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SUMMARY 

The singular finite element method is used to solve the sudden-expansion and the die-swell problems in 
order to improve the accuracy of the solution in the vicinity of the singularity and to speed up the 
convergence. The method requires minor modifications to standard finite element schemes, and even coarse 
meshes give more accurate results than refined ordinary finite element meshes. Improved normal stress 
results for the sudden-expansion problem have been obtained for various Reynolds numbers up to 100 using 
the singular elements constructed for the creeping flow problem. In addition, the normal stresses at the 
walls appear to be insensitive to the singularity powers used in the construction of the singular basis 
functions. The die-swell problem is solved using the singular elements constructed for the stick-slip problem. 
The singular elements accelerate the convergence of the free surface dramatically. 
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1. INTRODUCTION 

Stress singularities in fluid mechanics arise whenever there is an abrupt change in a boundary 
condition or in the boundary itself. Some well known examples of singular problems are the 
sudden-expansion, the die-swell, the stick-slip and the driven cavity problems, which are often 
used as model problems for the various numerical methods proposed for Newtonian or non- 
Newtonian flow. 

Singularities require special attention no matter what numerical method is used. The most 
common treatment is to refine the grid around the singular point in order to capture the abrupt 
changes in the flow field. However, the rate of convergence and the accuracy are generally 
unsatisfactory. The stresses cannot be infinite (in compliance with the asymptotic solution) and 
are tainted by spurious oscillations. This contamination is far more serious in non-Newtonian 
flows than in the corresponding Newtonian flows. Numerical inaccuracies caused by singularities 
can lead to numerically stiff iteration schemes, to the formation of fictitious limit points or to 
artificial changes of type of the governing equations.'** Another inherent disadvantage in local 
refinement is the generation of extremely large matrices, resulting in higher computational costs. 
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Some investigators have modified the mathematical problem to alleviate the singularity by 
(a) modifying the boundary conditions (e.g. relaxing the no-slip condition for a smooth transition 
from a velocity to a stress boundary condition3) or (b) smoothing the boundary (e.g. replacing a 
re-entrant corner by a circular arc of small radius', '). 

An alternative approach, based on the acknowledgement of the singularity rather than on its 
alleviation, is the incorporation of the local asymptotic solution (if known) into the numerical 
scheme (finite differences, finite elements, boundary elements, etc.). This idea has been extensively 
used in fracture mechanics and gives accurate results for relatively coarse meshes6. More 
recently, singular methods were used to solve singular fhid mechanics problems with finite 
differences,8 boundary elements' and finite elements.", In the singular finite element method 
(SFEM), special elements that take into account the nature: of the singularity are used in a small 
core around the singular region and ordinary elements are used in the rest of the domain. The 
basis functions for the primitive variables over the singular elements embody the radial form of 
the singularity, which can be obtained by an asymptotic analysis. 

A feature of the singular fluid flow problems that does not appear in fracture mechanics is that, 
in addition to the velocity derivatives, the pressure, a primitive variable, is singular." An 
additional complication arises in free surface problems since the angle of separation is unknown 
and the boundaries are curved; hence the exact form of the singularity is unknown. 

The SFEM has been used recently by the authors to solve the Newtonian stick-slip problem.'0 
The results in Reference 10 indicate that the SFEM improves the stress representation and gives 
more accurate results than those from more refined ordinary finite element meshes. It was also 
noted that the method can be applied to other singular fluid flow problems for which the radial 
form of the singularity can be obtained by a local analysis. Such analyses are possible with various 
geometries for both Newtonian''-'4 and n~n-Newtonian~" ' - '~  flows; in some non-Newtonian 
flows the local solution is identical to that of the Newtonian case. Thus the S F E M  is applicable to 
some non-Newtonian flows provided the encountered stresses are integrable. The SFEM is also 
suited to non-zero Reynolds number flows, because the local solution remains unchanged near 
the singularity where the viscous effect dominates. This implies that the singular elements 
constructed for creeping flows can be used to solve the non-zero Reynolds number problems as 
well. 

With this background in mind, the main objective of this paper is to generalize the SFEM for 
flows with different singularity powers, non-zero Reynolds number flows and flows with free 
surfaces. We chose to solve two singular problems: (a) the planar 2: 1 sudden-expansion problem 
and (b) the planar die-swell problem. These problems are important in polymer processing and in 
other industrial applications and have been the subject of a considerable amount of experimental 
and numerical work (e.g. References 18 and 19). Even though our work aims towards solving 
viscoelastic flows, which are more challenging than their Newtonian counterparts, here we 
restrict ourselves to the Newtonian cases. Despite the simplification introduced by the Newtonian 
assumption, the two problems are analytically intractable owing to the singularities and the non- 
linearity of the convective terms. In the case of the die-swell problem, the boundary conditions on 
the free surface (the location of which is unknown) are also non-linear. Numerical methods, 
especially finite elements, have been used extensively to overcome all these difficulties. The free 
surface location is computed by either Picard iteration3. '','O or full Newton iteration 
schemes.' ' 7  ' ' 

The sudden-expansion problem was solved for different Reynolds numbers up to 100 using the 
singular elements constructed for creeping flow. The SFEM performs well for non-zero Reynolds 
numbers and yields more accurate predictions than the ordinary finite element method. The 
solution also appears to be rather insensitive to substantial variations of the powers used in the 
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construction of the basis functions. It seems that the elimination of the pressure node from the 
singular point plays a crucial role in the improvement of the solution. 

The planar die-swell problem was solved by singular finite elements, free surface para- 
meterization and full Newton iteration. The singular elements developed for the stick-slip 
problem were used for the die-swell problem over the full range of Reynolds and capillary 
numbers examined. As we will see in the following sections, the SFEM speeds up the convergence 
of the free surface dramatically. 

The governing equations and the local solutions around the singularities are presented in 
Section 2, the construction of the singular basis functions and the finite element formulation are 
presented in Section 3 and the results are discussed in Section 4. 

2. GOVERNING EQUATIONS 

The flow geometry, the governing equations and the boundary conditions for the sudden- 
expansion and the die-swell problems are depicted in Figures l(a) and 2(a) respectively. The flows 
are governed by the two-dimensional momentum equation and continuity; for incompressible 
flow and neglecting gravity, 

R e u - V u  = V*T (1) 

u = ? ( I  - y*) 
n = o  

(b) 

Figure 1 .  (a) Sudden-expansion problem. (b) Local analysis of the singularity 



360 G. C. GEORGIOU, W. W. SCHULTZ AND L. G. OLSON 

n . u  = O  

t n : T  = 0 
n n : T  = 

u = J(1 - yZ) 
u = o  

Reu.Vu = V - T  
v .u  = 0 

y = o  

'2 

I = -3 

T,= = 0, L' = 0 

TZz = 0 
u = o  

Figure 2. (a) Die-swell problem. (b) Local analysis of the singularity 

and 

v - u  = 0, 

where length is measured in units of the entrance half-width H ,  the velocity u is scaled by the mean 
velocity U in the entrance channel, the Newtonian stress tensor T = - PI + Vu + (Vu)' is scaled by 
p U J H ,  and p is the viscosity. The Reynolds number is defined as 

where p is the density. 
In addition to the two velocity components u and u and the pressure p, the free surface location 

h is an additional unknown in the die-swell problem. The kinematic condition that the free surface 
remain a material surface provides the additional equation needed: 

n - u  = 0 ,  (4) 

where n is the unit normal vector pointing outwards from the free surface. 
The remaining two conditions on the free surface serve as the boundary conditions in our 

formulation. A momentum balance on the free surface requires the shear stress to vanish and the 
normal stress in the liquid to balance any capillary pressure, or 

2H 
Ca 

n . T  = -n, ( 5 )  
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where Ca is the capillary number, 

u 

u is the surface tension and 2H is the mean curvature of the free surface, given by 

hxx 2H = 
(1 + 

361 

(6) 

(7) 

2.1. Local analysis of the singularity 

For the local analysis of the singularity we follow Michael” and Moffatt13 and switch to planar 
polar co-ordinates (r, 0) (Figures l(b) and 2(b)). Using a streamfunction representation, the Stokes 
equation admits separated solutions of the form 

* = r A f , ( 0  (8) 
where $ is the streamfunction, A are the eigenvalues of the resulting eigenproblem andf, (0) is 
given by the general expression 

f,(0) = AcosA0 + BsinA0 + Ccos(A - 2)8 + Dsin(A - 2)0. (9) 
A, B, C and D are arbitrary constants determined from the boundary conditions. We require that 
Re(A) > 1 to ensure that the velocity goes to zero at the singular point. For flow between two 
rigid walls meeting at a sharp corner, as in Figure l(b), we have two sets of solutions that 
correspond to the antisymmetrical and the symmetrical flows. For the antisymmetrical flow, 

(10) 

sin2pa = -psin2a with 1.1 = A - 1. (11) 

(12) 

s i n 2 p  = psin2a with p = A - 1. (13) 

$ = a,r’[cos(A - ~ ) C ~ C O S A ~  - cosAacos(A - qe], 
where c( is the angle defined in Figure l(b), a, is a constant and A satisfies the equation 

For the symmetric case, 

$ = b,r’[sin(l - 2)asinM - sinAcrsin(A - 2)8j,  

where b, is a constant and A satisfies 

For the sudden-expansion problem a is 344; the first eigenvalues from equations (1 1) and (13), 
ordered by increasing real part, are listed in Table I. It is worthwhile to note the following: 

Table I. Leading eigenvalues p = 1 - 1 of the two asymptotic 
solution sets (sudden expansion) 

No. Antisymmetrical Symmetrical 

1 0.54448 0.90853 
2 1.62926 k 0.23 125i 2.30133 f0.315841 
3 2.97184 037393i 3.64142f0.41879i 
4 4.3 1038 0.455491 4.97890 0.486631 
5 5.64711 f051368i 6.31508 fO53763i 
6 6.98287kO55911i 7.65051 f0.578591 
7 8.31803 f059642i 8.98546f0.612851 
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(a) although p = 1 is a solution to (1 l), it is not an eigenvalue for this p r ~ b l e m ; ' ~  (b) there is an 
infinite number of eigenvalues for both sets of solutions; (c) there is only one real eigenvalue for 
each set of solutions and it is less than unity; (d) the real part of the complex eigenvalues is always 
greater than unity. Holstein and Paddon' observed that the above solution is the zero-order 
approximation to inertial corner flow and that the Stokesian and inertial corner flows share the 
first three expansion terms. 

An interesting characteristic of the local asymptotic solution of the sudden-expansion problem 
is that both the antisymmetrical and symmetrical solutions contribute one singular term that 
causes the stresses to become infinite such as 

+ c;!r-').O91. (14) 

Unlike the stick-slip problem,23 the normal stresses along the walls are singular. Along the 
bisector (8 = 0), the leading-order symmetrical contributions to the radial velocity component 
and the pressure vanish; the antisymmetrical contributions to the circumferential velocity 
component also vanish. Therefore, at 8 = 0 and close to the singular point, the radial velocity 
component is proportional to r0.544 and the circumferential velocity to ro 909. The antisymmetri- 
cal contribution to the stress also vanishes at  8 = 0 and the stress is determined by the less 
singular symmetrical contribution. 

For the die-swell problem we consider the flow between a rigid boundary and a free surface as 
in Figure 2(b). Michaei" showed that for zero surface tension on a planar free surface the angle a 
must be equal to IT. Sturges14 noted that this result does not apply to the die-swell problem 
because the free surface is not planar. Schultz and G e r v a ~ i o ~ ~  suggested that either the slope is 
zero or the mean curvature is infinite. The resulting eigenvalue problem for the geometry in 
Figure 2(b) is identical to (13); the first two roots for various angles up to 3n/2 are listed in 
Reference 14. However, in the present work we assume that the radial form of the local solution is 
not very different from the solution for a = n; therefore the local solution is the same as that of 
the stick-slip problem: 

-0.456 T n n  N C I ~  

q = ra++'a,[cos(h + i)O - C O S ( ~  - 1)0] for /z = +,3,3,, . . (15) 
and 

t,h = r"'b,[(l  - l)sin(h + l )8  - (A + l )s in(I  - l)O] for I = 2,3,4,. . . . 
(16) 

Using the same local solution we avoid using different singular functions at different (apparent) 
angles of separation and finding the angle of separation Itself. Note that the singular elements 
require only a knowledge of the radial form of the local solution. The validity of the above 
assumption is tested by studying the sensitivity of the results to variations of the singularity 
powers used in the construction of the basis functions. 

3. FINITE ELEMENT FORMULATION 

The domain is discretized using triangular singular elements around the singular point and 
rectangular ordinary elements elsewhere, as illustrated in Figures 3 and 4. For the ordinary 
elements we use biquadratic basis functions for the velocities and bilinear for the pressure. These 
elements are mapped onto a 2 x 2 master element in ( 5 ,  q )  co-ordinates by means of biquadratic 
shape functions. As in Reference 10, the singular elementls are collapsed quadrilaterals with 13 
velocity and eight pressure nodes mapped onto a 2 x 2 15-node element in the computational 
domain (5, q )  by means of ordinary fourth-order polynoniial shape functions in the (-direction 
and second-order in the q-direction. It is important to stress the following: 
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velocity node 
0 pressure node 

SINGULAR ORDINARY 
MASTER MASTER 

ELEMENT ELEMENT 

Figure 3. Ordinary and singular elements 

OM1 

(b) 

Figure 4. (a) Parts of the coarsest ordinary and singular meshes for the sudden-expansion problem. (b) Structure of 
singular meshes near the corner 
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(a) The singular elements are compatible with the adjacent ordinary elements at 5 = 1. 
(b) There is no pressure node at the singular point. 
(c) The three velocity nodes of the singular master element collapse to a single node with two 

The trial functions for the velocities are of the general form 

degrees of freedom at the singular point in the physical domain. 

0' = Ni(t)Pi(q) ,  (17) 
with P varying quadratically with v to maintain compatibility with the adjoining elements. With 
five nodes in the radial direction 5, N is given by 

N = A ,  + A15"' + A 2 t n 2  + A 3 t n 3  + A4tn4.  (18) 
The constants Ai are determined by requiring that N ' ( t j )  = h,, where S j  are the equally spaced 
positions of the velocity nodes. An alternative way to generate the functions N' is given by 
Hughes and Akin," but it is too tedious for the 13-node elements used here. The pressure basis 
functions are given by lower-order interpolation 

Y i  = M ' ( ( ) Q ' ( v ) ,  (19) 
with Q varying linearly with y~ (two pressure nodes in the ?-direction) and M having the same form 
as dNfd5: 

M = B l < n l - l  + B z p l  + B35n3-1 + B45"-'. (20) 
Again, the constants Bi are determined by requiring that Y i ( t j )  = hi,, where now t j  are the 
positions of the pressure nodes. 

For the sudden-expansion problem we require that two terms of the velocity trial functions 
match the two leading expansion terms and that the other two are linear and quadratic. In other 
words we choose n, = 0.544, n2 = 0.909, n3 = 1 and n4 = 2. Similarly, for the die-swell 
problem we take n, = 0.5, n2 = 1, n3 = 1.5 and n4 = 2. Note that for this special case the basis 
functions are easily obtained using Lagrange interpolation." 

Applying Galerkin's principle, we weight the momentum equation by the velocity basis 
functions Q' and apply the divergence theorem, 

(2  1) lS nQ'dS - (VT.VQi + Reu-VuQi)dR = 0, i = 1,2,. . . , N , ,  

and we weight continuity by the pressure basis functions Y', 
r 

V - u W d Q  = 0, i = 1,2,, . . . , N,. J*  
Here R is the domain, S is the free surface boundary (for the die-swell problem), and Nu and N, 
are the numbers of velocity and pressure nodes respectively. In the case of the die-swell problem 
we also weight the kinematic equation by the free surface quadratic basis functions W': 

] sn-uWidS = 0, i = 4 2 , .  . . , N,, 

where N ,  is the number of free surface nodes. Equations (21H23) constitute a non-linear system of 
equations efficiently solved by the Newton method and standard subroutines, e.g. frontal 
methods.26 

The mesh is updated at each iteration by the newly found free surface location values hi, which 
are determined simultaneously with the primary unknowns ui, ui and p i .  Note that the nodes of the 
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singular elements are at a constant distance from the singular point, rotating around the singular 
point according to the shape and position of the free surface. The nodes of the ordinary elements 
are fixed at the x-co-ordinate and move with the free surface in the y-direction so that the relative 
elevation is constant. The mid-nodes of the transition elements move in both x- and y-directions 
so that they are always at the middle of the elements’ sides. 

Standard 3 x 3 Gaussian quadrature is sufficient for the integration over the ordinary elements. 
However, the integration over the singular elements requires special or higher-order quadrature 
 rule^.'^^^' The simple quadrature used in Reference 10 for the stick-slip problem is employed for 
the die-swell problem since the same singular elements are used. Nevertheless, it is tedious to 
develop a special quadrature for the sudden-expansion problem owing to the many incom- 
mensurable powers of the radial co-ordinate that appear in the residual integrands. A higher- 
order (10 x 10) Gauss-Legendre integration was used instead. 

4. RESULTS 

4.1, The sudden-expansion problem 

The 2: 1 sudden-expansion problem was solved with both ordinary and singular finite elements 
for comparison. Results were obtained for various Reynolds numbers ranging from zero to 100. 
For our computations we constructed four ordinary (OM1, OM2, OM3 and OM4) and four 
singular meshes (SM1, SM2, SM3 and SM4). OM2 was obtained from OM1 by refining the 
columns and rows of elements near the corner. OM3 and OM4 were obtained in a similar 
manner. Information about the meshes is listed in Table 11. The singular meshes were generated 
from the corresponding ordinary meshes by replacing the 12 rectangular ordinary elements 
around the singular point with 12 triangular singular elements and 12 quadrilateral transition 
elements in the circular pattern shown in Figure 4. The radius of the singular elements was taken 
to be 1.2 times the size of the original ordinary square element. 

The meshes were extended to a distance L ,  = 3 upstream, a length found adequate to 
approximate the inlet boundary conditions. As noted in Reference 28, the outlet length L, should 
be greater than the maximum expected reattachment length plus a section sufficiently long 
to achieve fully developed flow beyond the point of reattachment. We took L, = 10 for Re up 
to 30, L, = 15 for Re = 50 and L, = 25 for Re = 100, in accordance with the reattachment 
length estimates in Reference 29 and the outlet lengths used in Reference 28. No upwinding 
schemes were used.30 We should note here that some of the meshes are very fine for two 
reasons: (a) to compare results from relatively coarse singular meshes with those from fine 

Table 11. Data for sudden-expansion meshes (L2 = 10) 

Mesh 
Number 

of elements 
Number 
of nodes 

OM1 
OM2 
OM3 
OM4 
SM1 
SM2 
SM3 
SM4 

294 
364 
440 
522 
306 
376 
452 
534 

1261 
1549 
1861 
2197 
1347 
1635 
1947 
2283 

Degrees 
of freedom 

2859 
3509 
4213 
4971 
3075 
3725 
4429 
5187 

Size of 
corner elements 

0.100 
0.050 
0.020 
0.010 
0-130 
0-065 
0-026 
0.013 
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ordinary element meshes and (b) to check whether or not very small singular elements 
are required, given that the form of the singularity is only valid very close to the wall at 
non-zero Re. 

In general, the results from both the ordinary and the singular finite elements are in good 
agreement except in the vicinity of the singular point. In Figure 5 we plot the velocity, pressure 
and streamline contours at  zero Reynolds number predicted with the singular finite elements 
(mesh SM1). 

As expected, the results close to the singular point differ greatly from the ordinary finite element 
predictions. To illustrate this we computed the normal stresses along the two walls forming the 
corner. In Figure 6 we compare the normal stresses along the horizontal wall (y = 1)  and in 
Figure 7 the normal stresses along the vertical wall (x = 0) from meshes OM2, OM4 and SMl .  
The ordinary element results are characterized by spurious oscillations. The SFEM stresses are 

I \ \  \ 

(a) U VELOCITY CONTOURS 

(b) V VELOCITY CONTOURS 
I \  I 

- 

(c) PRESSURE CONTOURS 

-=I 

(d) STREAMLINES 

Figure 5. Results at Re = 0 (a) x-velocity u; (b) y-velocity u; (c) pressure p ;  (d) streamlines 

R x i a l  d i s t a n c e ,  x /H 

Figure 6. Normal stresses along the horizontal wall (y = 1)  at Re = 0 with OM2 (-- ), OM4 (- - - -) and SMl (---) 
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R e 4  

367 

1.0 1.1 1.2 1.3 1.4 1.5 
V e r t i c a l  d i s t a n c e ,  y/H 

Figure 7. Normal stresses along the vertical wall (x = 0) at Re = 0 with OM2 (---), OM4 (- - - -) and SM1 (-) 

Re=O 

-0.6 -0.4 -0.2 
Flxial d i s t a n c e ,  x / H  

I 

~ 

1.0 

Figure 8. Normal stresses along the horizontal wall (y = 1 )  at Re = 0 with SM1 and n1 = 0.2 (---), 0.8 (----) 
and 0544 (-) (all the curves essentially coincide) 

smooth and become infinite at the singular point, as they should. Figures 6 and 7 suggest that the 
singular elements give more accurate results, with no oscillations for relatively coarse meshes. 

One of the goals in this investigation was to study the sensitivity of the results to the powers ni 
of the basis functions. In Figure 8 we plot the normal stresses along the horizontal wall predicted 
with n, = 0544,0.2 and 0.8. We kept the values of the other powers constant. The results agree 
well, indicating that the normal stresses are rather insensitive to the powers n,. Changing the 
value of the second exponent n, from 0.909 to 0.5 and 1.5 reaffirmed this conclusion. It seems that 
the removal of the pressure node froin the singular point plays a more crucial role in improving 
the solution than the accuracy of n,. 

Next we applied singular finite elements at non-zero Reynolds numbers, Re = 0, 1, 10, 50 and 
100. Again, the singular finite elements give the same solution far from the corner as the ordinary 
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finite elements. The streamlines predicted with mesh SM1 are shown in Figure 9; the reattach- 
ment lengths are in good agreement with the results in Reference 28. The line of separation on the 
vertical wall moves towards the corner as Re is increased,. 

Once again, a more severe test is to compare the normal stress results. In Figures 10 and 11 the 
predicted normal stresses along the horizontal wall from meshes OM2,0M4 and SM 1 have been 
plotted for Re = 10 and 50. The singular finite elements give more accurate results for relatively 
coarse meshes. Similar results were obtained for the normal stresses along the vertical wall x = 0. 
All singular meshes give essentially the same results, indicating that smaller singular elements are 

(a) Re = O  - I 

i 
(b) R e =  1 

( c )  R e =  10 

(d)  R e = 5 0  

(el Re = 100 

Figure 9. Streamlines at diferent Re (with mesh SMl): (a) Re = 0; (b) Re := 1 ;  (c) Re = 1 0  (d) Re = 50; (e) Re = 100. The 
maximum values of the streamfunction in the vortex are 1WO6, 1.0010, 1.0124, 1,0412 and 1.0476 respectively 

R x i a l  distance. x / H  

Figure 10. Normal stresses along the horizontal wall (y = 1) at R e  = LO with OM2 (---), OM4 (- - - -) and SM 1 (-) 
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-0.5 -0.4 -0.3 -0.2 -0.1 0.0 
R x i a l  d is tance,  x/H 

Figure 11. Normal stresses along the horizontal wall (y = 1) at Re = 50 with OM2 (---), OM4 ( - - -  -) and SMI (-) 

SM1 

SM2 

SM3 

4 
Figure 12. Singular meshes for the die-swell problem 

not necessary for the non-zero Reynolds number flow. This, in conjunction with the previous 
observation that the normal stresses are rather insensitive to the powers ni, gave us confidence to 
proceed to the solution of the die-swell problem using the SFEM. 

4.2. The die-swell problem 

For the die-swell computations we constructed three ordinary (OM 1, OM2 and OM3) and 
three singular meshes (SM1, SM2 and SM3). The singular meshes, shown in Figure 12, were again 
obtained by modifying the corresponding ordinary meshes. Data about all meshes are given in 
Table 111. The meshes extend up to four channel half-widths upstream and downstream. Again, as 
the Reynolds number increases we must increase the downstream length L,. As we mentioned 
previously, full Newton iteration is used to solve this free surface problem. The free surface profile 
is computed simultaneously with the velocity and pressure fields, and the mesh is updated 
according to the position and shape of the free surface. A zero-order continuation is used for both 
parameters involved, Re and Ca, to proceed to higher Re and lower Ca. 
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Table 111. Data for die-swell meshes ( L2 = 4) 

Number Number 
Mesh of elements of nodes 

Degrees 
of freedom 

Size of 
corner elements 

OM1 120 539 
OM2 196 855 
OM3 288 1235 
SM 1 128 597 
SM2 204 913 
SM3 296 1293 

1253 
1971 
2833 
1401 
21 19 
298 1 

0.20 
0.10 
0.05 
0.24 
0.12 
0.06 

OMI,  OM2, OM3. SMI Ln 

-7 N - 

Figure 13. Computed free surface profiles at zero Re and zero surface tension with OM1 (---), OM2 (----), OM3 (----) 
and SMI (-) 

u 
k! 
kLn 
L"9 - 
u u L 

LL 

0.0 1.0 2.0 3.0 4.0 
R x i a l  d i s t a n c e ,  x/H 

Figure 14. Free surface profiles at various Ca and zero Re 

The obvious choice for comparisons between ordinary and singular finite elements is the free 
surface profile. In Figure 13 we plot the predicted free surface profiles for all the ordinary meshes 
and SM1. All the singular meshes gave practically the same results and predicted the same die- 
swell ratio (1-186). As we see in Figure 13, the ordinary elements converge slowly to the solution 
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obtained by a relatively coarse singular mesh. The singular elements speed up the convergence of 
the free surface considerably. 

Results have been obtained for various Re and Ca. The SFEM solution in the neighbourhood 
of the singularity proved to be insensitive to variations of the powers ni, supporting the use of the 
same singular elements at any apparent angle of separation or at different capillary numbers. The 
free surface profiles for various capillary numbers at Re = 0, obtained with mesh SM1, are plotted 
in Figure 14. 

In closing, we should note that the SFEM is not free of shortcomings or limitations. The radial 
form of the singularity must be known (to a certain accuracy) and additional programming is 
required. The method also leads to stiffness matrices with bigger semibandwidths or frontwidths 
than those from ordinary element meshes. Nevertheless, this is the price one must pay for the 
improved accuracy and the faster convergence. 

5. CONCLUSIONS 

Singular finite elements have been used to solve the 2:l sudden-expansion and the die-swell 
problems at various Reynolds numbers ranging from zero to 100. The singular elements surround 
the singular point and have no pressure node there. The corresponding basis functions embody 
the form of the singularity for each case. The elements used for creeping flow were used to solve 
the problem for non-zero Reynolds numbers because the form of the local solution remains 
unchanged very close to the singular point. The method gives more accurate results than those 
from more refined ordinary finite element meshes; in addition, no oscillations are observed. The 
normal stress results were found to be rather insensitive to the singularity powers used in the 
construction of the singular basis functions. 

For the die-swell problem, the singular elements developed for the stick-slip problem have 
been used. The singular elements speed up the convergence of the free surface considerably. 
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