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A SINGULAR FUNCTION BOUNDARY INTEGRAL METHOD FOR
LAPLACIAN PROBLEMS WITH BOUNDARY SINGULARITIES∗

CHRISTOS XENOPHONTOS† , MILTIADES ELLIOTIS‡ , AND GEORGIOS GEORGIOU‡

Abstract. A singular function boundary integral method for Laplacian problems with boundary
singularities is analyzed. In this method, the solution is approximated by the truncated asymptotic
expansion for the solution near the singular point and the Dirichlet boundary conditions are weakly
enforced by means of Lagrange multiplier functions. The resulting discrete problem is posed and
solved on the boundary of the domain, away from the point of singularity. The main result of this
paper is the proof of convergence of the method; in particular, we show that the method approxi-
mates the generalized stress intensity factors, i.e., the coefficients in the asymptotic expansion, at an
exponential rate. A numerical example illustrating the convergence of the method is also presented.
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1. Introduction. In many engineering problems (e.g., fracture mechanics ap-
plications) governed by elliptic partial differential equations (PDEs), boundary singu-
larities arise when there is a sudden change in the boundary conditions and/or on the
boundary itself. Singularities are known to affect adversely the accuracy and the con-
vergence of standard numerical methods, such as finite element, boundary element,
finite difference, and spectral methods. Grid refinement and high-order discretizations
are common strategies aimed at improving the convergence rate and accuracy of the
above-mentioned standard methods. If, however, the form of the singularity is taken
into account and is properly incorporated into the numerical scheme, then a more
effective method may be constructed (see, e.g., [10, 15]). (For a recent survey of treat-
ment of singularities in elliptic boundary value problems see [17] and the references
therein.)

In the case of the two-dimensional Laplace equation, for example, the form of the
singularity is visible through the asymptotic expansion for the solution u near the
singular point. When the boundaries sharing the singular point are not curved, u is
given by [12]

u(r, θ) =
∞∑
j=1

αjr
βjφj(θ),(1.1)

where (r, θ) are polar coordinates centered at the singular point, αj ∈ R are the un-
known singular coefficients, and βj ∈ R, φj(θ) are the eigenvalues and eigenfunctions
of the problem, respectively, which are uniquely determined by the geometry and the
boundary conditions along the boundaries sharing the singular point. The constants
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αj are often called generalized stress intensity factors (GSIFs) or flux intensity fac-
tors. In the case of elasticity problems with cracks, these constants are called stress
intensity factors (SIFs) and serve as a measure of the stress at which failure occurs.
In most commonly used methods, such as the finite element method (FEM), the SIFs
are calculated as a postsolution operation (see, e.g., [4, 26, 27]). If, however, the
goal of the computation is the calculation of the SIFs, then methods which calculate
these quantities directly may be preferable. The singular function boundary integral
method (SFBIM), which we will analyze in this article, falls in the latter category.
(See also [19, 20, 22, 23] and the references therein for additional information on the
determination and importance of the aforementioned coefficients.)

The SFBIM was originally developed by Georgiou and coworkers [10, 11] and was
subsequently refined and expanded by Elliotis, Georgiou, and Xenophontos [6, 7, 8, 9].
The method uses the leading terms in the local asymptotic expansion for the solution
near the singular point as an approximation, while any Dirichlet boundary conditions
are weakly enforced by means of Lagrange multiplier functions. The resulting problem
is posed on the boundary of the domain; hence the dimension of the problem is reduced
by one, leading to considerable computational cost reduction. We should also mention
here the works of Li et al. [14, 15, 16] and Arad et al. [1], who also developed similar
methods. (See also [21] for a review of SIF evaluation and modeling of singularities
in boundary integral methods.)

The SFBIM has been successfully applied to a number of problems in solid and
fluid mechanics and excellent numerical results have been obtained thus far [6, 7, 8,
9]. In particular, it was observed that the method (i) approximates the SIFs at an
exponential rate of convergence, (ii) is very efficient, and (iii) compares extremely well
with other accurate methods found in the literature. Our main goal in this article is
to prove the observed convergence rates of the method.

The rest of the paper is organized as follows: In section 2 we present the for-
mulation of the method for a two-dimensional Laplacian problem with a boundary
singularity. In section 3 we present the convergence analysis, and in section 4 we
comment on how the method can be efficiently implemented. Finally, section 5 in-
cludes the results of some numerical computations illustrating the convergence of the
method. Throughout the paper the usual notation Hk(Ω) will be used for spaces
containing functions on the domain Ω ⊂ R

2 with boundary ∂Ω, having k generalized
derivatives in L2(Ω); the norm and seminorm on Hk(Ω) will be denoted by ‖·‖k,Ω and
|·|k,Ω, respectively. Also, the letters C and c will be used to denote generic positive
constants independent of any discretization parameters and possibly having different
values in each occurrence.

2. The model problem and its formulation. For simplicity we consider the
Laplacian problem stated below and depicted graphically in Figure 2.1. Find u such
that

Δu = 0 in Ω,(2.1)

∂u

∂n
= 0 on S1,(2.2)

u = 0 on S2,(2.3)

u = f(r, θ) on S3,(2.4)

∂u

∂n
= g(r, θ) on S4,(2.5)

where ∂Ω =
⋃4

i=1 Si.
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Fig. 2.1. A two-dimensional Laplace equation problem with one boundary singularity.

In (2.1)–(2.5), Δ denotes the Laplacian operator, the variables (r, θ) denote polar
coordinates centered at O, and the functions f and g are known. It is assumed that
f, g, and the boundary ∂Ω are such that there is only one boundary singularity at O.
The local solution near O is given by an asymptotic expansion of the form (1.1) [12].

Note. Even though the presentation and analysis of the method will be restricted
to the type of boundary singularity shown in Figure 2.1, any type of boundary singu-
larity for which an asymptotic expansion (1.1) exists can be treated.

Multiplying (2.1) by a test function v ∈ V1 (to be specified shortly) and integrating
over Ω, we get

∫∫
Ω

vΔu = 0,

and then, by means of Green’s theorem, we obtain

−
∫∫

Ω

∇v · ∇u +

∫
∂Ω

v
∂u

∂n
= 0.

Since ∂u
∂n = 0 on S1 and ∂u

∂n = g(r, θ) on S4, we further have

∫∫
Ω

∇v · ∇u−
∫
S2

v
∂u

∂n
−
∫
S3

v
∂u

∂n
=

∫
S4

vg.(2.6)

Suppose v is chosen to satisfy

Δv = 0 in Ω, v = 0 on S2,
∂v

∂n
= 0 on S1,(2.7)

one such choice being v ≡ rβjφj(θ) (see (1.1)). Then (2.6) becomes

∫∫
Ω

∇v · ∇u−
∫
S3

v
∂u

∂n
=

∫
S4

vg.(2.8)

Now, since u = f on S3 we have

−
∫
S3

∂v

∂n
(u− f) = 0,
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so adding this to (2.8), we get

∫∫
Ω

∇v · ∇u−
∫
S3

v
∂u

∂n
−
∫
S3

∂v

∂n
(u− f) =

∫
S4

vg

or, equivalently,

∫∫
Ω

∇v · ∇u−
∫
S3

v
∂u

∂n
−
∫
S3

∂v

∂n
u =

∫
S4

vg −
∫
S3

∂v

∂n
f.

Letting

λ =
∂u

∂n

∣∣∣∣
S3

, μ =
∂v

∂n

∣∣∣∣
S3

,(2.9)

the above equation becomes

∫∫
Ω

∇v · ∇u−
∫
S3

vλ−
∫
S3

μu =

∫
S4

vg −
∫
S3

μf.

Hence, the variational problem to be solved reads as follows: Find (u, λ) ∈ V1 × V2

such that

B(u, v) + b(u, v;λ, μ) = F (v, μ) ∀ (v, μ) ∈ V1 × V2,(2.10)

where

B(u, v) =

∫∫
Ω

∇v · ∇u,(2.11)

b(u, v;λ, μ) = −
∫
S3

vλ−
∫
S3

μu,(2.12)

F (v, μ) =

∫
S4

vg −
∫
S3

μf.(2.13)

The spaces V1 and V2 are chosen as follows. Let the trace space of functions in H1 (Ω)
be denoted by

H1/2 (∂Ω) =
{
u ∈ H1 (Ω) : u|∂Ω ∈ L2 (∂Ω)

}
.(2.14)

With T : H1 (Ω) → H1/2 (∂Ω) denoting the trace operator, the norm of H1/2 (∂Ω) is
defined as

‖ψ‖1/2,∂Ω = inf
u∈H1(Ω)

{
‖u‖1,Ω : Tu = ψ

}
.(2.15)

Then, we define H−1/2 (∂Ω) as the closure of H0 (∂Ω) ≡ L2 (∂Ω) with respect to the
norm

‖ϕ‖−1/2,∂Ω = sup
ψ∈H1/2(∂Ω)

∫
∂Ω

ϕψ

‖ψ‖1/2,∂Ω

.(2.16)
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(See, e.g., [24] for more details.) We then define

H1
∗ (Ω) =

{
u ∈ H1 (Ω) : u|S2

= 0
}
,(2.17)

and we take

V1 = H1
∗ (Ω) , V2 = H−1/2 (S3).(2.18)

The discrete problem corresponding to (2.10) then reads as follows: Find (uN , λh)∈
[V N

1 × V h
2 ] ⊂ [H1

∗ (Ω) ×H−1/2(S3)] such that

B(uN , v) + b(uN , v;λh, μ) = F (v, μ) ∀ (v, μ) ∈ V N
1 × V h

2 ,(2.19)

with B(u, v), b(u, v;λ, μ), and F (v, μ) given by (2.11)–(2.13), and with V N
1 , V h

2 finite
dimensional spaces to be chosen shortly.

Remark 1. The above formulation will be used in the analysis of the method; for
the implementation, we will use an equivalent boundary integral formulation in which
all integrations will be one-dimensional and carried out away from the point causing
the singularity. Details will be given in section 4.

3. Error analysis. We begin by defining the finite dimensional spaces V N
1 and

V h
2 which will be used in the approximate problem (2.19). First, with

vi ≡ rβiφi(θ)(3.1)

denoting the singular functions, we define the finite dimensional space

V N
1 = span {vi}Ni=1 .(3.2)

Next, let S3 be divided into quasiuniform sections Γi, i = 1, . . . , n, such that S3 =⋃n
i=1 Γi. Let hi = |Γi| and set h = max1≤i≤n hi. We assume that for each segment

Γi, there exists an invertible mapping Fi : I → Γi which maps the interval I = [−1, 1]
to Γi, and we define the space

V h
2 =

{
λh : λh|Γi

◦ F−1
i ∈ Pp (I) , i = 1, . . . , n

}
,(3.3)

where Pp (I) is the set of polynomials of degree ≤ p on I = [−1, 1]. In practice,
the representation of the boundary S3 determines the mappings Fi; i.e., if S3 is
represented by a polynomial, then an isoparametric mapping may be used, and if S3

has some (general) parametric representation, then the blending map technique may
be used (see Ch. 6 in [25]).

We have the following theorem.
Theorem 3.1. Let (u, λ) and (uN , λh) be the solutions to (2.10) and (2.19),

respectively. Suppose there exist positive constants c0, c, β, and γ, independent of N
and h, such that the following hold:

B(v, v) ≥ c0 ‖v‖2
1,Ω and |B(u, v)| ≤ c ‖u‖1,Ω ‖v‖1,Ω ∀v ∈ V N

1 ,(3.4)

∃ 0 
= vN ∈ V N
1 s.t.

∣∣∣∣
∫
S3

μhvN

∣∣∣∣ ≥ β ‖μh‖−1/2,S3
‖vN‖1,Ω ∀μh ∈ V h

2 ,(3.5)

∣∣∣∣
∫
S3

λv

∣∣∣∣ ≤ γ ‖λ‖−1/2,S3
‖v‖1,Ω ∀v ∈ V N

1 .(3.6)
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Then

‖u− uN‖1,Ω + ‖λ− λh‖−1/2,S3
≤ C

{
inf

v∈V N
1

‖u− v‖1,Ω + inf
η∈V h

2

‖λ− η‖−1/2,S3

}
,

(3.7)

with C ∈ R
+ independent of N and h.

This is similar to the classical result for saddle point problems (cf. [5]), and its
proof for our problem appears in the appendix; see also Theorem 6.1 in [14].

Before verifying that (3.4)–(3.6) hold for the problem under consideration, we will
make certain assumptions that will aid in the analysis. First, we note that for any
function w which can be expressed in the form given by (1.1), we can always write

w = wN + rN ,

where

wN =

N∑
j=1

αjvj ∈ V N
1 , rN =

∞∑
j=N+1

αjvj .(3.8)

We will assume that there exists a ∈ (0, 1) such that

|rN | ≤ CaN(A1)

and ∣∣∣∣∂rN∂r
∣∣∣∣ ≤ CNaN .(A2)

If r < 1 in (1.1), assumptions (A1), (A2) may be replaced with the assumption that
|αj | < ∞ ∀ j, since then, by (3.1) and the fact that φj is harmonic,

|rN | ≤
∞∑

j=N+1

|αj | rβj ≤ C
rβN+1

1 − r
≤ CaN ,

with r < a < 1, and C ∈ R
+ independent of a and N. Similarly,

∣∣∣∣∂rN∂r
∣∣∣∣≤

∞∑
j=N+1

|αj | rβj−1 =

∞∑
j=N+1

|αj |
{

d

dr

∫ r

0

ρβj−1dρ

}
=

d

dr

∞∑
j=N+1

|αj |
{∫ r

0

ρβj−1dρ

}

≤ d

dr

∞∑
j=N+1

|αj | rβj ≤ C
d

dr

(
rβN+1

1 − r

)
≤ CNaN .

If r ≥ 1, one may partition the domain Ω into subdomains in which separate approxi-
mations may be obtained, including one near O which is valid for r < 1. The solution
over the entire domain can then be composed by combining the solutions from each
subdomain and properly dealing with their interactions across the interfaces separat-
ing them (see, e.g., [18]).

Let us now verify that (3.4)–(3.6) hold for the problem given by (2.19). First,

note that B(v, v) = |v|21,Ω so that, by Poincaré’s inequality,

B(v, v) ≥ c0 ‖v‖2
1,Ω ∀v ∈ H1

∗ (Ω).(3.9)
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By the Cauchy–Schwarz inequality,

B(u, v) ≤ c ‖u‖1,Ω ‖v‖1,Ω ∀u, v ∈ H1
∗ (Ω),(3.10)

so that (3.9) and (3.10) give (3.4). To verify (3.5), consider the following auxiliary
problem (for which a unique solution exists): Find w such that

Δw = 0 in Ω,(3.11)

∂w

∂n
= μh on S3,(3.12)

w = 0 on S2,(3.13)

∂w

∂n
= 0 on S1 ∪ S4,(3.14)

where μh ∈ V h
2 in (3.12). From (3.11) and (3.12) we obtain (using Green’s formula

and Poincaré’s inequality)

∫
S3

μhw =

∫
S3

w
∂w

∂n
=

∫∫
Ω

wΔw +

∫∫
Ω

|∇w|2 = |w|21,Ω ≥ c0 ‖w‖2
1,Ω ,(3.15)

with c0 ∈ R
+. Also (cf. [2])

‖μh‖−1/2,S3
=

∥∥∥∥∂w∂n
∥∥∥∥
−1/2,S3

≤ C ‖w‖1,Ω ,(3.16)

so that by (3.15) and (3.16)

∫
S3

μhw ≥ c0 ‖w‖2
1,Ω ≥ β ‖w‖1,Ω ‖μh‖−1/2,S3

,(3.17)

with β ∈ R
+ independent of w and h. Now, let wN ∈ V N

1 be such that w = wN + rN ,
as given by (3.8). We have

∫
S3

μhwN =

∫
S3

μhw −
∫
S3

μhrN ,(3.18)

and also

∫
S3

μhrN ≤ ‖μh‖−1/2,S3
‖rN‖1/2,S3

≤ C1 ‖μh‖−1/2,S3
‖rN‖1,Ω,(3.19)

so that, combining (3.17)–(3.19), we get

∫
S3

μhwN ≥ β ‖w‖1,Ω ‖μh‖−1/2,S3
− C1 ‖μh‖−1/2,S3

‖rN‖1,Ω.(3.20)

Now, using the reverse triangle inequality, we have

‖w‖1,Ω = ‖wN + rN‖1,Ω ≥ ‖wN‖1,Ω − ‖rN‖1,Ω ,
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which along with (3.20) gives

∫
S3

μhwN ≥ β
(
‖wN‖1,Ω − ‖rN‖1,Ω

)
‖μh‖−1/2,S3

− C1 ‖μh‖−1/2,S3
‖rN‖1,Ω

≥ β ‖wN‖1,Ω ‖μh‖−1/2,S3
− (C1 + β) ‖μh‖−1/2,S3

‖rN‖1,Ω .(3.21)

Since by assumption (A1), rN converges to 0 exponentially (or, equivalently, wN

converges to w exponentially), we have

lim
N→∞

‖rN‖1,Ω

‖wN‖1,Ω

= 0,

which means that for any ε > 0 there exists N∗ such that

‖rN‖1,Ω

‖wN‖1,Ω

< ε

whenever N > N∗. Hence, for N sufficiently large we may write

‖rN‖1,Ω

‖wN‖1,Ω

<
β

2 (C1 + β)
,(3.22)

where C1 and β are the constants from above. Combining (3.21) and (3.22) leads to

∫
S3

μhwN ≥ β

2
‖μh‖−1/2,S3

‖wN‖1,Ω ,

which in turn gives (3.5) once we replace wN by vN and β/2 by β. Condition (3.6)
follows directly from the definition of the H−1/2-norm (see also (3.19)). The preceding
discussion leads to the following theorem.

Theorem 3.2. Let (u, λ) and (uN , λh) be the solutions to (2.10) and (2.19),
respectively. If λ ∈ Hk (S3) for some k ≥ 1, then there exists a positive constant C,
independent of N,h, and a ∈ (0, 1), such that

‖u− uN‖1,Ω + ‖λ− λh‖−1/2,S3
≤ C

{√
NaN + hmp−k

}
,(3.23)

where m = min{k, p + 1}.
Proof. From Theorem 3.1 we have

‖u− uN‖1,Ω + ‖λ− λh‖−1/2,S3
≤ C

{
inf

v∈V N
1

‖u− v‖1,Ω + inf
η∈V h

2

‖λ− η‖−1/2,S3

}
.

Now,

inf
v∈V N

1

‖u− v‖1,Ω ≤ ‖u− wN‖1,Ω = ‖rN‖1,Ω ,

with wN , rN given by (3.8). Using (A1) and (A2) we get

inf
v∈V N

1

‖u− v‖1,Ω ≤ ‖rN‖0,Ω + |rN |1,Ω ≤ C
{
aN +

√
NaN

}
≤ C

√
NaN ,(3.24)
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with C ∈ R
+ independent of N . Next, let λI be the pth-order interpolant of λ on the

partition {Γi}ni=1 of S3. We have (cf. [3])

‖λ− λI‖0,S3
≤ Chmp−k ‖λ‖k,S3

,(3.25)

where m = min{k, p + 1}, and C > 0 a constant independent of h and p. Now,

inf
η∈V h

2

‖λ− η‖−1/2,S3
≤ ‖λ− λI‖−1/2,S3

≤ ‖λ− λI‖0,S3
,(3.26)

so that, since λ ∈ Hk (S3), (3.24)–(3.26) give the desired result.

Remark 2. The above theorem shows that if the number of singular functions N
is increased then uN converges to u at an exponential rate. The theorem also shows
that the convergence of λh to λ can occur in one of three ways: (i) by keeping p fixed
and reducing h, (ii) by keeping h fixed and increasing p, or (iii) by doing both. These
three “options” loosely correspond to the three versions of the FEM, namely, the h,
p, and hp versions (cf. [3]).

Remark 3. Based on the above theorem, one may obtain the “optimal” matching
between N and h, i.e., the relationship between the number of singular functions and
the number of Lagrange multipliers used in the method, by choosing them in such a
way so that the error in (3.23) is balanced. For example, in the case when p is kept
fixed and h → 0, we take hp+1 ≈

√
NaN . This leads to the following approximate

expression for N :

N ≈ (p + 1)

∣∣∣∣ lnh

ln a

∣∣∣∣ .(3.27)

The approximation of the GSIFs is given by the following corollary.

Corollary 3.3. Let

u =
∞∑
j=1

αjr
βjφj(θ)

and

uN =

N∑
j=1

αN
j rβjφj(θ)

satisfy (2.10) and (2.19), respectively, with αj , α
N
j denoting the true and approximate

GSIFs. Then, there exists a positive constant C, independent of N and a ∈ (0, 1),
such that

∣∣αj − αN
j

∣∣ ≤ CaN .(3.28)

Proof. This is a direct consequence of (A1) and the fact that

∣∣αj − αN
j

∣∣ ≤ C ‖u− uN‖0,Ω .

(See also (3.24).)
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4. Implementation. We now give a description of the implementation in order
to emphasize the properties of the method. As mentioned in Remark 1, the discretized
equation will be solved on the boundary of the domain; here we describe how this
is done. Recall the discrete version of the problem given by (2.19), which may be
rewritten in mixed form as follows: Find (uN , λh) ∈ [V N

1 × V h
2 ] such that∫∫

Ω

∇v · ∇uN −
∫
S3

vλh =

∫
S4

vg ∀ v ∈ V N
1 ,(4.1)

∫
S3

μ (uN − f) = 0 ∀ μ ∈ V h
2 .(4.2)

We wish to reduce the double integral in (4.1) to a boundary one. To this end, using
Green’s theorem, we have∫∫

Ω

∇v · ∇uN =

∫
∂Ω

∂v

∂n
uN −

∫∫
Ω

uNΔv =

∫
∂Ω

∂v

∂n
uN

by (2.7). Moreover, since ∂v
∂n

∣∣
S1

= 0 by (2.7), and uN |S2
= 0 by (2.17), we get

∫
∂Ω

∂v

∂n
uN =

∫
S3

∂v

∂n
uN +

∫
S4

∂v

∂n
uN ,

and (4.1)–(4.2) may be written as follows: Find (uN , λh) ∈ [V N
1 × V h

2 ] such that∫
S3

∂v

∂n
uN +

∫
S4

∂v

∂n
uN −

∫
S3

vλh =

∫
S4

vg ∀ v ∈ V N
1 ,(4.3)

∫
S3

μ (uN − f) = 0 ∀ μ ∈ V h
2 .(4.4)

Obviously if (uN , λh) ∈ [V N
1 × V h

2 ] solves (2.19) (or (4.1)–(4.2)), then it also solves
(4.3)–(4.4); it is straightforward to reverse the above steps and see that the two-
dimensional formulation analyzed in the previous section is in fact equivalent to the
one-dimensional formulation given by (4.3)–(4.4). The latter are the equations which
we discretize, since they are posed on the boundary of the domain Ω. This reduces
the dimension of the problem by one and leads to significant computational savings.
Now, to obtain the linear system of equations corresponding to (4.3)–(4.4), we write

uN =

N∑
j=1

αN
j vj ∈ V N

1 ,(4.5)

and

λh =

M∑
i=1

γiψi ∈ V h
2 ,(4.6)

with αN
j and γk the unknowns in the system, and V N

1 = span {vj}Nj=1, V h
2 =

span {ψi}Ni=1. Upon inserting these into (4.3)–(4.4), we obtain the (N+M)×(N+M)
linear system

[
K1 K2

KT
2 0

] [ −→α
−→γ

]
=

[ −→
G
−→
F

]
,(4.7)
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where −→α =
[
αN

1 , . . . , αN
N

]T
,−→γ = [γ1, . . . , γM ]

T
, and

[K1]j,k =

∫
S3

vk
∂vj
∂n

+

∫
S4

vk
∂vj
∂n

, j = 1, . . . , N, k = 1, . . . , N,

[K2]j,i = −
∫
S3

vjψi , j = 1, . . . , N, i = 1, . . . ,M,

[−→
G
]
j

=

∫
S4

vjg, j = 1, . . . , N,

[−→
F
]
i
=

∫
S3

fψi, i = 1, . . . ,M.

It is easily shown that the coefficient matrix in (4.7) is symmetric. This matrix,
however, is singular if N < M . Hence, we should choose N larger than M , but not
too large since for excessively large values of N the linear system (4.7) becomes ill
conditioned and the results obtained are unreliable. The relationship between N and
h (hence M) described in Remark 2 should be our guide in deciding how large to
choose these values; see also section 5. As a final remark in this section, we should
point out that all integrals involved in the determination of the coefficient matrix
(and right-hand side) in (4.7) are along the sides of the domain that do not contain
the singularity. Moreover, they are one-dimensional and can be approximated by
standard techniques, such as Gaussian quadrature.

5. Numerical results. Even though the analysis of the method was carried out
for the rather general case of a domain having curved boundaries (except the ones
intersecting at the singular point), and the nonhomogeneous boundary conditions can
be given by any smooth function, we will consider for simplicity the model problem
depicted in Figure 5.1, originally studied in [13]. The numerical results presented
here correspond to the following choices of all relevant parameters: The Lagrange
multiplier function λh used to impose the Dirichlet condition along S3 is expanded in
terms of quadratic basis functions ψi (see (4.6)), and boundary S3 is divided into 2n
quadratic elements of equal size. For the integration, boundary S4 is also subdivided
into n intervals of equal size. All integrals involved are calculated numerically by
subdividing each interval above into 10 subintervals and using a 15-point Gauss–
Legendre quadrature over each one. In computing the coefficient matrix in (4.7), its
symmetry is taken into account.

To determine the relationship between the number of singular functions N and
the number of Lagrange multipliers M , we proceed as follows: Since for λh we are
using p = 2 and h = 2/n, we have M = 2n + 1. For the moment, we fix n = 8 (say),
which amounts to M = 17, and solve the linear system (4.7) for various values of
N > M (e.g., N = 19, 21, 23, . . . ). We concentrate only on the calculation of the first
GSIF αN

1 and record our results in Table 5.1. From the table we see that, for this
choice for M , the value of αN

1 is converged up to 14 significant digits once N = 35.
Moreover, from (3.27) we have

N ≈ (p + 1)
lnh

ln a
= (p + 1)

ln(2/n)

ln a
= (p + 1)

ln
(

2p
M−1

)
ln a

⇒ ln a ≈ p + 1

N
ln

(
2p

M − 1

)
⇒ a ≈

(
2p

M − 1

) p+1
N

;
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Fig. 5.1. Geometry and boundary conditions for the model problem.

Table 5.1

Approximate GSIF αN
1 with M = 17.

N αN
1

19 1.12797929883135
21 1.12798071689013
23 1.12798444682112
25 1.12798040013968
27 1.12798040107216
29 1.12798040105877
31 1.12798040105983
33 1.12798040105939
35 1.12798040105939

Table 5.2

Approximate GSIFs αN
j , j = 1, . . . , 5.

j αN
j (SFBIM) αN

j (hp-FEM) αN
j (Ref. [13])

1 1.12798040105939 1.12798010 1.1280
2 0.16993386650225 0.16993387 0.1699
3 −0.02304097399348 −0.0230419 −0.0230
4 0.0034711966582 0.0034755 0.0035
5 0.0009151570991 0.0009126 0.0009

hence, using M = 17 and N = 35, we find that a ≈ 0.89. With a known, we may now
compute the rest of the GSIFs and/or any other quantities of interest by choosing N
and M via (3.27). For example, for M = 41 (i.e., h = 1/10), we find that N ≈ 60.

Table 5.2 above shows the converged approximate values for the first five GSIFs
obtained using the SFBIM (with M = 41 and N = 60), as well as the hp version
of the FEM, which is considered to be the state-of-the-art method for problems with
singularities [25]; the values from reference [13] are also included for comparison.

These results suggest that the SFBIM can be an attractive (and often preferable)
method for problems in which the GSIFs are the main goal of the computation. Figure
5.2 shows the convergence of the leading GSIFs with N ; in particular, the figure shows
a semilog plot of the estimated percentage relative error in αN

j , j = 1, . . . , 5; since no
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Fig. 5.2. Convergence of αN
j , j = 1, . . . , 5, using the SFBIM.

exact values exist for the true GSIFs, we use α60
j as our reference/“exact” value. Since

each error curve is essentially straight, this illustrates the exponential convergence of
the method, as predicted by Corollary 3.3.

Appendix. Proof of Theorem 3.1. Here, for completeness, we give a proof
of Theorem 3.1. First, we note that since (u, λ) also satisfy (2.19), we have ∀ (v, μ) ∈
V N

1 × V h
2

B(u− uN , v) = −b(u− uN , v;λ− λh, μ) =

∫
S3

v(λ− λh) +

∫
S3

μ(u− uN ).(A.1)

Since u = f on S3 and
∫
S3

μ(uN − f) = 0 ∀ μ ∈ V h
2 , we have

∫
S3

μuN =

∫
S3

μu ∀μ ∈ V h
2 ,(A.2)

and thus the last integral in (A.1) is zero. Hence,

B(u− uN , v) =

∫
S3

v(λ− λh).(A.3)

Letting w = uN − v, v ∈ V N
1 , we get

B(uN − v, w) = B(uN − u,w) + B(u− v, w) = B(u− v, w) −
∫
S3

w(λ− λh)

= B(u− v, w) −
∫
S3

w(λ− η) −
∫
S3

w(η − λh).

By means of (A.2), the above equation becomes

B(uN − v, w) = B(u− v, w) −
∫
S3

w(λ− η) −
∫
S3

(λh − η)(u− v).(A.4)
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Now, from (3.4), (3.6), and (A.4) we get

c0 ‖uN − u‖2
1,Ω = c0 ‖w‖2

1,Ω

≤ ‖u− v‖1,Ω ‖w‖1,Ω + γ ‖w‖1,Ω ‖λ− η‖−1/2,S3
+ γ ‖u− v‖1,Ω ‖λh − η‖−1/2,S3

≤ C
{
(‖u− v‖1,Ω + ‖λ− η‖−1/2,S3

) ‖w‖1,Ω + ‖u− v‖1,Ω ‖λh − η‖−1/2,S3

}
.

This is an inequality of order 2:

c0x
2 ≤ bx + d , b, d > 0,

where

x = ‖w‖1,Ω , b = C(‖u− v‖1,Ω + ‖λ− η‖−1/2,S3
),

d = C ‖u− v‖1,Ω ‖λh − η‖−1/2,S3
≤ C

2

(
ε ‖λh − η‖−1/2,S3

+
1

ε
‖u− v‖1,Ω

)2

, ε > 0.

Therefore, we obtain the bound

x ≤ b +
√
b2 + 4c0d

2c0

or, equivalently,

‖w‖1,Ω ≤ C

{
‖u− v‖1,Ω + ‖λ− η‖−1/2,S3

+
1

ε
‖u− v‖1,Ω

}
+ Cε ‖λh − η‖−1/2,S3

.

(A.5)

Next, using (3.5) with μh = λh − η, we find that there exists 0 
= vN ∈ V N
1 such that

‖λh − η‖−1/2,S3
≤ β

∣∣∫
S3

(λh − η)vN
∣∣

‖vN‖1,Ω

.(A.6)

Also, it follows from (A.3) that∫
S3

(λh − η)vN =

∫
S3

(λh − λ)vN +

∫
S3

(λ− η)vN = B(u− uN , vN ) +

∫
S3

(λ− η)vN

≤ c ‖u− uN‖1,Ω ‖vN‖1,Ω + γ ‖vN‖1,Ω ‖λ− η‖−1/2,S3
,(A.7)

so that by (A.6) and (A.7),

‖λh − η‖−1/2,S3
≤ C

{
‖u− uN‖1,Ω + ‖λ− η‖−1/2,S3

}

≤ C
{
‖u− v‖1,Ω + ‖v − uN‖1,Ω + ‖λ− η‖−1/2,S3

}
.

Since ‖v − uN‖1,Ω = ‖w‖1,Ω, we have from (A.5)

‖λh − η‖−1/2,S3
≤ C1

{
‖u− v‖1,Ω + ‖λ− η‖−1/2,S3

+ ε−1 ‖u− v‖1,Ω

}
+ ε ‖λh − η‖−1/2,S3
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with C1 ∈ R
+ independent of v, η, and ε. Letting C1ε ≤ 1/2 we get

‖λh − η‖−1/2,S3
≤ C

{
‖u− v‖1,Ω + ‖λ− η‖−1/2,S3

}
.(A.8)

Using the triangle inequality, we immediately get

‖λ− λh‖−1/2,S3
≤ ‖λ− η‖−1/2,S3

+ ‖λh − η‖−1/2,S3

≤ C
{
‖u− v‖1,Ω + ‖λ− η‖−1/2,S3

}
.(A.9)

Similarly, using (A.5) and (A.9), we get

‖u− uN‖1,Ω ≤ ‖u− v‖1,Ω + ‖v − uN‖1,Ω = ‖u− v‖1,Ω + ‖w‖1,Ω

≤ C
{
‖u− v‖1,Ω + ‖λ− η‖−1/2,S3

}
,

which gives the desired result.
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[2] I. Babuška, The finite element method with Lagrangian multipliers, Numer. Math., 20 (1973),
pp. 179–192.
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