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a b s t r a c t

The Singular Function Boundary Integral Method (SFBIM) for solving two-dimensional
elliptic problems with boundary singularities is revisited. In this method the solution is
approximated by the leading terms of the asymptotic expansion of the local solution,
which are also used to weight the governing partial differential equation. The singular coef-
ficients, i.e., the coefficients of the local asymptotic expansion, are thus primary unknowns.
By means of the divergence theorem, the discretized equations are reduced to boundary
integrals and integration is needed only far from the singularity. The Dirichlet boundary
conditions are then weakly enforced by means of Lagrange multipliers, the discrete values
of which are additional unknowns. In the case of two-dimensional Laplacian problems, the
SFBIM converges exponentially with respect to the numbers of singular functions and
Lagrange multipliers. In the present work the method is applied to Laplacian test problems
over circular sectors, the analytical solution of which is known. The convergence of the
method is studied for various values of the order p of the polynomial approximation of
the Lagrange multipliers (i.e., constant, linear, quadratic, and cubic), and the exact approx-
imation errors are calculated. These are compared to the theoretical results provided in the
literature and their agreement is demonstrated.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

In the last few decades there has been an extensive study of planar elliptic boundary value problems with boundary sin-
gularities. The methods that have been proposed for the solution of such problems range from special mesh-refinement
schemes to sophisticated techniques that incorporate, directly or indirectly, the form of the local asymptotic expansion,
which is known in many occasions. These methods aim to improve the accuracy and resolve the convergence difficulties that
are known to appear in the neighborhood of singular points.

The local solution, centered at the singular point, in polar coordinates (r,h) is of the general form

uðr; hÞ ¼
X1
j¼1

ajrlj fjðhÞ; ð1Þ

where lj, fj are, respectively, the eigenvalues and eigenfunctions of the problem, which are uniquely determined by the
geometry and the boundary conditions along the boundaries sharing the singular point. The singular coefficients aj also
known as generalized stress intensity factors [1] or flux intensity factors [2], are determined by the boundary conditions
in the rest of the boundary. Knowledge of the singular coefficients is of importance in many engineering applications,
especially in fracture mechanics.
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In the past few years, Georgiou and co-workers [3–6] developed the Singular Function Boundary Integral Method (SFBIM),
in which the unknown singular coefficients are calculated directly. The solution is approximated by the leading terms of the
local asymptotic solution expansion and the Dirichlet boundary conditions are weakly enforced by means of Lagrange mul-
tipliers. The method has been tested on standard Laplacian and biharmonic problems, yielding extremely accurate estimates
for the leading singular coefficients, and exhibiting exponential convergence with respect to the number of singular func-
tions. Theoretical results on the convergence of the method in the case of Laplacian problems where given by Xenophontos
et al. in [5].

The SFBIM belongs to the class of boundary approximation methods (BAMs) or Trefftz methods (TM), which have been
recently reviewed by Li and co-workers [7] and compared to collocation and other boundary methods. Other recent reviews
of methods used for elliptic boundary value problems with boundary singularities can be found in the articles of Bernal et al.
[8] who considered both global and local meshless collocation methods with multiquadrics as basis functions, and of Dosiyev
and Buranay [9] who employed the block method which was proposed for the solution of Laplace problems on arbitrary
polygons.

The objective of this work is to apply the SFBIM to two model Laplacian problems over circular sections in order to inves-
tigate the effect of the order of the Lagrange multiplier approximation in connection with the theoretical error estimates.

In Section 2, two general plane Laplacian problems over circular sections are presented. One problem has Dirichlet and
the other Neumann boundary conditions along the arc. The formulation of the method for both cases is given in Section
3. In Section 4, results are presented for piecewise constant, linear, quadratic and cubic basis functions, used for the approx-
imation of the Lagrange multipliers. These results are compared with the theoretical error estimates. Finally, Section 5 sum-
marizes the conclusions.

2. Test problems

We consider two Laplacian test problems over circular sectors of angle ap and radius R as depicted in Fig. 1. A boundary
singularity occurs at the origin which is due, not only to the geometry (i.e., the presence of an angle in the boundary) but also
to the fact that different boundary conditions are imposed on the boundary parts S1 (h = 0) and S2 (h = ap). The two test prob-
lems differ only in the boundary condition along the circular arc S3, where Dirichlet and Neumann boundary conditions are
respectively prescribed. For both problems the local solution is

u ¼
X1
j¼1

ajrlj sinðljhÞ: ð2Þ

In problem 1 (Fig. 1(a)), the Dirichlet boundary condition along S3 is given by

u ¼ f ðhÞ ¼ h� h2

2ap
: ð3Þ

In problem 2 (Fig. 1(b)), the Neumann boundary condition along S3 is given by

@u
@r
¼ gðhÞ ¼ h

ap
: ð4Þ

For both problems, we have

lj ¼
2j� 1

2a
: ð5Þ

The singular coefficients for problem 1 are given by

aj ¼
16a

p2Rlj ð2j� 1Þ3
ð6Þ

Fig. 1. Test Laplacian problems over circular sectors. (a) Problem 1 (b) Problem 2.
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and for problem 2 by

aj ¼
ð�1Þjþ116a

p2Rlj�1ð2j� 1Þ3
: ð7Þ

3. Formulation of the SFBIM

The SFBIM is based on the approximation of the solution by the leading terms of the local solution expansion:

uN ¼
XNa

j¼1

aN
j Wj; ð8Þ

where Na is the number of singular functions Wj ¼ rlj sinðljhÞ. Note that this approximation is valid only if the domain of the
problem, X, is a subset of the convergence domain of expansion (2). By applying Galerkin’s principle, the problem is discret-
ized as follows:Z Z

X
Wjr2uN dV ¼ 0; j ¼ 1;2; . . . ;Na: ð9Þ

By double application of Green’s second identity, and keeping in mind that the singular functions Wj are harmonic, the above
volume integral becomesZ

@X
Wj

@uN

@n
dS�

Z
@X

uN
@Wj

@n
dS ¼ 0; j ¼ 1;2; . . . ;Na: ð10Þ

This reduces the dimension of the problem by one and leads to considerable reduction in the computational cost. Now, since
the Wj’s satisfy the boundary conditions along S1 and S2, the above integral along these boundaries is zero. Therefore, we getZ

S3

Wj
@uN

@n
� uN

@Wj

@n

� �
dS ¼ 0; j ¼ 1;2; . . . ;Na: ð11Þ

It should be noted that integration is needed only along S3, i.e., far from the singularity and not along the boundary parts
causing the singularity.

3.1. Formulation of problem 1

The Dirichlet condition along S3 is imposed by means of a Lagrange multiplier function k, which replaces the normal
derivative. The function k is expanded in terms of standard polynomial basis functions Mi of order p:

k ¼ @uN

@n
¼
XNk

i¼1

kiMi; ð12Þ

where Nk represents the total number of unknown discrete Lagrange multipliers ki (or, equivalently, the total number of La-
grange multiplier nodes) along S3. The basis functions Mi are used to weigh the Dirichlet condition along the corresponding
boundary segment S3. Hence, we obtain the following symmetric system of Na + Nk discretized equations:Z

S3

kWj � uN
@Wj

@n

� �
dS ¼ 0; j ¼ 1;2; . . . ;Na; ð13ÞZ

S3

uNMi dS ¼
Z

S3

f ðr; hÞMi dS; i ¼ 1;2; . . . ;Nk: ð14Þ

The above system can be written in (block) matrix form as

DNa�Na KNa�Nk

KT
Nk�Na

ONk�Nk

" #
A

K

� �
¼

O

F

� �
; ð15Þ

where A and K are, respectively, the vectors of unknown singular coefficients and Lagrange multipliers. It turns out that for
this simple geometry the submatrix D is always diagonal with

Dii ¼ �liR
2li

ap
2
: ð16Þ

The submatrix K and the forcing vector F are given by

Kij ¼ Rliþ1
Z ap

0
Mj sinlih dh; ð17Þ

Fi ¼ R
Z ap

0
f ðhÞMi dh; ð18Þ
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and can be calculated analytically for various orders p of the approximation of the Lagrange multiplier function. The entries
in K and F for p = 0, 1, 2 and 3 are given in Appendix A.

According to the analysis in [5], if k 2 Hk(S3) for some k P 1 and kh is the approximation to the Lagrange multiplier func-
tion with h being the meshwidth, then there exist positive constants C and b 2 (0,1), independent of Na and h such that

ku� uNk1;X þ kk� khk�1=2;S3
6 C

ffiffiffiffiffiffi
Na

p
bNa þ hmp�k

n o
; ð19Þ

where m = min{k,p + 1}. Here, HkðXÞ; k 2 N is the usual Sobolev space which contains functions that have k generalized
derivatives in the space of squared integrable functions L2(X). The norm k � k1,X is defined, as usual, by

kfk1;X :¼
Z

X
f 2 þ f 2

x þ f 2
y

n o
dxdy

� �1=2

: ð20Þ

The norm k � k�1=2;S3
that appears in (19) is defined as follows: Let H1/2(S3) denote the space of functions in H1(X) whose

(trace) values on S3 belong to L2(S3), let T : H1(X) ? H1/2(S3) denote the trace operator, and define the norm

kwk1=2;S3
¼ inf

u2H1ðXÞ
kuk1;X : Tu ¼ w
n o

: ð21Þ

Then,

k/k�1=2;S3
¼ sup

w2H1=2ðS3Þ

R
S3

/w

kwk1=2;S3

: ð22Þ

For more details see [5].
From (19) it is clear that the approximate solution converges exponentially with respect to the number of singular func-

tions, Na. Moreover, if we choose the two errors in (19) to be balanced, we obtain the following relationship between the
number of singular functions and the number of basis functions used to approximate the Lagrange multiplier:

hp �
ffiffiffiffiffiffi
Na

p
bNa () ap

Nk � 1

� �p

�
ffiffiffiffiffiffi
Na

p
bNa ) Nk � 1þ apffiffiffiffiffiffi

Na
p

bNa
� �1=p : ð23Þ

It was also shown in [5] that

jaj � aN
j j 6 CbNa ; ð24Þ

which shows that the approximate singular coefficients aN
j converge exponentially with respect to the number of singular

functions.

3.2. Formulation of problem 2

To impose the Neumann conditions, the normal derivative in (11) is simply substituted by the known function g. It turns
out that for this problem all integrations can be performed analytically as this substitution givesZ

S3

uN
@Wi

@n
dS ¼

Z
S3

gWi dS; i ¼ 1;2; . . . ;Na: ð25Þ

The above expression becomes

aiR
2li�1li

Z ap

0
sin2ðlihÞdh ¼ Rli

Z ap

0
gðhÞ sinðlihÞdh; ð26Þ

from which we find that

ai ¼
4

Rli�1pð2i� 1Þ

Z ap

0
gðhÞ sinðlihÞdh ¼ ð�1Þiþ116a

Rli�1p2ð2i� 1Þ3
; ð27Þ

and the method is equivalent to the method of separation of variables. In the next section we will present numerical results
for the first test problem.

4. Numerical results

Here we present the results of numerical computations in order to verify the theoretical results from [5].

4.1. Semi-circle (a = 1)

First we consider the case a = 1 for the angle h, which corresponds to the domain being a semi-circle. Our first step was to
determine the constant b appearing in (19), which was done as follows: We choose a value for Nk, say Nk = 10, and solve the
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linear system (11) for various values of Na > 10, using, e.g., p = 2. Concentrating on the first singular coefficient, we record the
results in Table 1. Since the exact value of the first coefficient is a1 = 16/p2 � 1.621138938277404, we see from the results of
Table 1 that aN

1 has ‘‘converged” once Na = 30. Hence, using (23) and the ‘‘optimal” pair Na = 30, Nk = 10 we compute the value
for b as b � 0.88.

With b known, we use (24) to determine subsequent ‘‘optimal” values for Nk and Na, for use in our computations. We
should note that in general, the exact value of the first coefficient is unknown, hence in practice we choose the ‘‘optimal”
value of Na based on the changes that appear in the computed aN

1 , i.e., once the value of aN
1 does not change significantly.

In Fig. 2 we show the convergence of the approximate solution and in particular the percentage relative error in the
approximation of u versus Na, in a semi-log scale for p = 1, 2, 3. Since each curve becomes a straight line as Na is increased,
we see that the error decreases at an exponential rate and the convergence as predicted by (19) is verified.

Figs. 3–5 show the percentage relative error in the first four singular coefficients, versus Na in a semi-log scale, for p = 1, 2,
3, respectively. The exponential convergence as predicted by (24) is again readily visible in all three plots.

Next, we would like to compute the error in the approximation of the Lagrange multipliers. Note that for any v 2 H�1/2(S3)
we have

kvk�1=2;S3
6 Ckvk0;S3

6
bCkvk1;S3

; C; bC 2 R: ð28Þ

So, instead of kk� khk�1=2;S3
, we use

100�max
k

jkðhkÞ � khðhkÞj
jkðhkÞj

ð29Þ

where hk are the (internal) nodal points along S3. By construction, kh(hk) = kk, i.e., kh(hk) is equal to the kth discrete Lagrange
multiplier. Fig. 6 shows this error versus Nk (which is directly related to the meshwidth h on S3) in a log–log scale. The con-
vergence rate indeed appears to be algebraic of order p, i.e., kh ? k as Nk ?1 (or, equivalently, as h ? 0) at the rate OðN�p

k Þ
(or O(hp)). Therefore, from (28) we have that kk� khk�1=2;S3

¼ OðhpÞ.
Finally, we show numerical results for the case p = 0. The error analysis in [5] does not cover this case, hence it is not pos-

sible to use (24) to determine ‘‘optimal” values for Nk and Na. In what follows we have chosen Na = 2Nk; other choices gave
similar results. Fig. 7 shows the percentage relative error in the first four singular coefficients versus Na in a log–log scale. We
observe that for p = 0, the convergence is not exponential, but rather algebraic of order 3.

Fig. 8 shows the percentage relative error in the approximation of u and of the Lagrange multipliers, versus Na in a log–log
scale. Again we have algebraic convergence, with rate 2 for the approximation of u and with rate 3/4 for the approximation of
the Lagrange multipliers.

Table 1
Approximate singular coefficient aN

1 , computed with Nk = 10, a = 1.

Na aN
1

12 1.617187500000000
13 1.621215820312500
14 1.619140625000000
15 1.621154785156250
16 1.622070312500000
17 1.621398925781250
18 1.621582031250000
19 1.621154785156250
20 1.621215820312500
21 1.621138935554673
22 1.621138937140710
23 1.621138937635686
24 1.621138937869855
25 1.621138938004718
26 1.621138938092001
27 1.621138938152942
28 1.621138938197758
29 1.621138938231953
30 1.621138938258757
31 1.621138938280287
32 1.621138938297822
33 1.621138938312330
34 1.621138938324523
35 1.621138938334964
36 1.621138938344132
37 1.621138938352468
38 1.621138938360383
39 1.621138938368192
40 1.621138938368413
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4.2. Domain with a ‘‘slit” (a = 2)

We have also repeated the previous computations for the case of a = 2, which corresponds to a domain with a ‘‘slit”. The
procedure for determining the constant b in (19) was repeated yielding b = 0.92 for the pair Na = 35 and Nk = 20.

Fig. 9 shows the convergence of the approximate solution and in particular the percentage relative error in the approx-
imation of u versus Na, in a semi-log scale for p = 1, 2, 3. As with a=1, each curve becomes a straight line as Na is increased,
hence the error decreases at an exponential rate as predicted by (19).
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Figs. 10 and 11 show the percentage relative error in the first four singular coefficients, versus Na in a semi-log scale, for
p = 1 and 2, respectively (the case p = 3 is almost identical). The exponential convergence is again visible in both plots.

Finally, Fig. 12 shows the error in the Lagrange multiplers versus Nk in a log–log scale. The convergence rate again appears
to be algebraic of order p.
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4.3. L-shaped domain (a = 1.5)

Similar results have been obtained with a = 1.5, which corresponds to an L-shaped domain. The constant b in (19) was
determined as 0.9 from the pair Na = 33, Nk = 15. Fig. 13 demonstrates the convergence of the approximate solution, while
Figs. 14 and 15 show the convergence of the approximate coefficients (for p = 1) and of the Lagrange multipliers, respectively.
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5. Conclusions

In this work we revisited the Singular Function Boundary Integral Method (SFBIM) for the solution of two-dimensional
elliptic problems with boundary singularities. Our objective was to demonstrate, via numerical examples, the convergence
of the method and to show the agreement with the theoretical results provided in the literature. For this purpose the method
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was applied to a Laplacian test problem over a circular sector with the use of constant, linear, quadratic and cubic approx-
imations of the Lagrange multipliers. After obtaining the ‘‘optimal” values for the number of Lagrange multipliers and the
number of singular functions, the exact approximation errors were calculated. In the cases of linear, quadratic and cubic
approximations we show that both the singular coefficients and the solution converge exponentially with the number of sin-
gular functions and that the convergence of the approximation of the Lagrange multipliers is algebraic of order p with the
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Fig. 14. Convergence of the singular coefficients aN
j for p = 1, a = 1.5.
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number of Lagrange multipliers, as predicted by the theory. In the case of constant approximations, which is not covered by
the theory, we observed that the convergence is algebraic for both the singular coefficients and the solution.

Appendix A

In what follows, the elements of the matrix K and the vector F defined in (17) and (18) are given for the constant, linear,
quadratic and cubic approximations of the Lagrange multiplier function k defined in (12). We note that N is the number of
elements:

N ¼
Nk; p ¼ 0;

Nk�1
p ; p P 1:

(
ðA:1Þ

Constant basis functions:
For constant basis functions we have for i = 1,2, . . . ,Na, j = 1,2, . . . ,Nk,

Kij ¼
4Rliþ1

ð2i� 1Þ sin
ð2i� 1Þð2j� 1Þp

4N
sin
ð2i� 1Þp

4N
; ðA:2Þ

and for i = 1,2, . . . ,Nk,

Fi ¼
Ra2p2

2N2 2i� 1� 3i2 � 3iþ 1
3N

" #
: ðA:3Þ

Linear basis functions:
For linear basis functions we have, for i = 1,2, . . . ,Na,

Ki;1 ¼
2aRliþ1

ð2i� 1Þ 1� 2N
ð2i� 1Þp sin

ð2i� 1Þp
2N

� �
; ðA:4Þ

Ki;Nk
¼ 8aNRliþ1

pð2i� 1Þ2
sin
ð2i� 1Þp

4N
cos
ð2i� 1Þð2N � 1Þp

4N
; ðA:5Þ

and for i = 1,2, . . . ,Na, j = 2, . . . ,Nk � 1,

Kij ¼
16aNRliþ1

pð2i� 1Þ2
sin2 ð2i� 1Þp

4N
sin
ð2i� 1Þðj� 1Þp

2N
: ðA:6Þ

Similarly,

F1 ¼
Ra2p2

6N2 1� 1
4N

� �
; ðA:7Þ

FNk ¼
Ra2p2

24N3 6N2 � 1
	 


; ðA:8Þ

and for j = 2, . . . ,Nk � 1,

Fi ¼ �
R 12Nð1� iÞ þ 6i2 � 12iþ 7
	 


12N3 : ðA:9Þ

Quadratic basis functions:
For quadratic basis functions we have for i = 1,2, . . . ,Na,

Ki;1 ¼
Rliþ1

2h2l3
i

2 cos 2hli

� �
þ hli sin 2hli

� �
� 2þ 2h2l2

i

n o
; ðA:10Þ

Ki;2Nþ1 ¼ �
Rliþ1

2h2l3
i

�3hli sinð2hNliÞ þ ð2h2l2
i � 2Þ cosð2hNliÞ þ 2 cosð2hðN � 1ÞliÞ � hli sinð2hðN � 1ÞliÞ

h i
; ðA:11Þ

Ki;2k ¼ �
2Rliþ1

h2l3
i

cosð2hkliÞ þ hli sinð2hkliÞ � cosð2hðk� 1ÞliÞ þ hli sinð2hðk� 1ÞliÞ
� �

; k ¼ 1; . . . ;N; ðA:12Þ

Ki;2kþ1 ¼ �
Rliþ1

2h2l3
i

�6hli sinð2hkkliÞ � 2 cosð2hðkþ 1ÞliÞ þ 2 cosð2hðk� 1ÞliÞ � hli sinð2hðkþ 1ÞliÞ � hli

� �
;

k ¼ 1; . . . ;N � 1; ðA:13Þ
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Similarly,

F1 ¼
Ra2p2

120N3 ; ðA:14Þ

F2k ¼
Ra2p2

30N3 10kðk� 1Þ þ 10Nð1� 2kÞ þ 3½ �; k ¼ 2;3; . . . ;N; ðA:15Þ

F2kþ1 ¼
Ra2p2

60N3 10k2 � 20kN � 1
h i

; k ¼ 1;2; . . . ;N � 1; ðA:16Þ

F2Nþ1 ¼
Ra2p2

120N3 10N2 þ 1
h i

: ðA:17Þ

Cubic basis functions:
For cubic basis functions we have for i = 1,2, . . . ,Na,

Ki;1 ¼ �
Rliþ1

3h3l4
i

ðl2
i h2 � 3Þ sinð3hliÞ þ 3lih cosð3hliÞ þ 6hli � 3h3l3

i

h i
; ðA:18Þ

Ki;3kþ2 ¼ �
Rliþ1

2h3l4
i

�8hli cosð3hðkþ 1ÞliÞ þ ð6� 3h2l2
i Þ sinð3hðkþ 1ÞliÞ � 10hli cosð3hkliÞ þ ð6h2l2

i � 6Þ sinð3hkliÞ
h i

;

k ¼ 0;1; . . . ;N � 1; ðA:19Þ

Ki;3kþ3 ¼
Rliþ1

2h3l4
i

�10hli cosð3hðkþ 1ÞliÞ þ ð6� 6h2l2
i Þ sinð3hðkþ 1ÞliÞ � 8hli cosð3hkliÞ þ ð3h2l2

i � 6Þ sinð3hkliÞ
h i

;

k ¼ 0;1; . . . ;N � 1; ðA:20Þ

Ki;3kþ4 ¼
Rliþ1

3h3l4
i

ð11h2l2
i � 6Þ sinð3hðkþ 1ÞliÞ þ ð3� h2l2

i Þ sinð3hkliÞ � 3hli cosð3hkliÞ � 3hli cosð3hðkþ 2ÞliÞ þ ð3� h2l2
i Þ sinð3hðkþ 2ÞliÞ

h i
;

k ¼ 0;1; . . . ;N � 2; ðA:21Þ

Ki;3Nþ1 ¼
Rliþ1

6h3l4
i

ð12hli � 6h3l3
i Þ cosð3hNliÞ þ ð11h2l2

i � 6Þ sinð3hNliÞ þ 6hli cosð3hðN � 1ÞliÞ þ ð6� 2h2l2
i Þ sinð3hðN � 1ÞliÞ

h i
:

ðA:22Þ

Similarly,

F1 ¼
Ra2p2

240N3 ð4N � 1Þ; ðA:23Þ

F3kþ2 ¼
3Ra2p2

80N3 ð10kN � 5k2 þ 2N � 2kÞ; k ¼ 0;1; . . . ;N � 1; ðA:24Þ

F3kþ3 ¼
3Ra2p2

80N3 ð8N � 8k� 3þ 10kN � 5k2Þ; k ¼ 0;1; . . . ;N � 1; ðA:25Þ

F3kþ4 ¼
Ra2p2

120N3 ð30N � 30kþ 30kN � 15k2 � 16Þ; k ¼ 0;1; . . . ;N � 2; ðA:26Þ

F3Nþ1 ¼
Ra2p2

240N3 ð15N2 � 1Þ: ðA:27Þ
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