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Abstract We provide benchmark results for a transient
variant of the lid-driven cavity problem, where the lid
motion is suddenly stopped and the flow is left to decay
under the action of viscosity. Results include Newtonian
as well as Bingham flows, the latter having finite ces-
sation times, for Reynolds numbers Re ∈ [1, 1000] and
Bingham numbers Bn ∈ [0, 10]. The finite-volume method
and Papanastasiou regularisation were employed. A com-
bination of Re and Bn, the effective Reynolds number, is
shown to convey more information about the flow than
either Re or Bn alone. A time scale which characterises the
flow independently of the geometry and flow parameters is
proposed.

Keywords Flow cessation · Bingham flow · Finite
cessation time · Finite-volume method · Effective Reynolds
number

Introduction

Lid-driven cavity flow is a very popular benchmark problem
in computational fluid dynamics. A variant of this problem

� Alexandros Syrakos
alexandros.syrakos@gmail.com

1 Oceanography Centre, University of Cyprus, PO Box 20537,
1678 Nicosia, Cyprus

2 Department of Mathematics and Statistics, University
of Cyprus, PO Box 20537, 1678 Nicosia, Cyprus

3 Department of Mechanical and Manufacturing Engineering,
University of Cyprus, PO Box 20537, 1678 Nicosia, Cyprus

is the transient case where, starting from the steady state,
the lid motion is suddenly stopped and the flow is left to
gradually cease. Despite its simplicity, a detailed study of
this problem is missing from the literature, contrary to its
steady-state counterpart.

The viscoplastic version of this problem has been briefly
touched upon (Dean and Glowinski 2002; Dean et al. 2007;
Muravleva and Muravleva 2009b) as a demonstration test
case for new numerical methods. The aim in those studies
was to test whether the numerical method could reproduce
the theoretical result that viscoplastic flows cease in finite
time. When the driving cause of a Newtonian flow (such
as a moving boundary or a pressure gradient) is removed,
the flow gradually comes to rest under the action of viscos-
ity at a theoretically infinite amount of time. However, with
viscoplastic flows, i.e. in flows of materials which exhibit
a yield stress, cessation occurs in a finite amount of time.
Theoretical upper bounds for the finite cessation times of
several simple one-dimensional flows, such as plane and cir-
cular Couette flows and plane and axisymmetric Poiseuille
flows, were provided by Glowinski (1984), Huilgol et al.
(2002) and Muravleva et al. (2010b). Following these the-
oretical studies, a number of numerical studies appeared in
the literature which investigated in great detail the cessa-
tion of such one-dimensional flows (Chatzimina et al. 2005;
Chatzimina et al. 2007; Zhu and De Kee 2007; Muravleva
et al. 2010a, b; Damianou et al. 2014). They showed that the
theoretical upper bounds of Glowinski (1984), Huilgol et al.
(2002) and Muravleva et al. (2010b) are sharp, i.e. they are
very close or coincide with the actual cessation times.

As far as the cessation of two-dimensional flows is con-
cerned, such detailed studies do not appear in the literature,
except for a study of the cessation of Bingham flow in
ducts of various cross sections by Muravleva and Muravleva
(2009a). The cessation of lid-driven cavity flow naturally
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comes to mind as a two-dimensional test case. In the present
study, we attempt a systematic examination of this problem,
providing benchmark results for Bingham numbers ranging
from 1 to 10 and Reynolds numbers ranging from 1 to 1000.
The more fundamental Newtonian flow case is also studied,
since benchmark results are also missing from the literature.

The present results show that a simple time scale, calcu-
lated from the geometrical parameters of the problem and
the fluid properties, is roughly proportional to the cessation
time, i.e. it is characteristic of the flow evolution rate. Also,
the flow is complex enough to exhibit interesting geometri-
cal features, and we have tried to relate these features to a
single dimensionless number, called the effective Reynolds
number by Nirmalkar et al. (2013); it is a combination of
the classical Reynolds and Bingham numbers. This number
is shown to convey more information about the flow than
either the Reynolds or Bingham numbers alone, and may
deserve more attention in viscoplastic flows in general.

The results were obtained with a finite-volume method
(Syrakos et al. 2013, 2014), using the regularisation scheme
of Papanastasiou (1987). The rest of this paper is organ-
ised as follows: In “Governing equations” the governing
equations are presented along with a dedimensionalisa-
tion scheme which is useful for interpreting the results. In
“Numerical method”, the numerical method is very briefly
described. The results for Newtonian flow are presented
in “Numerical results for Newtonian flow”. The results
for Bingham flow follow in “Numerical results for Bing-
ham flow”, where the accuracy of the numerical method
is also discussed. Finally, “Conclusions” summarises the
conclusions of this work.

Governing equations

We consider two-dimensional flow in a square cavity with
a side of length L. Originally, at time t = 0, the flow is
in its steady state, obtained when the top wall (lid) of the
cavity moves horizontally towards the right with a uniform
velocity U . The steady-state flow, which serves as the ini-
tial condition, is a very popular problem in the literature and
many published results exist both for Newtonian and Bing-
ham flows—a literature review can be found in our recent
work (Syrakos et al. 2014). The present work investigates
what happens after the motion of the lid has suddenly been
stopped at time t = 0 and the flow is left to gradually decay
under the action of viscosity.

The flow, which is assumed to be incompressible and
isothermal so that the fluid density ρ is constant, is governed
by the continuity and momentum equations:

∇ · u = 0 (1)

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p + ∇ · τ (2)

where u = (u, v) is the velocity vector, p is the pres-
sure and τ is the deviatoric stress tensor. For a Bingham
fluid of yield stress τy and plastic viscosity μ, the stress
tensor is related to the velocity field through the following
constitutive equation:

⎧⎨
⎩

γ̇ = 0 , τ ≤ τy

τ =
(

τy

γ̇
+ μ

)
γ̇ , τ > τy

(3)

where γ̇ is the rate-of-strain tensor, defined as γ̇ ≡ ∇u +
(∇u)T. The magnitudes of the two tensors are given by
τ ≡ ( 12τ : τ )1/2 and γ̇ ≡ ( 12 γ̇ : γ̇ )1/2. Equation 3 also
applies to Newtonian flow, when τy = 0. Equations 1, 2
and 3, together with the initial conditions obtained from the
corresponding steady-state problems, and the no-slip, zero-
velocity wall boundary conditions, were solved for fixed
values of ρ = 1, U = 1 and L = 1 units, while τy and μ were
varied to get the desired Reynolds and Bingham numbers
(to be defined shortly).

More insight can be gained from a nondimensional form
of the governing equations and of the results. Let there-
fore lengths and velocities be dedimensionalised by L and
U , respectively. Concerning time, one possibility would be
to dedimensionalise it by a reference time of T1 = L/U .
However, in previous studies on cessation (Chatzimina et al.
2005; Muravleva et al. 2010a), the reference time T2 =
ρL2/μ was used instead. This is more convenient for ces-
sation problems and comes from the following reasoning:
A characteristic momentum scale for the present problem
would be M = ρUL3 (a mass ρL3 moving with a veloc-
ity U ).1 Cessation is caused by the viscous forces acting
on the fluid, and a characteristic viscous force would be
F = μU

L
L2 (a stress μU/L acting over a surface L2).

So, a characteristic time of T2 = M/F = ρL2/μ can be
derived, which is the time needed for force F to reduce
momentum M to zero in the absence of other forces. One
can note, however, that the choice of μU/L for a charac-
teristic stress is reasonable for Newtonian flows, but for
Bingham flows, it seems more appropriate to use τy+μU/L

instead. This results in a characteristic time of T3 = M/F =
ρUL2/(τyL + μU). By scaling time by T3 and pressure by

1Actually, any M = ρUL2�z can be used instead, where �z is a
chosen extent in the direction perpendicular to the plane, as long as F

is defined as F = μU
L

L�z as well. Here we used �z = L.
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the characteristic stress τy + μU/L, the following nondi-
mensional form of the momentum equation is obtained,
where the tilde (˜) denotes dedimensionalised variables:

∂ũ
∂t̃

+Re∗ ũ·∇̃ũ = −∇̃p̃+∇̃ ·
[(

Bn

Bn + 1

1
˜̇γ + 1

Bn + 1

)
˜̇γ
]

(4)

The dimensionless numbers that appear in the above
equation are the Bingham number,

Bn ≡ τyL

μU
(5)

which is an indicator of the viscoplasticity of the flow, and
the effective Reynolds number (Nirmalkar et al. 2013),

Re∗ ≡ ρU2

τy + μU
L

(6)

which is an indicator of the inertia of the flow. The latter
is defined as the ratio of a characteristic momentum (iner-
tial) flux ρU2L2 to a characteristic viscous force (τy +
μU/L)L2. The effective Reynolds number is related to the
usual Reynolds number Re = ρUL/μ by Re∗ = Re/(Bn+
1); for Newtonian flow (τy = 0), the two are equivalent.

Equation 4 shows that, for a given domain and bound-
ary and initial conditions (in the nondimensional space), the
flow is governed only by the two dimensionless numbers
Re∗ and Bn. If these numbers are varied, then only the sec-
ond (convective) and the last (viscous) terms of Eq. 4 are
affected. The viscous term depends only on Bn, and this
dependence is modest if Bn is large enough because in that

case the terms Bn/(Bn + 1) ≈ 1 and 1/(Bn + 1) ≈ 0
do not vary much with Bn. Thus, often it will be the case
that the main characteristics of the flow depend mostly on
Re∗. This has been observed, for example, by Nirmalkar
et al. (2013), but can also be demonstrated in the present
case. Figure 1 shows how the position and strength of the
vortex that dominates the flow varies with Bn and Re∗ in
the steady-state case, which serves as initial condition for
the present problem. The results of Fig. 1 are taken from
Syrakos et al. (2014), but here, they are plotted in terms
of Re∗ instead of Re. It is interesting to observe that Re∗
alone can be used to identify the different flow regimes: Up
to Re∗ ≈ 1, the vortex is very close to the vertical centre-
line; beyond that, the vortex moves towards the right with
its strength constant, up to Re∗ ≈ 60–75; if Re∗ is increased
further, the vortex moves towards the centre of the cavity
and its strength increases. On the other hand, finer details of
the flow field, such as the exact vortex position and strength,
are determined not only by Re∗ alone but also by Bn.

Finally, we note that the characteristic times defined
above are related by T2 = Re · T1 and T3 = Re∗ · T1 =
T2/(Bn + 1). So, if the corresponding nondimensional time
variables are denoted by t̄ , t̂ and t̃ (scaled by T1, T2 and T3,
respectively), then t̂ = t̄/Re and t̃ = t̄/Re∗ = (Bn + 1)t̂ .
For Newtonian flow, t̂ ≡ t̃ and only the notation t̃ will be
used.

Numerical method

The constitutive Eq. 3 is discontinuous, having two different
branches, each applying to a different state of the material

(a) Vortex centre (b) Vortex strength

Fig. 1 Vortex position (a) and vortex strength (b) as a function of Bn and Re∗ (the latter is shown next to each point in (a)) in the steady-state
lid-driven cavity Bingham flow (data taken from Syrakos et al. (2014))
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(yielded/unyielded). The easiest and most common way to
overcome this difficulty is to approximate Eq. 3 by a regu-
larised constitutive equation which is applicable throughout
the domain and approximates unyielded material by a very
viscous fluid. This popular approach was also adopted in
our previous works (Syrakos et al. 2013, 2014). In particu-
lar, we employ the regularisation proposed by Papanastasiou
(1987):

τ =
[
τy

γ̇
{1 − exp(−mγ̇ )} + μ

]
γ̇ = η(γ̇ ) (7)

where m is a stress growth parameter—the larger this
parameter, the better the approximation. According to Eq.
7, the material is everywhere fluid, with effective viscosity
η(γ̇ ). When the shear rate tends to zero, this viscosity does
not tend to infinity but to the value

η0 ≡ lim
γ̇→0

η = m τy + μ (8)

This regularisation method was used also in previous
one-dimensional studies (Chatzimina et al. 2005, 2007; Zhu
and De Kee 2007). A comparison of the results of these
studies against those of Muravleva et al. (2010a) and the
theoretical bounds shows that values of m of the order of
200–300 lead to accurate prediction of the cessation times

for Bingham numbers larger than 0.1. In the present study,
we used a value of m = 400.

The equations were solved with the finite-volume
method described in our previous work (Syrakos et al. 2013,
2014), extended to include temporal terms in the momentum
equation. In particular, the time derivative was approxi-
mated using the following second-order accurate backward
differentiation formula (Ferziger and Peric 2002):

∂u
∂t

∣∣∣∣
t=ti

≈ 3u(ti) − 4u(ti−1) + u(ti−2)

2�t
(9)

where ti is the time after i time steps: ti = i · �t , �t

being the chosen time step for the simulation. For an accu-
rate simulation, �t should be smaller when the flow evolves
faster, i.e. at lower Reynolds numbers or higher Bingham
numbers. However, it will be shown in “Numerical results
for Newtonian flow” and “Numerical results for Bingham
flow” that if time is dedimensionalised by the time scale T3,
then the nondimensional time step can be independent of the
Reynolds and Bingham numbers. So, a step of �t̃ = 10−6

was used for the first 400 time steps of each simulation, fol-
lowed by �t̃ = 4 ·10−6 for the next 400 time steps, and then
�t̃ = 1.6 · 10−5 for the rest of the simulation; in this way,
the first stages of the flow, when the flow changes rapidly,
are modelled accurately.

Fig. 2 a–h Snapshots of the flowfield for Newtonian flow at Re = 1
(top) and 1000 (bottom), at the times indicated. Contours of nondimen-
sional pressure (p̃ = p/(μU/L)) are drawn in colour. Superimposed
are streamlines, corresponding to values of streamfunction of ψ =
c · ψmax where ψmax is the instantaneous maximum value of stream-
function (found at the vortex centre) and c takes the values {0, 0.01,

0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 0.999}. In c, vectors propor-
tional to the pressure force per unit volume −∇p are also drawn. The
selected times are such that the instantaneous vortex strength ψmax(t)

is 100, 10, 1 and 0.1 % of the initial strength ψmax(t = 0), respectively
(from left to right)
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Fig. 3 Trajectories of the vortex centres of Newtonian flow at various
Reynolds numbers, indicated at the beginning of each trajectory. The
dots (•) correspond to nondimensional times t̃ = 0, 0.01, 0.02, 0.03,
0.04 and 0.05. The “staircase” appearance of the curves is due to the
fact that the vortex centre, at each time instant, is assumed to be located
at the grid node where ψ is maximum—therefore, positions can only
assume values from a finite set, that of grid node locations

The scheme is fully implicit, so that the rest of the terms
of the momentum equation are all evaluated at the current
time ti by central differences. A modification was made also
to the calculation of the mass fluxes via momentum inter-
polation to account for the transiency of the flow, but this
will be described elsewhere. The domain is discretised by a

uniform Cartesian grid of 512 × 512 volumes. The result-
ing non-linear system of algebraic equations is solved using
the SIMPLE algorithm with multigrid acceleration (Syrakos
et al. 2013).

Numerical results for Newtonian flow

Despite the popularity of the steady-state Newtonian lid-
driven cavity flow problem, it seems that there are no
published results for the transient version of the problem
where the lid motion is suddenly stopped. This section
serves to fill this gap, as well as to provide a useful back-
ground for the study of the cessation of Bingham flow in the
next section.

The problem was solved for Re = 1, 10, 100 and 1000
(Re ≡ Re∗ for Newtonian flow). The flowfields for the
extreme cases of Re = 1 and Re = 1000 are visualised in
Fig. 2; they are initially very different, but eventually con-
verge to the same pattern. The main feature of the flow is
the large vortex in the middle of the cavity, which gradually
decays under the action of viscosity. For Re = 1, 10 and 100,
the vortex centre is initially located approximately mid-way
between the lid and the cavity centre, and for Re = 100, it is
also shifted towards the right (Fig. 1a), while for Re = 1000,
it is located close to the cavity centre. However, as time
passes, all vortex centres converge to the cavity centre, as
Fig. 3 shows. By comparing the marked vortex positions,
we note that with respect to nondimensional time t̃ , the vor-
tex motion evolves at a rate which is roughly independent of
the Reynolds number.

(a) as a function of t̄ = t/ (L/U ) (b) as a function of t̃ = t/ (ρL 2 /μ ) = t̄/Re

Fig. 4 Vortex strength as a function of time, for Newtonian flow at
various Reynolds numbers which are indicated on each curve. The vor-
tex strength is normalised by the initial vortex strength ψ0

max of each

case, and time is dedimensionalised by L/U (a) and by ρL2/μ (b).
Note that the time axis is logarithmic in the left figure and linear in the
right figure
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Table 1 Time intervals δt̄n
required for the strength of the
main vortex of the cavity to
drop from
ψmax = ψ0

max · 10−(n−1) to
ψmax = ψ0

max · 10−n, where
ψ0
max is the initial vortex

strength

Re = 1 Re = 10 Re = 100 Re = 1000

ψ0
max 0.10007 0.10011 0.10351 0.11884

δt̄1 3.2915 · 10−2 3.2915 · 10−1 3.4366 · 100 4.3798 · 101
δt̄2 4.3278 · 10−2 4.3277 · 10−1 4.3410 · 100 4.3740 · 101
δt̄3 4.3963 · 10−2 4.3963 · 10−1 4.3969 · 100 4.3984 · 101

The vortex decay is studied in terms of the vortex
strength, that is, the maximum value of the streamfunction
ψ , defined by u = −∂ψ/∂y, v = ∂ψ/∂x with ψ = 0 at the
cavity walls. This maximum value ψmax occurs at the vor-
tex centre and is equal to the rate of flow of fluid through
any line joining the vortex centre to any point on the cavity
walls. Figure 4 shows how the vortex strength decays with
time. If the Reynolds number is decreased by an order of
magnitude, then the strength decays an order of magnitude
faster as well. This is not surprising, the Reynolds number
being an indicator of the ratio of inertial (momentum) fluxes
to viscous forces: an order of magnitude decrease in Re
implies an order of magnitude relative increase of the vis-
cous forces and of the deceleration they cause. These results
are quantified in Table 1. Therefore, the vortex decay rate
with respect to t̃ = t̄/Re is independent of the Reynolds
number. This is confirmed by Fig. 4b, which shows that the
vortex decay can be described by the following equation:

ψmax(t̃2)

ψmax(t̃1)
= e−c(t̃2−t̃1) = e

−c
μ(t2−t1)

ρL2 (10)

where t̃1 and t̃2 are such that t̃2 > t̃1 > 0.05, say (at earlier
times the decay is faster for Re = 1, 10 and 100). The present
results show that c ≈ 52.35, irrespective of Re.

The exponential flow decay with respect to t̃ = tμ/ρL2

suggests that the flow parameters have the following effect:
Higher viscosity μ results in faster decay because the vis-
cous, dissipating forces become larger. On the contrary,
greater fluid density ρ results in slower decay because the
fluid has more inertia and requires larger forces to deceler-
ate. Finally, the effect of the domain dimensionL is twofold,
hence, L appears squared: (a) increasing the domain size
makes the velocity variations occur across larger distances,
hence reducing the velocity gradients and the resulting vis-
cous stresses and (b) increasing the dimension L causes
a larger increase to the domain volume (proportional to
L3), and hence to the fluid mass and inertia, than to the
domain surface (proportional to L2), and hence to the vis-
cous forces which are the product of viscous stresses and
surface areas. This explanation derives from the reason-
ing behind the dedimensionalisation of time presented in
“Governing equations”, where a characteristic time was
derived by dividing a characteristic momentum by a char-
acteristic viscous force. It also explains the faster decay

observed at the early stages for Re = 1, 10 and 100. At these
Reynolds numbers, during the early stages of the flow, the
vortex is located close to the lid, and this geometric con-
finement implies a smaller effective L dimension. There-
fore, velocity gradients and associated viscous stresses
are larger.

It would be interesting to make a comparison against
the decay rates of a couple of simpler, one-dimensional
flows: planar Couette flow between infinite parallel plates,
located a distance L/2 apart, one of which is stationary
while the other moves with velocity U , and flow in a rotat-
ing cylinder of radius L/2 and angular velocity 2U/L. The
latter is a special case of circular Couette flow where the
radius of the inner cylinder is zero. At t = 0, the motion
of the plate or cylinder is stopped and the flow gradually
decays. These flows bear some resemblance to the present
lid-driven cavity flow, if the velocity is zero at the cen-
tre of the cavity. They have analytic solutions that can be
found, e.g. in Papanastasiou et al. (1999), which have the
form of an infinite weighted sum of eigenfunctions that
decay at different rates. At long times, the solution is dom-
inated by the eigenfunction of slowest decay. In fact, these
eigenfunctions and their decay rates are independent of the
initial conditions, so that after a long time, the flow tends
to a specific pattern which is independent of the flow his-
tory, similarly to the present lid-driven cavity problem. For
the Couette flow case, at long times, the velocity profile
becomes sinusoidal and decays as e−4π2 t̃ , corresponding
to a decay constant of c = 4π2 = 39.48 in Eq. 10. For
the rotating cylinder case, eventually, the velocity profile
acquires the form of J1, the first-order Bessel function of
the first kind, and decays as e−4a21 t̃ , where a1 = 3.8317 is
the first root of J1; the decay constant is c = 4a21 = 58.73.
So, the lid-driven cavity decay constant, c ≈ 52.35, lies
between these two. This is not surprising, since the geome-
try is such that the flow has similarities with both: near the
walls the streamlines are straight, like in Couette flow, and
near the cavity centre they are circular, like in the cylinder
flow.

Figure 5 shows normalised profiles of horizontal veloc-
ity u along the vertical lines through the vortex centre, at
various times, for Re = 1 and 1000. Sinusoidal and Bessel
function J1 profiles are included for comparison. The veloc-
ity profiles converge as time passes, but they converge more
slowly for Re = 1 than for Re = 1000. This is due to the fact



Rheol Acta (2016) 55:51–66 57

(a) Re = 1 (b) Re = 1000

Fig. 5 Profiles of the x-velocity component along the vertical lines
through the vortex centre, normalised by the maximum absolute value
along each profile, at various time instances, for Newtonian flow at a
Re = 1 and b Re = 1000. The selected time instances are those when

the maximum streamfunction has dropped to 100, 50, 10, 1 and 0.1 %
of its initial value; see Fig. 2 for the exact times. For comparison, the
sine function sin(2π(y−0.5)) and the Bessel function J1(2a1(y−0.5))
profiles are also shown

that at Re = 1, it takes some time for the vortex to move to
the centre of the cavity (Fig. 3), contrary to the Re = 1000
case. The velocities converge to the exact same profile both
for Re = 1 and for Re = 1000, which is close to both the
sinusoidal and the Bessel function J1 profiles; its maximum
occurs at y ≈ 0.76.

The convergence of the flow fields of Re = 1 and Re
= 1000 as time progresses is not limited to the vertical
line through the vortex centre, but it extends to the whole
domain, as a comparison between Fig. 2d and h reveals.
Similarly to the one-dimensional flows mentioned previ-
ously, lid-driven cavity flow eventually becomes dominated
by a single eigenfunction, that was shown in Fig. 2d, h, with
the slowest decay rate e−52.35t̃ . The momentum equation
(4), which for Newtonian flow simplifies to

−∇̃p̃ = ∂ũ
∂t̃

+ Re ũ · ∇̃ũ − ∇̃2ũ (11)

includes non-linear inertia terms, but these are proportional
to the velocity squared and decay faster than the rest of
the terms; hence, they can be neglected at large times.

Therefore, there is a vector function φ(x̃, ỹ) such that at
large times, the velocity field tends asymptotically to

ũ(x̃, ỹ, t̃ ) = φ(x̃, ỹ) · e−ct̃ (12)

Substituting (12) into (11) gives

−∇̃p̃ =
(
−cφ + e−ct̃ Reφ · ∇̃φ − ∇̃2φ

)
e−ct̃ (13)

So, the term e−ct̃ Reφ · ∇̃φ eventually becomes negligi-
ble compared to the other terms in the parentheses, and the
momentum equation reduces to

−∇̃p̃ =
(
−cφ + ∇̃2φ

)
e−ct̃ (14)

which is independent of the Reynolds number. At this point,
the flow has become dominated by viscous forces. Eq. 14
shows that the pressure gradients also decay at the same rate,
−∇̃p̃ = f(x̃, ỹ)e−ct̃ where f(x̃, ỹ) = −cφ + ∇̃2φ. Integrat-
ing this, we get p̃ = q(x̃, ỹ)e−ct̃ , up to a constant, where
∇̃q = −f; this is confirmed by Fig. 2.

Table 2 Effective Reynolds numbers Re∗ corresponding to the (Re, Bn) combinations used in this study

Re\Bn 1 2 5 10

1 0.5 0.33 0.17 0.09

10 5 3.3 1.7 0.9

100 50 33 17 9

1000 500 333 167 91
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The initial effects of inertia are evident in the Re = 1000
case. In Fig. 2e–f, the pressure increases radially from the
centre of the cavity outwards and is approximately constant
along each streamline. Therefore, pressure forces act only
as centripetal forces, without affecting the velocity magni-
tude. Of the acceleration terms of Eq. 11, ∂ũ/∂t̃ is tangential
to the streamlines (since the direction of the velocity vector
remains nearly constant with time) and expresses the rate
of reduction of the velocity magnitude. The other accelera-
tion term, Re ũ · ∇̃ũ, expresses the rate of change of velocity
as one moves along a streamline at a specific instance in
time; since the velocity magnitude does not change much
along a streamline (the density of surrounding streamlines
is constant), this rate of change concerns mostly the direc-
tion, so that Re ũ · ∇̃ũ is a centripetal acceleration. Finally,
the viscous term ∇̃2ũ is still small compared to the iner-
tial terms due to the high Reynolds number Re = 1000.
If Eq. 11 is split into radial and circumferential compo-
nents, we can therefore assume that in the radial direction
−∇̃p̃ ≈ Re ũ·∇̃ũ, while in the circumferential direction, the
deceleration ∂ũ/∂t̃ equals the circumferential component of
the viscous force ∇̃2ũ.

Eventually, the flowfield acquires the form shown in
Fig. 2d, h, which is Re-independent. Its pressure distribu-

tion exhibits alternating highs and lows which appear in
pairs, one pair on each side of the cavity. The high is on the
upstream side and the low on the downstream side, becom-
ing weaker towards the cavity centre. Figure 2g shows a
transitional regime for Re = 1000, where the radial pressure
distribution still persists near the centre of the cavity but
the alternating pressure pattern has begun forming near the
walls. The alternating pressure pattern gives rise to forces
shown in Fig. 2c, which in general have a non-zero compo-
nent tangential to the streamlines, causing acceleration and
deceleration of the flow. However, since ∇̃p̃ is a conserva-
tive vector field derived from the potential function p̃, the
line integral

∮ ∇̃p̃ · ds̃ is zero along any closed path. All
streamlines of the present flow form closed paths, and the
integral − ∮ ∇̃p̃ · ds̃ along a streamline, which is therefore
zero, can be interpreted as the total work done by the pres-
sure force on all the particles along the streamline in a small
time interval dt̃ , during which each particle moves a small
distance ds̃ along the streamline. The total pressure work in
the cavity is therefore zero, and the flow decays only due
to the dissipating action of the viscous forces. Note that the
previous argument does not apply to a single fluid particle
which completes a closed path along a streamline in a finite
time interval δt̃ : Since pressure differences decay with time,

Fig. 6 a–h Snapshots of the flowfield for Bn = 10 and Re = 1 (Re∗
= 0.09). Time is given as a fraction of the cessation time tc (the time
needed for τ to fall below τy everywhere). The lines are lines of con-

stant streamfunction ψ (streamlines), normalised by U L, plotted at
intervals of δψ = 0.004, with ψ = 0 at the walls. Unyielded areas
(τ < τy ) are shown shaded
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when the fluid particle has returned to its starting position,
the pressure there will have changed, and the work of the
pressure force on the particle will be non-zero.

Numerical results for Bingham flow

We now turn to the cessation of Bingham flow. Numerical
experiments were conducted for the (Re, Bn) pairs shown in
Table 2 (Re ∈ [1, 1000], Bn ∈ [1, 10]). The flowfield evolu-
tion for selected pairs is shown in Figs. 6, 7, 8 and 9, in order
of increasing inertia (Re∗). Streamlines are drawn at con-
stant streamfunction intervals of δψ = 0.004, which equals
the volumetric flow rate between adjacent streamlines; they
space out as time passes, reflecting the fact that the flow
slows down. The shaded regions denote unyielded material,
identified using the usual criterion τ < τy (see Burgos et al.
(1999) and Syrakos et al. (2014) regarding this choice). The
initial flowfields (t = 0) are examined in detail in Syrakos
et al. (2014).

Unyielded regions fall into two categories. The first
category is that of the unyielded regions which are in con-
tact with the cavity walls and therefore contain stagnant
material due to the no-slip boundary condition. Initially,
these regions are located at the bottom of the cavity,

where stresses are low due to the distance from the source
of motion (the lid). As time passes and the flow slows
down, they expand towards the interior of the cavity. Such
unyielded regions develop also at the upper corners of the
cavity, where stresses become very low once the lid is
stopped because they are circumvented by the main flow (in
the Newtonian case, this leads to the development recircu-
lation zones, like at the lower corners—Fig. 2). Eventually,
e.g. in Fig. 9l, the stagnant unyielded regions may cover the
entire boundary of the cavity. Such zones will henceforth
be referred to as “stagnant zones”, following Muravleva
(2015). In actual fact, streamlines should not cross into stag-
nant zones, and so one should keep in mind that the ψ = 0
streamlines, which are shown for completeness in the fig-
ures, are a spurious artefact of regularisation, which results
in very small but non-zero velocities in the stagnant zones.

The second category is that of the unyielded regions
that are not in contact with the walls; they contain material
which is not stagnant but moves as a rigid body, as implied
by the finite spacing of the enclosed streamlines. Again, fol-
lowing Muravleva (2015), such regions will be referred to
as “plug zones”. Plug zones are part of the main vortex,
rotating along with it in rigid body rotation; the streamline
parts they contain form concentric circular arcs. However,
the centre of these arcs will not be the same as the vortex

Fig. 7 a–h Snapshots of the flowfield for Bn = 2 and Re = 1 (Re∗
= 0.33). Time is given as a fraction of the cessation time tc (the time
needed for τ to fall below τy everywhere). The lines are lines of con-

stant streamfunction ψ (streamlines), normalised by U L, plotted at
intervals of δψ = 0.004, with ψ = 0 at the walls. Unyielded areas
(τ < τy ) are shown shaded
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Fig. 8 a–l Snapshots of the flowfield for Bn = 10 and Re = 1000
(Re∗ = 91). Time is given as a fraction of the cessation time tc (the
time needed for τ to fall below τy everywhere). The lines are lines of

constant streamfunction ψ (streamlines), normalised by U L, plotted
at intervals of δψ = 0.004, with ψ = 0 at the walls. Unyielded areas
(τ < τy ) are shown shaded

centre, unless the latter is contained within that plug zone as
well. As time passes and the flow weakens, the plug zones
also expand.

In Figs. 6, 7 and 8, after a short time, the plug zones
appear as a pair: a smaller one above the vortex centre and a
larger one below the vortex centre. These figures correspond
to relatively low Re∗ of 0.33, 0.09 and 91, respectively,
where the vortex is located close to the lid (Fig. 1a). So, the
streamlines have a large radius of curvature inside the upper
zone so as to align themselves with the lid, while they have
a smaller radius of curvature inside the lower plug zone in
order follow the cavity geometry. As long as the two zones
have different radii of curvature they cannot come into con-
tact, since a single rigid body can only rotate about a single

centre point. Therefore, they are separated by a zone of
yielded material. The radii of curvature of the streamlines
inside the plug zones gradually change, as their centres of
rotation converge towards the vortex centre. Eventually, not
long before complete cessation, the two zones merge form-
ing a single aggregate zone that rotates about the vortex
centre, which it contains. The streamlines contained entirely
within the aggregate plug zone form perfect circles.

On the other hand, if the effective Reynolds number is
large, as in Fig. 9 (Re∗ = 333), then the vortex centre is
close to the cavity centre and equally distant from its walls.
This allows the streamlines to have uniform curvature and
the plug zones to merge relatively early, forming a single
rotating unyielded zone at the centre of the cavity.
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Fig. 9 a–l Snapshots of the flowfield for Bn = 2 and Re = 1000 (Re∗
= 333). Time is given as a fraction of the cessation time tc (the time
needed for τ to fall below τy everywhere). The lines are lines of con-

stant streamfunction ψ (streamlines), normalised by U L, plotted at
intervals of δψ = 0.004, with ψ = 0 at the walls. Unyielded areas
(τ < τy ) are shown shaded

Note that, while rotating, a plug zone cannot touch the
cavity walls, due to the no-slip boundary condition. Simi-
larly, a moving plug zone cannot touch a stagnant zone. But
stagnant zones and plug zones eventually merge, and there-
fore, this can only happen when the motion of the plug zones
has completely stopped. The instance when they merge is in
fact the instance of complete flow cessation, tc. Figures 6h
and 7h show that this is nearly, but not exactly, captured by
the numerical results; the rotating plug zone starts to merge
with the surrounding stagnant zone at a single point, located
near its bottom, while the rest of its boundary is still sep-
arated from the stagnant zone by a thin layer of yielded

material. This is unrealistic and is an artefact of the regu-
larisation method which allows small rates of shear within
the unyielded zones; using a higher regularisation parameter
m would improve the results. What would actually happen
is that, at the same instance when the plug zone ceases to
rotate, the (also rotating) thin yielded layer surrounding that
zone should vanish everywhere, and the plug zone should
merge everywhere with the stagnant zone.

Table 3 lists the computed cessation times tc. Cessation is
assumed to occur when τ < τy everywhere in the domain, in
accordance with the yield criterion. In Table 3, time is dedi-
mensionalised by T1 = L/U , and t̄c is seen to increase with
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Table 3 Cessation times t̄c (= tc · (L/U)−1) for various Reynolds and Bingham numbers. The cessation time is defined as the time elapsed until
τ < τy everywhere in the domain

Re\Bn 1 2 5 10

1 1.2392 ·10−2 7.0000 ·10−3 2.8364 ·10−3 1.2960 ·10−3

10 1.2392 ·10−1 7.0000 ·10−2 2.8364 ·10−2 1.2960 ·10−2

100 1.2488 ·100 6.8992 ·10−1 2.7692 ·10−1 1.2784 ·10−1

1000 1.9384 ·101 1.1054 ·101 3.5784 ·100 1.2224 ·100

increasing Reynolds number and decrease with increasing
Bingham number. The cessation time can also be derived
from the vortex strength: it is the time when the vortex
strength has reduced to zero. In Fig. 10, the vortex strength
is plotted against t̄ for Re = 1 and 100 and for all the Bing-
ham numbers examined. One can notice that the curves for
Bn > 0 intersect the time axis at precisely the points listed
in Table 3. For Bn = 0 (Newtonian flow), the strength
curve approaches asymptotically the time axis but does not
intersect it. As the Bingham number is increased, the flow
decelerates more rapidly, while the initial vortex strength
is also smaller. Furthermore, comparison between the dia-
grams for Re = 1 and Re = 100 shows that the deceleration
is roughly inversely proportional to the Reynolds number,
and the cessation time is roughly proportional to it.

The cessation times vary by several orders of magnitude
among the different test cases studied. However, by dedi-
mensionalising time against a dissipation time scale such
as T2 or T3, as in Fig. 11, the results become rather inde-
pendent of the Reynolds and Bingham numbers. Figure 11a
shows that ψmax(t̂) is roughly independent of the Reynolds
number, except when Re∗ is high. However, the curves still
depend strongly on the Bingham number. Figure 11b shows
that if ψmax(t̃) is plotted instead then the dependence on the

Bingham number is much weaker, while the independence
on Re is retained. Almost all the cessation times lie in the
range t̃c ∈ [0.013, 0.026], the only outliers being the cases
(Re = 1000, Bn = 1) and (Re = 1000, Bn = 2), i.e. the
high Re∗ cases. It can be conjectured that for these outliers,
the high Re∗ values make the inertia term in Eq. 4 impor-
tant at early stages, contrary to the other cases, resulting in
a different initial behaviour with smaller deceleration. Nev-
ertheless, the importance of inertia should diminish with
time, just like in Newtonian flow analysed in the previous
section. This is verified by the results shown in Fig. 12,
where the flowfield for Bn = 5 and all Reynolds numbers
is depicted. The flow fields can be seen to become more
similar as time advances. This is true even for Re = 1000
which is initially very different than the rest: at early stages,
the pressure increases radially from the interior of the cav-
ity outwards, but late during the flow evolution pairs of high
and low pressure regions appear at the top and bottom of the
ring of unyielded material surrounding the plug zone, which
resemble the characteristic pressure patterns of the lower
Reynolds numbers. Nevertheless, the cessation of Bing-
ham flow occurs in finite time, before a Re-independent
flow pattern can be reached, contrary to Newtonian
flow.

(a) Re = 1 (b) Re = 100

Fig. 10 Vortex strength as a function of t̄ , for various Bingham numbers: a Re = 1; b Re = 100
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(a) ( t̂ ) (b) ( t̃ )

Fig. 11 Vortex strength as a function of time, dedimensionalised by
T2 = ρL2/μ (a) and T3 = ρUL2/(τyL + μU) (b), for all combina-
tions of Re and Bn tested.Colours denote the Bingham number: Bn = 0
(black), Bn = 1 (red), Bn = 2 (blue), Bn = 5 (green) and Bn = 10 (pur-

ple). Line types denote the Reynolds number: Re = 1 (solid),Re = 100
(chained) and Re = 1000 (dashed). The curves for Re = 10 coincide
with those for Re = 1 and are not visible

The pressure field shown inside the unyielded regions in
Fig. 12 should be viewed with scepticism. The Papanasta-
siou approximation Eq. 7 to the Bingham constitutive Eq.
3 is valid in the yielded zones but not in the unyielded
ones, although in the latter, it results in the correct, zero-
deformation, velocity field (Frigaard and Nouar 2005) (in
the limit m → ∞). But whereas the original Bingham
model Eq. 3 leaves the stress tensor undefined in the
unyielded regions, the Papanastasiou regularisation, treating
all of the material as fluid, results in a unique stress field
there. The pressure field shown in Fig. 12, which results
from using the Papanastasiou stresses in the momentum (2),
cannot be viewed as “correct” but is only one among many
possible fields. In fact within the unyielded zones, the phys-
ical meaning of pressure is rather ambiguous (see the paper
by Huilgol and You (2009) for a discussion).

In addition to inertia, the initial conditions also play an
important role for the flow evolution during the early stages.
For one thing, the larger the Bingham number, the larger
also the percentage of the material that is unyielded to begin
with. This leaves less material to become unyielded before
cessation and may explain why in Fig. 11b cessation is
reached faster when Bn is higher (see also Table 4). So
the curves are not completely independent of Bn, but the
dependence is nevertheless much weaker than in Fig. 11a.
The rate that the material becomes unyielded is of course
inversely proportional to the cessation time, and therefore,
with respect to nondimensional time t̃ , it is also roughly
independent of Re and Bn. If mu is the amount of unyielded
material in the cavity, then dmu/dt = (dmu/dt̃)·(dt̃/dt) =
(dmu/dt̃)·(1/T3). Since dmu/dt̃ is approximately constant,

the rate dmu/dt is inversely proportional to the characteris-
tic time T3, i.e. to the ratio of inertia in the cavity to viscous
forces.

A closer look at the cessation times in Table 4 reveals
another effect of the initial conditions. One can notice that,
if Bn is held fixed and Re varied, t̃c begins to increase
only after a certain Reynolds number has been exceeded;
prior to that, it may also exhibit a minimum. This trend is
very similar to the dependency of the initial vortex strength
ψ0
max on the Reynolds number, shown in Fig. 1b, and can

be explained as follows. Both ψ0
max and t̃c are constant up

to an effective Reynolds number of Re∗ ≈ 10. If Re∗ is
increased further, up to a value of Re∗ ≈ 70, the vortex
moves towards the downstream vertical wall; this confines
it geometrically causing its effective diameter to decrease.
In turn, this may cause the initial vortex strength to fall, and
the cessation time to reduce due to the higher velocity gra-
dients and resulting viscous forces. For Bn ≤ 1, no such
drop is observed as the geometric confinement is very slight.
Beyond Re∗ ≈ 70, the initial vortex position moves towards
the cavity centre, relaxing the geometric confinement and
lowering the velocity gradients, thus causing an increase to
ψ0
max and to t̃c. Therefore, in Fig. 11b, during early times

the vortex strength drops more slowly in the high-Re∗ cases
than in the low-Re∗ ones (the same was observed also for
Newtonian flow in Fig. 4b).

Another benefit from using the nondimensional time t̃ is
that one can choose the time step �t̃ for the simulations
independently of Re and Bn. The truncation error that arises
from the temporal discretisation is proportional to the square
of the time step size (second-order accuracy) and to cer-
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(a) Re = 1; t = 8.4 × 10−4 (b) (c) Re = 1; t = 1.554 × 10−2

(d) Re = 10; t = 8.4 × 10−4 (e) Re = 10; t = 8.82 × 10−3 (f) Re = 10; t = 1.554 ×10−2

(g) Re = 100; t = 8.4 × 10−4 (h) Re = 100; t = 8.82 × 10−3 (i) Re = 100; t = 1.554 × 10−2

(j) Re = 1000; t = 8.4 ×10−4 (k) (l) Re = 1000; t = 1.554 × 10−2

˜˜˜

˜ ˜ ˜

˜˜˜

˜˜ ˜Re = 1; t = 8.82 × 10−3

Re = 1000; t = 8.82 × 10−3

Fig. 12 a–l Snapshots of the flowfield for Bingham flow at Bn = 5.
Each row of figures corresponds to a different Reynolds number: from
top to bottom, Re = 1, 10, 100 and 1000. The figures of each row cor-
respond, from left to right, to an early time, an intermediate time, and

a late time of the cessation process. Contour plots of nondimensional
pressure (p̃ = p/(τy + μU/L)) are drawn in colour. Yield lines (con-
tours of τ = τy ) are drawn in thick solid lines. Streamlines are drawn
in thin dashed lines, equispaced by δψ = 0.1ψmax



Rheol Acta (2016) 55:51–66 65

Table 4 Cessation times t̃c (= tc · [ρUL2/(τyL + μU)]−1) for various Reynolds and Bingham numbers. The cessation time is defined as the
time elapsed until τ < τy everywhere in the domain

Re\Bn 1 2 5 10

1 2.4784 ·10−2 2.1000 ·10−2 1.7018 ·10−2 1.4256 ·10−2

10 2.4784 ·10−2 2.1000 ·10−2 1.7018 ·10−2 1.4256 ·10−2

100 2.4976 ·10−2 2.0698 ·10−2 1.6615 ·10−2 1.4062 ·10−2

1000 3.8768 ·10−2 3.3163 ·10−2 2.1470 ·10−2 1.3446 ·10−2

tain temporal derivatives of the velocity. According to the
results presented so far, the flow evolution with respect to
t̃ is roughly independent of Re and Bn, so that the deriva-
tives with respect to t̃ can also be assumed to be roughly
independent of these numbers. Thus, the truncation error of
the discretisation of the dimensionless momentum equation,
and the associated discretisation error of the nondimen-
sional flow variables that it produces, will also be roughly
independent of Re and Bn.

Since the vortex strength is plotted on a logarithmic axis
in Fig. 11b, the curves should become vertical at cessation
and intersect with the time axis at the times listed in Table 4.
Indeed this is approximately true, but the cessation times
cannot be accurately read from Fig. 11b because the curves,
although steep, are not completely vertical. This is due to

Fig. 13 Vortex strength history after cessation (due to regularisation,
the flow never completely ceases): The ratio of current vortex strength
ψmax(ť) to the vortex strength at the time of cessation ψmax(ťc) is
plotted against time elapsed since cessation, dedimensionalised by
ρL2/η0. The curves correspond to: Bn = 1, Re = 1 (chained line),
Bn = 1, Re = 1000 (double chained line), Bn = 2, Re = 10 (short, dense
dashes), Bn = 5, Re = 100 (short, sparse dashes), Bn = 10, Re = 1
(long, sparse dashes) and Bn = 10, Re = 1000 (long, dense dashes).
The thick, solid line is the theoretical prediction, Eq. 16

the use of regularisation which treats the unyielded mate-
rial as a fluid of very high viscosity. In fact, the slope of the
curves after cessation can be calculated using the knowledge
gained from the study of the Newtonian flow cases. After
cessation, the whole of the material is unyielded and the
viscosity everywhere tends to the limit value of the Papanas-
tasiou model given by Eq. 8. Therefore, we can assume
that the fluid behaves as a Newtonian fluid of that viscos-
ity. The rate of decay of the vortex strength of the unyielded
material can then be calculated from Eq. 10, only that η0
must be used instead of μ. In other words, time has to
be dedimensionalised using a different characteristic time,
T4 = ρL2/η0, giving rise to another nondimensional time
variable ť = t/T4. After some manipulation, it turns out that

T4 ≡ ρL2

η0
= Re

M ·Bn + 1
· L

U
= Re

M · Bn + 1
· T1 (15)

where M ≡ mU/L is a nondimensional expression of the
regularisation parameter m. Therefore, ť = t/T4 = t̄ · (M ·
Bn + 1)/Re. Assuming that the behaviour of the unyielded
fluid is Newtonian, Eq. 10 can be used to calculate the rate
of vortex decay:

ψmax(ť)

ψmax(ťc)
= e−52.35(ť−ťc) (16)

where ťc is the cessation time and ť > ťc. The validity of this
assumption is checked in Fig. 13. It is difficult to discern
the various curves, but the important point is that almost all
of them follow very closely the above theoretical prediction.
The behaviour of the case (Bn = 1, Re = 1000), which corre-
sponds to the highest Re∗ tested, is difficult to explain. In the
case (Bn = 10, Re = 1000) the slope is steeper at early times
because the unyielded “vortex” is confined near the upper
right corner of the cavity and has a smaller effective diame-
ter, but as it moves towards the cavity centre, the theoretical
rate, Eq. 16, is recovered.

Conclusions

We have investigated the evolution of Newtonian and Bing-
ham flow in a square lid-driven cavity once the driving force
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(the motion of the lid) has stopped. Contrary to Newtonian
flow, Bingham flows cease in a finite amount of time. The
effect of the flow configuration and material properties has
been investigated by varying the Reynolds number in the
range of 1–1000 and the Bingham number in the range of
0–10.

In Newtonian flow, the Reynolds number plays an impor-
tant role at the early stages of cessation, but eventually, the
flow obtains a pattern that is independent of the Reynolds
number. The flow decays exponentially with a rate that
is proportional to μ/ρL2. Hence, the rate of decay with
respect to the nondimensional time t̂ = t/(ρL2/μ) is inde-
pendent of the problem geometric parameters (cavity size
and initial lid velocity) and of the fluid properties, and was
found to be approximately equal to 52.35.

In Bingham flow, zones of stagnant unyielded mate-
rial form along the cavity walls and grow inwards, while
zones of rotating unyielded material (plug zones) form in
the interior of the cavity and grow outwards. The rotating
zones decelerate and eventually stop moving at precisely
the time when they merge with the outer stagnant zones, at
which time the whole of the material in the cavity becomes
unyielded and the flow ceases. The time scale of the evolu-
tion of the flow is proportional to ρUL2/(τyL + μU), so
if time is dedimensionalised by this quantity, then the main
time-related features of the flow, such as the cessation time,
become roughly independent of the geometric parameters of
the problem and of the fluid properties.

Bingham flow is governed by two dimensionless param-
eters, the Reynolds number and the Bingham number, but
these two can be combined in a single number, the effec-
tive Reynolds number, which is related to the time scale
ρUL2/(τyL + μU) (note that t̃ = t̄/Re∗). The effective
Reynolds number is a natural extension of the idea of the
Reynolds number to Bingham flows, and often its value
alone is sufficient to determine important features of the
flow.
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