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Abstract
The pressure and temperature dependence of the yield stress is well established in oil drilling. In the present work, the steady,
annular pressure-driven flow of a Bingham plastic is considered under the assumption that both the plastic viscosity and the yield
stress vary linearly with pressure. A semi-analytical solution is derived for the case where the growth coefficients of both
rheological parameters are equal, which, for certain oil drilling fluids, is indeed a reasonable assumption allowing the existence
of a separable solution with an annular unyielded core. The inner and outer radii of the unyielded core are determined by solving
numerically an algebraic system of equations. The pressure, which is two-dimensional in the yielded parts of the domain, and the
velocity, which varies only with the radius, are calculated by means of explicit analytical expressions. The conditions for the
occurrence of flow and the effects of the growth coefficient and the radii ratio on the width of the unyielded annular plug, the
velocity profiles, and the pressure distributions are discussed.
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Introduction

Viscoplastic or yield stress materials, such as colloidal gels,
emulsions, soft glassy materials, and jammed colloidal sus-
pensions, behave as solids below a critical applied stress,
i.e., the yield stress τ*y , and as fluids otherwise (Frigaard

2019). As a result, the flow domain consists of the so-called

unyielded τ*≤τ*y
� �

and yielded τ* > τ*y

� �
zones. It should

be noted that throughout the paper starred symbols denote
dimensional quantities. Determining the interfaces between
yielded and unyielded regions is not a trivial task, especially
in two- and three-dimensional flows and/or in time-dependent
flows (Saramito and Wachs 2017; Damianou et al. 2016;
Huilgol et al. 2019). Different methods have been proposed

in order to tackle this problem, the two most popular being the
regularization and the augmented Lagrangian methods
(Saramito and Wachs 2017). A nice article about simple
(i.e., non-thixotropic and inelastic) yield stress fluids and their
usefulness has been recently published by Frigaard (2019).

Inmost studies of isothermal flows of yield stressmaterials,
the rheological parameters are commonly assumed to be con-
stant. Such an assumption, however, is not valid in many
important applications involving high pressure differences,
e.g., in polymer processing, in tribology, in microfluidics, in
oil drilling and transport, and in lava and pyroclastic flows
(Málek et al. 2007; Panaseti et al. 2018; Frigaard 2019). In
the literature of the mechanics of solid and granular materials
(Ionescu et al. 2015) and in oil drilling (Coussot 2014;
Hermoso et al. 2014), it is well established that the yield stress
depends not only on the temperature but also on the pressure.
The dependence on the latter becomes more important in pro-
cesses involving big pressure differences. In order to describe
the isothermal yield stress behavior of two drilling fluids,
Hermoso et al. (2014) employed the following linear equation

τ*y p*
� � ¼ τ*0 1þ β* p*−p*0

� �� � ð1Þ

where τ*0 denotes the yield stress at a reference pressure

p*0 and β∗ is the yield stress growth coefficient. As for
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the plastic viscosity, Hermoso and co-workers used the
Barus equation

μ* p*
� � ¼ μ*

0 e
α* p*−p*0ð Þ ð2Þ

where μ*
0 is the plastic viscosity at the reference pres-

sure and α∗ ≥ 0 is the plastic viscosity growth coeffi-
cient (Barus 1893). The linearized version of Eq. (2)

μ* p*
� � ¼ μ*

0 1þ α* p*−p*0
� �� � ð3Þ

may also be used if the pressure-dependence of μ∗ is
weak (α∗ ≪ 1); the encountered pressures are not ex-
tremely high and remain always above the reference
pressure. It is clear that the latter limitation also holds
for the linear expression for the yield stress. As pointed
out by Fusi and Rosso (2018), when referring to “pres-
sure,” we actually mean the “mean normal stress” of the
fluid, which should not be confused with the Lagrange
multiplier due to the compressibility constraint.

Damianou and Georgiou (2017) analyzed the plane
Poiseuille flow of a Bingham plastic with pressure-
dependent material parameters assuming that the yield stress
and the plastic viscosity obey respectively Eqs. (1) and (3). In
this case, the tensorial form of the Bingham plastic constitu-
tive equation reads

D* ¼ 0; τ*≤τ*y p*
� �

τ* ¼ 2
τ*0 1þ β* p*−p*0

� �� �
γ̇*

þ μ*
0 1þ α* p*−p*0

� �� �" #
D*; τ* > τ*y p*

� �
8><
>:

ð4Þ
where τ∗ is the viscous stress tensor,

D*≡
1

2
∇*v* þ ∇*v*

� �Th i
ð5Þ

is the rate of deformation tensor, v∗ is the velocity vector, γ̇*

≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trD*2=2

p
and τ*≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trτ*2=2

p
. It is readily seen that when

α∗ = β∗ = 0, Eq. (5) is reduced to the classic Bingham plastic
constitutive equation with constant material parameters. In
their analysis, Damianou and Georgiou (2017) made use of
the integral formulation for the momentum equation in the
unyielded core, as proposed by Fusi et al. (2015). They report-
ed explicit solutions for the velocity, the pressure, and the
width of the central unyielded region, which is constant de-
spite the pressure-dependence of the material parameters. This
is not the case in the axisymmetric Poiseuille flow where an
analytical solution can be derived only when the growth co-
efficients a∗ and β∗ are equal, as pointed out in our recent
work (Ioannou and Georgiou 2018), where it has been shown
that the radius of the unyielded core is constant. In a subse-
quent work, Housiadas et al. (2018) modeled the lubrication
of a Bingham plastic in long tubes using the approach

proposed by Fusi and Farina (2018) in order to investigate
the general case of the axisymmetric viscoplastic flow
with pressure-dependent rheological parameters. It was
demonstrated that the shape of the central unyielded core
depends on the relative values of α∗ and β∗. More specif-
ically, the unyielded core is conical, contracting when β∗

< a∗ and expanding when β∗ > a∗, while it remains cylin-
drical when β∗ = a∗. Fusi and Rosso (2018) have also con-
sidered the axisymmetric Poiseuille flow of a Herschel-
Bulkley fluid the material constants of which, however,
are zero at the reference pressure and then increase linear-
ly with pressure; as a result, the derived solutions cannot
be reduced to the classical viscoplastic flow with constant
rheological parameters.

The objective of the present work is to investigate the
annular, pressure-driven flow of a Bingham plastic with
material parameters varying linearly with pressure follow-
ing Eq. (4), as a natural extension of the above-mentioned
studies. The aforementioned flow is encountered in the
petroleum industry, e.g., drilling muds, which exhibit yield
stress, are used in long annular tubes where high pressures
are necessary in maintaining the flow [7]. The plastic vis-
cosity and yield stress growth parameters are assumed to
be equal, which is indeed a reasonable assumption for cer-
tain oil drilling fluids (Hermoso et al. 2014; Ioannou and
Georgiou 2018). Ioannou and Georgiou (2018) calculated
the values of α∗ and β∗ corresponding to the data of
Hermoso et al. (2014) for the B34-based drilling fluid at
different temperatures demonstrating that these are of the
same order, with values in the range of 10−8–10−7 Pa−1.

In the following sections, the governing equations for
the annular flow of a Bingham plastic with pressure-
dependent material parameters are presented. It is demon-
strated in particular that a separable solution exists only
in the special case where α∗ = β∗. This analytical solution
is derived next, extending thus the analytical solution for
the classical Bingham plastic model (Bird et al. 1982;
Chatzimina et al. 2007).

Governing equations

We consider the Poiseuille flow, of a material obeying Eq. (4),
in a horizontal annulus of length L∗ and radii κR∗ and R∗,
where 0 < κ < 1. We work in cylindrical coordinates, as illus-
trated in Fig. 1. Under the assumption that the flow is unidi-
rectional with v*z ¼ v*z r*ð Þ and v*r ¼ 0, the continuity equation
is automatically satisfied and the unyielded core is an annulus.
Hence, the flow field consists of three annular regions, i.e.,
two yielded regions, denoted by I and II, and the intermediate
unyielded region III, the radii of which are denoted by σ*

i and

σ*
ο, where κR

* < σ*
i < σ*

o < R* (see Fig. 1).

700 Rheol Acta (2019) 58:699–707



The problem is dedimensionalised by scaling z∗ by L∗, r∗,
σ*
i , and σ*

o by R∗, v*z by τ*0R
*=μ*

0, τ
*
rz by τ*ο, and p*−p*o

� �
by

τ*0=ε, where

ε≡
R*

L*
ð6Þ

is the aspect ratio. Hereafter, the dimensionless equations are
dropping the stars. In both yielded regions, i.e., for (z, r) ∈ [0,
1] × [σo, 1] ∪ [0, 1] × [κ, σi], the pressure is two-dimensional,
i.e., p = p(z, r) and τrz is the only non-zero component of the
stress tensor:

τ rz ¼ sgn
dvz
dr

	 

1þ βpð Þ þ 1þ αpð Þdvz

dr
ð7Þ

where

α≡
α*τ*0
ε

; β≡
β*τ*0
ε

ð8Þ

are the dimensionless plastic viscosity and yield stress growth

numbers and sgn dv*z=dr
*� �

is − 1 and 1 in regions I and II,
respectively. The dimensionless z- and r-components of the
momentum equation read

−
∂p
∂z

þ 1

r
∂ rτ rzð Þ
∂r

¼ 0 ð9Þ

and

−
∂p
∂r

þ ε2
∂τ rz
∂z

¼ 0 ð10Þ

respectively. On the annular walls, the usual no-slip conditions
are assumed, i.e., vz(1) = vz(κ) = 0. On the yield surfaces, the
velocity is constant given by vz(σo) = vz(σi) = vc, where vc is
the constant velocity of the plug core,Ω = {(z, r) : z ∈ [0, 1],
r ∈ [σi, σo], θ ∈ [0, 2π]}, which moves as a solid body.

Moreover, in the rigid core, the pressure is one-dimension-
al, pc = pc(z) satisfying pc(0) =Δp pc(1) = 0, where Δp is the

imposed dimensionless pressure at the inlet. For steady-state
flow in the absence of body forces, the integral balance of
linear momentum of the whole plug core yields (Fusi et al.,
2015; Fusi and Rosso 2018):

∫
∂Ω

−pIþ τð Þ⋅ndS ¼ 0 ð11Þ

where n is the outward unit normal to the boundary ∂Ω and I is
the unit tensor. The radial component of Eq. (11) is automat-
ically satisfied due to symmetry, while the longitudinal com-
ponent becomes:

2∫10 σoτ rzjr¼σo
−σiτ rzjr¼σi

� �
dzþ σ2

o−σ
2
i

� �
Δp ¼ 0 ð12Þ

Since the rate of strain (velocity gradient) vanishes at the two
yield surfaces, Eq. (7) yields

τ rzjr¼σo
¼ −τ rzjr¼σi

¼ 1þ βpc ð13Þ

Substituting Eq. (13) into Eq. (12) and simplifying, we get

σo−σi ¼ 2

Δp
1þ β∫10pcdz

� �
ð14Þ

In yielded region I, i.e., for (z, r) ∈ [0, 1] × [σo, 1], the di-
mensionless shear stress is given by

τ rz ¼ − 1þ βpð Þ þ 1þ αpð Þdvz
dr

ð15Þ

Substituting Eq. (15) into Eqs. (9) and (10), we get

∂p
∂z

¼ α
dvz
dr

−β
	 


∂p
∂r

þ 1þ αpð Þ d
2vz
dr2

þ
− 1þ βpð Þ þ 1þ apð Þdvz

dr
r

ð16Þ
and

∂p
∂r

¼ ε2 α
dvz
dr

−β
	 


∂p
∂z

ð17Þ

*z

*r

*

rz

*

0

*

0

* */zdu dr * *( )zu r

* *

or R

* 0z
* *z L

Region I

Region II

Region III
* *

ir R

* *r R

* *r R

Fig. 1 Geometry of the flow with
some symbol definitions and a
sketch of the velocity profile
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Substituting Eq. (17) into Eq. (16) and moving terms involv-
ing the velocity to the RHS, one gets:

∂p=∂z
1þ αp

¼ d2vz=dr2 þ 1=rð Þdvz=dr
1−ε2 αdvz=dr−βð Þ2 −

1=r

1−ε2 αdvz=dr−βð Þ2
1þ βp
1þ αp

ð18Þ

Similarly, in yielded region II, i.e., for (z, r) ∈ [0, 1] × [κ, σi],
where

τ rz ¼ 1þ βpð Þ þ 1þ αpð Þdvz
dr

ð19Þ

we get

∂p=∂z
1þ αp

¼ d2vz=dr2 þ 1=rð Þvz=dr
1−ε2 αdvz=dr þ βð Þ2 þ 1=r

1−ε2 αdvz=dr þ βð Þ2
1þ βp
1þ αp

ð20Þ

It is readily observed that in both yielded regions, variables
can be separated, and an analytical solution can be obtained
only in the special case where a = β. This solution is derived
below.

In the unyielded region III, i.e., for (z, r) ∈ [0, 1] × [σi, σo],
the rate-of-strain is zero. Therefore, the unyielded core moves
as a solid at constant velocity and thus

vz r ¼ σοð Þ ¼ vz r ¼ σið Þ ¼ vc ð21Þ

Analytical solution for α = β

Region I

When a = β, Eq. (18) is simplified as follows:

∂p=∂z
1þ αp

¼ d2vz=dr2 þ 1=rð Þdvz=dr−1=r
1−ε2α2 dvz=dr−1ð Þ2 ¼ −Λ1 ð22Þ

where Λ1 is a positive constant to be determined. Given that
the pressure is strictly decreasing function of the axial dis-
tance, the RHS of Eq. (22) has been chosen to have a minus
sign. Solving for vz and applying the boundary conditions dvz/
dr(r = σo) = vz(r = 1) = 0, we get:

vz rð Þ ¼ −
1

ε2α2Λ1
ln

Io εaΛ1rð Þ þ c1Ko εaΛ1rð Þ
Io εaΛ1ð Þ þ c1Ko εaΛ1ð Þ

� �
− 1−rð Þ; σo≤r≤1

ð23Þ
where Io and Ko are the modified Bessel functions of first and
second kind, respectively, and

c1 ¼ I1 εaΛ1σoð Þ−εaIo εaΛ1σoð Þ
K1 εaΛ1σoð Þ þ εaKo εaΛ1σoð Þ ð24Þ

Integrating now the differential equation for the pressure in
Eq. (22) yields

p r; zð Þ ¼ 1

α
w1 rð Þe−αΛ1z−1
� �

; σo≤r≤1 ð25Þ

wherew1(r) is an unknown function. Substituting p and vz into
Eq. (18), we get a first-order differential equation for w1,

w
0
1 rð Þ−εαΛ1

I1 εaΛ1rð Þ−c1K1 εaΛ1rð Þ½ �
Io εaΛ1rð Þ þ c1Ko εaΛ1rð Þ½ � w1 rð Þ ¼ 0 ; ð26Þ

the general solution of which is

w1 rð Þ ¼ C1 Io εaΛ1rð Þ þ c1Ko εaΛ1rð Þ½ � ð27Þ
where C is an integration constant. Applying the conditions
p(0, σo) =Δp and p(1, σo) = 0 gives

C1 ¼ 1þ αΔp
Io εaΛ1σoð Þ þ cKo εaΛ1σoð Þ and Λ1 ¼ ln 1þ αΔpð Þ

α

ð28Þ

Therefore, we have:

p z; rð Þ ¼ 1

α
1þ αΔpð Þ1−z Io εaΛ1rð Þ þ c1Ko εaΛ1rð Þ

Io εaΛ1σoð Þ þ c1Ko εaΛ1σoð Þ −1
� �

; σo≤r≤1

ð29Þ

Region II

Working as in region I, solving again for vz and applying the
boundary conditionsdvz/dr(r = σi) = vz(r = κ) = 0, we get

vz rð Þ ¼ −
1

ε2α2Λ2
ln

Io εaΛ2rð Þ þ c2Ko εaΛ2rð Þ
Io εaΛ2κð Þ þ c2Ko εaΛ2κð Þ

� �
þ κ−rð Þ; κ≤r≤σi

ð30Þ

Fig. 2 Variation of the critical pressure difference Δpcrit≡Δp*crit=
τ*0L

*=R*
� �

required for the initiation of the annular Bingham plastic
flow with the growth parameter α for different values of κ
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where

c2 ¼ I1 εaΛ2σið Þ þ εaIo εaΛ2σið Þ
K1 εaΛ2σið Þ−εaKo εaΛ2σið Þ ð31Þ

Integrating for pressure and applying the conditions
p(0, σi) =Δp and p(1, σi) = 0 gives

p z; rð Þ ¼ 1

α
1þ αΔpð Þ1−z Io εaΛ2rð Þ þ c2Ko εaΛ2rð Þ

Io εaΛ2σið Þ þ c2Ko εaΛ2σið Þ −1
� �

; κ≤r≤σi

ð32Þ

It turns out that the constant Λ2 is equal to Λ1; hence, the
symbol Λ will be used hereafter for both constants:

Λ ¼ Λ1 ¼ Λ2 ¼ ln 1þ αΔpð Þ
α

ð33Þ

Region III

It can be deduced from either Eq. (29) or Eq. (32) that the
pressure in the unyielded core is

pc zð Þ ¼ 1

α
1þ αΔpð Þ1−z−1

h i
; σi≤r≤σo ð34Þ

Substituting into Eq. (14), we get

σo−σi ¼ 2α
ln 1þ αΔpð Þ ¼

2

Λ
ð35Þ

The second equation needed for the calculation of the radii σi
and σo of the unyielded annular core is obtained by

(a)

(b)
Fig. 3 Radii of the unyielded annular core versus Δp≡Δp*= τ*0=ε

� �
for

ε = 0.01 and α = 0.01 and 0.1: a κ = 0.5; b κ = 0.75

(a)

(b)
Fig. 4 Dimensionless pressure in the unyielded core (where the pressure
is one-dimensional depending only on the axial distance z) for α = 0.01
and 0.1: a Δp = 40; b Δp = 60

Rheol Acta (2019) 58:699–707 703



demanding that Eq. (21) be satisfied. Substituting Eqs. (32)
and (33) into Eq. (21) yields:

σo−σið Þ
2ε2α2 ½ln Io εaΛσoð Þ þ c1Ko εaΛσoð Þ

Io εaΛð Þ þ c1Ko εaΛð Þ
	 


−ln
Io εaΛσið Þ þ c2Ko εaΛσið Þ
Io εaΛκð Þ þ c2Ko εaΛκð Þ

	 
�− 1þ κ−σo−σið Þ ¼ 0

ð36Þ

In summary, when a = β > 0 the velocity profile and the pres-
sure are given by:

vz rð Þ ¼

−
σo−σið Þ
2ε2α2

ln
Io εaΛrð Þ þ c1Ko εaΛrð Þ
Io εaΛð Þ þ c1Ko εaΛð Þ

	 

− 1−rð Þ; σo≤r≤1

−
σo−σið Þ
2ε2α2

ln
Io εaΛσoð Þ þ c1Ko εaΛσoð Þ
Io εaΛð Þ þ c1Ko εaΛð Þ

	 

− 1−σoð Þ; σi≤r≤σo

−
σo−σið Þ
2ε2α2

ln
Io εaΛrð Þ þ c2Ko εaΛrð Þ
Io εaΛκð Þ þ c2Ko εaΛκð Þ

	 

þ κ−r; κ≤r≤σi

8>>>>>><
>>>>>>:

ð37Þ
and

p z; rð Þ ¼ 1

α

1þ αΔpð Þ1−z Io εaΛrð Þ þ c1Ko εaΛrð Þ
Io εaΛσoð Þ þ c1Ko εaΛσoð Þ −1

� �
; σo≤r≤1

1þ αΔpð Þ1−z−1
h i

; σi≤r≤σo

1þ αΔpð Þ1−z Io εaΛrð Þ þ c2Ko εaΛrð Þ
Io εaΛσið Þ þ c2Ko εaΛσið Þ −1

� �
; κ≤r≤σi

8>>>>><
>>>>>:

ð38Þ

The oilfield industry used to rely on simplified two-
dimensional plane flow slot models to represent flow in an

annulus, at least when the radii ratio κ is not too far from unity.
It is straightforward to demonstrate that when the annular gap
is small compared with the outer radius, the above solution
reduces to the two-dimensional solution reported by
Damianou and Georgiou (2017).

When a = β = 0, the solution derived by Bird et al. (1982)
for the special case where the rheological parameters are pres-
sure independent is recovered. The velocity and the pressure
are respectively given by

vz rð Þ ¼
−σolnr þ Δp

4
1−r2 þ 2σo

2lnr
� �

− 1−rð Þ; σo≤r≤1

−σolnσo þ Δp
4

1−σo
2 þ 2σo

2lnσo
� �

− 1−σoð Þ; σi≤r≤σo

σiln
r
κ

� �
þ Δp

4
κ2−r2 þ 2σi

2ln
r
κ

� �� �
þ κ−r; κ≤r≤σi

8>>>>><
>>>>>:

ð39Þ
and

p zð Þ ¼ Δp 1−zð Þ; κ≤r≤1 ð40Þ
while σi and σo are calculated by solving the system of

σo−σi ¼ 2

Δp
ð41Þ

and

− σolnσo þ σiln
σi
κ

� �� �

þΔp
4

1−σo2 1−2lnσoð Þ−κ2 þ σi
2 1−2ln

σi
κ

� �� �� �
− 1þ κ−σo−σið Þ ¼ 0

ð42Þ

(a) (b) (c)

(d) (e) (f)
Fig. 5 Effect of the growth parameter α on the pressure contours for κ = 0.5 and ε = 0.01: a α = 0,Δp = 30; b α = 0,Δp = 60; c α = 0,Δp = 90; d α =
0.1, Δp = 30; e α = 0.1, Δp = 60; f α = 0.1, Δp = 90; the flow is from left to right with z ∈ [0, 1] and r ∈ [κ, 1]
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Substituting Eq. (41) into Eqs. (39) and (42) yields the expres-
sions reported by Chatzimina et al. (2007).

Results and discussion

The critical pressure difference required to start the flow can
be found from Eqs. (35) or (41) as the pressure difference at
which σo = 1 andσi = κ:

Δpcrit ¼
1

α
e2α= 1−κð Þ−1

� �
; α > 0

2

1−κ
; α ¼ 0

8><
>: ð43Þ

The effects of the growth number α and the aspect ratio κ on
Δpcrit are illustrated in Fig. 2. As expected, Δpcrit increases
with α when κ is fixed. At higher values of κ, the variation of

Δpcrit with α becomes more significant and the critical pres-
sure difference is shifted to higher values rapidly. The varia-
tion of the radii of the unyielded annular core, σo and σi, with
the pressure difference Δp is illustrated in Fig. 3 for α =
0.01, 0.1 and κ = 0.5 and 0.75. Below the critical pres-
sure difference Δpcrit, there is no flow and thus σo = 1 and
σi = κ. Once the critical value is exceeded, σo decreases and
σi increases with Δp. The rates of these changes are reduced
with α. As the imposed pressure difference Δp is increased,
the two radii converge to the radius at which the Newtonian
velocity profile in the same geometry attains its maximum.

It should be noted that the values of α and ε are much
smaller than unity. Using the values calculated by Ioannou
and Georgiou (2018) for the B34-based drilling fluid studied
by Hermoso et al. (2014) and taking ε = 0.0001 as a represen-
tative aspect ratio (Azar and Roberto Samuel 2007), one finds
that the value of α is in the range 3 10−6–3 10−5. In what

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
Fig. 6 Effect of the growth parameter α on the pressure contours for κ =
0.8 and ε = 1: a α = 0, Δp = 125; b α = 0.1, Δp = 250; c α = 0.1, Δp =
500; d α = 0.1, Δp = 125; e α = 0.1, Δp = 250; f α = 0.1, Δp = 500; g

α = 0.2,Δp = 125; h α = 0.2,Δp = 250; i α = 0.2,Δp = 500; high values
of ε and αwere chosen in order to exaggerate the differences. The flow is
from left to right with z ∈ [0, 1] and r ∈ [κ, 1]
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follows, however, much higher values are employed for α and
ε in order to magnify their effects.

As already mentioned and also implied by Eq. (38), when
α > 0, the pressure is one-dimensional in the unyielded core,
varying only with the radial distance z, and two-dimensional
in the yielded region. Figure 4 shows the pressure distribu-
tions in the unyielded core forΔp = 40,Δp = 60 and α = 0.01
and 0.1. Interestingly, the pressure distribution in the
unyielded core does not depend on the aspect ratio κ of the
annulus. As the growth number α increases, the pressure de-
viates from the linear distribution corresponding to α = 0, so
that the pressure gradient increases near the inlet plane where
the plastic viscosity and the yield stress attain their maximum
values and decreases near the exit where both parameters are
minimum.

In Fig. 5, the effects of the growth parameter α and the
imposed pressure difference Δp on the pressure contours as
well as on the radius of the plug for ε = 0.01 and κ = 0.5 are
illustrated. When the aspect ratio ε is low, the pressure in the
yielded region remains essentially one dimensional; as a re-
sult, the contours are vertical straight lines. The contours are
equidistant only when α = 0. Otherwise, the distance between
the contours increases downstream and this effect is more
pronounced as both α and Δp are increased. The two-
dimensional character of the flow is exaggerated in Fig. 6
for an annulus with κ = 0.8 where the rather high value ε = 1

for the aspect ratio has intentionally been chosen. It can be
seen that the unyielded region is relatively increased in size as
κ decreases or as α increases.

Finally, Fig. 7 shows profiles of vz versus the radial distance
r forα = 0 (pressure-independent material parameters) and 0.1
and different values of the imposed pressure difference with
κ = 0.5 and 0.75. As expected, the velocity is reduced asα and
κ are increased.

Conclusions

A semi-analytical solution of the fully developed annular flow
of an incompressible Bingham plastic, whose rheological pa-
rameters vary linearly with pressure, has been derived under
the assumption that the growth rates of the yield stress and the
plastic viscosity are the same, which is a valid assumption for
certain oil drilling fluids. Explicit expressions are provided for
the velocity and the pressure distributions in terms of the radii
of the unyielded annular core, which are calculated by solving
a nonlinear algebraic equation. The pressure difference neces-
sary for initiating the flow increases exponentially with the
common dimensionless growth coefficient and decreases with
the size of the angular gap. Representative results illustrating
the effects of the growth coefficient α and the radii ratio κ on

(a) (b)

Fig. 7 Velocity distributions (vz
versus the radial distance r) of
Bingham plastic flow at different
values of the imposed pressure
difference for ε = 0.01 and α = 0
and 0.1: a κ=0.5; b κ=0.75. The
circles show the positions of the
yield points
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the pressure distributions and the velocity profiles have been
presented and discussed.

Modelling the actual flow of a cutting-laden drilling fluid
requires taking into account both temperature and pressure
effects as well as the eccentricity of the annulus which can
be done only numerically. This is also the case for the isother-
mal concentric flow when the two growth coefficients are not
equal. As already mentioned, in the case of axisymmetric
Poiseuille flow, the central unyielded core depends on the
relative values of α∗ and β∗, i.e., it contracts when β∗ < a∗

and expands when β∗ > a∗. The annular flow, however, is
characterized by two yield surfaces; the behavior of which
may not be the same depending on the relative values of α∗

and β∗. The systematic numerical study of this flow is the
focus of our current research efforts.

The solution presented here may be useful in verifying the
corresponding codes and providing an upper bound for the
frictional losses in an eccentric annulus. It may also be
useful in testing numerical simulations of annular Poiseuille
flow and lubrication approximation solutions similar to those
carried out by Fusi and Farina (2018) and Housiadas et al.
(2018) for the flow in a tube of circular cross section.
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