∂z

+ ηs

{
a2 ∂2uz

∂z2
+ ∂2uz

∂r2
+ 1

r
∂uz

∂r

+a2

3

(
∂2uz

∂z2
+ ∂2ur

∂r∂z
+ 1

r
∂ur

∂z

)}

+ ηp

{
a2 ∂τzz

∂z
+ a

(
∂τrz

∂r
+ τrz

r

)}
(13)

a2 R̂eρ
(

ur
∂ur

∂r
+ uz

∂ur

∂z

)

= −8
∂p
∂r

+ ηsa2

{
a2 ∂2ur

∂z2
+ ∂2ur

∂r2
+ 1

r
∂ur

∂r
− ur

r2

+1

3

(
∂2uz

∂z∂r
+ ∂2ur

∂r2
+ 1

r
∂ur

∂r
− ur

r2

)}

+ ηpa2

{
a
∂τrz

∂z
+ ∂τrr

∂r
+ τrr − τθθ

r

}
(14)

τzz + We
(

ur
∂τzz

∂r
+ uz

∂τzz

∂z
− 2τzz

∂uz

∂z
− 2τrz

a
∂uz

∂r

)

= 4

3

∂uz

∂z
− 2

3

(
∂ur

∂r
+ ur

r

)
(15)

τrz + We
(

ur
∂τrz

∂r
+ uz

∂τrz

∂z
− τrz

(
∂uz

∂z
+ ∂ur

∂r

)

−τzza
∂ur

∂z
− τrr

a
∂uz

∂r

)
= a

∂ur

∂z
+ 1

a
∂uz

∂r
(16)

τrr + We
(

ur
∂τrr

∂r
+ uz

∂τrr

∂z
− 2τrr

∂ur

∂r
− 2aτrz

∂ur

∂z

)

= 4

3

∂ur

∂r
− 2

3

(
∂uz

∂z
+ ur

r

)
(17)

τθθ + We
(

ur
∂τθθ

∂r
+ uz

∂τθθ

∂z
− 2

urτθθ

r

)

= 4

3

ur

r
− 2

3

(
∂ur

∂r
+ ∂uz

∂z

)
(18)

ρ = 1 + εp (19)

and the domain of definition is {0 ≤ r ≤ 1, 0 ≤ z ≤ 1}. In
Eqs. 12–19 there appear six dimensionless numbers: the
Reynolds and Weissenberg numbers, Re and We, the
dimensionless compressibility parameter, ε, the tube
aspect ratio, α, and the viscosity ratios, ηs and ηp. For
convenience, all definitions are tabulated in Table 2.
In Eqs. 13 and 14, the modified Reynolds number
R̂e ≡ aRe has been employed. With the chosen scales,
ηs + ηp = 1 and the dimensionless total stress tensor is
T = −8pI

/
a2 + ηsγ̇ + ηpτ . The Mach number for this

flow is defined as Ma ≡
√

εRe
/(

8c∗
p

/
c∗
v

)
, where c∗

p/c∗
v

is the heat capacity ratio. In the present work, only
subsonic flows are considered, such that Ma << 1. The
dimensionless boundary and auxiliary conditions are:

uz(1, z) = ur(1, z) = 0, 0 ≤ z ≤ 1 (20)

Table 1 Characteristic scales

Axial Radial Axial Radial Shear Pressure, p∗ Mass Viscoelastic
distance, z∗ distance, r∗ velocity, u∗

z velocity, u∗
r rate, γ̇ ∗

ij density, ρ∗ extra-stress, τ ∗

L∗ R∗ U∗ U∗ R∗

L∗
U∗

L∗
8
(
η∗

s + η∗
p

)
L∗U∗

R∗2
ρ∗

0

η∗
pU∗

L∗
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Table 2 Dimensionless number and parameters appearing in Eqs. 13–19

Reynolds Modified Aspect ratio, a Weissenberg Compressibility Solvent Polymer
number, Re Reynolds number, We parameter, ε viscosity viscosity

number, R̂e ratio, ηs ratio, ηp

ρ∗
0 U∗ R∗

η∗
s + η∗

p

ρ∗
0 U∗ R∗2

(
η∗

s + η∗
p

)
L∗

R∗

L∗
λ∗U∗

L∗
8
(
η∗

s + η∗
p

)
ε∗L∗U∗

R∗2

η∗
s

η∗
s + η∗

p

η∗
p

η∗
s + η∗

p

∂uz

∂r
(0, z) = ur(0, z) = 0, 0 ≤ z ≤ 1 (21)

p(1, 1) = 0 (22)

2
∫ 1

0
ρuzrdr = 1 at z = 1 (23)

Perturbation solution

A regular perturbation scheme in terms of the com-
pressibility parameter, ε, is employed:

X = X0 + εX1 + ε2 X2 + O(ε3) (24)

where X is a primary variable of the flow, i.e., one
of ρ, p, ur, uz, τ rr, τ rz, τ zz, τ θθ . Note that ρ0 = 1 as
suggested explicitly by Eq. 19. We also assume that
ur0 = 0 and ur1 = 0 in order to be able to derive a
separable solution. The same perturbation scheme and
assumptions were used by Taliadorou et al. (2009a) and
Housiadas and Georgiou (2011).

Substituting the expansions (24) into the govern-
ing equations and collecting terms of the same order,
lead to a sequence of partial differential equations and
accompanying boundary conditions. The zero-, first-,
and second-order problems are solved analytically by
following a similar procedure like the one described in
our recent article for the planar case (Housiadas and
Georgiou 2011). The details can be found in Mamoutos
(2010).

Because some expressions are very long, we use, for
convenience, the superscripts (N) and (V) to denote
respectively the Newtonian and viscoelastic parts of a
primary variable X, i.e.

X ≡ X(N) + X(V)

For the different terms of the viscoelastic parts, we also
use the following notation:

X(V) ≡ X(V,0) + εX(V,1) + ε2 X(V,2)

Pressure

p(N) = (1 − z)

+ ε

{
a2

12

(
1 − r2

)+ R̂e
4

(1 − z) − 1

2
(1 − z)2

}

+ ε2

{
a2 R̂e
432

(−10r6 + 45r4 − 54r2 + 19
)+(1−z)

×
[

a2

108

(
27r2 − 87

)+ R̂e
2

27
− R̂e

2
(1 − z)

+ 1

2
(1 − z)2

]}

(25a)

p(V)= εηpWe
{
− 28

9
(1 − z) + ε

27

[
a2
(
33r4 − 43r2 + 10

)

− 369

10
R̂e (1 − z) + 2 (z − 1)

× (8We
(
12 + 25ηp

)+ 105 (1 − z)
)]
}

(25b)

Velocity components

u(N)
z = 2

(
1−r2

)
[

1+ε

{
R̂e
18

(
−r4 + 7

2
r2 − 1

)
−(1 − z)

}

+ ε2

2

{
3 (1 − z)2 + a2

8

(
1

9
− 3r2

)

× R̂e
6

(1 − z)
(
2r4 − 7r2 − 1

)

+ R̂e
2

21, 600

(
43 − 957r2 + 2, 343r4

−1, 257r6 + 168r8
)}]

(26a)
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u(V,0)
z = 0

u(V,1)
z = −8

9
ηpWe

(
3r4 − 4r2 + 1

)

u(V,2)
z = ηpWe

{
8We
27

(−13 + 60r2 − 63r4 + 16r2

− 2ηp
(
3 − 10r2 + 3r4 + 4r6

))

+ 8

9
(1 − z)

(
11 − 23r2 + 12r4

)

+ R̂e
270

(−13 − 122r2 + 540r4

−500r6 + 95r8
)
}

(26b)

u(N)
r = 1

36
ε2 R̂er

(
4 − r2

) (
1 − r2

)2
(27a)

u(V)
r = 4

3
ε2ηpWer

(
1 − r2

)2
(27b)

Extra-stress components

τ (N)
zz = ε

(
1 − r2

)
[

8

3
+ ε

{
2

27
R̂e
(−8r4 + 28r2 + 1

)

−8 (1 − z)

}]
(28a)

τ (V,0)
zz = 32We

( r
a

)2
(28b)

τ (V,1)
zz = 256We

( r
a

)2
{

R̂e
3

(−2r4 + 6r2 − 3
)

−8

3
We

(
1−r2+ 4

3
ηp
(
2−3r2

))

−4 (1−z)

}
(28c)

τ (V,2)
zz

=We
{
−8

9

(
6 − 26r2 + 33r4

)− 16

27
ηp
(
25−58r2+33r4

)

+
( r

a

)2
[

2R̂e
135

(
235 − 1,200r2 + 1,800r4

− 930r6 + 144r8
)

+ 128 (1 − z)2 + 128

3
We (1 − z)

× (
5
(
1 − r2

)+ 2ηp
(
9 − 10r2

))

+We2

(

3
(
1 − r2

)2 + 4η2
p

81

× (
36r4 − 15r2 − 7

)

+ ηp

27

(
117r4 − 152r2 + 53

)
)

+ R̂e
[
We

{
16

27

(
148 − 513r2

+ 492r2 − 127r6
)

+ 32ηp

135

(
181 − 960r2

+1,190r4 − 310r6
)
}

+16

3

(
9 − 24r2 + 8r4

)
(1 − z)

]]}
(28d)

τ (N)
rz = r

a

{
−4 + ε

[
R̂e
(

1 − 2r2 + 2

3
r4

)
+ 4 (1 − z)

+ε

{

− R̂e
2

540

(
50−330r2+540r4−285r6+42r8

)

−2R̂e (1 − z)
(
r2 − r − 1

) (
r2 + r − 1

)

+a2
(−14 + 27r2

)

18
− 6 (1 − z)2

}]}

(29a)

τ (V,0)
rz = 0 (29b)

τ (V,1)
rz = 16r

9a
We

(
3
(
1 − r2

)+ 2ηp
(
2 − 3r2

))
(29c)
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τ (V,2)
rz = We

a
r
{

16 (1 − z)

3

[
ηp

24r2 − 23

3
− 4

(
1 − r2

)
]

−32We

[

2
(
1 − r2

)2 + 2η2
p

27

(−5 + 3r2 + 6r4
)

+ηp
(
10 − 35r2 + 28r4

)

9

]

+2R̂e
27

[
− 2

(
1 − r2

) (
29 − 106r2 + 35r4

)

+ηp

5

(−61 + 540r2 − 750r4 + 190r6
)]
}

(29d)

τ (N)
rr = ε

(
1−r2

)
{

−4

3
+ε

(
R̂e
54

(
25r4−83r2−2

)+4 (1−z)

)}

(30a)

τ (V)
rr = 8

27
ε2We

(
1 − r2

) (
ηp
(
25 − 51r2

)+ 27
(
1 − r2

))

(30b)

τ
(N)
θθ =ε

(
1−r2

)
{

−4

3
+ε

(
R̂e
54

(
7r4−29r2−2

)+4 (1−z)

)}

(31a)

τ
(V)
θθ = 8

27
ε2We

(
1 − r2

) (
ηp
(
25 − 15r2

)+ 27
(
1 − r2

))

(31b)

Results and discussion

In this section, we first provide some criteria for the
validity of the perturbation solution derived in the pre-
vious section. We also calculate cross-sectional average
profiles and other useful quantities, such as the pressure
drop, the difference at the total axial stress between
the exit and the entrance of the tube, and the skin
friction factor. It is readily verified that the Newtonian
parts of the perturbation solution are the same as those
obtained for the Newtonian flow (i.e., for We = 0) by
Taliadorou et al. (2009b) and subsequently by Venerus
and Bugajsky (2010).

Unless otherwise indicated, in all the results pre-
sented in this section the aspect ratio is taken to be α =
0.1 and the polymer viscosity ηp = 8/9 (which implies
that ηs = 1/9).

Validity of the perturbation scheme

We start by considering the mass density of the fluid at
the exit of the tube (z = 1) for which Eqs. 19 and 25a, b
give:

ρ (r, 1) = 1 + a2ε2

12

(
1 − r2

)

×
{

1 + ε R̂e
36

(
19 − 35r2 + 10r4

)

+4

9
εηpWe

(
10 − 33r2

)
}

+ O
(
ε4
)

(32)

The above result shows that at first order there is no
effect of the fluid compressibility, fluid inertia, and
viscoelasticity on the density at the tube exit. Since only
very small variations of the density are acceptable (the
fluid is decompressed and the mass density reaches its
lowest values at r = z =1), it follows that there must be
ε2a2/12 << 1.

For the dimensionless volumetric flow rate, we get:

Q (z) = 1 − ε (1 − z)

+ε2

[
− a2

18
+ 3

2
(1 − z)2 + (1 − z)

×
(

28

9
ηpWe − 1

4
R̂e
)]

+ O
(
ε3
)

(33)

At the inlet plane (z= 0), we have

Q (0) ≈ 1 − ε + cε2 (34)

where

c = 3

2
− a2

18
− 1

4
R̂e + 28

9
Weηp (35)

Hence, Q (0) is a parabola with the minimum at εc =
1/(2c). However, any increase of ε must lead to more
compression, i.e., to a lower value for Q(0), and there-
fore the perturbation solution is valid only when 0 ≤ ε ≤
εc. It is also clear that if ε is specified, critical values can
be obtained for the constant c or the Reynolds number
R̂e or the quantity ηpWe by solving the latter inequality.

From Eq. 35 it is also deduced that viscoelasticity
reduces the upper limit of validity of the perturbation
scheme and that increasing the Reynolds number or
the aspect ratio has the opposite effect. A similar ob-
servation holds for the flow in a slit (Housiadas and
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Georgiou 2011). Figure 1a shows the volumetric flow
rates at the entrance of the tube as a function of the
compressibility parameter, ε, for different Weissenberg
numbers (We = 0, 0.2, and 0.4) at a modified Reynolds
number R̂e = 1 and an aspect ratio a = 0.1, while
Fig. 1b shows Q(0) as a function of ε for R̂e = 0.1, 1.0,
3.0 at a Weissenberg number We = 0.2 and a = 0.1.

From Eq. 35 the maximum acceptable modified
Reynolds number,R̂e, can be obtained demanding that
c > 0 which yields:

R̂e < 6 − 2

9
a2 + 112

9
ηpWe (36)

Therefore, the maximum allowed modified Reynolds
number is about 6 for a Newtonian fluid, while for a

viscoelastic fluid is larger and depends on the quantity
ηpWe.

Average quantities

The cross-sectional average of a (dimensionless) vari-

able f = f (r,z) is calculated by means 〈 f 〉 = 2
1∫

0
r f dr.

Thus, for the radial velocity component and the pres-
sure, we find:

〈ur〉 = 4

5
ε2

(
11R̂e
567

+ 16

65
ηpWe

)

+ O
(
ε3
)

(37)
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Fig. 1 The volumetric flow rate at the entrance of the tube as a function of the dimensionless compressibility parameter for: a R̂e = 1
and various values of We; b We = 0.2 and various modified Reynolds numbers

〈p〉 = (1 − z) + ε

[
a2

24
− 1

2
(1 − z)2 +

(
1

4
R̂e − 28

9
ηpWe

)
(1 − z)

]

+ ε2

⎡

⎢
⎢
⎣

1

2
(1 − z)3− 49

72
a2 (1 − z)+ R̂e

{
a2

96
+
(

1

27
R̂e− 41

30
ηpWe (1 − z)− 1

2
(1 − z)

)
(1 − z)

}

+ηpWe
{
− a2

45
+ 16

27
We

(
12 + 25ηp

)
(1 − z) + 70

9
(1 − z)2

}

⎤

⎥
⎥
⎦+ O

(
ε3
)

(38)

It should be noted that the average axial velocity com-
ponent is actually the same with the dimensionless
volumetric flow rate, Q, given above, i.e., 〈uz〉 = Q.
The average mass density of the fluid also follows the
abovementioned expression for the pressure, since due
to Eq. 19, 〈ρ〉 = 1 + ε 〈ρ〉. In Fig. 2, we show the average
mass density of the fluid as a function of the axial

distance for a Newtonian (We = 0) and two viscoelastic
fluids with We = 0.2 and 0.4. First, the decompression of
the fluid under consideration is clearly seen in all cases.
As thefluid goes through the tube is decompressed
reaching to a fully decompressed state at the exit of
the tube. Notice that the differences between different
radial locations are undistinguishable, showing that the
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Fig. 2 The mass density of the fluid as a function of the axial
coordinate, for a Newtonian fluid and two viscoelastic fluids with
We = 0.2 and 0.4; ε = 0.2 and R̂e = 1

variations of the fluid density in the cross-section of the
tube are negligible; thus the relation 〈ρ〉 = 1 + ε 〈p〉,
where 〈p〉 is given by Eq. 38, can be safely used at
any radial distance from the center of the tube. Re-
garding the differences between the Newtonian and the
viscoelastic fluid, it appears that these are small, and the
trends depend on the magnitude of the Weissenberg
number. In particular, for the low Weissenberg num-
ber 0.2, the fluid is slightly less compressed than the
Newtonian one; however, the opposite holds for We =
0.4. Nevertheless, all of them are decompressed almost
linearly with respect to the axial distance, z.

Cross-sectional averages have also been derived for
the components of the dimensionless total stress tensor,
T̂ ≡ (

a2/8
)

T. Here, we report only the results for the

shear stress component,
〈
T̂rz

〉
, and the first,

〈
N̂1

〉
≡

〈
T̂zz − T̂rr

〉
, and second,

〈
N̂2

〉
≡
〈
T̂zz − T̂θθ

〉
, normal-

stress differences. In particular, using the analytical
expressions 26a–28d, we find:

〈
T̂rz

〉
= −a

3
+ εa

(
1

3
(1 − z) + R̂e

140
+ 32

135
ηpWe

)

+ε2a

(
11a2

1,080
+ R̂e

2

55,400
− 8ηpWe2

(
345+148ηp

)

2,835

+R̂e
(

29ηpWe
630

+ 13 (1 − z)

210

)

−268

135
ηpWe (1 − z) − (1 − z)2

2

)

+O
(
ε3
)

(39)

Equation 39 shows that the average shear stress at
zero order is solely due to the viscous forces of the
fluid, as it should, since at this order there is no effect
of the fluid compressibility. However, at higher order
we have combined effects of fluid compressibility with
viscous, viscoelastic, and inertial forces. At first order,
all contributions in the total shear stress are positive
which clearly show that the combined effect of fluid
compressibility with viscous, inertial, or viscoelastic
forces cause a decrease of the drag force at the wall of
the tube.

For the first normal difference we find:

〈
N̂1

〉
= 2ηpWe + ε

[
a2

4
− 8

9
ηpWe2 − 4ηpWe (1 − z)

]

+ε2

⎡

⎢
⎢
⎣

11

1, 080
R̂e

2
ηpWe + 8

81
ηpWe3 + R̂e

[
41a2

576
+ 2

45
ηp
(
1 + 4ηp

)
We2 − ηpWe (1 − z)

]
+

ηpWe
(

8 (1 − z)2 − 13

9
a2

)
+ 8

9
ηpWe2

(
5 + 14ηp

)
(1 − z) − 3

4
a2 (1 − z)2

⎤

⎥
⎥
⎦+ O

(
ε3
)

(40)

Equation 40 shows that at first-order combined effects
of compressibility with viscous and viscoelastic forces

appear. Also,
〈
N̂1

〉
is a linear function of the axial

coordinate at first order and a quadratic one at second
order. It is worth mentioning that even for a Newtonian
fluid (We = 0 or ηp = 0) the average first normal stress
difference is non-zero due to the combined effects of
fluid compressibility with inertial and viscous forces.

Results for
〈
T̂rz

〉
and

〈
N̂1

〉
as functions of the axial

distance, z, are shown in Fig. 3, for three different fluids
with We = 0, 0.2, and 0.4. In particular, in Fig. 3a the
average total shear-stress is plotted. In all cases, it is
observed that the shear-stress decreases monotonically
reaching its minimum at the exit of tube. As the vis-
coelasticity of the fluid increases, the shear-rate near
the entrance of the tube decreases. However, this trend
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Fig. 3 Average quantities as functions of the dimensionless length a the total shear stress b the first normal stress difference. The
parameters are the same as in Fig. 2

is reversed downstream, from the middle of the tube
till the outflow plane. The magnitude of the average
first normal stress difference is affected mainly by the
polymer viscosity ratio and the Weissenberg number,
as Eq. 40 shows, which is of course the case for an in-
compressible Oldroyd-B model. It varies quadratically
with the axial distance, but this dependence is rather
weak.

For the second normal stress difference the following
expression is obtained:

〈
N̂2

〉
= −ε2a2

9

(
5R̂e
32

+ 2ηpWe

)

+ O
(
ε3
)

(41)

The combined compressibility/inertia and compress-
ibility/viscoelastic effects give rise to negative second
normal stress difference at first order, while for the in-
compressible Oldroyd-B fluid,

〈
N̂1

〉
= 0. As it is usually

the case with viscoelastic fluids, the predicted second
normal stress difference is much smaller than the cor-
responding first normal stress difference. Note also that〈
N̂2

〉
is constant throughout the length of the tube and

that for a Newtonian fluid, i.e., for We = 0 or ηp = 0,

i.e., a non-zero
〈
N̂2

〉
arises due to the combined effect

of fluid compressibility with inertia.

Pressure drop, friction factor, and flow curves

Let the symbol � denote the difference of a quantity
φ between the exit and the entrance of the tube, i.e.,

�φ ≡ φ (z = 1) − φ (z = 0). Then, the average pressure
drop is given by:

� 〈−p〉 = 1 − ε

(
1

2
− 1

4
R̂e
)

+ ε2

(
1

2
− 49

72
a2 − 1

2
R̂e + 1

27
R̂e

2
)

+ εηpWe
(

−28

9
+ ε

{
70

9
− 41

30
R̂e

+ 16We
27

(
25ηp + 12

)
})

+ O
(
ε3
)

(42)

which is simply a generalization of the dimensionless
Hagen-Poiseuille formula, taking into account the fluid
compressibility combined with inertial, viscous, and
viscoelastic forces. For an incompressible fluid Eq. 42
reduces to �〈–p〉 = 1.

For the difference in the total axial stress in the main
flow direction, we find a similar expression:

�
〈
T̂zz

〉
= 1 − ε

(
1

2
− 1

4
R̂e
)

+ ε2

(
1

2
− 13

72
a2 − 1

2
R̂e+ 1

27
R̂e

2
)

+ εηpWe
(

−28

9
+ ε

{
70

9
− 41

30
R̂e

+ 16We
27

(
25ηp + 12

)})

+ O
(
ε3
)

(43)
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For We = 0 or ηp = 0, Eq. 43 reduces to the result
of Venerus (2006) and Taliadorou et al. (2009a) for a
compressible Newtonian fluid with zero bulk viscosity.

In Fig. 4, dimensionless flow curves are shown, i.e.,
curves of the volumetric flow rate at the entrance of the
tube versus the pressure drop, constructed by varying
the compressibility number ε from ε = 0 to ε = εc

(the upper limit of validity of the perturbation solution)
and calculating Q(0) and �〈–p〉 from Eqs. 33 and 42,
respectively. For the Newtonian fluid (We = 0) and the
weakly viscoelastic fluid (We = 0.05 and 0.1) it is seen
that the flow curves are monotonic. However, as the
Weissenberg number increases (We = 0.2 and 0.3) there
is a range of �〈–p〉 for which two solutions for Q(0)p
are admissible. It is also seen that for a given flow rate
at the entrance of the tube, the lowest pressure drop
is observed for the Newtonian fluid; the increase of
the Weissenberg number increases the pressure drop.
The same observations were also made for the flow in
channel (Housiadas and Georgiou 2011).

Another interesting quantity is the friction factor,
which actually represents a dimensionless shear stress
at the wall. In particular, the Fanning friction factor, C f ,
is defined as:

C f ≡ T∗
w

1

2
ρ∗

0 U∗2

(44)

where

T∗
w = −

(
η∗

s
∂u∗

z

∂r∗ + τ ∗
rz

)

r=R∗
(45)

is the total shear stress exerted by the fluid to the wall
of the tube. The Darcy friction factor, f = 4C f , is often
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Fig. 4 The volumetric flow rate at the entrance of the tube as a
function of the pressure drop for various Weissenberg numbers;
ε = 0.2 and R̂e = 1

used in the literature. Using the characteristic scales
reported in Table 1, the dimensionless Darcy friction
factor is given by:

f (z) = − 8

Re

(
ηs

∂uz

∂r
(1, z) + aηpτrz (1, z)

)
(46)

Equation 46 shows that f is a function of the axial
coordinate. Thus, we define an average Darcy friction
factor, f , along the entire tube which results from the
integration of Eq. 46 from the entrance of the tube
(z = 0) to its exit (z = 1). In addition, if we use expres-
sions 26 and 29, we finally find:

Re
32

f = 1 − ε

(
1

2
− 1

12
R̂e
)

+ ε2

(
1

2
− 13

72
a2 − 1

4
R̂e+ 17

2, 160
R̂e

2
)

+ ε
8

9
ηpWe

(
1 + ε

{
−1

4
+ 27

80
R̂e

+ We
(

8

3
ηp + 3

)})

+ O
(
ε3
)

(47)

Equation 47 can be useful in comparisons with ex-
perimental data. For We = 0 or ηp = 0 it reduces
to the corresponding equation of Venerus (2006) for
a Newtonian fluid. In Fig. 5, the quantity Re f/32 is
plotted as a function of R̂e for a very compressible fluid
with ε = 0.2 and various values of the Weissenberg
number (We = 0, 0.1, 0.2). It is seen that the increase
of the viscoelasticity in the flow increases both the skin
friction factor and the magnitude of the pressure drop.
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Fig. 5 The pressure drop and the average Darcy friction factor
for different Weissenberg numbers as functions of the modified
Reynolds number; ε = 0.2
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It should be pointed out, however, that the values for
the Weissenberg number are in the range for which
only one solution in the flow-rate curve exists (see
Fig. 4).

Expression 47 can also be derived with the aid of
the momentum balance in the streamwise direction,
Eq. 13, and the continuity equation, Eq. 12. In partic-
ular, multiplying Eq. 13 by 2r, integrating with respect
to r, simplifying the result, and using the definition of
the Darcy friction factor, Eq. 46, we get an ordinary
differential equation which by integration with respect
to z, from z = 0 to z = 1, gives:

Re
32

f = �

⎛

⎝
〈
T̂zz

〉
− R̂e

8

〈
ρu2

z

〉+ a2ηs

12

1∫

0

urdr

⎞

⎠ (48)

where

〈
T̂zz

〉
= − 〈p〉 + a2

8

(
4ηs

3

d 〈uz〉
dz

+ ηp 〈τzz〉
)

. (49)

It is emphasized that Eq. 48 is exact, i.e., no approxima-
tion or assumptions have been made for its derivation.
It is actually a relation between the skin friction factor
and the pressure drop. Venerus (2006) neglected the
viscous term in the above expression. Nevertheless,

although in the Newtonian case, Re f/32, and �
〈
T̂zz

〉
as

given by Eqs. 48 and 43, respectively, are very similar,
the terms due to the combined effect of compressibility
and viscoelasticity are different and thus, Eq. 48 is to
be preferred instead of Venerus approximation for the
friction factor.

From the experimental point of view, it is not conve-
nient to use Eqs. 42, 43, and 48 for the pressure drop,
total axial stress, and skin friction factor, respectively,
since both the compressibility parameter, ε, and the
Weissenberg number, We, are defined with the aid of
the characteristic velocity U*, as this is given through
the constant mass flow-rate at the exit of the tube,
Eq. 11. Thus, it is more appropriate to define new
parameters, ε̂ and Ŵe, that depend only on the fluid
properties and the dimensions of the tube:

ε̂ ≡
8ε∗

(
η∗

s + η∗
p

)2
L∗2

ρ∗
0 R∗4

, Ŵe ≡
λ∗
(
η∗

s + η∗
p

)

ρ∗
0 R∗3

(50)

For the new parameters, it is trivial to show that ε =
ε̂ R̂e and We = ŴeR̂e. Substituting the latter expres-
sions in Eqs. 42, 43, and 48, we get � 〈−p〉, �

〈
T̂zz
〉

and Re f/32, respectively, as functions of ε̂ and Ŵe

(in addition to the already presented parameters R̂e,
ηp, and a). In Fig. 5, we plot the pressure drop � 〈−p〉
and Re f/32 as functions of the modified Reynolds
number R̂e for ε̂ = 0.4, 1, and 10, for a Newtonian fluid
(Ŵe = 0) and a viscoelastic fluid with Ŵe = 0.3. The
modified Reynolds number varies from zero up to a
critical value, R̂ec, so that 0 ≤ ε ≤ εc, and is calculated
as follows. From 0 ≤ ε ≤ εc and the definition for ε̂ we
get 0 ≤ R̂e ≤ R̂ec. Then, by virtue of the relation εc =
1/(2c), where c is given by Eq. 35, we obtain

ε̂

(
1

2
− 56

9
ηpŴe

)
R̂e

2
c − ε̂

(
3 − a2

9

)
R̂ec + 1 = 0 (51)

the acceptable solution of which is

R̂ec = 1

1 − 112

9
ηpŴe

×
⎧
⎨

⎩
3 − a2

9
−
√(

3 − a2

9

)2

+ 1

ε̂

(
224

9
ηpŴe − 2

)
⎫
⎬

⎭

(52)

Therefore, for specific values of a, ε̂, Ŵe, and ηp the
perturbation solution is valid up to the critical Reynolds
number given by Eq. 52. For a Newtonian fluid (We =
0) and a long tube, a << 1, Eq. 52 reduces to Rec ≈
3 −√

9 − 2/ε̂. The results shown in Fig. 6 reveal that
the trend in viscoelastic flow is opposite to that of
the Newtonian flow, since � 〈−p〉 decreases with the
presence of viscoelasticity while Re f/32 increases. This
justifies our abovementioned assertion that Re f/32
and � 〈−p〉 are different, especially in the viscoelastic
case.

On the validity of the one-dimensional and lubrication
approximations

For the one-dimensional approximation the assump-
tion

〈
ρu2

z

〉 ≈ 〈ρ〉 〈uz〉2 is usually made (Shapiro 1953;
Schwartz 1987; Venerus 2006). Schwartz (1987) and
Venerus (2006) showed that for laminar flow, this as-
sumption results in the incorrect prediction for the fric-
tion factor at the leading-order effect of compressibil-
ity. Indeed, using the analytical solution derived here,
Eqs. 25a, b and 26a, b, we find

�
(〈
ρu2

z

〉) = �
(〈ρ〉 〈uz〉2

)+ ε
1

3

− ε2

(
1

2
+ R̂e

60
+ 20

9
ηpWe

)

+ O
(
ε3
)

(53)
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Fig. 6 The friction factor a and the pressure drop b, for a Newtonian
(
Ŵe = 0

)
and a viscoelastic fluid (Ŵe = 0.3) as functions of

R̂e = aRe, for ε̂ = 0.4, 1.0, and 10. Results are shown for values of R̂e such that ε ≤ εc

Hence, the error of the one-dimensional approximation
is of first order and therefore an erroneous friction
factor results which in this case takes the form:

Re
32

f = 1 − ε

(
1

2
− 1

8
R̂e − 8

9
ηpWe

)
+ O

(
ε2
)

(54)

Clearly, the error comes from the combined effect of
compressibility with inertia, while the one-dimensional
approximation affects the contribution of the fluid vis-
coelasticity on the skin friction only at higher orders.

Regarding the lubrication approximation, the as-
sumptions made implicitly or explicitly are ur = 0 and
∂p/∂r = 0. As Eq. 27a, b shows, the former induces
an O(ε2) error while the latter induces an O(ε) error.
Indeed, by means of Eq. 26a, b, the pressure gradient
in the radial direction is

∂p
∂r

= −1

6
a2εr

×
(

1 + ε

{
R̂e
6

(
9 − 15r2 + 5r4

)

+ 12

27
ηpWe

(
43 − 66r2

)− 3 (1 − z)

})

+ O
(
ε3
)

(55)

Clearly, the first order error in the pressure gradient
is a combination of fluid compressibility with viscous
forces. For long tubes or capillaries, i.e., for a << 1, the
radial pressure gradient at O(ε) can be safely ignored

since a2ε/6 << 1; same holds at O(ε2) even for high
values of the Reynolds and/or Weissenberg numbers,
provided that the flow remains laminar.

Primary flow variables

Here we discuss further the solution for the primary
flow variables, e.g., the velocity, the pressure, and the
stress fields. From Eq. 26a, b, it is deduced that the axial
velocity component, uz, deviates from the parabolic
incompressible profile at first order, due to fluid iner-
tia and viscoelasticity. The deviations at various axial
positions for a Newtonian and viscoelastic fluid (We =
0.2) and Re = 1 are shown in Fig. 7a. The compress-
ibility parameter was chosen to be rather high (ε =
0.25) in order to magnify the differences. The effect
of viscoelasticity is reduced with the radial coordinate.
Analogous results for the radial velocity component,
ur, are shown in Fig. 7b. According to Eq. 27a, b, ur

varies linearly with the Weissenberg and the Reynolds
numbers. Similar observations have been made earlier
for the plane Newtonian Poiseuille flow (Housiadas
and Georgiou 2011).

Deviations from the parabolic profile and the radial
velocity component are induced by pressure gradients
in both axial and radial directions. At zero order, the
dimensionless pressure and its gradient do not depend
on any dimensionless number of the flow problem.
However, both Re and We contribute separately at first
order and in combination at second order. It is worth
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Fig. 7 The deviation of the velocity components from the in-
compressible velocity profile for a Newtonian (We = 0) and a
viscoelastic fluid (We = 0.2) as functions of the radial distance

from the center of the tube: a the axial velocity at z = 0.1, 0.5,
and 0.9; b the radial velocity

mentioning that the combined effect of fluid compress-
ibility with the viscous forces induces a non-zero radial
pressure gradient at O(ε) which does not depend on the
axial position, as Eq. 55 shows, and most importantly,
does not give rise to a radial velocity component. This
is an indication that the perturbation solution is built up
slowly as more terms in the perturbation expansion are
calculated.

In Fig. 8, the pressure contours for a Newtonian
fluid (We = 0) and a viscoelastic fluid (We = 0.2) with
R̂e = 1.0 and ε = 0.2 are shown. The critical compress-
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Fig. 8 Pressure contours for a Newtonian (We = 0, dotted lines)
and a viscoelastic fluid (We = 0.2, solid lines); ε = 0.2 and
R̂e = 1.0

ibility numbers are respectively εc ≈ 0.4 and εc ≈ 0.277.
The effect of viscoelasticity is significant; although the
contours are similar, almost vertical and equidistant,
in the viscoelastic case they are shifted towards the
entrance of the tube, in comparison to the Newtonian
case. The shifting is less pronounced at the exit of
the tube, which clearly shows that this is a combined
compressibility/viscoelastic effect (see also Eq. 25a, b).

In Fig. 9, we show the axial velocity contours, which
are horizontal in incompressible flow and curved to-
wards the axis of symmetry in compressible flow. This
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Fig. 9 Axial velocity for a Newtonian (We = 0, dotted lines) and
a viscoelastic fluid (We = 0.2, solid lines); ε = 0.2 and R̂e = 1
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Fig. 10 Contours of the first normal stress difference, N̂1, for a Newtonian fluid, We = 0, and b a viscoelastic fluid with We = 0.2; ε =
0.2, and R̂e = 1

is obviously due to the fact that for the mass to be
preserved the flow accelerates downstream to coun-
terbalance the reduction of the density. Finally, the
contours for the first normal stress difference, N̂1, for
a Newtonian fluid (We = 0) and a viscoelastic fluid
with We = 0.2 are shown in Fig. 10. In the Newtonian
case, N̂1 is small and its contours are bending towards
the axis of symmetry, while in the viscoelastic case N̂1

grows larger and its contours near the symmetry axis
are almost horizontal.

As already mentioned, the second normal stress
difference, N2, is non-zero but very small in magnitude.
The contours appear horizontal and the differences be-
tween the Newtonian and the viscoelastic case are very
small. Similarly, the combined effect of fluid compress-
ibility with viscoelasticity on T̂xy appears to be weak.
However, it should be mentioned that the magnitude
of T̂xy for the viscoelastic fluid is always less than the
Newtonian one.

Conclusions

A perturbation solution for the laminar, isothermal,
weakly compressible axisymmetric Poiseuille flow of
an Oldroyd-B fluid in circular tubes and capillaries has
been derived. The primary variables of the flow, namely
the velocity, pressure, mass density, and polymer extra-
stress fields, were expanded as power series of the
compressibility number and the solution was obtained
up to second order. Expressions for the volumetric flow

rate, the pressure drop, and the friction factor have
been obtained up to second order. The derived solu-
tion shows that fluid compressibility, inertia, and vis-
coelasticity have a significant effect on all the primary
variables describing the flow. It was also demonstrated
that the one-dimensional and lubrication approxima-
tions lead to erroneous predictions even at the leading-
order effects of fluid compressibility. Last, it should be
mentioned that in addition to the relevant applications,
the analytical solution derived here may be useful for
validation purposes for those developing numerical al-
gorithms for viscoelastic compressible flows.
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