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Abstract A standard method used to determine material properties of semi-solid slurries is the 

squeeze flow experiment in which a fixed amount of material is squeezed under constant force or 

velocity. The relation between the force and the displacement provides information about the 

rheology of the slurry. The thixotropy and the time response of the sample however is rarely, if ever, 

taken into consideration. In this work we study how thixotropy affects the flow characteristics and 

consequently the predicted material properties. We show that depending on the method of 

compression and the thixotropic constants the flow can be significantly different. Therefore the 

predicted material constants can vary and hence cannot be unique. 
 

Introduction 

The motivation of the present work of course comes from our interest in the processing of semi-

solid metal (SSM) slurries. As it is well known, these relatively dense suspensions behave as 

viscoplastic fluids [1,2]. The viscoplastic behaviour is due to particle welding, dry friction, and 

hydrodynamic forces within the suspension. Semi-solid slurries also exhibit thixotropy, i.e. the 

viscosity decreases with time under constant shearing. The rheological properties of semi-solid 

slurries are partially reversible and partially irreversible [3]. The irreversible part is due to the 

breakage of the welded bonds between the particles. Given space limitations, we cannot review 

here and thus we simply refer the reader to the relevant literature, such as Favier and Atkinson [4], 

Modigell and Koke [5], Alexandrou and Georgiou [6], Gautham and Kapur [7], Koeune and 

Ponthot [8],  

 
The objectives of the present work are: (a) to investigate numerically the squeeze flow experiment 
by accounting for thixotropy, and (b) to evaluate the use of the experiment to extract material 
constants in semisolid slurries. The consideration of thixotropy in rheometric flows has been also 
emphasized in [9,10,11,12].  

Theoretical Model  

As described in the introduction the finite yield stress τ0 of SSM slurries is due to particle welding, 

dry friction, and hydrodynamic forces within the suspension. Here we assume that this viscoplastic 

behaviour can be described using the Bingham constitutive model [13,14]: γ = 0� for τ ≤ τ0 and 

( )0τ= τ / γ + µ γ� �  for τ > τ0  , where µ is the plastic viscosity, and τ and γ�  are the stress and rate-of-

strain tensors, respectively. 

 

Thixotropy is described using the traditional approach of the structural parameter, λ, which 

describes the state of the structure. Whenλ =1 the material is fully structured and when λ = 0 the 

structure is fully broken [5,6,15]. The material parameters, i.e. the plastic viscosity and the yield 

stress are, in general, functions of λ [15].  
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In the present work, it is assumed that the plastic viscosity is constant. This is consistent with the 

experimental data of Modigell and Koke [5] where one observes a vertical shift of the flow curve 

with rest time (i.e. increase structure) and hence no significant change in the material constants. The 

vertical shift is due to the increase of the yield stress which increases with increasing structure [5]. 

Therefore during deformation as the structure breaks, the yield stress reduces. This dependence is 

expressed here using a simple linear relationship τy (t) = λτ0 where τy (t) is now the instantaneous 

yield stress.  

 
For closure, the evolution of the structural parameter is assumed to follow the first-order rate 
evolution equation:  

cD /Dt= (1- )-b e γλ α λ λγ �
�  

where Dλ/Dt
 
is the material derivative, a is the recovery parameter, and b and c are the breakdown 

parameters determined from experimental data. The two terms in the RHS of the evolution equation 
describe the rates of structure build-up and break-down. The exponential in the second term 
accounts for the fact that the shear stress evolution in shear rate step-up experiments is typically 
faster than in the step-down ones.  
 

In order to overcome the inherent singularity of the discontinuous Bingham constitutive relation we 

adopt the regularization proposed by Papanastasiou [16]:  

( ){ }o    1 exp m   /  τ = τ λ − − γ γ +µ γ  � � �

 
where m is the stress growth parameter. The equation is valid uniformly at all levels of γ�  and 

provides a satisfactory approximation of the Bingham plastic model for sufficiently large values of 

m [14,17].  

 
 

 

 
 
 
 

 
 

 
 

Governing Equations  
In squeeze flow, the material is placed between two parallel discs (Figure 1) and is compressed 
under constant load or constant velocity, while the lower disc remains fixed. The cylindrical sample 
is characterized by an initial radius R0 and height H0=2R0. The continuity and momentum equations 
are:  

u 1 - exp
u 0, Re , 1

D (-M )
p   Bn    

Dt γ

γ
τ λ γ

 
∇ ⋅ = = −∇ +∇⋅τ = + 

 

�
�

�
 

where the Bingham, the growth number, the Reynolds and the non-dimensional force are  
defined by 

Figure 1: Geometry and boundary conditions of the squeeze flow experiment. At  t=0  the sample is at 

rest. 
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Bn =
τ 0H0

µU  ,       
M =

mU

H0 ,        
Re =

rUH0

m  ,      
F =

F 

τ 0H0
2

 

 
In the case of squeeze flow under constant load, U is either an arbitrary velocity or it can be defined 
by U = F/µH0  
 
The boundary conditions of the flow are also shown in Figure 1. Symmetry boundary conditions are 
imposed along the axis of symmetry and the velocity is set to zero along the bottom. On the free 
surface it is assumed that surface tension is zero. When the sample is compressed at constant load in 
the direction of gravity, i.e. the dimensionless load is of the form F = - F ez , the boundary condition 
at the top of the sample is given by   

z
s
( p ) dSI= − + τ ⋅∫F e

 
where S is the surface of the top, and I is the unit tensor.  

Numerical  method  

The flow problem is solved in Lagrangian coordinates. The governing equations are discretized 

using the mixed-Galerkin finite element method. The non-linear system of equations is solved using 

a Newton-Raphson iteration procedure with an error tolerance equal to 10
-5

. Remeshing is achieved 

by using a Laplace-type discretization algorithm. Care is taken to construct a finer mesh at critical 

corners. More details can be found in [14]. 

Results and Discussion  

The sample is compressed from rest either under constant load or constant. Three different meshes 

have been used, the characteristics of which are tabulated in Table 1. The numerical results are 

obtained using Mesh 2 (20×20), which gives converged results similar to those from the more 

refined Mesh 3. Similarly the value M=300 was found to be sufficiently high so that the regularized 

model provides a good approximation for the ideal Bingham model; no significant differences were 

observed from results obtained with M=800. The time step is fixed after extensive numerical 

experimentation and is kept constant throughout the simulation. 

 
Table 1:  Characteristics of the meshes used in the simulations 

 Elements Nodes Unknowns 

Mesh 1 (15X15) 225 961 2148 

Mesh 2 (20X20) 400 1681 3763 

Mesh 3 (24X24) 576 2401 5379 
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Figure 3: Height  and a function to time for 

different Bn numbers (F=-1,Re=1,a=1,b=1,c=0.01) 
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Figure 2: Height and structural parameter 

as a function of time (F=-1, Re=1, 

Bn=1,a=1, b=1, c=0.01). 
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Results are obtained for the evolution of the internal structure, the yielded and unyielded surfaces as 

well as all flow parameters. However, due to lack of space we will discuss only the evolution of the 

height and the mean structural parameter for few selected cases. Figure 2 shows that the height 

decreases monotonically and eventually reaches a plateau, which is, of course expected. For 

comparison purposes the height of a non-thixotropic sample (a=b=c=0) is also plotted. With the 

inclusion of the structural parameter the duration of the squeeze flow experiment increases. This is 

due to the fact that the structure breaks down, resulting in reduced yield stress. The mean structural 

parameter λ  initially decreases reaching a minimum before the leveling of the sample height, after 

which build-up is observed.  

 

 
The effect of the Bingham number on the height and the mean structural parameter is illustrated in 

Figures 3 and 4. In agreement with previous works for non-thixotropic yield stress fluids, the 

squeeze rate becomes lower and the final sample height increases with the Bingham number 

[11,14]. We observe that the break-down of the welded particles becomes slower at higher Bingham 

numbers and continues reaching a minimum value after which a build-up occurs. The resulting 

minimum is thus higher and is shifted to the right. In the build-up stage the material regains its 

structure faster as Bn increases, due to reduced shearing. 

             
The effects of the recovery and break-down parameters on the squeeze rate and the mean structural 

parameter of the base flow are illustrated in Figures 5 and 6, respectively. The squeeze rate appears 

not to be affected initially by a, but as the experiment proceeds, the flow decelerates at higher values 

of a with significant reduction on the final height of the compressed sample. Naturally, the mean 

structural parameter increases significantly with the recovery parameter, i.e. the effect of build-up 

due to particle interaction becomes more intensive, causing the material to regain its solid structure. 
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Figure 4: The avεrage structure as a function

of Bn (F=-1, Re=1, b=1, and c=0.01). 
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Figure 5: The average structure as a function of 

the buildup parameter (F=-1, Bn=1, Re=1, b=1, 

c=0.01) 
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Figure 6: The mean structure as a function 

of the breakdown parameter (F=-1, Re=1,

Bn=1, a=0.1, c=0.01) 
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Figure  7: The load during compression at 

constant velocity (V=-1, Re=1, Bn=1,  

a=b=1, c=0.01)  
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For a=0.1, structure build-up is so slow that the experiment stops when λ is slightly above its 

minimum value. Obviously, the effect of the break-down parameter b is opposite to that of a. 

Therefore, as shown in Figure 6, the rate of squeezing increases with b, i.e. the structure break-down 

becomes faster. The results for λ  confirm that by increasing b the material bonds are forced to 

break-up faster with significant reduction of the mean structural parameter. When b=5, λ is reduced 

significantly down to 0.1 in a relatively short time and then increases steadily as structure is build-

up. 

Let us now consider the squeeze flow under constant velocity with V=-1, Re=1, Bn=1, a=1, b=1, 

and c=0.01. The required load for compressing the material is plotted in Figure 7. Initially the load 

is very high and decreases rapidly reaching a minimum after which a progressive increase occurs. 

Later, as the sample top surface expands, the load increases exponentially. At a certain critical time 

the simulation is stopped, due to excessive distortion of the finite elements (the sample becomes 

very thin). It should be noted that a smoothing of the load curve has been employed, in order to 

eliminate artificial spikes in the pressure (and hence in the calculation of the load) due to the 

discrete advancing of the nodal points on the solid surface. 

 
Simulations (not shown here for space reasons) show that the recovery and  break-down parameters 

have relatively little effect on the resulting. Figures 8 and 9, respectively show the effects of a and b 

on the structure of the sample. Under constant velocity compression the structure essentially 

continues to break down in a manner very different from the compression under constant force.  It is 

clear that break-down occurs faster for lower values of a and the entire phenomenon is irreversible 

(Figure 8). As expected, the structural parameter decreases significantly at higher values of b 

(Figure 9), a phenomenon which appears to be also irreversible. 

When the sample is squeezed under constant velocity the average rate of strain is fixed by the 

velocity. The average strain everywhere within then sample increases with increasing compression. 

Therefore during compression the structure everywhere within the sample breaks down 

continuously. Therefore, except for extreme values of the recovery parameter, the structure is 

destroyed in relatively short time and the rate of buildup is not important. Possible unyielded 

regions within  the sample disappear in a very short time. When however the sample is squeezed 

under constant force the situation is vey different. During compression as the sample is squeezed the 

compressed area increases. Therefore the imposed stress on the sample decreases. The flow and 

topography of the yielded and unyielded regions  develop as a competition between the  local stress , 

the rate of strain and both, the breakdown and recovery parameters. Both the flow field and the 

unyielded regions are more complex than the case of compression under constant velocity. These 

differences and the complexity of the resulting flow field show clearly that the only way to extract 

reliable data is by using computational rheology: the actual experiment must be simulated with high 

accuracy and by using reverse engineering extract the actual constants 
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Figure 9: Effect of the breakdown parameter on the 

evolution of the mean structural parameter during 

squeeze flow under constant velocity; V=-1, Re=1, 

Bn=1, a=0.1, and c=0.01. 
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Figure 8: Effect of the recovery parameter on 

the evolution of the mean structural 

parameter during squeeze flow under constant

velocity; V=-1, Re=1, Bn=1, b=1, and c=0.01. 
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Conclusions 

 The simulations show clearly that the results from the squeeze flow experiment can vary and they 

depend on whether the sample is squeezed under constant force or under constant velocity.  These 

differences of course cannot be seen when the thixotropy is not accounted for. Material constants 

obtained with models that ignore thixotropy then will not characterize the rheology adequately. As 

the slurries are indeed thixotropic  it is important to understand  the different flows situations. By 

customizing the experiments it is possible to exploit these differences by isolating the effects of  

built up and breakdown.  
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