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Abstract

We solve a Laplacian problem over an L-shaped domain using a singular function

boundary integral method as well as the p/hp finite element method. In the former

method, the solution is approximated by the leading terms of the local asymptotic solu-

tion expansion, and the unknown singular coefficients are calculated directly. In the

latter method, these coefficients are computed by post-processing the finite element solu-

tion. The predictions of the two methods are discussed and compared with recent

numerical results in the literature.
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1. Introduction

In the past few decades, many different methods have been proposed for

the numerical solution of plane elliptic boundary value problems with bound-

ary singularities, aiming at improving the accuracy and resolving the conver-

gence difficulties that are known to appear in the neighborhood of such
singular points. These methods range from special mesh-refinement schemes

to sophisticated techniques that incorporate, directly or indirectly, the form

of the local asymptotic expansion, which is known in many occasions. In po-

lar coordinates (r,h) centered at the singular point, the local solution is of the
general form

uðr; hÞ ¼
X1
j¼1

ajrlj fjðhÞ; ð1Þ

where lj are the eigenvalues and fj are the eigenfunctions of the problem, which
are uniquely determined by the geometry and the boundary conditions along

the boundaries sharing the singular point. The singular coefficients aj, also
known as generalized stress intensity factors [1] or flux intensity factors [2],

are determined by the boundary conditions in the remaining part of the bound-
ary. Knowledge of the singular coefficients is of importance in many engineer-

ing applications.

An exhaustive survey of treatment of singularities in elliptic boundary value

problems is provided in the recent article by Li and Lu [3], who classify the pro-

posed methods into three categories: methods involving local refinement, meth-

ods involving singular functions supplementing the approximation spaces of

standard numerical methods, and combined methods which incorporate local

singular and analytical solutions. A review of singular intensity factor evalua-
tion and modelling of singularities in boundary integral methods is provided by

Mukhopadhyay et al. [4].

In the Finite Element Method (FEM), which is the most commonly used

method for solving structural mechanics problems, the singular coefficients

are calculated by post-processing the numerical solution. Generally speaking,

the most effective versions of the FEM are the high-order p and hp versions,

in which instead of simply refining the mesh, convergence is achieved by: (i)

increasing the degree of the piecewise polynomials in the case of the p version,
and (ii) by increasing p and decreasing h in the case of the hp version. The rea-

son for the success of these methods is that they are able to approximate sin-

gular components of the solution to elliptic boundary value problems (that

arise, for example, at corners of the domain) very efficiently. For instance,

the hp version, over appropriately designed meshes, approximates these singu-

larities at an exponential rate of convergence [5]. Different solution post-pro-

cessing methods for the calculation of the singular coefficients from the finite
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element solution have been proposed by Babuška and Miller [6,7], Szabó and

Yosibash [8,9], and Brenner [10].

In the past few years, Georgiou and co-workers [11–13] developed the Sin-

gular Function Boundary Integral Method (SFBIM), in which the unknown

singular coefficients are calculated directly. The solution is approximated by

the leading terms of the local asymptotic solution expansion and the Dirich-
let boundary conditions are weakly enforced by means of Lagrange multipli-

ers. The method has been tested on standard Laplacian problems, yielding

extremely accurate estimates of the leading singular coefficients, and exhibit-

ing exponential convergence with respect to the number of singular func-

tions.

The objective of the present paper is to compare the predictions of the

SFBIM against those of the p/hp version of the FEM. We consider as a test

problem the Laplacian problem over an L-shaped domain solved by Igarashi
and Honma [14]. They used a modified version of the singular boundary inte-

gral method proposed by Symm [15]. The approximation of the solution

around the singularity is expanded into a series of special harmonic functions

and is regularized by subtracting the four leading terms of the local expansion.

It is then calculated by the standard boundary element method. The accuracy

of the calculated singular coefficients is restricted to five significant digits. As

shown below, the predictions of both the SFBIM and the p/hp-FEM are of

much higher accuracy.
The outline of the present paper is as follows: in Section 2, we present the

SFBIM in the case of a general Laplacian problem over an arbitrary domain

with a boundary singularity. In Section 3, the SFBIM is applied to the test

problem. In Sections 4 and 5, the results of the SFBIM and the p/hp-FEM,

respectively, are presented and discussed. Comparisons are also made with

the results provided by Igarashi and Honma [14]. The conclusions are summa-

rized in Section 6.
2. The singular function boundary integral method (SFBIM)

In order to present and formulate the singular function boundary integral

method, we consider the rather general Laplace equation problem over a

two-dimensional domain X, shown in Fig. 1. This is characterized by the pres-
ence of a boundary singularity at the corner O, formed by the straight bound-

ary segments S1 and S2. With the exception of O, the boundary of X is
everywhere smooth. In the remaining parts of the boundary, either Dirichlet

or Neumann boundary conditions apply. Without loss of generality, the fol-

lowing problem is considered:

r2u ¼ 0 in X; ð2Þ



Fig. 1. A two-dimensional Laplace equation problem with one boundary singularity.
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with

ou
on

¼ 0 on S1

u ¼ 0 on S2
u ¼ f ðr; hÞ on S3
ou
on

¼ gðr; hÞ on S4

9>>>>>=
>>>>>;
; ð3Þ

where oX = S1 [ S2 [ S3 [ S4, and f and g are given functions such that no

other boundary singularity is present.
The asymptotic solution in polar co-ordinates (r,h) centered at the singular

point, is given by [16]

uðr; hÞ ¼
X1
j¼1

ajrlj fjðhÞ; ðr; hÞ 2 X; ð4Þ

where aj are the unknown singular coefficients, lj are the singularity powers

arranged in ascending order, and the functions fj(h) represent the h-dependence
of the eigensolution.

The SFBIM [11–13] is based on the approximation of the solution by the

leading terms of the local solution expansion:

�u ¼
XNa

j¼1
�ajW j; ð5Þ

where Na is the number of basis functions, and

W j � rlj fjðhÞ ð6Þ
are the singular functions. It should be noted that this approximation is valid

only if X is a subset of the convergence domain of the expansion (4). If not, it

may still be possible to use this approach provided there exist (possibly differ-

ent) expansions similar to (3) in different sectors of the domain X (see e.g. [17]).
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Application of Galerkin�s principle gives the following set of discretized
equations:Z

X
r2uW i dV ¼ 0; i ¼ 1; 2; . . . ;N a: ð7Þ

By using Green�s second identity and taking into account that the singular
functions,Wi, are harmonic, the above volume integral is reduced to a bound-

ary one:Z
oX

o�u
on

W i 	 �u
oW i

on

� �
dS ¼ 0; i ¼ 1; 2; . . . ;Na: ð8Þ

The dimension of the problem is, thus, reduced by one, which leads to a con-

siderable reduction of the computational cost. Since, now, Wi exactly satisfy
the boundary conditions along S1 and S2, the above integral along these

boundary segments is identically zero. Therefore, we have:Z
S3

o�u
on

W i 	 �u
oW i

on

� �
dS þ

Z
S4

W i o�u
on

	 �u
oW i

on

� �
dS ¼ 0; i ¼ 1; 2; . . . ;Na:

ð9Þ
To impose the Neumann condition along S4, we simply substitute the normal

derivative by the known function g (Eq. (3)). The Dirichlet condition along S3
is imposed by means of a Lagrange multiplier function, k, replacing the normal
derivative. The function k is expanded in terms of standard, polynomial basis
functions Mj,

k ¼ o�u
on

¼
XNk

j¼1
kjMj; ð10Þ

where Nk represents the total number of the unknown discrete Lagrange mul-

tipliers (or, equivalently, the total number of Lagrange-multiplier nodes) along

S3. The basis functionsM
j are used to weight the Dirichlet condition along the

corresponding boundary segment S3. We thus obtain the following system of

Na + Nk discretized equations:Z
S3

kW i 	 �u
oW i

on

� �
dS 	

Z
S4

�u
oW i

on
dS ¼ 	

Z
S4

W igðr; hÞdS;

i ¼ 1; 2; . . . ;Na; ð11Þ
Z
S3

�uMi dS ¼
Z
S3

f ðr; hÞMi dS; i ¼ 1; 2; . . . ;N k: ð12Þ

It is easily shown that the linear system of Eqs. (11) and (12) is symmetric. This
can be written in the following block form:
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K1 K2

KT
2 O

	 

A

K

	 

¼

F 1
F 2

	 

; ð13Þ

where A is the vector of the unknown singular coefficients, ai, K is the vector of
the unknown Lagrange multipliers ki, submatrices K1 and K2 contain the co-

efficients of the unknowns (obviously, K1 is symmetric), and vectors F1 and

F2 contain the RHS contributions of Eqs. (11) and (12), respectively. It should

be noted that the integrands in Eq. (11) are non-singular and all integrations

are carried out far from the boundaries causing the singularity.
3. Application of the SFBIM to a test problem

We consider the same Laplacian problem over an L-shaped domain as in

[14], shown in Fig. 2. The local solution expansion around the singularity at

x = y = 0 is given by

u ¼
X1
j¼1

ajr2ð2j	1Þ=3 sin
2

3
ð2j	 1Þh

	 

: ð14Þ

Taking into account the symmetry of the problem, we consider only half of the

domain and note that even-numbered coefficients are zero. Therefore, umay be

written as follows:

u ¼
X1
j¼1

ajW j; ð15Þ
Fig. 2. Geometry and boundary conditions of the test problem.
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where

W j ¼ r2ð4j	3Þ=3 sin
2

3
ð4j	 3Þh

	 

ð16Þ

are the singular functions.

Setting f = 1 and g = 0, Eqs. (11) and (12) are simplified as follows:

	
Z
S3

kW i 	 �u
oW i

ox

� �
dy 	

Z
S4

�u
oW i

oy
dx ¼ 0; i ¼ 1; 2; . . . ;N a; ð17Þ

Z
S3

�uMi dy ¼
Z
S3

Mi dy; i ¼ 1; 2; . . . ;N k: ð18Þ

In [14], the quantity

C :¼ 2

Z
S3[S4

ou
on
dS ð19Þ

referred to as the capacitance, was of interest. Note that due to the geometry

and boundary conditions, (19) reduces to

C ¼ 	2
Z 1

	1

ou
ox

����
x¼	1

dy: ð20Þ
4. Numerical results with the SFBIM

The Lagrange multiplier function k used to impose the Dirichlet condition
along S3 is expanded in terms of quadratic basis functions. Boundaries S3
and S4 are subdivided, respectively, into 2N and N quadratic elements of equal

size. Thus, the number of Lagrange multipliers is Nk = 4N + 1. The integrals in
Eqs. (17) and (18) involve singular functions that are not polynomial and be-

come highly oscillatory as Na increases. These are calculated numerically by

subdividing each quadratic element into 10 subintervals and using a 15-point

Gauss–Legendre quadrature over each subinterval. In computing the coeffi-

cient matrix, its symmetry is taken into account.

Several series of runs were performed in order to obtain the optimal values

of Na and Nk. Our search was guided by the fact that Nk should be large

enough in order to assure accurate integrations along the boundary (which is
divided into smaller elements) but much smaller than Na in order to avoid

ill-conditioning of the stiffness matrix. On the other hand, Na cannot be very

high, given that the computer accuracy cannot handle the contributions of

the higher-order singular functions which become very small for r < 1 or very

large for r > 1. Hence, Nk was varied from 5 up to 65 and Na from a value

slightly above Nk up to 100.
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The convergence of the solution with the number of Lagrange multipliers is

shown in Table 1, where we tabulate the values of the five leading singular coef-

ficients and the capacitance C calculated with Na = 60. We observe that the val-

ues of the singular coefficients converge rapidly with Nk, up to Nk = 41, and

that very accurate estimates are obtained. For higher values of Nk, however,

signs of divergence are observed, due to the ill-conditioning of the stiffness ma-
trix. In addition to the divergence of the singular coefficients, another manifes-

tation of ill-conditioning is the appearance of wiggles on the calculated

Lagrange multiplier function [13]. The quality of the solution for Na = 60

and Nk = 41 was checked by plotting k as a function of y (Fig. 3) and verifying
that k is smooth and free of oscillations.
The values of the leading singular coefficients and the capacitance C calcu-

lated for Nk = 41 and various values of Na are shown in Table 2. Exponential

convergence with respect to Na is observed and extremely accurate estimates of
the singular coefficients are obtained. Our calculations with different values of

Na and Nk show that the optimal values are Na = 60 and Nk = 41. In Table 3,

the converged values of the singular coefficients calculated with these optimal

choices of Na and Nk are presented. The CPU time required for the above run is

1.6 s on an IBM RS6000 (Processor type: Power PC 604e/375 MHz).

In Table 3, we see that the contributions of the higher-order terms are pro-

gressively vanishing. Note that the converged value of a1 (1.12798040105939) is
accurate to fifteen significant digits, while the value provided by Igarashi and
Honma [14] (1.1280) is accurate only to five significant digits. The improved

accuracy is also reflected on the calculated value of the capacitance, which is

converged to eight significant digits, C = 2.5585231.

Finally, in Fig. 4, we plot the errors in the calculated values of the leading

singular coefficients for Na = 60 versus the number of Lagrange multipliers.

The errors are based on the converged values tabulated in Table 3. It is clear

that the SFBIM converges exponentially with Nk, and the error is reduced rap-

idly down to machine accuracy.
5. Numerical results with the p/hp version of the finite element method

In this section we present the results of solving the same test problem, using

the p/hp version of the FEM over a geometrically graded mesh seen in Fig. 5.

This is, to our knowledge, the most effective technique for approximating the

solution to elliptic boundary value problems with corner singularities in the
context of the FEM. We refer to [1] for more details on corner singularities

and geometrically graded meshes in conjunction with the p and hp versions

of the FEM. Once the solution uFEM is obtained, the singular coefficients aj,
are computed as a post-solution operation. In particular, the algorithm for

computing the aj�s is based on an L2 projection of uFEM into the space of func-



Table 1

Convergence of the solution with Nk; SFBIM with Na = 60

Nk a1 a2 a3 a4 a5 C

5 1.12797118414119 0.16993982990692 	0.02304003771255 0.00346892482591 0.00096430271538 2.5585187

9 1.12798030920688 0.16993376833638 	0.02304036610151 0.00346994177533 0.00091656933158 2.5585226

17 1.12798039995306 0.16993386409437 	0.02304096729203 0.00347119346741 0.00091515473431 2.5585229

25 1.12798040098244 0.16993386632558 	0.02304097349784 0.00347119642486 0.00091515689483 2.5585231

33 1.12798040105726 0.16993386650219 	0.02304097400496 0.00347119667242 0.00091515710753 2.5585226

41 1.12798040105939 0.16993386650225 	0.02304097399348 0.00347119665821 0.00091515709910 2.5585231

49 1.12798038900362 0.16993384321933 	0.02304098436389 0.00347122011103 0.00091522372105 2.5556215
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Fig. 3. Calculated Lagrange multipliers with Na = 60 and Nk = 41.
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tions characterized by the asymptotic expansion in terms of the eigenpairs
(which are computed using a modified Steklov method). See [8,9] for details.

The computations were performed using the commercial FEM package

STRESSCHECK (E.S.R.D. St. Louis, MO) on an IBM Pentium III machine.

Since this is a p version package, the geometrically graded mesh was con-

structed a priori and the polynomial shape functions were taken to have degree

p = 1, . . ., 8, uniformly over all elements in the (fixed) mesh. The CPU time was

approximately 9 s for the calculation of uFEM and about 2 s for the calculation

of the aj�s. Table 4 shows the potential energy as well as the (estimated) percent-
age relative error in the energy norm,

Error ¼ 100�
kuEX 	 uFEMkEðXÞ

kuEXkEðXÞ
;

indicating that uFEM is computed accurately. Table 5 shows the computed sin-

gular coefficients, which were obtained using uFEM corresponding to p = 8.
These results show that the p version of the FEM (on geometrically graded

meshes) seems to perform quite well when compared with the results obtained

using other methods found in the literature.

The capacitance, C, was calculated from the solution corresponding to

p = 8. Since uFEM is a polynomial of degree 8 in x and y, we see from (20) that

a 5-point Gaussian quadrature formula is sufficient to exactly evaluate the inte-

gral involved. We obtained CFEM = 2.557256, an approximation which is not

as good as that obtained using the SFBIM. We believe this is due to the pollu-
tion effects that are influencing the extraction of the data of interest (see e.g.

[1]). Pollution is a phenomenon that occurs when singularities are present in

the solution of an elliptic boundary value problem. These singularities cause

the numerical method to yield inaccurate results away from the point of singu-



Table 2

Convergence of the solution with Na; SFBIM with Nk = 41

Na a1 a2 a3 a4 a5 C

45 1.12798046929652 0.16993391450191 	0.02304128110013 0.00347021000332 0.00091337482002 2.5467734

50 1.12798040111620 0.16993386693468 	0.02304097583682 0.00347118005697 0.00091509465304 2.5585230

55 1.12798040105939 0.16993386650225 	0.02304097399348 0.00347119665822 0.00091515709909 2.5585231

60 1.12798040105939 0.16993386650225 	0.02304097399348 0.00347119665821 0.00091515709910 2.5585231

65 1.12798040105939 0.16993386650223 	0.02304097399351 0.00347119665821 0.00091515709917 2.5585231

70 1.12798040105938 0.16993386650176 	0.02304097399413 0.00347119665866 0.00091515710049 2.5585230

75 1.12798040105929 0.16993386650304 	0.02304097399577 0.00347119665730 0.00091515709264 2.5585230

80 1.12798040105953 0.16993386650246 	0.02304097399337 0.00347119665919 0.00091515710302 2.5585232
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Table 3

Converged values of the singular coefficients; SFBIM with Nk=41 and Na = 60

i ai Ref. [14]

1 1.12798040105939 1.1280

2 0.16993386650225 0.1699

3 	0.02304097399348 	0.0230
4 0.0034711966582 0.0035

5 0.0009151570991 0.0009

6 	0.0001128038345
7 0.0000877165245

8 0.0000277603137

9 	0.0000044161578
10 0.0000027539457

11 0.0000009219619

12 	0.0000001554459
13 0.0000001088408

14 0.0000000379699

15 	0.0000000066619
16 0.000000004711

17 0.00000000168

18 	0.00000000030
19 0.00000000022

20 0.00000000008

C 2.5585231 2.5585

Fig. 4. Convergence of the SFBIM with Nk; Na = 60.
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Fig. 5. (a) Geometrically graded mesh over the domain X; (b) Mesh detail near the re-entrant
corner.

Table 4

Values of the potential energy and the percentage relative error in the p/hp method

p DOF Energy Error (%)

1 10 1.3385078 21.52

2 39 1.2819648 4.60

3 74 1.2806200 3.26

4 127 1.2793571 0.85

5 198 1.2792877 0.43

6 287 1.2792738 0.28

7 394 1.2792690 0.20

8 519 1.2792667 0.15

Table 5

Values of the leading singular coefficients obtained with the p/hp method

i ai, DOF = 519 ai, DOF = 691

1 1.12797960 1.12798010

2 0.16993396 0.16993387

3 	0.0230434 	0.0230419
4 	0.0034780 	0.0034755
5 0.0009115 0.0009126

C 2.557256 2.558588

M. Elliotis et al. / Appl. Math. Comput. 169 (2005) 485–499 497
larity (as is the case here), when certain quantities of engineering interest are

computed. The p version of the FEM is much more susceptible to pollution ef-

fects than the h and hp versions. We repeated the calculation using a more re-

fined mesh near the re-entrant corner, as seen in Fig. 6. The newly computed
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Fig. 6. Refined mesh.
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singular coefficients are shown in Table 5 and the capacitance is recomputed as

CFEM = 2.558588, which is a much better approximation. The refined mesh re-

quired 691 degrees of freedom (for p = 8), as opposed to 519 used before, and

the CPU time increased by 1 s.
6. Conclusions

We have solved a Laplacian problem over an L-shaped domain using both

the SFBIM and the p/hp finite element method, and studied the convergence of

the solution with the numbers of singular functions and of Lagrange multipli-

ers, and the number of degrees of freedom, respectively. With the SFBIM the
leading singular coefficients of the local singularity expansion are calculated

explicitly, whereas with the p/hp-FEM they are calculated by post-processing

the numerical solution.

Fast convergence is achieved and highly accurate results are obtained with

both methods, which perform considerably better than other techniques found

in the literature (e.g. that of Igarashi and Honma [14]). Given that there are no

known exact values for the singular coefficients, the very good agreement be-

tween the SFBIM and the p/hp FEM serves as validation for the computational
results presented here. We should point out that, in terms of efficiency, the

SFBIM is a better choice, since the singular coefficients are computed directly

and no post-processing is necessary. On the other hand, the FEM can be ap-

plied to a much wider class of problems than those that can efficiently and

effectively be handled by the SFBIM. We should mention that currently there
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is no mathematical theory that establishes the observed exponential conver-

gence rate of the SFBIM; this is the focus of our current research efforts.
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