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SUMMARY

A singular function boundary integral method (SFBIM) is proposed for solving biharmonic problems
with boundary singularities. The method is applied to the Newtonian stick–slip �ow problem. The
streamfunction is approximated by the leading terms of the local asymptotic solution expansion which are
also used to weight the governing biharmonic equation in the Galerkin sense. By means of the divergence
theorem the discretized equations are reduced to boundary integrals. The Dirichlet boundary conditions
are weakly enforced by means of Lagrange multipliers, the values of which are calculated together with
the singular coe�cients. The method converges very fast with the number of singular functions and the
number of Lagrange multipliers, and accurate estimates of the leading singular coe�cients are obtained.
Comparisons with the analytical solution and results obtained with other numerical methods are also
made. Copyright ? 2005 John Wiley & Sons, Ltd.

KEY WORDS: biharmonic equation; boundary singularity; Stokes �ow; stick–slip problem; Lagrange
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1. INTRODUCTION

In the past few decades, many di�erent numerical methods have been proposed for the treat-
ment of boundary singularities in plane elliptic boundary value problems, in order to improve
the solution accuracy and resolve the convergence di�culties occurring in the neighbourhood
of such singular points. These methods range from special mesh-re�nement schemes to so-
phisticated techniques that incorporate, directly or indirectly, the form of the local asymptotic
expansion, which is known in many occasions. An exhaustive survey of treatment of singu-
larities in elliptic boundary value problems is provided in the recent articles by Li and Lu [1],
Dosiyev [2] and Shi et al. [3]. Knowledge of the coe�cients appearing in the local solution
expansion is often desired in many engineering applications. These coe�cients, referred to as
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singular coe�cients or generalized stress intensity factors [4], are calculated either directly
(see Reference [5] and references therein) or by post-processing the numerical solution [6, 7].
In the past few years, we have developed the singular function boundary integral method

(SFBIM) for Laplacian problems with boundary singularities [5, 8, 9], in which the unknown
singular coe�cients are calculated directly. The solution is approximated by the leading terms
of the local asymptotic solution expansion which are also used to weight the governing equa-
tion in the Galerkin sense. With a double application of Green’s theorem, the discretized
equations are reduced to boundary integrals over those parts of the boundary that do not in-
volve the singular point. The Dirichlet boundary conditions are weakly enforced by means of
Lagrange multipliers, which are calculated simultaneously with the singular coe�cients. The
method has been tested on standard Laplacian problems, yielding extremely accurate estimates
of the leading singular coe�cients, and exhibiting exponential convergence with respect to
the number of singular functions [5, 8, 9].
The objective of the present paper is to extend the SFBIM to biharmonic problems with

boundary singularities. For that purpose we have chosen to solve the Newtonian planar stick–
slip problem, which is a benchmark Stokes �ow problem used to test various numerical
methods proposed in the literature for the solution of viscous and non-Newtonian �ows,
such as the extrudate–swell �ow. This concerns the extrusion of a liquid from a slit or an
axisymmetric die into the atmosphere. Due to the relaxation of stresses, the �uid swells as it
exits the die. Swelling is particularly pronounced in the case of elastic �uids, but it is also
observed in the Newtonian case, provided that the Reynolds number is su�ciently low. The
stick–slip problem is a special case of the extrudate–swell problem: in the limit of in�nite
surface tension, no swelling occurs, and the free surface becomes �at (in the case of slit die).
A boundary inverse-square-root stress singularity appears at the exit of the die due to the
sudden change of the boundary conditions from the wall to the �at free surface, which is
the cause of numerical di�culties that become more severe in the case of non-Newtonian or
viscoelastic �ows [10, 11].
The creeping planar stick–slip problem was solved analytically by Richardson who used a

Wiener–Hopf technique [12] and by Sturges who used the method of matched eigenfunction
expansions [13]. Both methods have been used by Trogdon and Joseph [14] to obtain analytical
solutions for the round stick–slip problem.
Direct estimates of the leading singular coe�cients in the case of the planar stick–slip

problem have been reported by various researchers who employed a variety of numerical
methods and techniques to incorporate the leading terms of the local asymptotic solution
(which is equivalent to subtracting the leading terms of the singularity). Kelmanson employed
a direct modi�ed boundary integral equation method (BIEM) incorporating a subtraction of
the singular terms technique that accelerated the rate of convergence, and reported estimates
for the leading four coe�cients [15]. Estimates for these coe�cients have also been reported
by Georgiou et al. [16] who solved the problem using the integrated singular basis function
method (ISBFM). In this method, the singular functions are directly subtracted from the
original problem formulation which leads to a modi�ed problem with the regular part of the
solution and the singular coe�cients as unknowns. The smooth problem is then solved using
�nite elements. The integrals involving singular contributions are reduced to boundary ones
by means of a double integration by parts and the original essential boundary conditions are
enforced by means of Lagrange multipliers. These two features are encountered also with the
SFBIM that we propose in the present work. However, the two methods are quite di�erent
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PLANAR STICK–SLIP PROBLEM 1003

for the following reasons:

(a) With the ISBFM the problem is formulated in terms of the two velocity components
and the pressure, while with the SFBIM it is formulated in terms of the streamfunction.

(b) In the ISBFM the unknown �elds are the smooth parts of the primary variables which
are approximated by means of standard polynomial basis functions. In the SFBIM,
however, there is no subtraction of the singularity and the unknown �eld, i.e. the
stream function, is approximated as a linear combination of the leading terms of
the local asymptotic expansion. It is clear that such an approximation is valid only
if the domain of the problem falls within the domain of convergence of the local
solution.

(c) In the ISBFM, the discretized equations are double integrals, whereas in the SFBIM,
these are boundary ones. Hence, the dimension of the problem is reduced by one, and
the computational cost of the SFBIM is considerably lower than that of the ISBFM.

Karageorghis [17] obtained direct estimates of the �rst four singular coe�cients using a
modi�ed method of fundamental solutions (MFS) that was based on the direct subtraction of
the leading terms of the singular local solution. A similar method was also used by Poullikkas
et al. [18] who subtracted only the leading term of the singular local solution assuming that
its form is unknown and part of the problem.
Georgiou et al. [19] developed a singular �nite element method (SFEM), in which spe-

cial elements incorporating the radial form of the local singularity expansion are employed
in a small region around the singular point, in order to resolve the convergence di�cul-
ties and improve the accuracy of the global solution. They obtained more accurate results
than those achieved with ordinary elements and calculated the leading singular coe�cients
by post-processing the �nite element solution. A similar post-processing technique has been
employed by Salamon et al. [20] who obtained accurate results near the singularity using high
resolution �nite elements with quasi-orthogonal mesh generation and local, adaptive mesh re-
�nement with irregular imbedded elements. Ngamaramvaranggul and Webster [21] developed
a semi-implicit Taylor–Galerkin=pressure-correction �nite element method (STGFEM) for free
surface �ows and applied it to various Newtonian �ows including the plane and axisymmetric
stick–slip and extrudate–swell problems. More recently, Normandin et al. [22] solved the New-
tonian stick–slip problem using a �nite element Galerkin technique associated with stream-tube
analysis and presented comparisons of the computed streamlines with previous results.
The stick–slip �ow of non-Newtonian and viscoelastic �uids has also received considerable

attention due to the convergence di�culties associated with the presence of the singularity
and the relevance to the extrudate–swell problem. We discuss brie�y the literature with em-
phasis on works reporting results for the Newtonian case. Tanner and Huang [10] applied
the J-integral method for solving the planar stick–slip �ow of power-law �uids, corrected the
numerical estimate of singularity strength in Richardson’s Newtonian analysis [12], and cal-
culated the �rst singular coe�cient for various power-law exponents. Owens and Phillips [23]
presented solutions of the planar stick–slip problem obtained with a spectral domain decom-
position method (DDM) for an Oldroyd-B �uid. In a subsequent article, they applied an
algebraic mapping to treat the �ow domain without truncation and computed the singular co-
e�cients using a post-processing technique [24]. Baaijens investigated the numerical stability
of a discontinuous Galerkin method using a Phan–Thien–Tanner model incorporating mono-
tonicity enforcement [25] and applied low-order discontinuous Galerkin methods to solve the
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planar stick–slip problem using the Phan–Thien–Tanner and the Maxwell model [11]. More
recently, Ngamaramvaranggul and Webster used a Taylor–Galerkin=pressure-correction method
with consistent streamline upwinding and velocity gradient recovery to solve the axisymmetric
stick–slip �ow for an Oldroyd-B �ow [26].
The rest of the paper is organized as follows: in Section 2, the Newtonian planar stick–slip

problem is introduced and the governing equations and the local asymptotic solution expansion
are presented. The SFBIM is developed in Section 3, where four di�erent formulations of the
method corresponding to di�erent techniques of imposing the Dirichlet boundary conditions
are presented. The numerical results are given in Section 4, where the fast convergence of
the method with respect to the number of singular functions is demonstrated and comparisons
are made with the the analytical solution [12] and the results obtained with the boundary
integral equation method of Kelmanson [15], the spectral domain decomposition method of
Owens and Phillips [24], the high-resolution �nite element method of Salamon et al. [20],
the STGFEM of Ngamaramvaranggul and Webster [21], and other methods. The conclusions
are summarized in Section 5.

2. GOVERNING EQUATIONS AND ASYMPTOTIC SOLUTION

The planar stick–slip problem is the idealization of the extrusion of a Newtonian �uid between
parallel plates at in�nite surface tension. The geometry of the �ow is depicted in Figure 1.
Due to symmetry, only the upper half of the �ow domain is considered, i.e. boundary part
SD denotes the plane of symmetry. Boundary parts SA and SB represent the wall and the �at
free surface, respectively. The latter is �at in the limit of in�nite surface tension. Finally, SC
and SE are, respectively, the arti�cial inlet and outlet boundaries.
In the creeping case, the �ow is governed by the biharmonic equation [27]:

∇4 =0 in � (1)

where  is the streamfunction de�ned by

ux ≡ @ 
@y

and uy ≡ − @ 
@x

(2)

ux and uy being the velocity components in the x and y directions, respectively.

Figure 1. The planar stick–slip problem in terms of the streamfunction  .
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PLANAR STICK–SLIP PROBLEM 1005

Figure 2. The modi�ed planar stick–slip problem in terms of u =  − 1.

The boundary conditions of the �ow are also depicted in Figure 1. Along the wall SA there
is no slip and no penetration (i.e. the two velocity components are zero). Along the free
surface, both uy and the xy-stress component are zero which leads to ∇2 =0. The in�ow
and out�ow planes are taken at a distance L before and after the die exit. This distance is
assumed to be su�ciently large so that the �ow corresponds to the fully developed Poiseuille
�ow at the in�ow plane and to a plug (i.e. uniform) �ow at the out�ow plane. Finally, along
the symmetry plane, the vertical velocity component and the shear stress are zero, i.e. the
centreline is a slip surface. The stick–slip �ow is characterized by the presence of a stress
singularity at the exit O caused by the sudden change in the boundary conditions, from no
slip (stick) along the wall SA to full slip along the �at free surface SB.
After using the transformation  = u + 1, the problem of Figure 1 is transformed as

follows [23]:

∇4u=0 in � (3)

with

u=0;
@u
@y
=0 on SA

u=0; ∇2u=0 on SB

@∇2u
@x

=0;
@u
@x
=0 on SC

u= − 1; ∇2u=0 on SD

u= 1
2 y(3− y2)− 1; @u

@x
=0 on SE

(4)

The transformed problem is also shown in Figure 2. Note that the weak condition

@(∇2u)
@x

=0 (5)

along SC can be replaced by the stronger Dirichlet condition

u=y − 1 (6)

which leads to a di�erent formulation, since with the SFBIM, imposing Dirichlet conditions
requires the introduction of (unknown) Lagrange multipliers.
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The asymptotic solution in the neighbourhood of the singularity can be expressed in terms
of an eigenfunction expansion of the form [12, 15, 16]:

u(r; �)=
∞∑
j=1

ajr�j+1f(�; �j); (r; �) ∈ � (7)

where (r; �) are the polar co-ordinates centred at the singular point, �j, with j=1; 2; : : :,
are the singularity powers arranged in ascending order, the functions f(�; �j) represent the
�-dependence of the eigensolution, and �j are the unknown singular coe�cients determined
by the global �ow.
The functions Wj ≡ r�j+1f(�; �j) are referred to as singular functions. The local solution (7)

consists of even and odd solutions, the corresponding singular functions of which will be
denoted by Wj

1 and Wj
2 , respectively. In the case of even solutions [12],

Wj
1 ≡ r�j+1f1(�; �j) (8)

with

f1(�; �j)= cos(�j + 1)� − cos(�j − 1)�; �j= j − 1
2 ; j = 1; 2; : : : (9)

whereas in the case of odd solutions,

Wj
2 ≡ r�j+1f2(�; �j) (10)

with

f2(�; �j)= (�j − 1) sin(�j + 1)� − (�j + 1) sin(�j − 1)�; �j= j + 1; j = 1; 2; : : : (11)

Thus the �rst singular function is

W 1
1 = r3=2

(
cos

3�
2

− cos �
2

)

which indicates that the velocity gradients and the stresses vary as the inverse square root of
the radial distance from the singular point.
In what follows we will be using the symbols �j and �j for the singular coe�cients

corresponding to the even and odd singular functions, respectively. Thus, the local solution
is written as follows:

u=
∞∑
j=1

�jW
j
1 +

∞∑
j=1

�jW
j
2 (12)

3. THE SFBIM

In the SFBIM [5] the solution of problem (3)–(4) is approximated by the leading terms of
the local solution expansion (12). By employing the �rst N� terms in both sums of (12) the
approximate solution �u is

�u=
N�∑
j=1
��jW

j
1 +

N�∑
j=1

��jW
j
2 (13)
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where ��j and ��j are the approximations of the singular coe�cients. Obviously, the total number
of singular functions involved in approximation (13) is 2N�.
By applying Galerkin’s principle, the governing equation is weighted by the singular func-

tions used in the approximation of the solution. Hence, the following set of discretized equa-
tions is obtained: ∫

�
∇4 �uW i

k dV =0; i = 1; 2; : : : ; N�; k = 1; 2 (14)

By applying Green’s theorem twice and taking into account that the singular functions Wi
k ,

are biharmonic, the above volume integrals are reduced to boundary ones:

∫
@�

(
@�u
@n

∇2Wi
k − �u

@(∇2Wi
k)

@n

)
dS

+
∫
@�

(
@(∇2 �u)

@n
W i

k − ∇2 �u
@W i

k

@n

)
dS=0; i = 1; 2; : : : ; Na; k = 1; 2 (15)

where @�= SA ∪ SB ∪ SC ∪ SD ∪ SE. The dimension of the problem is, thus, reduced by one,
which leads to a considerable reduction of the computational cost. Since Wi

k satisfy exactly
the boundary conditions along SA and SB, the above integral along these boundary segments,
is identically zero. Therefore,

∫
SC∪SD∪SE

(
@�u
@n

∇2Wi
k − �u

@(∇2Wi
k)

@n

)
dS +

∫
SC∪SD∪SE

(
@(∇2 �u)

@n
W i

k − ∇2 �u
@W i

k

@n

)
dS=0;

i = 1; 2; : : : ; Na; k = 1; 2 (16)

In the SFBIM the Dirichlet boundary conditions are imposed by means of Lagrange mul-
tipliers which replace the normal derivative of the solution u. In the problem under study
Dirichlet boundary conditions appear only along boundary parts SD and SE. Since along SE
the normal derivative @u=@x vanishes, Lagrange multipliers are chosen to replace @(∇2u)=@x
in the boundary integrals of Equation (16). Boundary parts SD and SE are partitioned into
three-node elements and the corresponding Lagrange multipliers, denoted respectively by �D
and �E, are expanded in terms of quadratic basis functions Mj:

�D =
@�u
@y
=

N�D∑
j=1

�j
DM

j on SD (17)

and

�E =
@(∇2 �u)

@x
=

N�E∑
j=1

�j
EM

j on SE (18)

where N�D and N�E are the numbers of the discrete Lagrange multipliers �j
D and �j

E along
the corresponding boundaries. The nodal values of �D and �E are additional unknowns of the
problem. The required N�D +N�E additional equations are obtained by weighting the Dirichlet
boundary conditions along SD and SE by the quadratic basis functions Mj in the Galerkin
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sense. The following linear system of 2N� +N�D +N�E discretized equations is thus obtained:∫
SC

(
−�u @(∇2Wi

k)
@x

− ∇2 �u
@W i

k

@x

)
dy

+
∫
SD

(
−�D∇2Wi

k + �u
@(∇2Wi

k)
@y

− @(∇2 �u)
@y

W i
k

)
dx

+
∫
SE

(
−�EWi

k + �u
@(∇2Wi

k)
@x

+∇2 �u
@W i

k

@x

)
dy=0; i = 1; : : : ; Na; k = 1; 2 (19)

∫
SD
�uMi dx=−

∫
SD

Mi dx; i = 1; 2; : : : ; N�D (20)

∫
SE
�uMi dy=

∫
SE

[
1
2
y(3− y2)− 1

]
Mi dy; i = 1; 2; : : : ; N�E (21)

The above linear system is not symmetric. This can be written in block form as follows:⎡
⎢⎢⎣

K K ′
D KE

K ′′
D O O

KET O O

⎤
⎥⎥⎦

⎡
⎣X��; ��
�D
�E

⎤
⎦ =

⎡
⎣O
B
C

⎤
⎦ (22)

where X��; ��, �D and �E are the vectors of the unknowns:

X��; �� = [��1; : : : ; ��N� ; ��1; : : : ; ��N�
]T

�D = [�1D; �
2
D; : : : ; �

N�D
D ]T

�E = [�1E; �
2
E; : : : ; �

N�E
E ]T

It should be noted that the integrands in the above equations are non-singular and all integra-
tions are carried out far from the boundaries causing the singularity. Note that the sti�ness
matrix is not symmetric and that it becomes singular if N�¿2N� where N�=N�D + N�E . The
above formulation will be referred to as Formulation A. We have also considered three alter-
native formulations which are brie�y discussed below.

3.1. Formulation B

The only di�erence between this formulation and Formulation A is that function �D along
boundary part SD replaces the normal derivative of the Laplacian of u:

�D =
@(∇2 �u)

@y
=

N�D∑
j=1

�j
DM

j on SD (23)
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PLANAR STICK–SLIP PROBLEM 1009

instead of the normal derivative of u. Therefore, the only change in the formulation is in the
boundary integral along the centreline plane, SD, which becomes:∫

SD

(
−�DWi

k + �u
@(∇2Wi

k)
@y

− @ �u
@y

∇2Wi
k

)
dx

In contrast to formulation A, the resulting linear system of equations is symmetric. As before
the sti�ness matrix is singular if N�¿2N�.

3.2. Formulation C

In this formulation, the weak boundary condition @∇2u=@x=0 along SC is replaced by

u=y − 1 on SC (24)

The use of this essential boundary condition requires the introduction of an additional Lagrange
multiplier function, �C, which replaces the normal derivative of the Laplacian of u and is
expressed in terms of quadratic basis functions Mj:

�C =
@(∇2 �u)

@x
=

N�C∑
j=1

�j
CM

j on SC (25)

As is the case with the other essential boundary conditions, condition (24) is weighted by
means of the basis functions Mj. A linear system of 2N� +N�C +N�D +N�E equations is thus
obtained:

∫
SC

(
�CWi

k − �u
@(∇2Wi

k)
@x

− ∇2 �u
@W i

k

@x

)
dy

+
∫
SD

(
−�D∇2Wi

k + �u
@(∇2Wi

k)
@y

− @(∇2 �u)
@y

W i
k

)
dx

+
∫
SE

(
−�EWi

k + �u
@(∇2Wi

k)
@x

+∇2 �u
@W i

k

@x

)
dy=0; i = 1; : : : ; Na; k = 1; 2 (26)

∫
SC
�uMi dy=

∫
SC
(y − 1)Mi dy; i = 1; 2; : : : ; N�C (27)

∫
SD
�uMi dx=−

∫
SD

Mi dx; i = 1; 2; : : : ; N�D (28)

∫
SE
�uMi dy=

∫
SE

[
1
2
y(3− y2)− 1

]
Mi dy; i = 1; 2; : : : ; N�E (29)

The above linear system is not symmetric. The sti�ness matrix is singular if N�¿2N� where
here N�=N�C + N�D + N�E .
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3.3. Formulation D

As in Formulation B, the Lagrange multiplier function �D, used to impose the Dirichlet bound-
ary conditions along SD, replaces the normal derivative of the Laplacian of u (Equation (23)).
The resulting linear system of discretized equations is the same as that of Formulation C
except from the integral along SD in Equation (25), which becomes:∫

SD

(
−�DWi

k + �u
@(∇2Wi

k)
@y

− @ �u
@y

∇2Wi
k

)
dx

As in formulation B, the system of the discretized equations is symmetric.

4. NUMERICAL RESULTS

Calculations have been carried out with all four formulations presented in Section 3. In order
to implement the SFBIM, the boundary parts SC, SD and SE (i.e. the boundary parts away from
the singularity) are subdivided into quadratic elements. Speci�cally, we employ NE elements
over each one of boundaries SE, SC and ND elements over boundary SD. Thus, the total number
of Lagrange multipliers in formulations A and B is N�=N�E + N�D and in formulations C
and D is N�=N�C + N�D + N�E = 2N�E + N�D (where N�E = 2NE + 1 and N�D =2ND + 1). As
in Reference [5], the integrals in all formulations are calculated numerically by subdividing
each quadratic element into 10 subintervals and using a 15-point Gauss–Legendre quadrature
over each subinterval. Unless otherwise indicated, the semi-length L of the domain has been
taken equal to 3.
As already mentioned, the number of the singular functions 2N� should be much greater than

the number of Lagrange multipliers N�, since otherwise the sti�ness matrix is ill-conditioned or
singular. On the other hand, large values of 2N� should be avoided because the contributions
of the high-order singular functions become either negligible (for r¡1) or very large (for
r¿1) beyond the limits double precision can handle.
Systematic runs have been carried out in order to study the e�ects of both N� and N� on

the numerical results. The e�ect of 2N� on the leading singular coe�cients can be observed
in Tables I and II, which show results obtained using formulation A with N�=32. Fast
convergence is observed as 2N� is increased and accurate estimates of the leading singular
coe�cients are obtained. However, at very high values of 2N� (i.e. above 2N�=88) slow
divergence is observed due to the inaccuracies introduced by the high-order singular functions.
The convergence of the method with the number of Lagrange multipliers is shown in

Tables III and IV which show the values of the leading singular coe�cients calculated with
2N�=88 and various values of N�=N�D + N�E . Again, fast convergence is observed initially
but as N� approaches the value of 2N�, the results start diverging slowly, which is attributed
to the fact that the sti�ness matrix becomes ill-conditioned. Our computations showed that
the optimal values of N� and 2N� are N�=32 and 2N�=88. For higher values of 2N� (e.g.
2N�=120) satisfactory values of the singular coe�cients are still obtained, but the quality of
the global solution is not very good.
An indication of the quality of the solution is given by the smoothness of the calculated

Lagrange multipliers. Thus, for the optimal combination N�=32 and 2N�=88 with formula-
tion A, the calculated Lagrange multiplier function along boundary SD is smooth. As shown in
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Table I. Convergence of the leading singular coe�cients �i with 2N�;
N�=32, formulation A.

2N� �1 �2 �3 �4 �5 �10

70 0.6909892 0.2645003 0.030364 −0:021405 −0:002845 0.00024
80 0.6909881 0.2645007 0.030376 −0:021407 −0:002900 0.00022
86 0.6909882 0.2645004 0.030374 −0:021405 −0:002892 0.00021
88 0.6909882 0.2645004 0.030374 −0:021404 −0:002891 0.00021
90 0.6909882 0.2645002 0.030375 −0:021403 −0:002895 0.00021
92 0.6909885 0.2645045 0.030371 −0:021436 −0:002875 0.00034
100 0.6909884 0.2644998 0.030371 −0:021401 −0:002878 0.00020
110 0.6909883 0.2645004 0.030374 −0:021405 −0:002891 0.00021
120 0.6909883 0.2645003 0.030374 −0:021404 −0:002890 0.00021
130 0.6909882 0.2645003 0.030375 −0:021404 −0:002897 0.00020
140 0.6909873 0.2644989 0.030387 −0:021393 −0:002943 0.00019
150 0.6909883 0.2645008 0.030373 −0:021407 −0:002886 0.00021

Table II. Convergence of the leading singular coe�cients �i, with 2N�;
N�=32, formulation A.

2N� �1 �2 �3 �4 �5 �10

70 −0:0808635 −0:017115 0.001726 0.001231 −0:000282 −0:000001
80 −0:0808617 −0:017119 0.001720 0.001240 −0:000270 −0:000006
86 −0:0808619 −0:017119 0.001720 0.001238 −0:000271 −0:000005
88 −0:0808619 −0:017119 0.001720 0.001238 −0:000271 −0:000005
90 −0:0808617 −0:017119 0.001720 0.001238 −0:000270 −0:000005
92 −0:0808645 −0:017122 0.001729 0.001245 −0:000287 −0:000009
100 −0:0808621 −0:017117 0.001721 0.001234 −0:000273 −0:000003
110 −0:0808619 −0:017119 0.001720 0.001238 −0:000272 −0:000005
120 −0:0808619 −0:017118 0.001720 0.001237 −0:000271 −0:000005
130 −0:0808617 −0:017119 0.001720 0.001239 −0:000270 −0:000006
140 −0:0808590 −0:017121 0.001711 0.001231 −0:000258 −0:000008
150 −0:0808623 −0:017119 0.001721 0.001237 −0:000273 −0:000005

Figure 3(a), for a slightly di�erent value of N� (i.e. N�=36), the calculated Lagrange multi-
plier function exhibits oscillations, while the values of the singular coe�cients are essentially
the same. Similar observations are made in Figures 3(b)–(d) with the results of formulations
B–D. Recall here that in formulations A and C, �D replaces @u=@y while in formulations B
and D it replaces @(∇2u)=@y. From the results of Figure 3, it is clear that formulations A and
C are more stable. Since it does not require additional Lagrange multipliers along boundary
SC, formulation A is to be preferred. The converged values of the leading singular coe�cients
with all formulations are depicted in Table V. Note the slight di�erences in the values of
2N� and N� required for convergence. In Table VI, the values of �1, �2, �3 and �1, calculated
using formulation A, are compared with values reported in the literature. To our knowl-
edge, there are no reports in the literature for the values of the higher-order coe�cients. The
value 0:690988 for �1 agrees with the analytical solution up to the sixth signi�cant digit and is
much more accurate than previously reported values. The values of the other three coe�cients
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Table III. Convergence of the leading singular coe�cients �i with N�;
2N�=88, formulation A.

N�=N�D + N�E �1 �2 �3 �4 �5 �10

13 + 5 0.6909940 0.2645260 0.030339 −0:021474 −0:002801 0.00041
17 + 7 0.6909864 0.2644962 0.030396 −0:021382 −0:002969 0.00019
21 + 5 0.6909883 0.2645002 0.030374 −0:021403 −0:002890 0.00021
21 + 7 0.6909882 0.2645007 0.030375 −0:021407 −0:002893 0.00022
25 + 5 0.6909883 0.2645002 0.030373 −0:021403 −0:002888 0.00021
25 + 7 0.6909882 0.2645004 0.030374 −0:021404 −0:002891 0.00021
25 + 9 0.6909882 0.2645005 0.030375 −0:021405 −0:002895 0.00021
29 + 7 0.6909883 0.2645002 0.030374 −0:021403 −0:002892 0.00021
29 + 9 0.6909882 0.2645005 0.030374 −0:021405 −0:002892 0.00021
33 + 7 0.6909883 0.2645004 0.030338 −0:021427 −0:002707 0.00039
33 + 9 0.6909876 0.2645077 0.030435 −0:021461 −0:003168 0.00048

Table IV. Convergence of the leading singular coe�cients �i with N�;
2N�=88, formulation A.

N�=N�D + N�E �1 �2 �3 �4 �5 �10

13 + 5 −0:0808768 −0:017123 0.001747 0.001248 −0:000307 −0:000018
17 + 7 −0:0808566 −0:017121 0.001706 0.001243 −0:000251 −0:000008
21 + 5 −0:0808618 −0:017118 0.001720 0.001237 −0:000271 −0:000005
21 + 7 −0:0808620 −0:017119 0.001721 0.001239 −0:000272 −0:000006
25 + 5 −0:0808619 −0:017118 0.001720 0.001237 −0:000271 −0:000005
25 + 7 −0:0808619 −0:017119 0.001720 0.001238 −0:000271 −0:000005
25 + 9 −0:0808618 −0:017119 0.001720 0.001239 −0:000271 −0:000006
29 + 7 −0:0808618 −0:017118 0.001720 0.001237 −0:000271 −0:000005
29 + 9 −0:0808619 −0:017119 0.001720 0.001238 −0:000271 −0:000005
33 + 7 −0:0808654 −0:017109 0.001747 0.001215 −0:000324 −0:000009
33 + 9 −0:0808571 −0:017146 0.001700 0.001303 −0:000237 −0:000049

compare well with numerical results reported in the literature, especially with those calculated
by the spectral domain decomposition method of Owens and Phillips [24].
Once the streamfunction is known, the two velocity components are directly calculated by

means of Equation (2). Plots of the axial velocity, ux, along the slip surface (y=1) and
the centreline (y=0), computed using formulation A with 2N�=88 and N�=32, are shown
in Figure 4. The calculated slip surface velocity is in good agreement with the predictions
of Kelmanson [15] and Owens and Phillips [24], while the centreline velocity agrees very
well with the high-resolution �nite element predictions of Salamon et al. [20], which is also
indicated in Table VII, where the values of ux at three points of the domain are compared.
A comparison against the analytical solution along the symmetry plane (as calculated by
Ngamaramvaranggul and Webster [21]) is provided in Table VIII. The small di�erences ob-
served are due to the fact that the domain used by Richardson [12] was shorter (L=2).
However, the predictions of the present method are still much closer to the analytical solution
than those of the STGFEM of Ngamaramvaranggul and Webster [21]. Finally, as illustrated
in Table IX, the calculated value of ux at (0.2,1) compares well with the analytical solu-
tion (based on the graphical information recorded in Reference [12]), and is better than the
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(a)

(b)

(c)

(d)

Figure 3. Converged (solid) and oscillatory (dashed) Lagrange multiplier functions along boundary SD
calculated with formulations A–D. (a) Formulation A: N� = 32 (solid) and 36 (dashed) 2N� = 88;
(b) Formulation B: N� = 32 (solid) and 36 (dashed) 2N� = 90; (c) Formulation C: N� = 39 (solid)
and 43 (dashed) 2N� = 90; and (d) Formulation D: N� = 39 (solid) and 43 (dashed) 2N� = 90.
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Table V. Converged values of singular coe�cients with formulations A–D.

Singular Formulation A Formulation B Formulation C Formulation D
coe�cient 2N� =88, N�=32 2N� =90, N�=32 2N� =90, N�=39 2N� =90, N�=39

�1 0.690988 0.690988 0.690989 0.690989
�2 0.264500 0.264500 0.264500 0.264500
�3 0.03037 0.03037 0.03037 0.03037
�4 −0:02140 −0:02140 −0:02140 −0:02140
�5 −0:00289 −0:00289 −0:00289 −0:00289
�6 0.00423 0.00423 0.00423 0.00423
�7 0.00042 0.00041 0.00041 0.00041
�8 −0:00093 −0:00093 −0:00093 −0:00093
�9 −0:00007 −0:00007 −0:00007 −0:00007
�10 0.0002 0.0002 0.0002 0.0002
�1 −0:080862 −0:080862 −0:080862 −0:080862
�2 −0:017119 −0:017118 −0:017119 −0:017118
�3 0.00172 0.00172 0.00172 0.00172
�4 0.00124 0.00124 0.00124 0.00124
�5 −0:00027 −0:00027 −0:00027 −0:00027
�6 −0:00017 −0:00017 −0:00017 −0:00017
�7 0.00005 0.00005 0.00005 0.00005
�8 0.00003 0.00003 0.00003 0.00003
�9 −0:00001 −0:00001 −0:00001 −0:00001
�10 0.00000 0.00000 0.00000 0.00000

Table VI. Comparison of computed singular coe�cients (formulation A with 2N�=88
and N�=32) with the results of other numerical methods.

Method �1 �2 �3 �1

Modi�ed BIEM∗ [15] 0.69108 0.26435 0.04962 −0:07990
Singular FEM† [19] 0.69173 0.27168 0.05013
ISBFM [16] 0.69104 0.26140 −0:01263
Modi�ed MFS [17] 0.690984 0.274807 −0:022104 −0:043983
J-integral method [10] 0.6910
Spectral DDM† [24] 0.69035 0.26404 0.03069 −0:08051
High-resolution FEM† [20] 0.69160 0.27183 0.05232
Modi�ed MFS‡ [18] 0.69019
SFBIM (present work) 0.690988 0.264500 0.03037 −0:080862
Analytical solution [12] 0.6909883

∗ Extrapolated values.
† Singular coe�cients obtained by post-processing the numerical solution.
‡ The best reported estimate is listed.

singular boundary element (SBEM) solution of Ingham and Kelmanson [28], the SFEM and
ISBFM results of Georgiou et al. [16, 19] (as calculated by Ngamaramvaranggul and Webster
[21]), and the STGFEM result [21]. It should be noted that Ngamaramvaranggul and Webster
[21] used an incorrect value for the analytical solution (0.618040 instead of 0.572).
The pressure corresponding to the local solution (12) is given by [27]

p(x; y)=p1(x; y)− p0 (30)
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(a)

(b)

Figure 4. Calculated axial velocity: (a) along the slip surface (y = 1); and (b) along the centreline
(y = 0); formulation A with 2N� = 88 and N� = 32.

Table VII. Comparison of computed axial velocities (formulation A with
2N�=88 and N�=32) with the high-resolution �nite element predictions of

Salamon et al. [20].

ux(0; 0:975) ux(0; 0) ux(1; 1)

Salamon et al. [20] 0.234855 1.34150 0.944542
Present work 0.234840 1.34151 0.944528

where

p1 = − 4
[

∞∑
j=1

(
j − 1

2

)
�jrj−(3=2) sin

(
j − 3

2

)
� −

∞∑
j=1
( j + 1)( j + 2)�jrj cos( j�)

]
(31)
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Table VIII. Computed velocities along the symmetry plane
(formulation A, 2N�=88, N�=32) compared with other

results in the literature.

x Analytical [12] STGFEM [21] SFBIM

−1:0 1.4964 1.4959 1.4965
−0:8 1.4899 1.4892 1.4903
−0:6 1.4758 1.4749 1.4766
−0:4 1.4484 1.4479 1.4499
−0:2 1.4027 1.4035 1.4051
0.2 1.2798 1.2701 1.2665
0.4 1.1967 1.2006 1.1929
0.6 1.1308 1.1403 1.1310
0.8 1.0834 1.0996 1.0848
1.0 1.0516 1.0702 1.0530

Table IX. Velocity results at x = 0:2 on the slip surface.

Method Velocity

Analytical [12] 0.572
SBEM [28] 0.572608
SFEM [19] 0.571896
ISBFM [16] 0.571259
STGFEM [21] 0.619786
SFBIM 0.571958

Table X. Variation of the value of p(0−; 1) with the
semi-length L of the domain; formulation A with

2N�=88 and N�=32.

L p(0−; 1)

2.0 1.3452
2.2 1.3454
2.4 1.3454
2.6 1.3468
2.8 1.3451
3.0 1.3454
3.2 1.3444
3.4 1.3454

and p0 =p(L; 1) so that the pressure at (L; 1) is zero. It is clear that the pressure p is at
most as accurate as p0, the accuracy of which deteriorates as the semi-length L of the domain
increases, given that the contributions of the singular functions become larger. This e�ect is
illustrated in Table X, where we show the variation of p(0−; 1) with L. Note that p1(0−; 1)=0
and thus

p(0−; 1)= − p0 = − p(L; 1)
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(a)

(b)

Figure 5. (a) Calculated pressure along y = 1; and (b) calculated centreline
pressure (continuous curve) compared with the analytical results by Richardson

(points) [12]; formulation A with 2N� = 88 and N� = 32.

Table XI. Comparison of the computed centreline pres-
sure at x=0 (formulation A with 2N�=88 and N�=32)

with the results of other numerical methods.

Method p(0; 0)

Finite di�erences [29] 1.100
STGFEM [21] 0.9980
SFBIM (present work) 1.0349
Analytical solution [12] 1.0348

In Figure 5(a), the pressure along the wall and the slip surface (y=1) is plotted. This is
in good agreement with the results of Salamon et al. [20]. Due to the singularity, the pressure
goes to minus in�nity as the die exit is approached from the right, while it remains �nite
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(a)

(b)

(c)

(d)

Figure 6. Computed streamlines and contours of the two velocity components and the pressure; for-
mulation A with 2N� = 88 and N� = 32. (a) Stream-function,  ; (b) horizontal velocity component,

ux = @ =@y; (c) vertical velocity component, uy = −@ =@x; and (d) pressure, p.

Table XII. Converged values of the leading singular coe�cients with formulation A,
N�=32 and di�erent values of the semi-length L of the domain; the value of 2N�

ranges from 78 to 88, depending on the value of L.

L �1 �2 �1 �2

2.0 0.690973 0.264524 −0:080870 −0:017112
2.1 0.690980 0.264514 −0:080866 −0:017115
2.2 0.690984 0.264508 −0:080864 −0:017117
2.3 0.690986 0.264504 −0:080863 −0:017117
2.4 0.690987 0.264503 −0:080862 −0:017118
2.5 0.690988 0.264502 −0:080862 −0:017118
2.6 0.690988 0.264501 −0:080862 −0:017118
2.7 0.690988 0.264501 −0:080862 −0:017118
2.8 0.690988 0.264501 −0:080862 −0:017118
2.9 0.690988 0.264500 −0:080862 −0:017118
3.0 0.690988 0.264500 −0:080862 −0:017118
3.1 0.690988 0.264500 −0:080862 −0:017118
3.2 0.690988 0.264500 −0:080862 −0:017118
3.3 0.690988 0.264500 −0:080862 −0:017117
3.4 0.690988 0.264500 −0:080862 −0:017118
3.5 0.690988 0.264498 −0:080862 −0:017117
3.6 0.690988 0.264498 −0:080862 −0:017117
3.8 0.690988 0.264498 −0:080862 −0:017118
4.0 0.690988 0.264490 −0:080862 −0:017113
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-0.080862

0.690988

Figure 7. Convergence of �1 and �1 with the semi-length L of the domain: formulation A, N� = 32.

(and positive) for negative x. The negative value of the pressure implies that the �uid in the
extrudate region is subjected to tension. Note that the discontinuity cannot be captured by
standard numerical methods in which a continuous approximation is used for the pressure.
In Figure 5(b), the computed centreline pressure is compared with the analytical results of
Richardson [12] (as given by Ngamaramvaranggul and Webster [21]). The agreement is ex-
cellent, which is also seen in Table XI, where the computed value of p(0; 0) is compared
with the analytical value and those of other numerical methods.
The streamlines as well as the contours of the two velocity components (ux and uy) and the

pressure, computed using formulation A with 2N�=88 and N�=32, are shown in Figure 6.
These show the re-adjustment of the �ow from a parabolic to a uniform velocity pro�le and
agree well with previous results in the literature [16, 20, 22]. The maximum value of uy is
0.19364 which compares well with the value of 0.1936 provided by Salamon et al. [20].
(Ngamaramvaranggul and Webster [21] computed the peak value to be 0.17.) According to
our calculations, the maximum occurs approximately at the point (0.109,0.712).
The e�ect of the length of the domain on the computations has also been studied. Table XII

depicts the converged values of the �rst four singular coe�cients for N�=32 and di�erent
values of the semi-length, L, of the domain. As expected, the values of the singular coe�cients
change dramatically with L for small values of the latter, since the assumptions for fully
developed and uniform �ow along the inlet and outlet planes, respectively, are not valid when
the two planes are taken close to the die exit. This e�ect is illustrated in Figure 7, where
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the calculated values of �1 and �1 are plotted versus L. We observe that the value L=3 is
su�ciently high to assure the validity of the imposed inlet and outlet boundary conditions. At
higher values of L, the accuracy of the computed solutions starts deteriorating, due to the fact
that the number N�D of the corresponding Lagrange multipliers is kept �xed while the length
of the boundary SD increases. As already noted, increasing N�D will not improve the accuracy,
since it leads to ill-conditioning of the sti�ness matrix.

5. CONCLUSIONS

The singular function boundary integral method (SFBIM) has been developed for solving a
biharmonic problem with a boundary singularity, i.e. the Newtonian planar stick–slip problem
in terms of the streamfunction. The solution is approximated by means of the leading singular
functions de�ned by the local asymptotic solution expansion around the singularity. Hence,
the method is restricted to Stokes problems with a boundary singularity for which the local
solution is available. The proposed approximation is valid only if the domain of the problem
is a subset of the domain of convergence of the local solution. If this is not the case, the
domain can be partitioned into subdomains over which separate approximations, that obey
appropriate compatibility conditions along the interfaces, may be used.
The main features of the SFBIM are as follows:

(a) The singular coe�cients are calculated directly.
(b) The governing biharmonic equation is weighted by the singular functions in the Galerkin

sense.
(c) The discretized equations are reduced to boundary integrals by means of a double

application of the divergence theorem, which leads to a considerable reduction of the
computational cost.

(d) The Dirichlet boundary conditions are weakly enforced by means of Lagrange multi-
pliers which may replace either @u=@n or @(∇2u)=@n in the integrands of the discretized
equations. The Lagrange multipliers are calculated together with the singular coe�-
cients.

Four di�erent formulations of the SFBIM, corresponding to di�erent techniques of imposing
the Dirichlet boundary conditions, have been investigated. Even though all formulations give
about the same results, using a weaker instead of a Dirichlet condition along the out�ow plane
is a much better choice, since the number of Lagrange multipliers, N� must be much lower
than the number of singular functions, 2N� in order to avoid ill-conditioning of the sti�ness
matrix. Moreover, the best choice for the Lagrange multipliers along the symmetry plane is to
replace the normal derivative of the solution and not the normal derivative of its Laplacian.
The SFBIM converges very fast with the number of singular functions and the number of

Lagrange multipliers, and accurate estimates of the leading singular coe�cients are obtained.
In particular, the value 0.690988 for the leading singular coe�cient agrees well with the
analytical solution up to the sixth signi�cant digit. The e�ect of the length of the domain
on the values of the leading singular coe�cients has also been investigated. Finally, the
numerical results for the velocity components and the pressure compare very well with the
analytical solution of Richardson [12] and the high-resolution �nite element results of Salamon
et al. [20].
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