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SUMMARY

The steady extrusion of a Newtonian liquid through an annular die and its development outside and
away from the die are studied under the influence of gravitational and surface tension forces. The finite
element method (FEM) is used for the simulations. The positions of the inner and outer free surface
profiles are calculated simultaneously with the other unknown fields, i.e. using the Newton–Raphson
iterative scheme. The effects of three relevant parameters, i.e. the Reynolds, the Stokes and the capillary
numbers, on the shape of the annular film are studied for two values of the inner to the outer diameter
ratio, corresponding to a thick and a thin annular film respectively. A one-dimensional model for the
extrudate region, valid for thin annular films, is also presented, and its predictions are compared with the
two-dimensional finite element calculations. Despite the fact that it is valid away from the die exit, the
one-dimensional model predicts satisfactorily the effects of the Stokes and capillary numbers. Copyright
© 2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Steady extrusion through annular dies has application in the manufacturing of pipes and is
closely related to the film blowing and wire coating processes. As in extrusion through slits and
capillaries, the amount of change in the extrudate size (swelling) is a very important design
parameter, since accurate dimensions of the extruded products are required. Hence, the
simulation of the annular extrusion process has been the subject of quite a few publications in
the past two decades [1–6]. To our knowledge, in all two-dimensional studies of annular
extrusion reported so far, gravity and surface tension are neglected, which is not the case in
simulations of extrusion through slits and dies [7–11]. However, it is known from experimental
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observations that both gravity and surface tension push the annular film towards the axis of
symmetry and have a dramatic effect on the shape of the extrudate. When surface tension is
high, the extruded annular film closes, forming a jet at a distance from the exit, known as the
closing length [12]. The latter decreases with surface tension.

In the early 1980s, Crochet and Keunings [1] used finite elements to solve the annular flow
of an upper-convected Maxwell fluid at zero Reynolds number, zero gravity and zero surface
tension, with the ratio of inner to outer diameter equal to 0.75. They calculated the unknown
positions of the free surfaces iteratively using a Picard-iteration technique (i.e. a successive
substitution scheme). Mitsoulis [2] solved the creeping annular flow of a Newtonian fluid using
a similar method and studied the effect of the diameter ratio. Mitsoulis and Heng [3] studied
numerically the isothermal extrusion of different fluids through annular dies. Ahn and Ryan
[4] used finite differences to solve the non-isothermal annular extrusion of a Newtonian fluid.
Huynh [5] solved the non-isothermal extrusion of Newtonian fluids through annular dies using
finite elements and Picard iterations. He studied, in particular, the influence of temperature
and die gap size on the extrudate’s swelling behaviour. Numerical simulations for viscoelastic
annular swell flow have been carried out by various groups (see Reference [6] and references
therein).

The effects of surface tension and gravity have been taken into account in theoretical
one-dimensional analyses, used to model the unsteady flow of thin annular and slender
cylindrical or planar films (see References [13–15] and references therein). In the first case, the
thickness of the film is small compared with the inner radius of the annulus; in the second one,
the thickness of the film is small compared with its length. One-dimensional models are
produced (i) by using ad hoc balances on the film [16], (ii) by simplifying the two-dimensional
equations using a perturbation expansion in the film slenderness [17], or (iii) by employing a
co-ordinate system that moves with the film and writing directly the one-dimensional momen-
tum and mass balances that are valid in the thin film limit [18]. The resulting equations are
clearly simpler, since the dependence of all variables on the co-ordinate normal to the film axis
is eliminated. On the other hand, one-dimensional models are not valid inside and near the
extruder, where the flow is inherently two-dimensional, and their validity away from the
extruder can only be ascertained if either the next order problem in the perturbation expansion
or the corresponding two-dimensional problem is solved.

The main objective of this paper is to solve numerically the two-dimensional, steady
Newtonian annular extrusion flow, and study the effects of gravity and surface tension forces
on the shape of the extrudate. It is assumed that the closing length is large, i.e. the jet closes
far downstream from the exit plane of the computational domain. It is also assumed that the
pressures inside and outside the annular jet are equal. As a consequence, the jet shape can be
considered to have reached an asymptote and the axial velocity can be assumed to be almost
uniform at the exit plane. In such a case, the normal component of the traction is vanishing
at the exit plane. Similar assumptions for the velocity and the normal traction at the exit plane
have been made in various theoretical and numerical studies of both the axisymmetric and
planar extrudate swell problems under gravity and surface tension, and are valid when the exit
plane is taken sufficiently far from the exit of the die [7–11]. In the numerical simulations, we
use the finite element method (FEM) with the Newton–Raphson iterative scheme for the
calculation of the unknown positions of the inner and outer free surfaces, i.e. the positions of
the two surfaces are calculated simultaneously with the other unknown fields [9].
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Another objective of this work is to compare the two-dimensional calculations with the
predictions of the steady state counterpart of the theoretical one-dimensional model of
Housiadas and Tsamopoulos [13–15], developed for unsteady thin annular films. Obviously, a
fair comparison between the two models can only be made after taking into account that the
control volume of the one-dimensional model starts away from the exit of the die, where the
flow ceases to be two-dimensional. This requires the detailed study of the domain of validity
of the one-dimensional model in terms of the four dimensionless parameters involved, i.e. the
Reynolds, the Stokes and the capillary numbers and the diameter ratio. Such a study might
prove useful in developing a hybrid simulation package involving two-dimensional modelling
of the flow inside the annulus and in the rearrangement zone of the extrudate, and one-dimen-
sional modelling away from the die exit. Although this combination would optimize the
accuracy and speed of the numerical calculations, it is not attempted here because it would
introduce, as an additional parameter, the location where the patching between the two models
takes place. In this study, it has been chosen, instead, to start the one-dimensional calculations
at the point where the two-dimensional model predicts a maximum for the outer free surface.

The rest of the paper is organized as follows. In Section 2, the governing equations and the
boundary conditions for the two-dimensional flow are presented, and the FEM used in the
simulations is briefly discussed. In Section 3, the basic equations of the one-dimensional model
are given, and the method of solution is briefly described. In Section 4, the numerical results
are discussed. Two-dimensional results are presented for various values of the Reynolds,
Stokes and capillary numbers and two values of the diameter ratio corresponding to a thick
and a thin film respectively. The predictions of the one-dimensional model for the latter case
are in fairly good agreement with the two-dimensional results. The conclusions are summarized
in Section 5.

2. TWO-DIMENSIONAL ANALYSIS

The flow geometry and the governing equations of the annular extrusion are depicted in Figure
1(a). The flow is assumed to be isothermal and axisymmetric. The fluid is incompressible and
has constant viscosity m. Cylindrical co-ordinates are employed with the z-axis coinciding with
the axis of symmetry of the flow. To non-dimensionalize the governing equations, we use as a
scaling parameter for lengths the inner radius Rin of the annulus; the velocity vector v is scaled
by the average velocity U in the annulus; and finally, the pressure p and the stress tensor t are
measured in units of mU/Rin. Thus, the dimensionless steady state continuity and momentum
equations read

9 ·v=0 (1)

Re v·9v= −9p−9 ·t+St ez (2)

where
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Figure 1. Geometry and boundary conditions of the annular extrusion flow: (a) two-dimensional model,
(b) one-dimensional model.
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m
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are the Reynolds and Stokes numbers respectively, r is the density, g is the gravitational
acceleration and ez denotes the unit vector in the axial direction.

In addition to the two velocity components, 6z and 6r, and the pressure p, the positions hin

and hout of the inner and outer free surfaces of the extrudate are additional unknowns in the
annular extrusion problem. The kinematic condition that the free surfaces remain material
surfaces provides the additional equation needed

n·v=0 (5)

where n is the unit normal vector pointing outwards from a free surface.
The remaining two conditions on the free surface serve as the boundary conditions in the

formulation. A momentum balance on the free surface requires the shear stress to vanish and
the normal stress in the liquid to balance any capillary pressure. If

T= −pI−t (6)
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is the total stress tensor, I being the unit tensor, then

n·T= −
2H
Ca

n (7)

Ca is the capillary number, defined by

Ca

mU
s

(8)

where s is the surface tension and 2H is the mean curvature of a free surface, given by

−2H=
hzz

[1+hz
2]3/2−

1

h
1+hz
2

(9)

Note that the subscripts z and zz denote first- and second-order differentiation of h with
respect to z.

As for the remaining boundary conditions, standard assumptions are made. Along the solid
walls both the velocity components vanish. At the inlet plane, taken at a distance L1 upstream
the die exit, the flow is assumed to be fully developed, i.e. 6r is zero and 6z is given by the
standard solution for Poiseuille flow in an annulus. Finally, at the outlet plane, taken at a
distance L2 downstream from the die exit, the flow is assumed to be approximately uniform,
and thus

−p−tzz=
1

Ca
� 1

hin

−
1

hout

�
and 6r=0 (10)

where tzz is the normal stress component. (Note that the subscript zz denotes here the
zz-component of the stress tensor t.) As discussed in Section 4, these outflow boundary
conditions lead to satisfactory results up to z=L2/4, provided that L2 is sufficiently large.

The two-dimensional flow problem has been solved using finite elements. The flow domain
is discretized by means of quadrilateral elements. The velocity components and the pressure
are approximated by means of biquadratic and bilinear shape functions respectively. The
unknown positions, hin and hout, of the two surfaces of the annular extrudate are approximated
by means of quadratic shape functions. The standard Galerkin method is used to weight the
momentum and the continuity equations over the flow domain, and the kinematic equation on
the two free surfaces. The resulting non-linear system of equations is solved using the Newton
method and a standard frontal sub-routine. The mesh is updated at each iteration according
to the newly found positions of the inner and outer free surfaces using the spine technique [9].

In order to study the convergence of the numerical solution and investigate the validity of
the boundary condition at the exit plane, we constructed meshes of different refinement and of
different lengths. All the meshes extended up to L1=5e upstream, where
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e

Rout−Rin

Rin

=
Rout

Rin

−1 (11)

In order to determine the appropriate length L2 of the domain downstream of the exit, we
considered nine different values ranging from 20e to 6400e. In Table I, we tabulate useful data
about the meshes used for the case e=0.5. Note that meshes more refined than those of Table
I have also been used. In Figure 2, we show part of mesh 9, which requires the simultaneous
solution of 36855 equations. A typical run with this mesh requires about 15 min of CPU time
on an IBM AIX RISC 6000 workstation.

Table I. Data for meshes used for the case e=0.5.

Mesh Number of Number ofL2/e
elements unknowns

71020 69571
50 950 93332

15 17415401003
200 22 9954 2330

5 2610 25 767400
6 800 28 5392890

31 31131707 1600
34 0838 3200 3450

37309 36 8556400

Figure 2. (a) Part of mesh 9 used for e=0.5; (b) enlargement near the die exit.
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3. ONE-DIMENSIONAL ANALYSIS

The procedure we have chosen for producing the one-dimensional model starts by writing the
complete two-dimensional equations in a fixed cylindrical co-ordinate system and the condi-
tions at the four parts of the boundary, i.e. the two unknown free surfaces, the inlet plane at
z=0 (i.e. at a distance L2−L4 from the exit), assumed to be so far away from the exit of the
die so that the one-dimensional model is valid, and the outlet plane taken further downstream,
at z=L4.

It is noted here that, in the one-dimensional analysis, the co-ordinate system is shifted
downstream from the die exit. Moreover, since the one-dimensional model does not involve the
die region (see Figure 1(b)), the ratio e is redefined as follows:

e

hout−hin

hin

)
z=0

(12)

The dimensionless numbers have to be redefined as well. For example, the Reynolds and
Stokes numbers are now given by

Re

rUhin�z=0

m
(13)

and

St

rgh in

2 �z=0

mU
(14)

where U is now the average axial velocity at z=0. It is clear that this average velocity is
different from the average velocity inside the die, used in non-dimensionalizing the two-dimen-
sional equations. Owing to the acceleration of the film caused by gravity, the former is
expected to be higher.

The next step is to map the unknown free surfaces onto fixed ones by means of a
non-orthogonal mapping, as explained in Reference [13]. The dependent variables of the
problem are the two velocity components, 6z and 6r, the pressure p, the inner film radius hin,
and the thickness Dh of the film

Dh
hout−hin (15)

We employ a regular perturbation scheme for the dependent variables, with e as the
perturbation parameter. Owing to the definition of e, the thickness Dh of the film has no
zero-order contribution. The peculiarity of this problem is that in order to formally obtain a
complete set of the lowest-order governing equations and boundary conditions, one needs to
combine perturbation equations from up to three different orders of magnitude [13,17,19]
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+O(e3) (16)

which obviously is valid only for small values of e. The subscripts 0, 1 and 2 in the right-hand
side of Equation (16) denote the zero-, first- and second-order contributions to the correspond-
ing dependent variables.

The final equations are ordinary differential equations in the axial direction only, with the
axial velocity 6z0 and the inner radius R0 as unknowns. The thickness of the film (i.e. h1) is
eliminated from the momentum balances by combining the mass conservation of the film at
O(e0) with the difference of the kinematic conditions at O(e1) to get

h1R06z0=1 (17)

The steps for deriving the governing equation are briefly given in the following. After imposing
the normal force boundary condition (7) at O(e1), the momentum balance in the direction
normal to the inner surface of the film at O(e0) becomes

trr0−tff0

R0

+ (p0+tzz0)
�

R0zz−
R0z

2

R0

�
+StR0z+Re6 z0

2 R0zz+
2

h1Ca %
(2H)0=0 (18)

where

Ca %

Ca
e

(19)

This new definition of the capillary number is necessary, because in the process of deriving
Equation (18), one finds that the thin film cannot sustain a large capillary force [13,19,20].

Similarly, the tangential to the inner film surface momentum balance at O(e0) with the zero
tangential stress boundary condition at O(e1)gives

−St+ (1+R0z
2 )

d(p0+tzz0)
dz

+ (p0+tzz0)
�

R0z
� 1

R0

+R0zz
�

+
h1z

h1

(1+R0z
2 )
n

+
R0z(trr0−tff0)

R0

+Re
�
6 z0

2 R0zR0zz+ (1+R0z
2 )6z0

d6z0

dz
n

=0 (20)

Note that the radial velocity 6r0 has been eliminated from Equations (18) and (20) by means
of

6r0=6z0R0z (21)
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This equation is obtained by combining the continuity equation at O(e1)and the kinematic
condition at the two free surfaces at O(e0); for more details see Reference [13]. As for the
pressure p0, this is calculated from the normal stress balance at the free surfaces at O(e0)

p0=
−trr0+2R0ztrz0−R0z

2 tzz0

1+R0z
2 (22)

In Equations (18) and (20), the following symbols have been used:

h1z

dh1

dz
, R0z


dR0

dz
and R0zz


d2R0

dz2 (23)

Therefore, the mean curvature at zero-order is

(2H)0=

1+R0z

2

R0

−
R0zz


1+R0z
2

Moreover, for the components of the stress tensor, we have

trr0= −2Sr1 (24)

tzz0= −2
�d6z0

dz
−R0zSz1

�
(25)

trz0= −
d6z0

dz
+R0zSr1−Sz1 (26)

tff0= −
26r0

R0

(27)

where Sz1 and Sr1 are the derivatives of 6z1 and 6r1 respectively with respect to r

Sz1

1
h1

(6z1

(r
=

1
1+R0z

2

�
R0z

�6r0

R0

+
d6z0

dz
�

+
1

1+R0z
2

�
2R0z

d6z0

dz
−

d6r0

dz
(1−R0z

2 )
�n

(28)

Sr1

1
h1

(6r1

(r
=R0zSz1−

d6z0

dz
−
6r0

R0

(29)

The expressions for Sz1 and Sr1 were derived by combining the tangential stress conditions at
O(e0) with the indentity

trr0+tff0+tzz0=0 (30)

The boundary conditions at the planes z=0 and L4 are imposed in an average sense [17], but
at this order of approximation of the thin film, they reduce to
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At z=0, 6z0=1, R0=1 and h1=1 (31)

At z=L4, −p0−tzz0=0 and R0z=0 (32)

Note that the second condition at z=L4 is equivalent to 6r0=0, as easily deduced from
Equation (21).

For convenience with the finite element solution and for increased accuracy, R0z is treated
as an additional dependent variable [13]. It is calculated by solving its defining equation

dR0

dz
=R0z (33)

After combining the above equations in order to eliminate all variables except for R0, R0z and
uz0, Equations (18), (20) and (33) are solved numerically using the Galerkin–FEM. Quadratic,
isoparametric Lagrangian basis functions are employed for the three dependent variables. The
nodes were introduced at the following locations:

zi=L4
�i−1

n
�a

, i=1, 2, . . . , n (34)

where n is the total number of nodes and the exponent a was chosen to be a=2.2 in order to
concentrate the nodes near the inlet plane. Convergence of the numerical results was checked
by using meshes with different values of n. The effect of the length of the domain was checked
by considering two different lengths, L4=3200e and 6400e. In order to achieve four accurate
digits in the axial velocity and the inner surface of the film, 120 elements were used in the most
demanding case, where St=1 and L4=6400e. This resulted in 723 unknowns to be calculated.
These requirements become less restrictive as the dimensionless numbers decrease. In most
cases, 80 elements are sufficient. The computational time in a Pentium II running at 90 MHz
is only 2–6 s of CPU time.

4. RESULTS AND DISCUSSION

We have considered two values of the ratio e, i.e. e=0.5 and 0.1, corresponding to a ‘thick’
and a ‘thin’ annular film respectively. For the case e=0.5, only two-dimensional calculations
will be presented. We first studied the creeping flow (Re=0) with zero surface tension
(Ca=� and various Stokes numbers, and obtained results with meshes of different length L2.
In Figure 3, we show results for St=0.04, illustrating the effect of L2 on the numerical
solution. The value L2=400 is more than adequate for accurately capturing the solution in the
region up to z=50. Indeed, in most cases examined, it was found that calculations with film
lengths equal to L2 provided film shapes that were independent of this length up to a distance
z�L2/4. Thus, although gravity constantly applies an axial force on the film, one may apply
the simpler boundary condition given by Equation (10) at some finite length and still get
converged shapes for 20–25 per cent of this film length.
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Figure 3. Convergence of the solution with L2; St=0.04, e=0.5, Re=0 and Ca=�.

In Figure 4, the effect of the Stokes number on the shape of the annular extrudate is
illustrated. Here it is concluded again that converged shapes up to z=50 are obtained using
L2=200, since no significant deviation is observed when L2=400. Owing to its annular shape
and finite thickness, the film swells near the die exit in a non-symmetric way. The rapid
variation in its thickness lasts for less than 3 per cent of its length shown in Figure 4. This first
region of the film is followed by a second much larger one without any swelling. Here, gravity
forces the film inwards and the film becomes thinner due to the acceleration of the fluid. Note
that if the axial velocity remained constant while the film was pushed towards the symmetry
axis, its thickness would have to increase owing to the conservation of mass.

Figure 4. Annular extrudates for various Stokes numbers, e=0.5, Re=0 and Ca=�, obtained with
L2=400 (solid lines) and 200 (dashed lines).

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 33: 1099–1119
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The above observation explains also the results of Figure 5, where we illustrate the effect of
Ca on the annular films for Re=0 and St=0. Surface tension forces the annular film towards
the axis of symmetry; since the volumetric flow rate is constant and no axial acceleration is
applied, the thickness of the film increases with the axial distance. The inner surface is thus
bound to reach the axis of symmetry at a critical distance L3 downstream (the closing length).
Therefore, when Ca is low (i.e. the surface tension is high), our annular flow formulation is not
valid for long solution domains. The closing length L3 is reduced as Ca decreases. Obviously,
in the case of zero Re and St, we are unable to obtain converged results for low values of Ca

Figure 5. Annular extrudates for various capillary numbers, e=0.5, Re=0 and St=�, obtained with
L2=50 (solid lines) and 25 (dashed lines).

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 33: 1099–1119
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owing to the fact that we are restricted to using rather short solution domains. However,
satisfactory results can be obtained for higher values of the Stokes and Reynolds numbers
because the value of L3 increases considerably with these two numbers. In Figure 6, we show
the effect of Ca for Re=0 and St=0.004. It is interesting to note that, in this case, the effect
of the domain length on the results becomes less important as the surface tension is increased.

The effects of the gravitational force and of the surface tension become less significant as the
Reynolds number is increased. In Figure 7, we show the effect of the Reynolds number on the
annular film, in the case of St=0.0004 and Ca=�. Owing to inertia, the motion of the film
towards the axis of symmetry becomes slower as the Reynolds number is increased. For
Re=2, the initial asymmetric swelling is observed throughout its converged length and both
its inner and outer radii are larger than the corresponding ones of the die. In the same case,
after the usual initial swelling, the film thickness remains almost constant.

The case of e=0.1 was examined next. Reducing e from 0.5 to 0.1 decreases the thickness
of the film by a factor of 5. This decrease removes the possibility of a short closing length and
allows the examination of increased Stokes numbers. The changes of the annular film shapes
with the dimensionless numbers of interest are more pronounced and even longer meshes must
be employed. In Figure 8(a), we show the annular films obtained with different Stokes
numbers in the case of zero Reynolds number and zero surface tension. Note that meshes with
L2 as long as 640 had to be used. In Figure 9(a), we show the effect of the capillary number

Figure 6. Effect of capillary number on the annular extrudates for St=0.004, e=0.5 and Re=0 with
L2=400 (solid lines) and 200 (dashed lines).

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 33: 1099–1119
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Figure 7. Annular extrudates for e=0.5, St=0.0004, Ca=� and various Reynolds numbers, obtained
with a long mesh (L2=1600).

by plotting the annular films obtained for Ca=� and 200, in the case of St=0.01 and
Re=0. The effect of the Reynolds number for zero and non-zero Stokes numbers is illustrated
in Figures 10(a) and 11(a) respectively. Note that at high values of the Reynolds number, the
annular film is initially pushed far from the axis of symmetry, but gravity eventually prevails
further downstream.

The calculations for e=0.1 were repeated using the one-dimensional model of Section 3.
Comparisons of the predictions of the two models are made in Figures 8–11, where it is seen
that their results are in qualitative agreement. The only exception is that the one-dimensional

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 33: 1099–1119
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Figure 8. (a) Annular extrudates for e=0.1, Re=0, Ca=� and various Stokes numbers, obtained with
L2=640 (solid lines) and 320 (dashed lines); (b) one-dimensional predictions.

model predicts a film of constant thickness for all Reynolds numbers when St=0 and Ca=�
(Figures 8(b) and 10(b)). This should have been expected, since this model does not account
for the asymmetric swelling caused by the sharp change of boundary conditions at the die exit
and this is the only effect present when St=0 and Ca=�. Quantitative comparison between
the two models can be made by introducing the following definition for the error in results of
the one-dimensional model based on the results of the two-dimensional model:

E=100
)f2D(z)− f1D(z)

f2D(z)
)
, f=hin, hout

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 33: 1099–1119
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Figure 9. (a) Effect of Ca on the annular extrudates for e=0.1, St=0.01, Re=0 and L2=640;
(b) one-dimensional predictions.

Then, from Figures 8–11, we deduce that the maximum error is less than 30 per cent and it
occurs at the smallest non-zero value of the Stokes number.

Evidently, the quantitative differences between the predictions of the two models, observed
in Figures 8–11, are mostly due to the fact that the one-dimensional model is not valid near
the die exit, where the flow is two-dimensional. In the region just outside the die exit, the radial
velocity of the inner surface of the film has an even opposite sign from the corresponding
velocity of the outer surface. Clearly, the one-dimensional model, which can allow only
uniform velocity at the entrance plane and predicts uniform velocity at every cross-section at
lowest order, is not able to describe such a flow field. Besides, this was the reason that the
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Figure 10. (a) Annular extrudates for Re=0 (dashed lines) and 10 (solid lines), e=0.1, St=0, Ca=�
and L2=640; (b) one-dimensional predictions.

centre of the co-ordinate system for the one-dimensional model was located at a distance
L2−L4 (\0) from the die exit. On the other hand, this shifting, if done arbitrarily as in
Figures 8(b)–11(b), introduces additional reasons for deviation between the two sets of results.
This is because gravity will accelerate the fluid, and thus increase its axial velocity (even inside
the die) and modify its thickness and inner radius from the plane at z=L1 in the two-dimen-
sional model to the plane at z=0 in the one-dimensional model (see Figure 1). These changes
in turn will generate small but non-negligible deviations in the characteristic variables used in
defining the dimensionless numbers in the two models.
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Figure 11. (a) Effect of Re on the annular extrudates for e=0.1, St=0.01, Ca=�, obtained with
L2=640 (solid lines) and 320 (dashed lines); (b) one-dimensional predictions.

Therefore, in order to carry out a fair comparison between the two models, we have to
properly account for the length at which the swelling ends and the flow becomes nearly
one-dimensional. To this end, the location z=0 in the one-dimensional model should not be
set arbitrarily, but it should be at the point where the flow becomes nearly one-dimensional or
at the point of maximum swelling of the outer surface. This point is easier to observe
experimentally (see Reference [21]). Given the distance of that location from the exit of the die,
one would need, in addition, the radius of the inner or the outer surface, the film thickness and
the average axial velocity at the point in question. In order to improve the one-dimensional
analysis, we will obtain these values from the two-dimensional results and modify accordingly
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Table II. Modified parameters for the one-dimensional calculations in Figures
12 and 13 (Re=0 in all cases).

Original values in Figure 8 Modified values in Figure 12

L2−L4 Ca St ee L2−L4 Ca St

0.1 0 � 0.001 0.1162 0.5326 � 0.00120
0 � 0.01 0.11660.1 0.2688 � 0.01161

0.1 0 � 0.1 0.1164 0.0786 � 0.11348
0 � 1.0 0.10940.1 0.0342 � 1.07283

Modified values in Figure 13Original values in Figure 9

L2−L4 Ca St e L2−L4e Ca St

0 � 0.01 0.11660.1 0.2688 � 0.01161
0.1 0 200 0.01 0.1191 0.1410 169.05 0.01165

the dimensionless numbers to be used in the one-dimensional simulations. The modified
dimensionless numbers are shown in Table II.

In Figures 12 and 13, we compare directly the new one-dimensional predictions to those of
the two-dimensional model. Clearly, the agreement between the two sets of results is now much
better than in Figures 8 and 9. The maximum error in both cases is about 12 per cent and it
still occurs for the smallest non-zero value of St. A similar comparison was made for e=0.5
between the one- and the two-dimensional models after adjusting the dimensionless numbers

Figure 12. Comparison of the predictions of the two-dimensional model (solid curves) and the one-
dimensional model (dashed curves) for e=0.1, Re=0, Ca=�, L2=640 and various Stokes numbers.
One-dimensional calculations start at the point where the outer free surface attains its maximum value in

the two-dimensional calculations.
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Figure 13. Comparison of the predictions of the two-dimensional model (solid curves) and the one-
dimensional model (dashed curves) for e=0.1, Re=0, St=0.01, L2=640 and two values of the
capillary numbers. One-dimensional calculations start at the point where the outer free surface attains its

maximum value in the two-dimensional calculations.

of the former as described above. The simulations were carried out under the parameter values
of Figure 4. It was found that, in spite of the very large value of e, the maximum error was
less than 8 per cent. The consistent decrease in the error between the two models with
increasing St is due to the fact that the swelling of the fluid decreases as St increases.
Therefore, the characteristic values used in determining the dimensionless numbers in the two
models get closer together.

Finally, it is noteworthy that the difference in computational cost between the two models
is very large. Therefore, one would carry out a few two-dimensional simulations to generate
empirical laws for predicting the amount of swelling and where it reaches its maximum as a
function of the relevant dimensionless numbers. Then, these dimensionless numbers could be
modified as described above and used in the one-dimensional model for a much larger variety
of conditions and parameter values to get additional predictions without any appreciable
computational cost.

5. CONCLUSIONS

Finite elements have been used to solve the Newtonian annular extrusion problem under
gravity and surface tension. Results have been obtained for different Reynolds, Stokes and
capillary numbers, and their effects on the shape of the annular film have been investigated for
e=0.5 and 0.1, e being the ratio of the die gap to its inner radius. A one-dimensional model
for thin annular films has also been presented. Its predictions agree very well with the
two-dimensional calculations, when the distance from the die exit to the maximum swelling is
properly accounted for. A comparison between the one-dimensional modelling of steady and
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unsteady extrusion [13,14] shows that the Reynolds and capillary numbers affect the film in a
similar way. In contrast, gravity affects annular extruded films in a qualitatively different way.
In steady extrusion, the film moves monotonically towards the axis of symmetry, whereas in
unsteady extrusion, its radius exhibits a minimum at about half its length. Of course,
simulations of two-dimensional unsteady extrusion are much more difficult to model and
compute numerically.

ACKNOWLEDGMENTS

This work was partially supported under the PENED-95 Program (Grant number 58, Section 1.3) of the
General Secretariat of Research and Technology of Greece.

REFERENCES

1. Crochet MJ, Keunings R. Die swell of a Maxwell fluid: numerical prediction. Journal of Non-Newtonian Fluid
Mechanics 1980; 7: 199–212.

2. Mitsoulis E. Extrudate swell of Newtonian fluids from annular dies. AIChE Journal 1986; 32: 497–500.
3. Mitsoulis E, Heng FL. Extrudate swell of Newtonian fluids from converging and diverging annular dies.

Rheologica 1987; 26: 414–417.
4. Ahn Y-C, Ryan ME. Analysis of extrudate swell from an annular die. Computers & Fluids 1992; 21: 267–289.
5. Huynh BP. A numerical investigation of non-isothermal extrusion through annular dies. International Journal of

Engineering Science 1998; 36: 171–188.
6. Garcia-Rejon A, DiRaddo RW, Ryan ME. Effect of die geometry and flow characteristics on viscoelastic annular

swell. Journal of Non-Newtonian Fluid Mechanics 1995; 60: 107–128.
7. Dutta A, Ryan ME. Dynamics of a creeping Newtonian jet with gravity and surface tension: a finite difference

technique for solving steady free-surface flows using orthogonal curvilinear coordinates. AIChE Journal 1982; 28:
220–232.

8. Finnicum DS, Weinstein SJ, Ruschak KJ. The effect of applied pressure on the shape of a two-dimensional liquid
curtain falling under the influence of gravity. Journal of Fluid Mechanics 1993; 255: 647–665.

9. Georgiou GC, Papanastasiou TC, Wilkes JO. Laminar jets at high Reynolds and high surface tension. AIChE
Journal 1988; 24(9): 1559–1562.

10. De Luca L, Costa M. Two-dimensional flow of a liquid sheet under gravity. Computers & Fluids 1995; 24:
401–414.

11. Goodwin RT, Schowalter WR. Arbitrarily oriented capillary-viscous planar jets in the presence of gravity. Physics
of Fluids 1994; 7: 954–963.

12. Hassan MZ, Mitsutake Y, Monde M. Shape of an annular liquid jet. Journal of Fluids and Engineering 1997; 119:
591–596.

13. Housiadas K, Tsamopoulos J. Unsteady flow of an axisymmetric annular film under gravity. Physics of Fluids
1998; 10: 2500–2516.

14. Housiadas K, Tsamopoulos J. Unsteady extrusion of a viscoelastic annular film. I: general model and its
numerical solution. Journal of Non-Newtonian Fluid Mechanics 2000; 88: 229–259.

15. Housiadas K, Tsamopoulos J. Unsteady extrusion of a viscoelastic annular film. II: linearized model and its
analytical solution. Journal of Non-Newtonian Fluid Mechanics 2000; 88: 303–325.

16. Pearson JRA, Petrie CJS. The flow of a tubular film. Part 2: interpretation of the model and discussion of
solutions. Journal of Fluid Mechanics 1970; 42: 609–625.

17. Schultz WW, Davis SH. One-dimensional liquid fibers. Journal of Rheology 1982; 26: 331–345.
18. Yarin AL, Gospodinov P, Roussinov VI. Stability loss and sensitivity in hollow fiber drawing. Physics of Fluids

1964; 6: 1454–1463.
19. Pearson JRA, Petrie CJS. The flow of a tubular film. Part 1: Formal mathematical representation. Journal of Fluid

Mechanics 1970; 40: 1–19.
20. Trang CT, Yeow YL. Extrudate swell of Newtonian and non-Newtonian fluids. Journal of Non-Newtonian Fluid

Mechanics 1986; 20: 103–116.
21. Beris AN, Liu B. Time-dependent fiber spinning equations. 1. Analysis of the mathematical behavior. Journal of

Non-Newtonian Fluid Mechanics 1988; 26: 341–361.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 33: 1099–1119


