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A B S T R A C T   

The simple shear flow of Herschel-Bulkley fluids is analyzed, under the assumption that wall slip occurs at both 
plates above a characteristic wall shear stress, the slip yield stress. The latter critical value is usually lower than 
the yield stress of viscoplastic materials exhibiting wall slip. The effects of wall slip and the slip yield stress on the 
apparent flow curve, i.e. the plot of the shear stress vs the apparent shear rate, are investigated. With non- 
viscoplastic fluids, the flow curve is gap-independent below the slip yield stress. Above a critical apparent 
shear rate at which the slip yield stress is exceeded, a plateau zone is encountered, and then the flow curve 
becomes gap dependent. Viscoplastic materials remain at rest for stresses below the slip yield stress, slide 
unyielded for stresses between the slip yield stress and the yield stress, at half the velocity of the moving plate, 
and yield and slip for stresses above the yield stress. Hence, the apparent flow curve exhibits an initial plateau 
corresponding to slip yield stress, followed by a rapid-growth gap-dependent part and a second plateau corre
sponding to the yield stress, and then approaches asymptotically its zero-slip-yield-stress counterpart. This 
behavior describes well certain rheometric experiments on concentrated suspensions and pastes.   

1. Introduction 

Non-Newtonian fluids, such as biological gels and tissues, are prone 
to slip (Hatzikiriakos 2012,2015; Ewoldt et al., 2015). A consequence of 
wall slip in rheometric experiments is that the actual shear rate does not 
coincide with the apparent shear rate. The difference between true and 
apparent shear rate depends on the geometry, e.g. on the gap size in the 
case of simple shear flow and on the diameter in capillary flow. The 
errors in the determination of rheological parameters may sometimes 
rise to an order of magnitude (Poumaere et al., 2014). Hence, wall slip 
needs to be taken into account, in order to obtain reliable estimates of 
the rheological parameters (Hatzikiriakos 2012,2015; Ewoldt et al., 
2015). 

The effects of wall slip in rheometry have been investigated since the 
early 1930s. Schofield and Scott Blair (1931) studied slip in capillary 
flow and derived explicit formulae to calculate the slip velocity from 
experimental data for any fluid. Mooney (1931) also derived explicit 
formulae relating the slip velocity to the wall shear stress for capillary 
and circular Couette data that require measurements at three different 
diameters. Much later, Yoshimura and Prud’homme (1988) proposed a 
different analysis of the Couette geometry that requires only two mea
surements. They also provided wall slip corrections for parallel disk 

viscometers. Medina-Bañuelos et al. (2017) also investigated the errors 
caused by wall slip in tangential annular (Couette) flow of a viscoplastic 
microgel. 

Wall slip effects are more pronounced in the case of viscoplastic 
materials, i.e. materials exhibiting yield stress (Bertola et al., 2003; 
Chaparian and Tammisola, 2021; Cloitre and Bonnecaze, 2017; Meeker 
et al., 2004a; Chaparian and Tammisola, 2021). Below the yield stress 
these materials may slide in the presence of slip (Damianou et al., 2019; 
Chaparian and Tammisola, 2021), in which case the apparent shear rate 
is finite while the actual one is zero. 

The objective of the present paper is to analyze the implications of 
wall slip on the apparent flow curve resulting from simple shear ex
periments on Herschel-Bulkley fluids (Herschel and Bulkley, 1926), 
whose constitutive equation has the following scalar form: 
{

γ̇ = 0, τ ≤ τ0
τ = τ0 + kγ̇n, τ > τ0

(1)  

where τ is the shear stress, γ̇ is the shear rate, τ0 is the yield stress, k is the 
consistency index, and n is the flow index or shear thinning exponent. 
The Bingham-plastic model is recovered by setting n = 1 and replacing k 
by the plastic viscosity μ. The power-law model is also the special case of 
Eq. (1) when τ0 = 0, i.e. 
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τ = kγ̇n (2)  

Setting n = 1 and k = μ, one gets the Newtonian model, τ = μγ̇, where μ 
represents the shear viscosity. 

In the present work we consider wall slip that occurs when a critical 
wall shear stress, the slip yield stress, is exceeded (Ballesta et al., 2008, 
2012; Damianou et al., 2019; Chaparian and Tammisola, 2021). More 
specifically, the following slip law is employed: 
{

uw = 0, τw ≤ τc

τw = τc + βus
w, τw > τc

(3)  

where uw is the slip velocity, i.e. the relative velocity of the fluid par
ticles to that of the wall, τw is the wall shear stress, τc is the slip (or 
sliding) yield stress, β is the slip coefficient and s is the slip exponent. The 
classical Navier slip (Navier, 1827) is recovered when τc = 0 and s = 1. 

τw = βuw (4)  

The no-slip condition corresponds to β→∞; hence, wall slip is enhanced 
as β is reduced. The condition (3) is also known as the stick/slip con

dition or the no-slip/Navier-slip condition (Blechta et al., 2020). 
In the case of polymers, the critical shear stress for the onset of slip is 

linearly correlated to the work of adhesion of the corresponding polymer 
wall interface (Hill et al., 1991; Anastasiadis and Hatzikiriakos, 1998), 
suggesting that slip is a result of an adhesive failure of the interface. In 
most experimental reports on viscoplastic materials, such as pastes, gels 
and colloidal suspensions, the slip yield stress is smaller than the yield 
stress, τc < τ0 (Damianou et al., 2019; Meeker et al., 2004a, 2004b, and 
references therein). 

In the past few years, many studies of viscoplastic flows with wall slip 
and non-zero slip yield stress have been reported. In their comprehen
sive study of the slip and flow of concentrated colloidal suspensions, 
Ballesta et al. (2012) considered the parallel plate flow of a 
Herschel-Bulkley fluid with n = 1/2 and the special case of the slip law 
(3) with s = 1and derived analytical solutions in the various flow re
gimes arising from the relative values of the slip yield stress, the yield 
stress, and the wall shear stress. They then used these solutions to 
approximate the flow in a cone-and-plate rheometer. 

Damianou et al. (2014) studied the axisymmetric Poiseuille flow of a 
Herschel–Bulkley fluid with wall slip following a slip law with slip yield 
stress and identified the various steady-state regimes depending on the 
relative values of τc, τ0 and the wall shear stress. They also solved 
numerically the cessation of the flow using regularized versions of the 
constitutive and slip equations and showed that when the slip yield 
stress is non-zero, slip ceases at a finite critical time and the velocity 
becomes flat only at complete cessation. Subsequently, Damianou et al. 
(2016) extended their work to the two-dimensional Poiseuille flow of a 
Bingham plastic in rectangular ducts. More recently, Damianou et al. 
(2019) analyzed the steady-state Couette flow of a Bingham-plastic with 
wall slip and non-zero slip-yield stress, identified the different flow re
gimes that arise when τc < τ0, and derived analytical expressions for the 
velocity and the critical angular velocities defining these regimes. 

The rest of the paper is organized as follows. In Section 2 the general 
form of the linear velocity profile in the simple shear flow of any fluid 
with a monotonic constitutive equation is presented, under the 
assumption that the same slip law applies so that the slip velocity is the 
same at both plates. The velocity in the gap is written in terms of the 

Fig. 1. Geometry and boundary conditions of simple shear flow with slip at 
both walls. 

Fig. 2. Apparent flow curves of a Newtonian fluid with no-slip, Navier slip, and slip with non-zero slip yield stress. The Navier-slip flow curve is of lower slope than 
its no-slip counterpart. With non-zero slip yield stress, slip occurs above a critical apparent shear rate γ̇ac = τ0/μ and thus the flow curve consists of two branches, the 
first coincides with the no-slip flow curve and the second is of the same slope as the Navier-slip one. 
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common slip velocity, which is determined numerically in the general 
case. In Section 3, the flows of Newtonian and power-law fluids are 
analyzed and analytical solutions are provided for certain values of the 
flow index n and the slip exponent s. To visualize the gap-size effect and 
facilitate the discussion, results are obtained for certain gap sizes. 
Finally, Herschel-Bulkley shear flows are analyzed and discussed in 
Section 4. It is demonstrated that using a single slip equation with non- 
zero slip yield stress may describe adequately experimental flow-curve 
data at different gap sizes where the flow curves coincide for low 
apparent shear rates, then they diverge, and, as the shear rate increases, 
they merge again approaching asymptotically the no-slip flow curve 
(Ewoldt et al., 2015; Moud et al., 2021a). 

2. General equations 

Consider the simple shear flow between parallel plates and assume 
that the gap distance is H and that the upper plate is moving at a con
stant velocity V in the x-direction, while the lower one is fixed, as 
illustrated in Fig. 1. It is easily deduced from the x-momentum equation 
that the shear stress τyx is constant and thus the velocity varies linearly 
with the transverse coordinate y, i.e. u(y) = c1 + c2y, where the con
stants c1 and c2 are determined from the boundary conditions. In the 
absence of slip, u(0) = 0 and u(H) = V, which give the linear profile u(y)
= yV/H. The true shear rate γ̇ = du/dy coincides with the apparent shear 
rate γ̇a = V/H for any fluid, which renders the flow viscometric. 

To simplify the analysis, we assume that the same monotonic slip law 
applies along both walls (this is a reasonable assumption if the two walls 
are of the same material and have the same properties, e.g. roughness). 

Given that the shear stress is constant, the velocity profile is still linear 
and, since the slip law is monotonic, the slip velocities at the two walls 
are equal; hence the boundary conditions are u(0) = uwandu(H) = V −

uw (Fig. 1). Thus, the velocity distribution is given by 

ux(y) = uw + (V − 2uw)
y
H

(5)  

and the true shear rate is 

γ̇ =
dux

dy
=

V − 2uw

H
= γ̇a

(
1 − 2

uw

V

)
(6)  

The slip velocity term represents the error between the true and the 
apparent shear rate. 

Let us now assume that the material is viscoplastic exhibiting wall 
slip with a finite slip yield stress, such that 0 < τc ≤ τ0. To study the 
apparent flow curve, we will express the stress exerted on the upper 
plate, τw, in terms of the apparent shear rate, γ̇a. It is clear that if τw ≤ τc, 
the plate is not moving, the material behaves as a solid, and no slip 
occurs. Above the slip yield stress, two flow regimes are observed with 
viscoplastic materials. In Regime 1 (sliding regime), i.e. when 
τc < τw ≤ τ0, slip occurs but τw is not sufficient to yield the material. 
Hence, the material slides as a solid at a constant speed, which implies 
that the actual shear rate is zero while γ̇a is not. As a result, the apparent 
flow curve shows ‘apparent yielding’ below the true yield stress. Since 
the velocity is flat, u(y) = V − uw = uw, which gives u = uw = V/2 =

Hγ̇a/2. From the slip law (3) we then get: 

Fig. 3. Apparent flow curves obtained for a Newtonian fluid (μ = 1Pa⋅s) and wall slip with zero slip yield stress: (a) β = 1000Pa⋅s /m and s = 1 (strong Navier slip); 
(b) β = 100Pa⋅s /m and s = 1 (very strong Navier slip); (c) β = 1000Pa⋅s1/s/m1/s and s = 0.8; (d) β = 1000Pa⋅s1/s/m1/s and s = 1.2. The flow curve corresponding to 
no-slip is also shown. The results for the three gap sizes do not coincide in the presence of slip; they are parallel straight lines only in the case of Navier slip (s = 1). 
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τw = τc +
βHs

2s γ̇s
a (7)  

The critical apparent shear rate γ̇a0 at which τw = τ0 is thus 

γ̇a0 =
2
H

(
τ0 − τc

β

)1/s

(8)  

It should be pointed out that γ̇a0 is independent of the viscoplastic 
constitutive equation, depending only on the yield stress, the slip pa
rameters, and the gap size H. This critical value decreases with H, in 
agreement with experimental observations, such as the parallel-plate 
experiments of Moud et al. (2021a) on kaolinite suspensions. 

The constitutive equation becomes relevant in Regime 2 or yielding 
regime, i.e. when γ̇a > γ̇a0, where the material yields and slips at the 
wall. In this regime, the wall shear stress satisfies both the slip and 
constitutive equations and thus 

τc + βus
w = τ0 + kγ̇n (9)  

By means of Eqs. (6)–(8), the following non-linear equation is obtained: 

(
1 − 2

uw

V

)n
=

βHs

kγ̇n
a

⎡

⎣γ̇s
a

(uw

V

)s
−

⎛

⎝γ̇a0

2

⎞

⎠

s⎤

⎦ (10)  

which can easily be solved numerically to calculate the relative slip 
velocity uw/V and then the second branch of the apparent flow curve: 

τw =

⎧
⎪⎨

⎪⎩

τc + βHsγ̇s
a

/
2s, γ̇a ≤ γ̇a0

τ0 + k(1 − 2uw/V)
nγ̇n

a, γ̇a > γ̇a0

(11)  

Note that the first branch that corresponds to the sliding regime 
(γ̇a ≤ γ̇a0) is independent of the constitutive equation and lies below the 
yield stress of the material. Eq. (10) can be solved analytically for certain 
combinations of the exponents n and s. Some of these solutions are 
provided below. To facilitate the discussion, we first consider the solu
tions for power-law fluids, i.e. of fluids with zero yield stress (τ0 = 0). 

3. Power-law fluids 

It is instructive to first analyze the flow of power-law fluids exhib
iting slip with non-zero slip yield stress, τc > 0. In this case, there are 
again two flow regimes corresponding to no-slip and slip. For τw ≤ τc, 
there is no slip (uw = 0); hence, the true shear rate is measured and the 
apparent flow curve coincides with the true one. It is easily deduced by 
means of constitutive Eq. (1) that the critical apparent shear rate γ̇ac at 
which slip occurs is 

γ̇ac =
(τc

k

)1/n
(12)  

Given that τ0 = 0, Eq. (10) can now be written as follows: 

(
1 − 2

uw

V

)n
=

⎛

⎝
γ̇ac

γ̇a

⎞

⎠

n

+
βHs

k
γ̇s− n

a

(uw

V

)s
(13) 

Fig. 4. Flow curves of Newtonian fluids exhibiting wall slip with non-zero slip yield- stress, τc = 0.2Pa, and β = 1000Pa⋅s1/s/m1/s: (a) μ = 1Pa⋅s,s = 1 (Navier slip); 
(b) μ = 10Pa⋅s, s = 1; (c) μ = 1Pa⋅s, s = 0.8; (d) μ = 1Pa⋅s, s = 1.2. The dashed line is the flow curve corresponding to no-slip. 
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Fig. 5. Flow curves (left) and slip velocities (right) of Newtonian fluids exhibiting power-law-type slip (zero τc) with μ = 1Pa⋅s and β = 5000Pa⋅s1/s/m1/s: (a) s = 0.8; 
(b) s = 1 (Navier slip); (c) s = 1.2. 
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Thus, the apparent flow curve is described by 

τw =

⎧
⎪⎨

⎪⎩

kγ̇n
a, γ̇a ≤ γ̇ac

k(1 − 2uw/V)
nγ̇n

a, γ̇a > γ̇ac
(14)  

3.1. Newtonian fluids 

In Newtonian fluids, the critical apparent shear rate for the occur
rence of wall slip is γ̇ac = τc/μ. The analytical solutions for s = 1 and 2 
are easily derived. When s = 1, one finds from Eq. (13) that 

uw

V
=

B
(

1 − γ̇ac

/

γ̇a

)

1 + 2B
(15)  

where B ≡ μ/(βH) is the dimensionless slip number. The relative slip 
velocity is bounded above by 1/2, which corresponds to full (ideal) slip. 
When the slip yield stress is zero, i.e. when we have Navier slip (τc = 0 
and thus γ̇ac = 0), the relative velocity is constant (independent of the 
apparent shear rate). This decreases with the gap size H. If the slip-yield 
stress is non-zero, the relative slip velocity increases with the apparent 
shear rate γ̇a and this increase becomes more important as the gap size is 
reduced. 

The apparent flow curve for n = s = 1 is given by 

Fig. 6. Flow curves (left) and slip velocities (right) of Newtonian fluids exhibiting slip with τc = 0.2Pa (finite slip yield stress), β = 5000Pa⋅s1/s/m1/s, and μ = 1Pa⋅s: 
(a) s = 0.8; (b) s = 1 (Navier slip); (c) s = 1.2. 
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Fig. 7. Effect of the slip coefficient β on the flow curve and the relative slip velocity in the case of Newtonian flow with μ = 1Pa⋅s, and slip with non-zero slip yield 
stress (s = 2, τc = 0.1 Pa): (a) β = 107Pa⋅s1/s/m1/s (weak slip); (b) β = 105Pa⋅s1/s/m1/s (moderate slip); β = 103Pa⋅s1/s/m1/s (strong slip). 

G.C. Georgiou                                                                                                                                                                                                                                    



Applications in Engineering Science 8 (2021) 100068

8

τw =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

μγ̇a, γ̇a ≤ γ̇ac

μ
(

γ̇a + 2Bγ̇ac

)

1 + 2B
, γ̇a > γ̇ac

(16)  

The effect of wall slip on the flow curve of a Newtonian fluid is illus
trated in Fig. 2. When the slip yield stress is zero, e.g. when Navier slip is 
applied, γ̇ac = 0 and slip occurs for any apparent shear rate. The slope of 
the flow curve is reduced from μ to μ/(1+ 2B). If the slip yield stress is 
finite, the first branch of the flow curve up to γ̇ac = τc/μ coincides with 
the no-slip flow curve and the second branch is of the same slope as the 
Navier-slip flow curve. 

For s = 2, the solution of Eq. (13) is 

uw

V
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 + βH2

μ

(

γ̇a − γ̇ac

)√

− 1

βH2

μ γ̇a

=

1 − γ̇ac

/

γ̇a

1 +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 + βH2

μ

(

γ̇a − γ̇ac

)√ (17)  

When the slip yield stress is zero (power-law slip equation with τc = 0, 
the relative velocity is given by 

uw

V
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 + βH2γ̇a

/

μ

√

− 1

βH2 γ̇a

/

μ
(18)  

As the apparent shear rate tends to zero, the relative velocity tends to 1/ 
2 (full slip). In the presence of non-zero slip yield stress, when γ̇a→γ̇ac, 
uw/V→0. At high values of the apparent shear rate γ̇a, the slip velocity 
may be approximated by 

uw

V
≃

̅̅̅̅̅̅̅̅
μ/β

√

H
̅̅̅̅
γ̇a

√ (19)  

Therefore, uw/V is a decreasing function at high values of the apparent 
shear rate. Given that uw/V is increasing initially (when the slip yield 
stress is non-zero, τc > 0), a global maximum appears at a critical shear 
rate. Taking the Taylor expansion of the nominator of Eq. (17) yields 

uw

V
≃

1
2

⎛

⎝1 −
γ̇ac

γ̇a

⎞

⎠

[

1 −
1
4

βH2

μ

(

γ̇a − γ̇ac

)]

(20)  

It is straightforward to show that the maximum of the slip velocity is at 

γ̇∗a =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
4μ

βH2 + γ̇ac

)

γ̇ac

√

(21)  

Clearly, the maximum moves to the right as τc is increased, or as slip is 
enhanced (β is reduced). 

The flow curve when s = 2 is described by 

Fig. 8. Apparent flow curves obtained for a power-law fluid (n = 0.5 and k = 1Pa⋅s1/2) and wall slip with zero slip yield stress (τc = 0): (a) β = 1000Pa⋅s /m and s = 1 
(strong Navier slip); (b) β = 100Pa⋅s /m and s = 1 (very strong Navier slip); (c) β = 1000Pa⋅s1/s/m1/s and s = 0.8; (d) β = 1000Pa⋅s1/s/m1/s and s = 1.2. The flow 
curve corresponding to no-slip is also shown. 
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τw =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

μγ̇a, γ̇a ≤ γ̇ac

μ

⎧
⎨

⎩
γ̇a −

2μ
βH2

⎡

⎣

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 +
βH2

μ

(

γ̇a − γ̇ac

)√

− 1

⎤

⎦

⎫
⎬

⎭
, γ̇a > γ̇ac

(22)  

When τc = 0 and the apparent shear rate is high, 

τw ≈
μ2

βH2⋅
βH2

μ γ̇a = μγ̇a (23)  

and, therefore, the flow curve tends asymptotically to its no-slip coun
terpart. From Eq. (22), we can deduce that τ ≈ τc for small values of the 
apparent shear rate, τ ≈ τc and that for high values of the apparent shear 
rate, τ→μγ̇a. For moderate values of the apparent shear rate we get: 

τw ≈ τc +
1
4

βH2
(

γ̇a − γ̇c

)2

(24)  

In is clear that in this intermediate regime the effect of the gap size 
becomes important. Eq. (24) predicts that the shear stress grows faster as 
the gap size is increased or as slip becomes weaker. 

To visualize the gap-size effects, we obtained results for three 
different values of the gap size: H = 0.3mm,0.5mm,and0.7mm. Let us 
start with the zero-slip-yield-stress case, in which the no-slip branch 
does not exist. In Fig. 3, the apparent flow curves (plots of τ versus the 
apparent shear rate γ̇a) for μ = 1Pa⋅s and different values of the slip 
coefficient and the slip exponent are shown together with the no-slip 
flow curve, for the sake of comparison. As expected, wall slip shifts 
the flow curve to the right (the required shear stress for a given value of 
γ̇a decreases as the slip coefficient is reduced) and this effect is enhanced 
as the gap size is reduced. In the case of Navier slip (s = 1), the flow 
curves are straight lines the slopes of which are independent of the gap 
size and decrease as slip becomes stronger (as B is increased; see Eq. 
(16)). The effect of the slip exponent is also important. It is interesting to 
note that the flow curves corresponding to different gap sizes tend to 
diverge when s < 1 (Fig. 3c) and to merge when s > 1 (Fig. 3d). Hence, 
the material appears to slightly shear-thicken when s > 1 and shear-thin 
when s < 1.

The effect of the slip yield stress is illustrated in Fig. 4, where we 
show results obtained with τc = 0.2Pa, β = 1000Pa⋅s1/s/m1/s and 
different values of the viscosity and the slip exponent. The flow curves 
initially coincide with their no-slip counterpart, then exhibit a plateau 
corresponding to the slip yield stress τc, and eventually approach 
asymptotically their zero-τc counterparts. They thus appear to diverge 
when s < 1 and to merge when s > 1. It seems that the shear stress 
plateau is enhanced as the viscosity is increased and/or slip becomes 
stronger, i.e. when s is increased or β is reduced (Fig. 4d). 

The variation of the relative slip velocity uw/V with the apparent 
shear rate is illustrated in Figs. 5 and 6 for τc = 0 and τc = 0.2Pa, 
respectively. In Fig. 5, the flow curves for the latter case with μ = 1Pa⋅s, 
β = 5000Pa⋅s1/s/m1/s and various values of the slip exponent are plotted 
together with the corresponding slip velocities. As already mentioned, 
the slip velocity decreases with the gap size and is independent of the 
apparent shear rate in the case of Navier slip (s = 1). When s < 1, uw/V 
increases with γ̇a and tends to reach asymptotically the corresponding 
Navier-slip value. When s > 1, uw/V is initially equal to the limiting 
value 1/2 and decreases with γ̇a. 

More interesting are the results for non-zero slip yield stress in Fig. 6. 
Since the slip velocity is zero for γ̇a ≤ γ̇ac, it increases rapidly 
approaching asymptotically its zero-τc counterpart (shown in Fig. 5). 
Thus, the slip velocity is an increasing function of the apparent shear 
rate when s ≤ 1, levelling to a constant value when s = 1 (Navier slip). 
When s > 1, however, uw is increasing initially and decreasing at higher 
shear rates, thus passing through a global maximum. The approximate 
location of the maximum when s = 2 is given by Eq. (21). The effect of 
the slip coefficient for s = 2 and τc = 0.1Pa is illustrated in Fig. 7. As 

Fig. 9. Flow curves of power-law fluids with k = 1Pa⋅sn, τc = 0.2Pa, β =
1000Pa⋅s1/s/m1/s and s = 2: (a) n = 1; (b) n = 0.5; (c) n = 1 /3. The straight 
line is the flow curve corresponding to no-slip. 
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Fig. 10. Flow curves (left) and slip velocities (right) of a power-law fluid with n = 1/2 and k = 1Pa⋅s1/2, τc = 0.2Pa and β = 5000Pa⋅s1/s/m1/s: (a) s = 0.8; (b) s = 1 
(Navier slip); (c) s = 1.2. 
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dictated by Eq. (21), the slip velocity maximum moves to the right as slip 
becomes stronger, as predicted by Eq. (21). 

3.2. Power-law fluids 

When n = 1/2 and γ̇a ≤ γ̇ac = (τc/k)2, no slip occurs and the 
apparent flow curve coincides with the true one, τw = k

̅̅̅̅̅
γ̇a

√
. In the slip 

regime (γ̇a > γ̇ac), one obtains the following expression for the slip ve
locity: 

uw

V
=

k2

β2H2γ̇a

[ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 +
2βH

k
̅̅̅̅̅̅
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√
+

β2H2

k2 γ̇a

√

−

(

1+
βH
k

̅̅̅̅̅̅
γ̇ac

√
)]

(25)  

The apparent flow curve is given by 

τw=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

μ
̅̅̅̅
γ̇a

√
, γ̇a≤γ̇ac

μ
{

γ̇a −
2k2

β2H2

[ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1+
2βH

k
̅̅̅̅̅̅
γ̇ac

√
+

β2H2

k2 γ̇a

√

−

(

1+
βH
k

̅̅̅̅̅̅
γ̇ac

√
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, γ̇a>γ̇ac

(26)  

Fig. 8 illustrates the effects of the slip parameters on the flow curves of a 
shear-thinning fluid (n = 0.5 and k = 1Pa⋅s1/2) with zero slip yield stress 
(τc = 0). As with Newtonian fluids, stronger wall slip (which is equiv
alent to smaller β and/or bigger s) shifts the flow curve to the right and 
this effect is more visible when the gap between the plates is reduced. 
Due to slip the flow curves are below their no-slip counterpart, and the 
deviations are larger at low apparent shear rates, due to shear thinning. 

The effects of the exponents n and s are illustrated in Figs. 9 and 10, 
respectively. In Fig. 9, results obtained with k = 1Pa⋅sn, τc = 0.2Pa, β =
1000Pa⋅s1/s/m1/s, and s = 2 are shown. As dictated by Eq. (12), the 
critical apparent shear rate γ̇ac at which slip occurs is reduced and the 
size of the plateau region is increased with shear thinning. As with 
Newtonian fluids, the gap-dependence of the apparent flow curve is 

enhanced by slip, e.g. with the slip exponent s. We observe in Fig. 10, 
that the lower the value of s the sharper the slip velocity maximum. 

4. Results for Herschel-Bulkley fluids 

We first present analytical solutions for the Bingham plastic (n = 1). 
When s = 1, Eq. (8) yields the following expression for the critical 
apparent shear rate for yielding 

γ̇a0 =
2(τ0 − τc)

βH
(27)  

From Eqs. (10) and (11), we find that 

uw

V
=

2B + γ̇a0
/

γ̇a

2(1 + 2B)
, γ̇a > γ̇a0 (28)  

and 

τw =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

τc + βHγ̇a
/

2, γ̇a ≤ γ̇a0

τ0 +

μ
(

γ̇a − γ̇a0

)

1 + 2B
, γ̇a > γ̇a0

(29)  

The effects of slip on the apparent flow curve of a Bingham plastic are 
illustrated in Fig. 11. In the absence of slip, the material is yielded for all 
values of the apparent shear rate and the flow curve is a straight line of 
slope μ with τw ≥ τ0. When slip does occur, the flow curve consists of two 
branches corresponding to the sliding and yielding regimes. If τc = 0, i. 
e. if Navier slip applies, the first branch up to the critical apparent shear 
rate γ̇a0 = 2τ0/(βH) with 0 ≤ τw ≤ τ0 is of slope βH/2. The second 
branch where τw > τ0 is of slope μ/(1+ 2B). In a log-log plot the flow 
curve is characterized by an intermediate plateau corresponding to the 
yield stress, as, for example, in Fig. 12a. If the slip yield stress is finite 
(τc > 0), the flow curve is shifted to the left so that the sliding branch 

Fig. 11. Apparent flow curves of a Bingham plastic with no-slip, Navier slip, and slip with non-zero slip yield stress. In the case of slip, the flow curve consists of the 
sliding and the yielding branches below and above the critical apparent shear rate γ̇a0 = 2(τ0 − τc)/(βH). The sliding branch has a slope of βH /2 and ranges from τc 

to τ0; hence, if Navier slip applies (τc = 0), this ranges from 0 to τ0. 
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Fig. 12. Effect of the slip yield stress on the flow curve and the relative slip velocity in the case of Herschel-Bulkley fluid with τ0 = 2Pa, s= 1, β = 1⋅104Pa⋅ss /ms, n 
= 1 and k = 8⋅10− 3Pa⋅sn: (a) τc = 0; (b) τc = 0.2Pa; (c) τc = 1Pa. 
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extends up to γ̇a0 = 2(τ0 − τc)/(βH) and τc ≤ τw ≤ τ0. Hence, the 
apparent (log-log) flow curve is characterized by two plateaus corre
sponding to the slip yield stress and the yield stress, as in Fig. 12. 

In the case of a Bingham plastic exhibiting slip with s = 2, one finds 
that 

γ̇a0 =
2
H

̅̅̅̅̅̅̅̅̅̅̅̅̅̅τ0 − τc

β

√

(30)  
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(32)  

For a Herschel-Bulkley fluid with n = 1/2 and s = 1, the critical 
apparent shear rate γ̇a0 is given by Eq. (27). For the slip velocity and the 
apparent flow curve one gets: 

Fig. 13. Effect of the consistency index on the flow curve and the relative slip velocity in the case of Herschel-Bulkley fluid with τc = 0.5Pa, τ0 = 2Pa, s= 2, β =
1.5⋅107Pa⋅ss/ms, and n = 1: (a) k = 8⋅10− 4Pa⋅s; (b) k = 8⋅10− 3Pa⋅s; (c) k = 8⋅10− 1Pa⋅s. 
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Fig. 14. Effect of the power-law exponent on the flow curve and the relative slip velocity in the case of Herschel-Bulkley fluid with τc = 0.5Pa, τ0 = 2Pa, s= 1, β =
1⋅104Pa⋅ss/ms, and k = 8⋅10− 3Pa⋅sn: (a) n = 0.8 (shear thinning); (b) n = 1 (Bingham plastic); (c) n = 1.2 (shear thickening). 
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For the discussion of the results, we use the following ‘base values’ for 
the various parameters: τc = 0.5Pa, τ0 = 2Pa, s= 1, β = 1⋅104Pa⋅ss /ms, 
n= 1, and k = 8⋅10− 3Pa⋅sn. These have been selected so that the two 
critical stresses, τc and τ0, and the critical shear rate γ̇ac are close to the 
critical values deduced from the experiments on a 8%vol suspension of 
kaolinite (Moud et al., 2021a). In Figs. 12–17, we show the flow curves 
(left column) and the dimensionless slip velocity uw/V (right column). 

The effect of the slip yield stress is illustrated in Fig. 12, where results 
for τc = 0, 0.2 and 1 Pa are shown. As expected, the gap-size effect on 
the left branch of the flow curve (Regime 1) becomes more pronounced 
as the difference τ0 − τc increases. Due to fact that the slip-yield-stress in 
Fig. 12a is zero, the flow curve exhibits only the yield-stress plateau. 
Clearly, yield stress materials with apparent flow curves with only one 
stress plateau slip with zero slip yield stress. This is the case, for 
example, with the parallel-plate experiments of Seth et al. (2008) on 
microgel pastes, the sliding-plate data of Jofore et al. (2015) on a Car
bopol microgel, and the data of Clasen (2012) on an aqueous xanthan 
gum solution determined with cone-and-plate and sliding-plate 

rheometers. 
The flow curves with a finite slip yield stress consist of two branches 

corresponding to Regimes 1 and 2 described in Section 2. Initially the 
flow curve is flat and then becomes increasing till the critical shear rate 
γ̇ac is reached. It is in this region (the last part of Regime 1) where the 
gap-size effect is enhanced. Note also that γ̇ac increases as H is reduced. 
Just above γ̇ac, i.e. in Regime 2, the flow curve becomes flat again and 
then starts increasing, as in the parallel disk data of Ewoldt et al. (2015) 
on a Nivea Lotion for different gap heights. These authors noted that the 
existence of the apparent stress plateau at low shear rates, which is 
equivalent to an ‘apparent dynamic yield stress’, is a common experi
mental artifact for yield stress fluids, such as dense colloidal systems. 

The dimensionless slip velocities are shown in the right column of 
Fig. 12. The relative velocity uw/V is constant in the sliding regime and 
starts decreasing in the yielding regime, i.e. when γ̇ac is exceeded. As 
expected, changing the slip yield stress has no effect on the relative slip 
velocity in both Regimes 1 and 2. 

As illustrated in Fig. 13, where results for k = 8⋅10− 4Pa⋅s, 8⋅10− 3Pa⋅s 
and 8⋅10− 1Pa⋅s are plotted, the consistency index has no effect on the 
branch corresponding to Regime 1. As k is increased, the right branch of 
the flow curve is shifted to the left and its slope increases. We also 
observe that slip becomes stronger as the consistency index is increased. 

In Fig. 14, where results for different values of the flow index are 
shown, we notice that the yielding branch of the flow curve is shifted to 
the left as the exponent n is increased. Moreover, slip is reduced as the 
flow index is increased. However, as discussed below this may not be the 
case when the slip exponent s > 1. 

As deduced from Fig. 15, the effect of the slip exponent s is quite 
dramatic. As s is increased the value of the critical shear rate γ̇ac in
creases and the gap-size effect is enhanced in both branches of the flow 

Fig. 15. Effect of the slip exponent on the flow curve and the relative slip velocity in the case of Herschel-Bulkley fluid with τc = 0.5Pa, τ0 = 2Pa, β = 1⋅104Pa⋅ss 

/ms, n = 1 and k = 8⋅10− 3Pa⋅sn: (a) s = 1; (b) s = 2. 
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curve (higher values of s correspond to stronger slip). 
It seems that these results are similar to the experiments of Moud 

et al. (2021a) when s > 1. Thus, we switch to s = 2 and increase the slip 
parameter β so that the critical shear rate γ̇ac is close to the experimental 
observations. The effect of β is illustrated in Fig. 16 where results for τc =

0.5Pa, τ0 = 2Pa, s= 2, n= 1, and k = 8⋅10− 3Pa⋅s are shown. As β is 
increased, slip becomes weaker and the left branch of the flow curve is 
shifted to the left. 

Finally, in Fig. 17, we show results obtained with τc = 0.5Pa, τ0 =

2Pa, s= 2, β = 1.5⋅107Pa⋅s2/m2, and k = 0.8Pa⋅sn and n = 0.5 and 1. 
The slope of the yielding branch increases and the gap-size effect be
comes more pronounced as shear thinning is reduced. Since s > 1, slip is 
enhanced as n increases. 

6. Conclusion 

The simple shear flow of Herschel-Bulkley fluids exhibiting slip with 
non-zero slip yield stress lower than the yield stress has been analyzed. 
For general values of the flow index n and the slip exponent s, the slip 
velocity can be calculated numerically. The apparent flow curve, con
structed by means of explicit analytical expressions, consists of a sliding 
and a yielding branch, the first parts of which correspond to stress pla
teaus between which the flow curve is strongly gap-height dependent. 
Hence, in the sliding regime, apparent yielding is observed below the 
actual yield stress of the material, a phenomenon sometimes referred to 
as ‘dynamic yield stress’ (Ewoldt et al., 2015). The critical apparent 
shear rate marking the transition depends on the difference between the 
slip yield stress and the yields stress, the other slip parameters, such as 
the slip coefficient and the exponent, and on the gap size. Analytical 
solutions for the slip velocity and the apparent flow curve have also been 

derived for certain combinations of the flow index and the slip exponent. 
It has been demonstrated in particular that apparent shear thinning or 
shear thickening may be observed if the slip exponent is less or greater 
than unity. 

To illustrate the gap-size effect of wall slip, results for different gap 
heights, have been obtained. The numerical experiments demonstrated 
that the sliding branch of the flow curve is initially flat with the shear 
stress being equal to the slip yield stress τc and then starts increasing to 
reach the yield stress value τ0. The yielding branch is also quite similar, 
being initially flat equal to the yield stress τ0 and then starts increasing. 
The flow curves corresponding to different gap sizes merge at low and 
high nominal shear rates, in agreement with experimental data (Ewoldt 
et al., 2015; Moud et al., 2021a). In other words, gap-size effects are 
more pronounced in the second part of the sliding regime and occa
sionally in the early stages of the yielding regime. The slip yield stress 
and the yield stress can thus directly be determined from the experi
mental data as the values corresponding to the two plateaux of the flow 
curve. The critical shear rate γ̇a0 = 2[(τ0 − τc)/β]1/s

/H can also be 
determined from the experimental data as the average value of Hγ̇ac/2 
calculated for different gap sizes. The values of β and s can be deter
mined from the experimental data in the sliding regime using Eq. (7). 
Finally, the rheological constants, such as the consistency index and the 
flow index, can be determined from the experimental data in the 
yielding regime by means of the constitutive equation. 

The next step of the present research is to systematically analyze the 
flow of viscoplastic materials exhibiting slip with non-zero slip yield 
stress in a rotational parallel-plate rheometer and make direct compar
isons with available experimental data. Such preliminary comparisons 
have been already made in a recent paper by Moud et al. (2021b) with 
data on kaolinite suspensions. The experimental data in this paper 

Fig. 16. Effect of slip parameter β on the flow curve and the relative slip velocity in the case of Herschel-Bulkley fluid with τc = 0.5Pa, τ0 = 2Pa, s= 2, n = 1, and k 
= 8⋅10− 1Pa⋅s: (a) β = 1.2⋅106Pa⋅s2/m2; (b) β = 1.2⋅108Pa⋅s2/m2. 
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revealed that different slip laws apply in the sliding and yielding re
gimes, a possibility worthy of further investigation both experimentally 
and theoretically. 
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