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Abstract Analytical solutions are derived for various start-
up Newtonian Poiseuille flows assuming that slip at the wall
occurs when the wall shear stress exceeds a critical value,
known as the slip yield stress. Two distinct regimes charac-
terise the steady axisymmetric and planar flows, which are
defined by a critical value of the pressure gradient. If the
imposed pressure gradient is below this critical value, the
classical no-slip, start-up solution holds. Otherwise, no-slip
flow occurs only initially, for a finite time interval deter-
mined by a critical time, after which slip does occur. For
the annular case, there is an additional intermediate (steady)
flow regime where slip occurs only at the inner wall, and
hence, there exist two critical values of the pressure gra-
dient. If the applied pressure gradient exceeds both critical
values, the velocity evolves initially with no-slip at both
walls up to the first critical time, then with slip only along
the inner wall up to the second critical time and finally with
slip at both walls.
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Introduction

The following are the two main macroscopic boundary con-
ditions used at the interface between a fluid and the wall: (a)
the classical no-slip condition, where the fluid is assumed to
stick at the wall, and (b) the slip condition where the veloc-
ity of the fluid relative to that of the wall, known as the
slip velocity, is non-zero. It is well established that under
certain circumstances, even Newtonian fluids slip at walls
(see Neto et al. 2005 and references therein). Various mod-
els have been developed to describe slip at the wall of both
Newtonian (Neto et al. 2005; Ferrás et al. 2012) and non-
Newtonian fluids (Barnes 1995; Denn 2001; Hatzikiriakos
2012; Ferrás et al. 2012). The slip velocity has been related
to the wall shear stress, the wall normal stress, pressure,
molecular weight and its distribution, temperature as well
as to the surface roughness and the interaction between
the fluid and the wall interface (Hatzikiriakos 2012; Ansari
et al. 2013).

The first slip model was proposed by Navier (1827), who
assumed that the wall shear stress, τw, depends linearly on
the slip velocity, uw:

τw = βuw (1)

where β is the slip (or friction) coefficient, which is also
defined as the ratio of the viscosity, η, to the slip or extrap-
olation length, b, i.e. the distance from the interface so that
the fluid velocity extrapolates to zero. As the amount of
experimental data was increasing, so did the need to develop
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other slip models which could describe better experimental
observations. These include non-linear as well as dynamic
slip models (Hatzikiriakos 2012).

The Navier slip condition describes well certain experi-
mental data regarding Newtonian fluids (Neto et al. 2005;
Matthews and Hill 2008). However, other experiments
(Craig et al. 2001; Zhu and Granick 2001, 2002; Spikes and
Granick 2003; Neto et al. 2003) show that the slip length
also depends on the wall shear stress. Spikes and Granick
(2003) proposed a modified Navier slip model, where slip
occurs only when a critical value of the wall shear stress, τc,
known as the slip yield stress, is exceeded:

uw = 0, τw ≤ τc

τw = τc + βuw, τw > τc

}
. (2)

This slip model describes better experimental data for New-
tonian liquids obtained in oscillatory squeeze flow (Spikes
and Granick 2003) and in low-friction bearing experiments
(Choo et al. 2007). The existence of a critical shear stress for
the onset of slip in flows of polymer melts and other com-
plex materials is well documented (Kalika and Denn 1987;
Hatzikiriakos and Dealy 1991; Denn 2001; Kalyon and
Gevgilili 2003). Also, Aral and Kalyon (1994) have reported
that there exists a critical time for the flow to reach stead-
state in steady torsional flows of viscoplastic suspensions.
However, Spikes and Granick (2003) proposed Eq. (2)
for Newtonian liquids (namely tetradecane and water) and
reported that the slip yield stress was quite small for lyopho-
bic surfaces and high for lyophilic ones. They also provided
two possible physical origins of the model. The first con-
cerns models based on the enhanced mobility of molecules
of liquid immediately adjacent to a non-wetting wall. The
second one concerns the gas film model in which, above a
critical shear stress, liquid strain close to the surface may
transform small droplets of gas which collect preferentially
at the non-wetted surface into an extended thin film.

The power-law analogue of Eq. (2) has also been used to
describe wall slip of complex fluids, such as pastes (Estellè
and Lanos 2007) and colloids (Ballesta et al. 2012). A more
sophisticated slip equation with slip yield stress has been
proposed by Tang and Kalyon (2008a, b) in their study of
flow instabilities of polymeric fluids and suspensions.

As exemplified by Ferrás et al. (2012), analytical solu-
tions are important to solve related industrial problems,
for the assessment of computational codes used in fluid
flow simulations and that they form the building blocks to
the understanding of more complex solutions. The steady-
state Newtonian Poiseuille flow, with Navier slip, has
been solved analytically by Ebert and Sparrow (1965) for
the rectangular and annular geometry and by Duan and
Muzychka (2007a, b) for other non-circular geometries.

Chatzimina et al. (2009) also presented semi-analytical
solutions for the annular geometry with non-linear slip.
Analytical solutions of the transient and periodic prob-
lems with Navier slip have been derived for the planar
(Majdalani 2008), axisymmetric (King 2007; Matthews
and Hill 2008; Wu et al. 2008) and annular problems
(Wiwatanapataphee et al. 2009). Ferrás et al. (2012) pre-
sented solutions of Newtonian and non-Newtonian Couette
and Poiseuille flows using various slip laws. Analytical
steady-state solutions with slip Eq. (2) have been reported
by Ballesta et al. (2012) for the flow of concentrated col-
loidal suspensions in a cone–plate geometry, by Spikes
and Granick (2003) for Newtonian squeeze flow (using
an approximate expression for the ball geometry) and by
Kaoullas and Georgiou (2013) for Newtonian Poiseuille
flows in various geometries.

The intention of this work is to extend previous results
and give analytical solutions for transient Newtonian
Poiseuille flows using the slip Eq. (2), i.e. taking into
account slip yield stress effects. The solutions for the
axisymmetric and planar Poiseuille flows are first pro-
vided and then those for the start-up annular Poiseuille
flow are presented. Finally, the conclusions of this work are
provided.

Axisymmetric Poiseuille flow

We consider the start-up pressure-driven flow of an incom-
pressible Newtonian fluid in a circular, infinitely long,
horizontal tube of radius R assuming that gravity is negli-
gible, so that the flow is unidirectional. In cylindrical polar
coordinates, the z-velocity component uz(r, t) satisfies

ρ
∂uz

∂t
= G + η

(
∂2uz

∂r2
+ 1

r

∂uz

∂r

)
, (3)

where G ≡ (−∂p/∂z) is the pressure gradient and ρ is the
density. Given that

τw = |τrz|r=R = −η
∂uz

∂r

∣∣∣∣
r=R

, (4)

the boundary condition at the wall becomes

uw = 0, τw ≤ τc

− η
∂uz

∂r

∣∣∣∣
r=R

= τc + βuw, τw > τc

⎫⎬
⎭ . (5)

Along the axis of symmetry, the usual symmetry con-
dition is assumed. Initially, the flow is at rest, thus
uz(r, 0) = 0.

In steady flow, there are two flow regimes (Kaoullas and
Georgiou 2013): (1) the no-slip and (2) the slip regimes,
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which are defined by a critical value of the pressure gradient
for the occurrence of slip:

Gc ≡ 2τc

R
. (6)

The steady-state velocity profile is therefore given by

us
z(r) =

⎧⎪⎪⎨
⎪⎪⎩

R2G

4η

[
1 −

( r

R

)2
]

, G ≤ Gc,

R2G

4η

[
1 + 2B −

( r

R

)2
]

− τcBR

η
, G > Gc,

(7)

where

B ≡ η

βR
(8)

is the dimensionless inverse slip number (when B = 0, the
no-slip case is recovered, while B → ∞ corresponds to full
slip).

In the start-up flow problem, we distinguish two pos-
sibilities depending on the value of the imposed pressure
gradient. When G ≤ Gc, the standard no-slip solution
applies:

uz(r, t) = R2G

4η

⎡
⎢⎢⎣1 −

( r

R

)2 − 8
∞∑

k=1

1

α3
k J1(αk)

J0

(αkr

R

)
e
− α2

kν

R2
t

⎤
⎥⎥⎦ ,

(9)

where Ji is the Bessel function of the first kind of order i; αk ,
k = 1, 2, . . ., are the roots of J0; and ν ≡ η/ρ is the kine-
matic viscosity. Equation (9) is the standard velocity profile
with no slip (see (King 2007; Matthews and Hill 2008; Wu
et al. 2008; Glasgow 2010). The volumetric flow rate and
the wall shear stress are respectively given by

Q(t) = πR4

8η

⎛
⎜⎜⎝1 − 32

∞∑
k=1

1

α4
k

e
−

α2
kν

R2 t

⎞
⎟⎟⎠G (10)

and

τw(t) = R

2

⎛
⎜⎜⎝1 − 4

∞∑
k=1

1

α2
k

e
−

α2
kν

R2 t

⎞
⎟⎟⎠G. (11)

In the case where G > Gc, the no-slip solution applies
only up to the critical time tc at which the wall shear stress
becomes equal to the slip yield stress. Hence, for 0 ≤ t < tc,
the velocity and the volumetric flow rate are given by

Eqs. (9) and (10). The critical time for the initiation of slip,
tc, can be found as the root of τw(tc) = τc, i.e. the root of

4
∞∑

k=1

1

α2
k

e
−α2

kν

R2
tc = 1 − 2τc

GR
. (12)

It is clear that tc depends only on the pressure gradient and
the slip yield stress. Once tc is exceeded, τw > τc and slip
occurs along the wall following Eq. (5). The solution for the
full problem is

uz(r, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R2G

4η

⎡
⎢⎢⎣1 −

( r

R

)2 − 8
∞∑

k=1

1

α3
kJ1(αk)

× J0

(αkr

R

)
e
−α2

k ν

R2
t

⎤
⎥⎥⎦ , t ≤ tc,

R2G

4η

⎡
⎢⎣1 + 2B −

( r

R

)2 − 4
∞∑

n=1

AnJ0

(
λnr

R

)

× e
−λ2

nν

R2
(t − tc)

⎤
⎥⎦ − τcBR

η
, t > tc,

(13)

where

An = B
[
1 + λ2

nIn − 2τc/(GR)
]

λnJ1(λn)
(
1 + B2λ2

n

) , (14)

In = 4
∞∑

k=1

1

α2
k

(
α2

k − λ2
n

)e−
α2

kν

R2 tc
(15)

and λn are the roots of

J0(λn) = BλnJ1(λn). (16)

The volumetric flow rate is given by

Q(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

πR4

8η

⎡
⎢⎣1 − 32

∞∑
k=1

1

α4
k

e
−

α2
k ν

R2
t

⎤
⎥⎦G, t ≤ tc,

πR4

8η

⎡
⎢⎣1 + 4B − 16

∞∑
n=1

An

J1(λn)

λn

× e
−λ2

nν

R2
(t − tc)

⎤
⎥⎦G − πτcBR3

η
, t > tc,

(17)
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and the slip velocity is

uw(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, t ≤ tc,

R2G

4η

⎡
⎢⎣2B − 4

∞∑
n=1

AnJ0 (λn)

× e
−λ2

nν

R2
(t − tc)

⎤
⎥⎦ − τcBR

η
, t > tc.

(18)

Introducing the following dimensionless quantities

u∗
z = uzη

τcR
, G∗ = RG

τc
, τ ∗ = τ

τc
,

Q∗ = Qη

πτcR3
, r∗ = r

R
, t∗ = tν

R2
, (19)

the non-dimensional critical pressure gradient becomes
G∗

c = 2 and the non-dimensional critical time t∗c is the
solution of

4
∞∑

k=1

1

α2
k

e−α2
k t

∗
c = 1 − 2

G∗ . (20)

The non-dimensional velocity and volumetric flow rate
are respectively given by

u∗
z(r

∗, t∗) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

G∗

4

[
1 − r∗2 − 8

∞∑
k=1

1

α3
kJ1(αk)

J0
(
αkr

∗) e−α2
k t

∗
]

, t∗ ≤ t∗c ,

G∗

4

[
1 + 2B − r∗2 − 4

∞∑
n=1

A∗
nJ0(λnr

∗)e−λ2
n(t

∗ − t∗c )

]
− B, t∗ > t∗c ,

(21)

and

Q∗(t∗) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

8

[
1 − 32

∞∑
k=1

1

α4
k

e−α2
k t

∗
]

G∗, t∗ ≤ t∗c ,

1

8

[
1 + 4B − 16

∞∑
n=1

A∗
n

J1(λn)

λn

e−λ2
n(t

∗ − t∗c )

]
G∗ − B, t∗ > t∗c ,

(22)

where

A∗
n = B

(
1 + λ2

nIn − 2/G∗)
λnJ1(λn)

(
1 + B2λ2

n

) . (23)

Also, the dimensionless slip velocity is given by

u∗
w(t∗) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, t∗ ≤ t∗c
G∗

2

[
B − 2

∞∑
n=1

A∗
nJ0(λn)

× e−λ2
n(t

∗ − t∗c )
]

− B, t∗ > t∗c .

(24)

In Fig. 1, the critical time t∗c is plotted as a function
of the dimensionless pressure gradient G∗. If the pressure

gradient is closer to G∗
c = 2, it requires a longer time for

slip to occur and eventually t∗c → ∞, while as G∗ → ∞,
t∗c → 0 indicating that slip occurs much faster as the pres-
sure gradient increases. As already noted, t∗c is independent
of the slip number B. The dashed line denotes an approxi-
mation to t∗c , found by retaining only the first them of the
sum in Eq. (20):

t∗c ≈ 1

α2
1

ln

[
4G∗

α2
1

(
1

G∗ − 2

)]
. (25)

This approximate value for t∗c is very close to the actual
value, when G∗ is close to G∗

c , and it breaks down for large
values of G∗.
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Fig. 1 The critical time for the initiation of slip, in start-up axisym-
metric Poiseuille flow plotted against the dimensionless pressure
gradient G∗. The dotted line represents the critical pressure gradient
for the occurrence of slip, G∗

c , while the dashed line is the first term
approximation to t∗c

The dimensionless volumetric flow rate for G∗ = 3
and various slip numbers is shown in Fig. 2a with the no-
slip case denoted by the dashed line. As deduced from
Eq. (22), for t∗ ≤ t∗c , Q∗ is independent of the slip num-
ber B while for t∗ > t∗c , Q∗ increases with B. It is clear
from Fig. 2b, which shows the deviation of Q∗ from the
steady state dimensionless volumetric flow rate, Q∗

s , that the
flow requires an infinite time to evolve to steady-state. This
is a standard result for Newtonian fluids (Batchelor 1967),
while Bingham fluids have been shown to reach steady-state
flow in finite time (Glowinski 1984). Additionally, the flow
development decelerates as the slip number is increased.
This is also seen in Fig. 3 where the evolution of the veloc-
ity profile for G∗ = 3 and three slip numbers (B = 0.1,
1 and 10) is illustrated. As the slip number increases, so
does the steady-state velocity which tends to become flat for
large values of B.

Plane Poiseuille flow

For completeness, the solution for the start-up plane
Poiseuille flow is summarised here. Using similar scalings,
i.e.

u∗
x = uxη

τcH
, G∗ = HG

τc
, τ ∗ = τ

τc
,

Q∗ = Qη

τcH 3
, y∗ = y

H
, t∗ = tν

H 2
, (26)
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Fig. 2 Evolution of a the dimensionless volumetric flow rate, Q∗, and
b its deviation from the steady-state value in start-up axisymmetric
Poiseuille flow for G∗ = 3 > G∗

c and various slip numbers B. The
dashed line corresponds to the no-slip case and the circles denote the
critical time, tc, for the onset of slip

where H is the slit semi-width, the critical pressure gradient
for the occurrence of slip becomes G∗

c = 1 and the critical
time t∗c is the solution of

2
∞∑

k=1

1

α2
k

e−α2
k t

∗
c = 1 − 1

G∗ . (27)

The non-dimensional velocity is

u∗
x (y∗, t∗) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

G∗

2

[
1 − y∗2 − 4

∞∑
k=1

(−1)k+1

α3
k

× cos(αky
∗)e−α2

k t
∗
]

, t∗ ≤ t∗c ,

G∗
2

[
1 + 2B − y∗2 − 4

∞∑
n=1

C∗
n cos(λny

∗)

× e−λ2
n(t

∗ − t∗c )
]

− B, t∗ > t∗c ,

(28)
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Fig. 3 Evolution of the velocity in start-up axisymmetric Poiseuille
flow for G∗ = 3 > G∗

c : a B = 0.1, b B = 1 and c B = 10

where

C∗
n = B

(
1 + λ2

nIn − 1/G∗) sin λn

λn + sin λn cos λn

, (29)

In = 2
∞∑

k=1

1

α2
k

(
α2

k − λ2
n

)e−
α2

kν

R2 tc
, (30)

αk = (2k − 1)π/2 and λn are the roots of

Bλn tan λn = 1, (31)

and B ≡ η/(βH) is the slip number. The non-dimensional
volumetric flow rate is

Q∗(t∗)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2

3

[
1 − 6

∞∑
k=1

1

α4
k

e−α2
k t

∗
]

G∗, t∗ ≤ t∗c ,

2

3

[
1 + 3B − 6

∞∑
n=1

C∗
n

sin(λn)

λn

× e−λ2
n(t

∗ − t∗c )

]
G∗ − 2B, t∗ > t∗c ,

(32)

and the slip velocity is given by

u∗
w(t∗) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

G∗

2

[
1 − y∗2 − 4

∞∑
k=1

(−1)k+1

α3
k

× cos(αky
∗)e−α2

k t∗
]

, t∗ ≤ t∗c ,

G∗

2

[
1 + 2B − y∗2 − 4

∞∑
n=1

C∗
n cos(λny∗)

× e−λ2
n(t∗ − t∗c )

]
− B, t∗ > t∗c .

(33)

Annular Poiseuille flow

In this section, we derive solutions for the start-up Newto-
nian flow in an annular duct of inner and outer radii, κR

and R, respectively, with 0 < κ < 1. We assume that the
properties of the inner and outer walls are the same and
denote the corresponding quantities by the subscripts 1 and
2, respectively. Thus, the boundary conditions are given by

uw1 = 0, τw1 ≤ τc

η
∂uz

∂r

∣∣∣∣
r=κR

= τc + βuw1, τw1 > τc

⎫⎬
⎭ (34)

and

uw2 = 0, τw2 ≤ τc

−η
∂uz

∂r

∣∣∣∣
r=R

= τc + βuw2, τw2 > τc

⎫⎬
⎭ . (35)

As shown in Kaoullas and Georgiou (2013), there are three
steady-state flow regimes corresponding to (1) no slip at
both walls, (2) slip only at the inner wall and (3) slip at both
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walls. These regimes are defined by two critical pressure
gradients:

Gc1 = 4κ ln(1/κ)τc

[−2κ2 ln(1/κ) + 1 − κ2]R (36)

and

Gc2 = 4[ln(1/κ) + B(1 + 1/κ)]τc

[2 ln(1/κ) + 2B/κ(1 − κ2) − 1 + κ2]R , (37)

where Gc1 < Gc2. The steady-state velocity profile is given
by

us
z(r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R2G

4η

[
1 −

( r

R

)2 + 1 − κ2

ln(1/κ)
ln

r

R

]
, G ≤ Gc1,

R2G

4η

[
1 −

( r

R

)2 + 2Bκ + 1 − κ2 + 4τcB/(GR)

ln(1/κ) + B/κ
ln

r

R

]
, Gc1 < G ≤ Gc2,

R2G

4η

[
1 + 2B −

( r

R

)2 + 2B(1 + κ) + 1 − κ2

ln(1/κ) + B(1 + 1/κ)

(
ln

r

R
− B

)]
− τcBR

η
, G > Gc2,

(38)

where B ≡ η/(βR). Thus, depending on the value of the
pressure gradient, there are three cases in the start-up flow
problem.

If G ≤ Gc1, one gets the standard no-slip solution

uz(r, t) = R2G

4η

⎡
⎢⎢⎣1 −

( r

R

)2 + 1 − κ2

ln(1/κ)
ln

r

R
− 8

∞∑
j=1

1

α3
j [Z1(αj ) + κZ1(καj )]

Z0

(αj r

R

)
e
−

α2
j ν

R2
t

⎤
⎥⎥⎦ , (39)

where

Zi

(αj r

R

)
≡ Ji

(αj r

R

)
+ δjYi

(αj r

R

)
, (40)

Yi is the Bessel function of the second kind of order i and
αj and δj are the jth pair of the roots of

Z0(αj ) = Z0(καj ) = 0. (41)

The volumetric flow rate is given by

Q(t) = πR4

8η

⎡
⎢⎢⎣1 − κ4 − (1 − κ2)2

ln(1/κ)

−32
∞∑

j=1

Z1(αj ) − κZ1(αj )

α4
j [Z1(αj ) + κZ1(καj )]

e
−

α2
j ν

R2
t

⎤
⎥⎥⎦G,

(42)
while the two wall shear stresses are

τw1(t) = R

4

⎡
⎢⎢⎣ 1 − κ2

κ ln(1/κ)
− 2κ

+8
∞∑

j=1

Z1(καj )

α2
j [Z1(αj ) + κZ1(καj )]

e
−

α2
j ν

R2 t

⎤
⎥⎥⎦G

(43)

and

τw2(t) = R

4

⎡
⎢⎢⎣2 − 1 − κ2

ln(1/κ)

−8
∞∑

j=1

Z1(αj )

α2
j [Z1(αj ) + κZ1(καj )]

e
−

α2
j ν

R2
t

⎤
⎥⎥⎦G.

(44)

When G > Gc1, no-slip applies only for a finite time
interval 0 ≤ t < tc1. This critical time value, tc1, can be
found by demanding that τw1(tc1) = τc, which leads to

8
∞∑

j=1

Z1(καj )

α2
j [Z1(αj ) + κZ1(αj )]

e
−

α2
j ν

R2 tc1

= 2κ − 1 − κ2

κ ln(1/κ)
+ 4τc

RG
. (45)
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It is clear that tc1 depends only on the pressure gradient
and the slip yield stress (i.e. it is independent of B). For t >

tc1, slip occurs along the inner wall.

If Gc1 < G ≤ Gc2, the flow evolves to the corresponding
steady-state without slip at the outer wall. Hence, for t > tc,
the velocity is given by

uz(r, t) = R2G

4η

⎡
⎢⎢⎣1 −

( r

R

)2 + 2Bκ + 1 − κ2 + 4τcB/(GR)

ln(1/κ) + B/κ
ln

r

R
− 2

∞∑
m=1

DmZ0

(
λmr

R

)
e
−λ2

mν

R2
(t − tc1)

⎤
⎥⎥⎦ (46)

where

Dm =
B

[
2κ2 ln(1/κ) − 1 + κ2

ln(1/κ)
+ λ2

mIm + 4kτc

GR

]
Z1(κλm)

λm

[
Z2

1(λm) − κ2
(
1 + λ2

mB2)Z2
1(κλm

)] ,

(47)

Im = 8κ

∞∑
j=1

Z1(καj )

α2
j [Z1(αj ) + κZ1(αj )]

(
α2

j − λ2
m

) e
−

α2
j ν

R2
tc1

,

(48)

Zi(λmr/R) ≡ Ji(λmr/R) + εmYi(λmr/R) (49)

and (λm, εm) are the solutions of

Z0(λm) = Z0(κλm) + λmBZ1(κλm) = 0. (50)

The volumetric flow rate is given by

Q(t) = πR4

8η

⎡
⎢⎢⎣1 − κ4 − (1 − κ2)2 − N1

ln(1/κ) + B/κ
− 8

∞∑
m=1

Dm
Z1(λm) − κZ1(κλm)

λm

e
−λ2

mν

R2
(t − tc1)

⎤
⎥⎥⎦G, (51)

where

N1 ≡ 4Bκ
[(

1 + τc

GkR

) [
2κ2 ln(1/κ) − 1 + κ2

]
− κ2 ln(1/κ)

]
.

(52)

The two wall shear stresses are

τw1(t) = R

4

⎡
⎢⎢⎣ − 2κ + 2Bκ + 1 − κ2 + 4τcB/(GR)

κ[ln(1/κ) + B/κ]

+2
∞∑

m=1

DmλmZ1(κλm)e
−λ2

mν

R2
(t − tc1)

⎤
⎥⎥⎦G

(53)
and

τw2(t) = R

4

⎡
⎢⎢⎣2 − 2Bκ + 1 − κ2 + 4τcB/(GR)

ln(1/κ) + B/κ

−2
∞∑

m=1

DmλmZ1(λm)e
−λ2

mν

R2
(t − tc1)

⎤
⎥⎥⎦G.

(54)

In the case where G > Gc2, the velocity profile (46) and
the volumetric flow rate (51) are valid only up to a second
critical time value, tc2, after which τwi > τc, i = 1, 2, and
slip occurs along the outer wall too. This second critical time
is the solution of τw2(tc2) = τc, which gives

τc = R

4

⎡
⎢⎢⎣2 − 2Bκ + 1 − κ2 + 4τcB/(GR)

ln(1/κ) + B/κ

−2
∞∑

m=1

DmλmZ1(λm)e
−λ2

mν

R2
(tc2 − tc1)

⎤
⎥⎥⎦G.

(55)

Clearly, tc2 depends on the pressure gradient, the slip yield
stress and the slip parameter. Hence, for t > tc2, the velocity
is given by

uz(r, t) = R2G

4η

⎡
⎢⎢⎣1 + 2B −

( r

R

)2 + 2B(1 + κ) + 1 − κ2

ln(1/κ) + B + B/κ

(
ln

r

R
− B

)
− 2

∞∑
n=1

EnZ0

(μnr

R

)
e
−μ2

nν

R2 (t − tc2)

⎤
⎥⎥⎦ − τcBR

η
(56)
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where

En =
B

[
2 ln(1/κ) + 2B/κ − 2Bκ − 1 + κ2 − 4τc[ln(1/κ) + B + B/κ]/(GR)

ln(1/κ) + B/κ
+ μ2

nLn

]
Z1(μn)

μn

(
1 + μ2

nB
2
) [

Z2
1(μn) − κ2Z2

1(κμn)
] , (57)

Ln = 2
∞∑

m=1

Dm

λmZ1(λm)

λ2
m − μ2

n

e
−λ2

mν

R2
(tc2 − tc1)

, (58)

Zi(μnr/R) ≡ Ji(μnr/R)+φnYi(μnr/R) and the eigenval-
ues (μn, φn) are the solutions of

Z0(μn) − μnBZ1(μn) = Z0(κμn) + μnBZ1(κμn) = 0.

(59)

Also, the volumetric flow rate is given by

Q(t) = πR4

8η

⎡
⎢⎢⎣1 − κ4 + 4B − (1 − κ2 + 2B)2 − N2

ln(1/κ) + B(1 + 1/κ)
− 8

∞∑
n=1

En

Z1(μn) − κZ1(κμn)

μn

e
−μ2

nν

R2
(t − tc2)

⎤
⎥⎥⎦G

− πτcBR3

η
(1 − κ2), (60)

where N2 ≡ 4Bκ[κ2 ln(1/κ) − 1 + κ2 − 2B + Bκ2]. The
two wall shear stresses are

τw1(t) = R

4

⎡
⎢⎢⎣ 2B(1 + κ) + 1 − κ2

κ[ln(1/κ) + B(1 + 1/κ)]

−2κ + 2
∞∑

n=1

EnμnZ1(κμn)e
− μ2

nν

R2
(t − tc2)

⎤
⎥⎥⎦G,

(61)

and

τw2(t) = R

4

⎡
⎢⎢⎣2 − 2B(1 + κ) + 1 − κ2

ln(1/κ) + B(1 + 1/κ)

−2
∞∑

n=1

EnμnZ1(μn)e
−μ2

nν

R2
(t − tc2)

⎤
⎥⎥⎦G. (62)

Using the same scalings as in Eq. (19), the two non-
dimensional critical time values are the solutions of

8
∞∑

j=1

Z1(καj )

α2
j [Z1(αj ) + κZ1(καj )]

e
−α2

j t∗c1 = 2κ− 1 − κ2

κ ln(1/κ)
+ 4

G∗ (63)

and
∞∑

m=1

D∗
mλmZ1(λm)e−λ2

m(t∗c2 − t∗c1)

= 1 − 2Bκ + 1 − κ2 + 4B/G∗

2[ln(1/κ) + B/κ] − 2

G∗ , (64)

where

D∗
m=

B

[
2κ2 ln(1/κ) − 1 + κ2

ln(1/κ)
+ λ2

mIm + 4k

G∗

]
Z1(κλm)

λm[Z2
1(λm) − κ2(1 + λ2

mB2)Z2
1(κλm)] .

(65)

For G∗ > G∗
c2, the non-dimensional velocity is

u∗
z (r

∗, t∗) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

G∗

4

⎡
⎣1 − r∗2 + 1 − κ2

ln(1/κ)
ln r∗ − 8

∞∑
j=1

Z0(αj r
∗)

α3
j [Z1(αj ) + κZ1(καj )]

e
−α2

j t
∗
⎤
⎦ , t∗ ≤ t∗c1,

G∗

4

[
1 − r∗2 + 2Bκ + 1 − κ2 + 4B/G∗

ln(1/κ) + B/κ
ln r∗ − 2
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m=1

D∗
mZ0(λmr∗)e−λ2

m(t∗ − t∗c1)

]
, t∗c1 < t∗ ≤ t∗c2,

G∗

4

[
1 + 2B − r∗2 + 2B(1 + κ) + 1 − κ2

ln(1/κ) + B(1 + 1/κ)
(ln r∗ − B)

−2
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n=1

E∗
nZ0(μnr

∗)e−μ2
n(t∗ − t∗c2)

]
− B, t∗ > t∗c2,

(66)
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where

E∗
n =

B

[
2 ln(1/κ) + 2B/κ − 2Bκ − 1 + κ2 − 4[ln(1/κ) + B + B/κ]/G∗

ln(1/κ) + B/κ
+ μ2

nLn

]
Z1(μn)

μn(1 + μ2
nB

2)
[
Z2

1(μn) − κ2Z2
1(κμn)

] . (67)

The two non-dimensional slip velocities are given by

u∗
w1(t

∗) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, t∗ ≤ t∗c1,

G∗

4

[
1 − κ2 − 2Bκ + 1 − κ2

ln(1/κ) + B/κ + 4B/G∗ ln(1/κ)

−2
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m=1

D∗
mZ0(κλm)e−λ2

m(t∗ − t∗c1)

]
, t∗c1 < t∗ ≤ t∗c2,

G∗

4

[
1 + 2B − κ2 − 2B(1 + κ) + 1 − κ2

ln(1/κ) + B(1 + 1/κ)
[ln(1/κ) + B]

−2
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n=1

E∗
nZ0(κμn)e

−μ2
n(t

∗ − t∗c2)

]
− B, t∗ > t∗c2,

(68)

and

u∗
w2(t

∗) =

⎧⎪⎨
⎪⎩

0, t∗ ≤ t∗c2,

G∗

4

[
2B − 2B(1 + κ) + 1 − κ2

ln(1/κ) + B(1 + 1/κ)
B − 2
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n=1

E∗
nZ0(μn)e

−μ2
n(t

∗ − t∗c2)

]
− B, t∗ > t∗c2,

(69)

and the non-dimensional volumetric flow rate is given by

Q∗(t∗) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

8

⎡
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ln(1/κ)
− 32

∞∑
j=1

Z1(αj ) − κZ1(καj )

α4
j [Z1(αj ) + κZ1(καj )]

e
−α2

j t
∗
⎤
⎦G∗, t∗ ≤ t∗c1,

1

8

[
(1 − κ4) − (1 − κ2)2 − N∗

1

ln(1/κ) + B/κ

−8
∞∑

m=1

D∗
m

Z1(λm) − κZ1(κλm)

λm

e−λ2
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]
G∗, t∗c1 < t∗ ≤ t∗c2,

1

4

[
1 − κ4 + 4B − (1 − κ2 + 2B)2 − N2

ln(1/κ) + B(1 + 1/κ)

−8
∞∑

n=1

E∗
n

Z1(μn) − κZ1(κμn)

μn

e−μ2
n(t
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]
G∗ − B(1 − κ2), t∗ > t∗c2,

(70)

where

N∗
1 ≡ 4Bκ

[(
1 + 1

G∗k

)
[2κ2 ln(1/κ) − 1 + κ2] − κ2 ln(1/κ)

]
.

(71)

Figure 4 shows the two critical times, t∗c1 and t∗c2, at vari-
ous pressure gradients, κ = 0.1 and B = 0.001, B = 1 and
B → ∞. The first critical time depends only on the pressure
gradient, while the second one depends on both the pressure
gradient and the slip number. As expected, both t∗c1 and t∗c2
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Fig. 4 The two critical times, t∗c1 and t∗c2, for the initiation of slip at
the inner and outer walls, respectively, in start-up annular Poiseuille
flow with κ = 0.1 and different values of the slip number. The dotted
lines represent the two critical pressure gradients, G∗

c1 and G∗
c2, while

the maximum and minimum values of the latter are indicated by the
dashed lines

tend to infinity as G∗ → G∗
c1 and G∗ → G∗

c2, respectively.
Also both critical times tend to zero as G∗ → ∞; thus, slip
occurs much quicker. Unlike G∗

c1, G∗
c2 depends on B and is

bounded by G∗
c2,min ≤ G∗

c2 ≤ G∗
c2,max, where

G∗
c2,min ≡ lim

B→∞ G∗
c2 = 2

1 − κ
(72)

and

G∗
c2,max ≡ lim

B→0
G∗

c2 = 4 ln(1/κ)

2 ln(1/κ) − 1 + κ2
. (73)

Hence, for κ = 0.1, G∗
c2,min = 2.2222 and G∗

c2,max =
2.5477.

Figure 5a shows the non-dimensional volumetric flow
rate for different slip numbers with the no-slip case denoted
by the dashed line. The left branch corresponds to the no-
slip stage of the flow. The middle branch begins at t∗c1
(circles), which is the same for all B and corresponds to
slip only at the inner wall, while the upper branch begins at
t∗c2 (dots), which is different for each B and corresponds to
the slip-at-both-walls case. For both the middle and upper
branches, Q∗ increases with increasing B. It can be seen
in Fig. 5b, which shows the deviation of Q∗ from the
steady-state value, that the flow development decelerates
with increasing B and that the flow requires an infinite time
to reach a steady state. The evolution of the velocity for
κ = 0.1, G∗ = 2.6 and three slip numbers (B = 0.001,
1 and 1,000) is illustrated in Fig. 6. As in the axisymmet-
ric and planar flows, the velocity also increases with B and
eventually becomes flat. Finally, Fig. 7 shows the evolution
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Fig. 5 a The dimensionless volumetric flow rate, Q∗, and b its devi-
ation from the steady-state value in the annular Poiseuille flow with
κ = 0.1, G∗ = 2.6 and different slip numbers. The dashed line corre-
sponds to the no-slip case, and the critical times for the onset of slip at
the inner and outer walls, t∗c1 (circles) and t∗c2 (dots), are also noted

of the two slip velocities for κ = 0.1, G∗ = 2.6 and two slip
values (B = 0.1 and 1).

Conclusions

Analytical solutions of the start-up incompressible Newto-
nian Poiseuille flows are presented, for the axisymmetric,
planar and annular geometries. The slip model employed
here allows for slip to occur along the walls only when the
wall shear stress exceeds the slip yield stress. In the case
of planar and axisymmetric flows, if the imposed pressure
gradient is lower than the critical pressure gradient for the
occurrence of slip, one gets the classical, transient, no-slip
solutions. Otherwise, the no-slip condition applies only up
to a critical time, which depends on the slip yield stress and
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Fig. 6 Evolution of the velocity profile in start-up annular Poiseuille
flow with κ = 0.1, G∗ = 2.6 and different values of the slip number:
a B = 0.001, b B = 1 and c B = 1,000
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Fig. 7 Evolution of the two slip velocities, u∗
w1 and u∗

w2, in start-up
annular Poiseuille flow with κ = 0.1, G∗ = 2.6 and B = 0.1 and
B = 1. The critical times for the onset of slip at the inner and outer
walls, t∗c1 (circle) and t∗c2 (dots), are also noted

the pressure gradient, beyond which the slip yield stress is
exceeded and slip does occur.

In the annular flow, the velocity may evolve from no slip
at both walls to slip at the inner wall only, and eventually to
slip at both walls depending on the value of the applied pres-
sure gradient. These transitions occur when the wall shear
stress exceeds the slip yield stress, first at the inner wall and
then at the outer wall.
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